1
|
Abstract
PURPOSE OF REVIEW Myocardial metabolism is intricately linked to cardiac function. Perturbations of cardiac energy metabolism result in an energy-starved heart and the development of contractile dysfunction. In this review, we discuss alterations in myocardial energy supply, transcriptional changes in response to different energy demands, and mitochondrial function in the development of heart failure. RECENT FINDINGS Recent studies on substrate modulation through modifying energy substrate supply have shown cardioprotective properties. In addition, large cardiovascular outcome trials of anti-diabetic agents have demonstrated prognostic benefit, suggesting the importance of myocardial metabolism in cardiac function. Understanding molecular and transcriptional controls of cardiac metabolism promises new research avenues for metabolic treatment targets. Future studies assessing the impact of substrate modulation on cardiac energetic status and function will better inform development of metabolic therapies.
Collapse
Affiliation(s)
- Sher May Ng
- Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
| | - Stefan Neubauer
- Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
- Department of Cardiology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Oliver J Rider
- Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK.
- Department of Cardiology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
2
|
Power AS, Norman R, Jones TLM, Hickey AJ, Ward ML. Mitochondrial function remains impaired in the hypertrophied right ventricle of pulmonary hypertensive rats following short duration metoprolol treatment. PLoS One 2019; 14:e0214740. [PMID: 30964911 PMCID: PMC6456253 DOI: 10.1371/journal.pone.0214740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension (PH) increases the work of the right ventricle (RV) and causes right-sided heart failure. This study examined RV mitochondrial function and ADP transfer in PH animals advancing to right heart failure, and investigated a potential therapy with the specific β1-adrenergic-blocker metoprolol. Adult Wistar rats (317 ± 4 g) were injected either with monocrotaline (MCT, 60 mg kg-1) to induce PH, or with an equivalent volume of saline for controls (CON). At three weeks post-injection the MCT rats began oral metoprolol (10 mg kg-1 day-1-) or placebo treatment until heart failure was observed in the MCT group. Mitochondrial function was then measured using high-resolution respirometry from permeabilised RV fibres. Relative to controls, MCT animals had impaired mitochondrial function but maintained coupling between myofibrillar ATPases and mitochondria, despite an increase in ADP diffusion distances. Cardiomyocytes from the RV of MCT rats were enlarged, primarily due to an increase in myofibrillar protein. The ratio of mitochondria per myofilament area was decreased in both MCT groups (p ≤ 0.05) in comparison to control (CON: 1.03 ± 0.04; MCT: 0.74 ± 0.04; MCT + BB: 0.74 ± 0.03). This not only implicates impaired energy production in PH, but also increases the diffusion distance for metabolites within the MCT cardiomyocytes, adding an additional hindrance to energy supply. Together, these changes may limit energy supply in MCT rat hearts, particularly at high cardiac workloads. Metoprolol treatment did not delay the onset of heart failure symptoms, improve mitochondrial function, or regress RV hypertrophy.
Collapse
Affiliation(s)
- Amelia S. Power
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- * E-mail: (M-L W); (ASP)
| | - Ruth Norman
- School of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Timothy L. M. Jones
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony J. Hickey
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- * E-mail: (M-L W); (ASP)
| |
Collapse
|
3
|
Wang N, Zhu F, Chen L, Chen K. Proteomics, metabolomics and metagenomics for type 2 diabetes and its complications. Life Sci 2018; 212:194-202. [DOI: 10.1016/j.lfs.2018.09.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023]
|
4
|
Edhager AV, Povlsen JA, Løfgren B, Bøtker HE, Palmfeldt J. Proteomics of the Rat Myocardium during Development of Type 2 Diabetes Mellitus Reveals Progressive Alterations in Major Metabolic Pathways. J Proteome Res 2018; 17:2521-2532. [PMID: 29847139 DOI: 10.1021/acs.jproteome.8b00276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Congestive heart failure and poor clinical outcome after myocardial infarction are known complications in patients with type-2 diabetes mellitus (T2DM). Protein alterations may be involved in the mechanisms underlying these disarrays in the diabetic heart. Here we map proteins involved in intracellular metabolic pathways in the Zucker diabetic fatty rat heart as T2DM develops using MS based proteomics. The prediabetic state only induced minor pathway changes, whereas onset and late T2DM caused pronounced perturbations. Two actin-associated proteins, ARPC2 and TPM3, were up-regulated at the prediabetic state indicating increased actin dynamics. All differentially regulated proteins involved in fatty acid metabolism, both peroxisomal and mitochondrial, were up-regulated at late T2DM, whereas enzymes of branched chain amino acid degradation were all down-regulated. At both onset and late T2DM, two members of the serine protease inhibitor superfamily, SERPINA3K and SERPINA3L, were down-regulated. Furthermore, we found alterations in proteins involved in clearance of advanced glycation end-products and lipotoxicity, DCXR and CBR1, at both onset and late T2DM. These proteins deserve elucidation with regard to their role in T2DM pathogenesis and their respective role in the deterioration of the diabetic heart. Data are available via ProteomeXchange with identifiers PXD009538, PXD009554, and PXD009555.
Collapse
Affiliation(s)
- Anders Valdemar Edhager
- Research Unit for Molecular Medicine, Department of Clinical Medicine , Aarhus University and Aarhus University Hospital , 8200 , Aarhus N , Denmark
| | | | - Bo Løfgren
- Department of Cardiology , Aarhus University Hospital , 8200 , Aarhus N , Denmark.,Institute for Experimental Clinical Research , Aarhus University , 8000 , Aarhus C , Denmark
| | - Hans Erik Bøtker
- Department of Cardiology , Aarhus University Hospital , 8200 , Aarhus N , Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine , Aarhus University and Aarhus University Hospital , 8200 , Aarhus N , Denmark
| |
Collapse
|
5
|
Jarosz J, Ghosh S, Delbridge LMD, Petzer A, Hickey AJR, Crampin EJ, Hanssen E, Rajagopal V. Changes in mitochondrial morphology and organization can enhance energy supply from mitochondrial oxidative phosphorylation in diabetic cardiomyopathy. Am J Physiol Cell Physiol 2016; 312:C190-C197. [PMID: 27903587 DOI: 10.1152/ajpcell.00298.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/15/2016] [Accepted: 11/24/2016] [Indexed: 12/21/2022]
Abstract
Diabetic cardiomyopathy is accompanied by metabolic and ultrastructural alterations, but the impact of the structural changes on metabolism itself is yet to be determined. Morphometric analysis of mitochondrial shape and spatial organization within transverse sections of cardiomyocytes from control and streptozotocin-induced type I diabetic Sprague-Dawley rats revealed that mitochondria are 20% smaller in size while their spatial density increases by 53% in diabetic cells relative to control myocytes. Diabetic cells formed larger clusters of mitochondria (60% more mitochondria per cluster) and the effective surface-to-volume ratio of these clusters increased by 22.5%. Using a biophysical computational model we found that this increase can have a moderate compensatory effect by increasing the availability of ATP in the cytosol when ATP synthesis within the mitochondrial matrix is compromised.
Collapse
Affiliation(s)
- Jan Jarosz
- Cell Structure and Mechanobiology Group, Department of Mechanical Engineering, University of Melbourne, Parkville, Australia.,Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Parkville, Australia
| | - Shouryadipta Ghosh
- Cell Structure and Mechanobiology Group, Department of Mechanical Engineering, University of Melbourne, Parkville, Australia.,Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Parkville, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Parkville, Australia
| | - Amorita Petzer
- School of Biological Sciences, University of Auckland, Aukland, New Zealand
| | - Anthony J R Hickey
- School of Biological Sciences, University of Auckland, Aukland, New Zealand
| | - Edmund J Crampin
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Parkville, Australia.,School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, Australia.,School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia; and
| | - Eric Hanssen
- Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Mechanical Engineering, University of Melbourne, Parkville, Australia; .,Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Parkville, Australia
| |
Collapse
|
6
|
Barallobre-Barreiro J, Lynch M, Yin X, Mayr M. Systems biology-opportunities and challenges: the application of proteomics to study the cardiovascular extracellular matrix. Cardiovasc Res 2016; 112:626-636. [PMID: 27635058 PMCID: PMC5157133 DOI: 10.1093/cvr/cvw206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 12/29/2022] Open
Abstract
Systems biology approaches including proteomics are becoming more widely used in cardiovascular research. In this review article, we focus on the application of proteomics to the cardiac extracellular matrix (ECM). ECM remodelling is a hallmark of many cardiovascular diseases. Proteomic techniques using mass spectrometry (MS) provide a platform for the comprehensive analysis of ECM proteins without a priori assumptions. Proteomics overcomes various constraints inherent to conventional antibody detection. On the other hand, studies that use whole tissue lysates for proteomic analysis mask the identification of the less abundant ECM constituents. In this review, we first discuss decellularization-based methods that enrich for ECM proteins in cardiac tissue, and how targeted MS allows for accurate protein quantification. The second part of the review will focus on post-translational modifications including hydroxylation and glycosylation and on the release of matrix fragments with biological activity (matrikines), all of which can be interrogated by proteomic techniques.
Collapse
Affiliation(s)
| | - Marc Lynch
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
7
|
Cheung CCH, Soon CY, Chuang CL, Phillips ARJ, Zhang S, Cooper GJS. Low-dose copper infusion into the coronary circulation induces acute heart failure in diabetic rats: New mechanism of heart disease. Biochem Pharmacol 2015. [PMID: 26208785 DOI: 10.1016/j.bcp.2015.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes impairs copper (Cu) regulation, causing elevated serum Cu and urinary Cu excretion in patients with established cardiovascular disease; it also causes cardiomyopathy and chronic cardiac impairment linked to defective Cu homeostasis in rats. However, the mechanisms that link impaired Cu regulation to cardiac dysfunction in diabetes are incompletely understood. Chronic treatment with triethylenetetramine (TETA), a Cu²⁺-selective chelator, improves cardiac function in diabetic patients, and in rats with heart disease; the latter displayed ∼3-fold elevations in free Cu²⁺ in the coronary effluent when TETA was infused into their coronary arteries. To further study the nature of defective cardiac Cu regulation in diabetes, we employed an isolated-perfused, working-heart model in which we infused micromolar doses of Cu²⁺ into the coronary arteries and measured acute effects on cardiac function in diabetic and non-diabetic-control rats. Infusion of CuCl₂ solutions caused acute dose-dependent cardiac dysfunction in normal hearts. Several measures of baseline cardiac function were impaired in diabetic hearts, and these defects were exacerbated by low-micromolar Cu²⁺ infusion. The response to infused Cu²⁺ was augmented in diabetic hearts, which became defective at lower infusion levels and underwent complete pump failure (cardiac output = 0 ml/min) more often (P < 0.0001) at concentrations that only moderately impaired function of control hearts. To our knowledge, this is the first report describing the acute effects on cardiac function of pathophysiological elevations in coronary Cu²⁺. The effects of Cu²⁺ infusion occur within minutes in both control and diabetic hearts, which suggests that they are not due to remodelling. Heightened sensitivity to the acute effects of small elevations in Cu²⁺ could contribute substantively to impaired cardiac function in patients with diabetes and is thus identified as a new mechanism of heart disease.
Collapse
Affiliation(s)
- Carlos Chun Ho Cheung
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Choong Yee Soon
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Chia-Lin Chuang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Anthony R J Phillips
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Shaoping Zhang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, The University of Auckland, Auckland, New Zealand; Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK; The Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK; The Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
Xu J, Jüllig M, Middleditch MJ, Cooper GJS. Modelling atherosclerosis by proteomics: Molecular changes in the ascending aortas of cholesterol-fed rabbits. Atherosclerosis 2015; 242:268-76. [PMID: 26232167 DOI: 10.1016/j.atherosclerosis.2015.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/12/2015] [Accepted: 07/01/2015] [Indexed: 02/08/2023]
Abstract
The cholesterol-fed rabbit is commonly used as a model to study the vascular effects of hypercholesterolemia and resulting atherosclerotic lesions. Here we undertook a proteomic case-control investigation of ascending aortas from male New Zealand White rabbits after 10 weeks on a high-cholesterol (2% w/w) diet (HCD, n = 5) or control diet (n = 5), in order to determine the changes in response to the HCD. Histology confirmed intimal thickening in the HCD group consistent with atherosclerosis, and LC-MS/MS analysis of individually-obtained ascending aortic extracts labelled with isobaric (iTRAQ) tags enabled the identification and quantitation of 453 unique proteins above the 1% false discovery rate threshold. Of 67 proteins showing significant differences in relative abundance (p < 0.05), 62 were elevated and five decreased in ascending aortas from HCD-fed rabbits compared to controls. Six proteins were selected for validation using Multiple Reaction Monitoring, which confirmed the iTRAQ results. Many of the observed protein changes are consistent with known molecular perturbations in the ascending aorta that occur in response to hypercholesterolemia, e.g. elevation of tissue levels of apolipoproteins, extracellular matrix adhesion proteins, glycolytic enzymes, heat shock proteins and proteins involved in immune defense. We also made a number of novel observations, including a 15-fold elevation of glycoprotein (trans-membrane) nmb-like (Gpnmb) in response to HCD. Gpnmb has previously been linked to angiogenesis but not to atherosclerosis. This and additional novel observations merit further investigation as these perturbations may play important and as yet undiscovered roles in the pathogenesis of atherosclerosis in rabbits as well as humans.
Collapse
Affiliation(s)
- Jingshu Xu
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand.
| | - Mia Jüllig
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand; Auckland Science Analytical Services, Faculty of Science, University of Auckland, Auckland, New Zealand.
| | - Martin J Middleditch
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Auckland Science Analytical Services, Faculty of Science, University of Auckland, Auckland, New Zealand.
| | - Garth J S Cooper
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand; Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK; Centre for Advanced Discovery and Experimental Therapeutics, NIHR Manchester Biomedical Research Centre, the University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Anderson SG, Dunn WB, Banerjee M, Brown M, Broadhurst DI, Goodacre R, Cooper GJS, Kell DB, Cruickshank JK. Evidence that multiple defects in lipid regulation occur before hyperglycemia during the prodrome of type-2 diabetes. PLoS One 2014; 9:e103217. [PMID: 25184286 PMCID: PMC4153569 DOI: 10.1371/journal.pone.0103217] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 06/30/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Blood-vessel dysfunction arises before overt hyperglycemia in type-2 diabetes (T2DM). We hypothesised that a metabolomic approach might identify metabolites/pathways perturbed in this pre-hyperglycemic phase. To test this hypothesis and for specific metabolite hypothesis generation, serum metabolic profiling was performed in young women at increased, intermediate and low risk of subsequent T2DM. METHODS Participants were stratified by glucose tolerance during a previous index pregnancy into three risk-groups: overt gestational diabetes (GDM; n = 18); those with glucose values in the upper quartile but below GDM levels (UQ group; n = 45); and controls (n = 43, below the median glucose values). Follow-up serum samples were collected at a mean 22 months postnatally. Samples were analysed in a random order using Ultra Performance Liquid Chromatography coupled to an electrospray hybrid LTQ-Orbitrap mass spectrometer. Statistical analysis included principal component (PCA) and multivariate methods. FINDINGS Significant between-group differences were observed at follow-up in waist circumference (86, 95%CI (79-91) vs 80 (76-84) cm for GDM vs controls, p<0.05), adiponectin (about 33% lower in GDM group, p = 0.004), fasting glucose, post-prandial glucose and HbA1c, but the latter 3 all remained within the 'normal' range. Substantial differences in metabolite profiles were apparent between the 2 'at-risk' groups and controls, particularly in concentrations of phospholipids (4 metabolites with p ≤ 0.01), acylcarnitines (3 with p ≤ 0.02), short- and long-chain fatty acids (3 with p< = 0.03), and diglycerides (4 with p ≤ 0.05). INTERPRETATION Defects in adipocyte function from excess energy storage as relatively hypoxic visceral and hepatic fat, and impaired mitochondrial fatty acid oxidation may initiate the observed perturbations in lipid metabolism. Together with evidence from the failure of glucose-directed treatments to improve cardiovascular outcomes, these data and those of others indicate that a new, quite different definition of type-2 diabetes is required. This definition would incorporate disturbed lipid metabolism prior to hyperglycemia.
Collapse
Affiliation(s)
- Simon G. Anderson
- Institute of Cardiovascular Sciences, Core Technology Facility, The University of Manchester, Manchester, United Kingdom
| | - Warwick B. Dunn
- Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Centre for Advanced Discovery & Experimental Therapeutics (CADET), Central Manchester NHS Foundation Trust and School of Biomedicine, The University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Moulinath Banerjee
- Institute of Cardiovascular Sciences, Core Technology Facility, The University of Manchester, Manchester, United Kingdom
| | - Marie Brown
- Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - David I. Broadhurst
- Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
- Division of General Internal Medicine, Department of Medicine, 4126A Katz Group Centre for Pharmacy & Health, University of Alberta, Edmonton, Alberta, Canada
| | - Royston Goodacre
- Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Garth J. S. Cooper
- Centre for Advanced Discovery & Experimental Therapeutics (CADET), Central Manchester NHS Foundation Trust and School of Biomedicine, The University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Douglas B. Kell
- Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - J. Kennedy Cruickshank
- Institute of Cardiovascular Sciences, Core Technology Facility, The University of Manchester, Manchester, United Kingdom
- Diabetes & Nutritional Sciences Division, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Ward ML, Crossman DJ. Mechanisms underlying the impaired contractility of diabetic cardiomyopathy. World J Cardiol 2014; 6:577-584. [PMID: 25068018 PMCID: PMC4110606 DOI: 10.4330/wjc.v6.i7.577] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/25/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Cardiac dysfunction is a well-known consequence of diabetes, with sustained hyperglycaemia leading to the development of a cardiomyopathy that is independent of cardiovascular disease or hypertension. Animal models of diabetes are commonly used to study the pathophysiology of diabetic cardiomyopathy, with the hope that increased knowledge will lead ultimately to better therapeutic strategies being developed. At physiological temperature, left ventricular trabeculae isolated from the streptozotocin rat model of type 1 diabetes showed decreased stress and prolonged relaxation, but with no evidence that decreased contractility was a result of altered myocardial Ca2+ handling. Although sarcoplasmic reticulum (SR) Ca2+ reuptake appeared slower in diabetic trabeculae, it was offset by an increase in action-potential duration, thereby maintaining SR Ca2+ content and favouring increased contraction force. Frequency analysis of t-tubule distribution by confocal imaging of ventricular tissue labeled with wheat germ agglutinin or ryanodine receptor antibodies showed a reduced T-power for diabetic tissue, but the differences were minor in comparison to other models of heart failure. The contractile dysfunction appeared to be the result of disrupted F-actin in conjunction with the increased type I collagen, with decreased myofilament Ca2+ sensitivity contributing to the slowed relaxation.
Collapse
|
11
|
Shen X, Young R, Canty JM, Qu J. Quantitative proteomics in cardiovascular research: global and targeted strategies. Proteomics Clin Appl 2014; 8:488-505. [PMID: 24920501 DOI: 10.1002/prca.201400014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/02/2014] [Accepted: 06/06/2014] [Indexed: 11/05/2022]
Abstract
Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here, we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation.
Collapse
Affiliation(s)
- Xiaomeng Shen
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | | | | | | |
Collapse
|
12
|
Zhang S, Liu H, Amarsingh GV, Cheung CCH, Hogl S, Narayanan U, Zhang L, McHarg S, Xu J, Gong D, Kennedy J, Barry B, Choong YS, Phillips ARJ, Cooper GJS. Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc Diabetol 2014; 13:100. [PMID: 24927960 PMCID: PMC4070334 DOI: 10.1186/1475-2840-13-100] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/27/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Heart disease is the leading cause of death in diabetic patients, and defective copper metabolism may play important roles in the pathogenesis of diabetic cardiomyopathy (DCM). The present study sought to determine how myocardial copper status and key copper-proteins might become impaired by diabetes, and how they respond to treatment with the Cu (II)-selective chelator triethylenetetramine (TETA) in DCM. METHODS Experiments were performed in Wistar rats with streptozotocin (STZ)-induced diabetes with or without TETA treatment. Cardiac function was analyzed in isolated-perfused working hearts, and myocardial total copper content measured by particle-induced x-ray emission spectroscopy (PIXE) coupled with Rutherford backscattering spectrometry (RBS). Quantitative expression (mRNA and protein) and/or activity of key proteins that mediate LV-tissue-copper binding and transport, were analyzed by combined RT-qPCR, western blotting, immunofluorescence microscopy, and enzyme activity assays. Statistical analysis was performed using Student's t-tests or ANOVA and p-values of < 0.05 have been considered significant. RESULTS Left-ventricular (LV) copper levels and function were severely depressed in rats following 16-weeks' diabetes, but both were unexpectedly normalized 8-weeks after treatment with TETA was instituted. Localized myocardial copper deficiency was accompanied by decreased expression and increased polymerization of the copper-responsive transition-metal-binding metallothionein proteins (MT1/MT2), consistent with impaired anti-oxidant defences and elevated susceptibility to pro-oxidant stress. Levels of the high-affinity copper transporter-1 (CTR1) were depressed in diabetes, consistent with impaired membrane copper uptake, and were not modified by TETA which, contrastingly, renormalized myocardial copper and increased levels and cell-membrane localization of the low-affinity copper transporter-2 (CTR2). Diabetes also lowered indexes of intracellular (IC) copper delivery via the copper chaperone for superoxide dismutase (CCS) to its target cuproenzyme, superoxide dismutase-1 (SOD1): this pathway was rectified by TETA treatment, which normalized SOD1 activity with consequent bolstering of anti-oxidant defenses. Furthermore, diabetes depressed levels of additional intracellular copper-transporting proteins, including antioxidant-protein-1 (ATOX1) and copper-transporting-ATPase-2 (ATP7B), whereas TETA elevated copper-transporting-ATPase-1 (ATP7A). CONCLUSIONS Myocardial copper deficiency and defective cellular copper transport/trafficking are revealed as key molecular defects underlying LV impairment in diabetes, and TETA-mediated restoration of copper regulation provides a potential new class of therapeutic molecules for DCM.
Collapse
Affiliation(s)
- Shaoping Zhang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Hong Liu
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Greeshma V Amarsingh
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Carlos C H Cheung
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Sebastian Hogl
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Umayal Narayanan
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Lin Zhang
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Selina McHarg
- Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, and the Centre for Diabetes and Endocrinology, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9WL, UK
| | - Jingshu Xu
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Deming Gong
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - John Kennedy
- National Isotope Centre, GNS Science, Gracefield, Wellington, New Zealand
| | - Bernard Barry
- National Isotope Centre, GNS Science, Gracefield, Wellington, New Zealand
| | - Yee Soon Choong
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Anthony R J Phillips
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- The School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, and the Centre for Diabetes and Endocrinology, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9WL, UK
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Pham T, Loiselle D, Power A, Hickey AJR. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am J Physiol Cell Physiol 2014; 307:C499-507. [PMID: 24920675 DOI: 10.1152/ajpcell.00006.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As ~80% of diabetic patients die from heart failure, an understanding of diabetic cardiomyopathy is crucial. Mitochondria occupy 35-40% of the mammalian cardiomyocyte volume and supply 95% of the heart's ATP, and diabetic heart mitochondria show impaired structure, arrangement, and function. We predict that bioenergetic inefficiencies are present in diabetic heart mitochondria; therefore, we explored mitochondrial proton and electron handling by linking oxygen flux to steady-state ATP synthesis, reactive oxygen species (ROS) production, and mitochondrial membrane potential (ΔΨ) within rat heart tissues. Sprague-Dawley rats were injected with streptozotocin (STZ, 55 mg/kg) to induce type 1 diabetes or an equivalent volume of saline (control, n = 12) and fed standard rat chow for 8 wk. By coupling high-resolution respirometers with purpose-built fluorometers, we followed Magnesium Green (ATP synthesis), Amplex UltraRed (ROS production), and safranin-O (ΔΨ). Relative to control rats, the mass-specific respiration of STZ-diabetic hearts was depressed in oxidative phosphorylation (OXPHOS) states. Steady-state ATP synthesis capacity was almost one-third lower in STZ-diabetic heart, which, relative to oxygen flux, equates to an estimated 12% depression in OXPHOS efficiency. However, with anoxic transition, STZ-diabetic and control heart tissues showed similar ATP hydrolysis capacities through reversal of the F1F0-ATP synthase. STZ-diabetic cardiac mitochondria also produced more net ROS relative to oxygen flux (ROS/O) in OXPHOS. While ΔΨ did not differ between groups, the time to develop ΔΨ with the onset of OXPHOS was protracted in STZ-diabetic mitochondria. ROS/O is higher in lifelike OXPHOS states, and potential delays in the time to develop ΔΨ may delay ATP synthesis with interbeat fluctuations in ADP concentrations. Whereas diabetic cardiac mitochondria produce less ATP in normoxia, they consume as much ATP in anoxic infarct-like states.
Collapse
Affiliation(s)
- Toan Pham
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Denis Loiselle
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; and Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Amelia Power
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony J R Hickey
- School of Biological Sciences, University of Auckland, Auckland, New Zealand;
| |
Collapse
|
14
|
Erogbogbo F, May J, Swihart M, Prasad PN, Smart K, Jack SE, Korcyk D, Webster M, Stewart R, Zeng I, Jullig M, Bakeev K, Jamieson M, Kasabov N, Gopalan B, Liang L, Hu R, Schliebs S, Villas-Boas S, Gladding P. Bioengineering silicon quantum dot theranostics using a network analysis of metabolomic and proteomic data in cardiac ischemia. Am J Cancer Res 2013; 3:719-28. [PMID: 24019856 PMCID: PMC3767118 DOI: 10.7150/thno.5010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 07/05/2013] [Indexed: 01/24/2023] Open
Abstract
Metabolomic profiling is ideally suited for the analysis of cardiac metabolism in healthy and diseased states. Here, we show that systematic discovery of biomarkers of ischemic preconditioning using metabolomics can be translated to potential nanotheranostics. Thirty-three patients underwent percutaneous coronary intervention (PCI) after myocardial infarction. Blood was sampled from catheters in the coronary sinus, aorta and femoral vein before coronary occlusion and 20 minutes after one minute of coronary occlusion. Plasma was analysed using GC-MS metabolomics and iTRAQ LC-MS/MS proteomics. Proteins and metabolites were mapped into the Metacore network database (GeneGo, MI, USA) to establish functional relevance. Expression of 13 proteins was significantly different (p<0.05) as a result of PCI. Included amongst these was CD44, a cell surface marker of reperfusion injury. Thirty-eight metabolites were identified using a targeted approach. Using PCA, 42% of their variance was accounted for by 21 metabolites. Multiple metabolic pathways and potential biomarkers of cardiac ischemia, reperfusion and preconditioning were identified. CD44, a marker of reperfusion injury, and myristic acid, a potential preconditioning agent, were incorporated into a nanotheranostic that may be useful for cardiovascular applications. Integrating biomarker discovery techniques into rationally designed nanoconstructs may lead to improvements in disease-specific diagnosis and treatment.
Collapse
|
15
|
Zhang L, Ward ML, Phillips ARJ, Zhang S, Kennedy J, Barry B, Cannell MB, Cooper GJS. Protection of the heart by treatment with a divalent-copper-selective chelator reveals a novel mechanism underlying cardiomyopathy in diabetic rats. Cardiovasc Diabetol 2013; 12:123. [PMID: 23981320 PMCID: PMC3848860 DOI: 10.1186/1475-2840-12-123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/25/2013] [Indexed: 12/16/2022] Open
Abstract
Background Intracellular calcium (Ca2+) coordinates the cardiac contraction cycle and is dysregulated in diabetic cardiomyopathy. Treatment with triethylenetetramine (TETA), a divalent-copper-selective chelator, improves cardiac structure and function in patients and rats with diabetic cardiomyopathy, but the molecular basis of this action is uncertain. Here, we used TETA to probe potential linkages between left-ventricular (LV) copper and Ca2+ homeostasis, and cardiac function and structure in diabetic cardiomyopathy. Methods We treated streptozotocin-diabetic rats with a TETA-dosage known to ameliorate LV hypertrophy in patients with diabetic cardiomyopathy. Drug treatment was begun either one (preventative protocol) or eight (restorative protocol) weeks after diabetes induction and continued thereafter for seven or eight weeks, respectively. Total copper content of the LV wall was determined, and simultaneous measurements of intracellular calcium concentrations and isometric contraction were made in LV trabeculae isolated from control, diabetic and TETA-treated diabetic rats. Results Total myocardial copper levels became deficient in untreated diabetes but were normalized by TETA-treatment. Cardiac contractility was markedly depressed by diabetes but TETA prevented this effect. Neither diabetes nor TETA exerted significant effects on peak or resting [Ca2+]i. However, diabetic rats showed extensive cardiac remodelling and decreased myofibrillar calcium sensitivity, consistent with observed increases in phosphorylation of troponin I, whereas these changes were all prevented by TETA. Conclusions Diabetes causes cardiomyopathy through a copper-mediated mechanism that incorporates myocardial copper deficiency, whereas TETA treatment prevents this response and maintains the integrity of cardiac structure and myofibrillar calcium sensitivity. Altered calcium homeostasis may not be the primary defect in diabetic cardiomyopathy. Rather, a newly-described copper-mediated mechanism may cause this disease.
Collapse
Affiliation(s)
- Lin Zhang
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Baseler WA, Dabkowski ER, Jagannathan R, Thapa D, Nichols CE, Shepherd DL, Croston TL, Powell M, Razunguzwa TT, Lewis SE, Schnell DM, Hollander JM. Reversal of mitochondrial proteomic loss in Type 1 diabetic heart with overexpression of phospholipid hydroperoxide glutathione peroxidase. Am J Physiol Regul Integr Comp Physiol 2013; 304:R553-65. [PMID: 23408027 DOI: 10.1152/ajpregu.00249.2012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial dysfunction is a contributor to diabetic cardiomyopathy. Previously, we observed proteomic decrements within the inner mitochondrial membrane (IMM) and matrix of diabetic cardiac interfibrillar mitochondria (IFM) correlating with dysfunctional mitochondrial protein import. The goal of this study was to determine whether overexpression of mitochondria phospholipid hydroperoxide glutathione peroxidase 4 (mPHGPx), an antioxidant enzyme capable of scavenging membrane-associated lipid peroxides in the IMM, could reverse proteomic alterations, dysfunctional protein import, and ultimately, mitochondrial dysfunction associated with the diabetic heart. MPHGPx transgenic mice and controls were made diabetic by multiple low-dose streptozotocin injections and examined after 5 wk of hyperglycemia. Five weeks after hyperglycemia onset, in vivo analysis of cardiac contractile function revealed decreased ejection fraction and fractional shortening in diabetic hearts that was reversed with mPHGPx overexpression. MPHGPx overexpression increased electron transport chain function while attenuating hydrogen peroxide production and lipid peroxidation in diabetic mPHGPx IFM. MPHGPx overexpression lessened proteomic loss observed in diabetic IFM. Posttranslational modifications, including oxidations and deamidations, were attenuated in diabetic IFM with mPHGPx overexpression. Mitochondrial protein import dysfunction in diabetic IFM was reversed with mPHGPx overexpression correlating with protein import constituent preservation. Ingenuity Pathway Analyses indicated that oxidative phosphorylation, tricarboxylic acid cycle, and fatty acid oxidation processes most influenced in diabetic IFM were preserved by mPHGPx overexpression. Specific mitochondrial networks preserved included complex I and II, mitochondrial ultrastructure, and mitochondrial protein import. These results indicate that mPHGPx overexpression can preserve the mitochondrial proteome and provide cardioprotective benefits to the diabetic heart.
Collapse
Affiliation(s)
- Walter A Baseler
- Center for Cardiovascular and Respiratory Sciences, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Aubert G, Vega RB, Kelly DP. Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:840-7. [PMID: 22964268 DOI: 10.1016/j.bbamcr.2012.08.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 12/15/2022]
Abstract
The heart is an omnivore organ that requires constant energy production to match its functional demands. In the adult heart, adenosine-5'-triphosphate (ATP) production occurs mainly through mitochondrial fatty acid and glucose oxidation. The heart must constantly adapt its energy production in response to changes in substrate supply and work demands across diverse physiologic and pathophysiologic conditions. The cardiac myocyte maintains a high level of mitochondrial ATP production through a complex transcriptional regulatory network that is orchestrated by the members of the peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family. There is increasing evidence that during the development of cardiac hypertrophy and in the failing heart, the activity of this network, including PGC-1, is altered. This review summarizes our current understanding of the perturbations in the gene regulatory pathways that occur during the development of heart failure. An appreciation of the role this regulatory circuitry serves in the regulation of cardiac energy metabolism may unveil novel therapeutic targets aimed at the metabolic disturbances that presage heart failure. This article is part of a Special Issue entitled:Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Gregory Aubert
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | | | | |
Collapse
|
18
|
Zhang W, Liu Y, Zhang H, Dai J. Proteomic analysis of male zebrafish livers chronically exposed to perfluorononanoic acid. ENVIRONMENT INTERNATIONAL 2012; 42:20-30. [PMID: 21481936 DOI: 10.1016/j.envint.2011.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/29/2011] [Accepted: 03/02/2011] [Indexed: 05/27/2023]
Abstract
Perfluorononanoic acid (PFNA), a synthetic perfluorinated carboxylic acid and fluorosurfactant, is a known environmental contaminant found in people and wildlife. To understand the hepatotoxicity mechanism of PFNA, male zebrafish (n=200) were exposed to differing concentrations of PFNA (0, 0.1, 0.5, and 1.0 mg/L) for 180 days. A two-dimensional difference gel electrophoresis (2-D DIGE) approach coupled with MALDI-TOF-MS/MS analysis was employed to detect and identify the differential expressed proteins. A total of 57 proteins were successfully identified and categorized into functional classes that included metabolism (amino acid metabolism, TCA cycle and pyruvate metabolism, gluconeogenesis and glycolysis, protein metabolism and modification, and nucleotides metabolism), structure and motility, stress and defense, signal transduction, and cell communication. Our proteomic analyses added new perspective to PFNA hepatotoxicity in zebrafish. Results regarding mRNA levels demonstrated that the involvement of peroxisome proliferator-activated receptors (PPARs) could not sufficiently explain the hepatotoxicity mechanism of PFAAs in zebrafish. The extensive protein variations indicated that multiple cellular pathways were involved in and suggested that multiple protein molecules should be simultaneously targeted as an effective strategy to counter PFNA toxicity. Other potential modes should be further investigated.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | | | | | | |
Collapse
|
19
|
Wright P, Noirel J, Ow SY, Fazeli A. A review of current proteomics technologies with a survey on their widespread use in reproductive biology investigations. Theriogenology 2012; 77:738-765.e52. [DOI: 10.1016/j.theriogenology.2011.11.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/08/2011] [Accepted: 11/11/2011] [Indexed: 12/27/2022]
|
20
|
Cooper GJS. Therapeutic potential of copper chelation with triethylenetetramine in managing diabetes mellitus and Alzheimer's disease. Drugs 2011; 71:1281-320. [PMID: 21770477 DOI: 10.2165/11591370-000000000-00000] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article reviews recent evidence, much of which has been generated by my group's research programme, which has identified for the first time a previously unknown copper-overload state that is central to the pathogenesis of diabetic organ damage. This state causes tissue damage in the blood vessels, heart, kidneys, retina and nerves through copper-mediated oxidative stress. This author now considers this copper-overload state to provide an important new target for therapeutic intervention, the objective of which is to prevent or reverse the diabetic complications. Triethylenetetramine (TETA) has recently been identified as the first in a new class of anti-diabetic molecules through the original work reviewed here, thus providing a new use for this molecule, which was previously approved by the US FDA in 1985 as a second-line treatment for Wilson's disease. TETA acts as a highly selective divalent copper (Cu(II)) chelator that prevents or reverses diabetic copper overload, thereby suppressing oxidative stress. TETA treatment of diabetic animals and patients has identified and quantified the interlinked defects in copper metabolism that characterize this systemic copper overload state. Copper overload in diabetes mellitus differs from that in Wilson's disease through differences in their respective causative molecular mechanisms, and resulting differences in tissue localization and behaviour of the excess copper. Elevated pathogenetic tissue binding of copper occurs in diabetes. It may well be mediated by advanced-glycation endproduct (AGE) modification of susceptible amino-acid residues in long-lived fibrous proteins, for example, connective tissue collagens in locations such as blood vessel walls. These AGE modifications can act as localized, fixed endogenous chelators that increase the chelatable-copper content of organs such as the heart and kidneys by binding excessive amounts of catalytically active Cu(II) in specific vascular beds, thereby focusing the related copper-mediated oxidative stress in susceptible tissues. In this review, summarized evidence from our clinical studies in healthy volunteers and diabetic patients with left-ventricular hypertrophy, and from nonclinical models of diabetic cardiac, arterial, renal and neural disease is used to construct descriptions of the mechanisms by which TETA treatment prevents injury and regenerates damaged organs. Our recent phase II proof-of-principle studies in patients with type 2 diabetes and in nonclinical models of diabetes have helped to define the pathogenetic defects in copper regulation, and have shown that they are reversible by TETA. The drug tightly binds and extracts excess systemic Cu(II) into the urine whilst neutralizing its catalytic activity, but does not cause systemic copper deficiency, even after prolonged use. Its physicochemical properties, which are pivotal for its safety and efficacy, clearly differentiate it from all other clinically available transition metal chelators, including D-penicillamine, ammonium tetrathiomolybdate and clioquinol. The studies reviewed here show that TETA treatment is generally effective in preventing or reversing diabetic organ damage, and support its ongoing development as a new medicine for diabetes. Trientine (TETA dihydrochloride) has been used since the mid-1980s as a second-line treatment for Wilson's disease, and our recent clinical studies have reinforced the impression that it is likely to be safe for long-term use in patients with diabetes and related metabolic disorders. There is substantive evidence to support the view that diabetes shares many pathogenetic mechanisms with Alzheimer's disease and vascular dementia. Indeed, the close epidemiological and molecular linkages between them point to Alzheimer's disease/vascular dementia as a further therapeutic target where experimental pharmacotherapy with TETA could well find further clinical application.
Collapse
Affiliation(s)
- Garth J S Cooper
- Centre for Advanced Discovery and Experimental Therapeutics, NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, UK.
| |
Collapse
|
21
|
Petrak J, Pospisilova J, Sedinova M, Jedelsky P, Lorkova L, Vit O, Kolar M, Strnad H, Benes J, Sedmera D, Cervenka L, Melenovsky V. Proteomic and transcriptomic analysis of heart failure due to volume overload in a rat aorto-caval fistula model provides support for new potential therapeutic targets - monoamine oxidase A and transglutaminase 2. Proteome Sci 2011; 9:69. [PMID: 22078724 PMCID: PMC3225319 DOI: 10.1186/1477-5956-9-69] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/11/2011] [Indexed: 01/03/2023] Open
Abstract
Background Chronic hemodynamic overloading leads to heart failure (HF) due to incompletely understood mechanisms. To gain deeper insight into the molecular pathophysiology of volume overload-induced HF and to identify potential markers and targets for novel therapies, we performed proteomic and mRNA expression analysis comparing myocardium from Wistar rats with HF induced by a chronic aorto-caval fistula (ACF) and sham-operated rats harvested at the advanced, decompensated stage of HF. Methods We analyzed control and failing myocardium employing iTRAQ labeling, two-dimensional peptide separation combining peptide IEF and nano-HPLC with MALDI-MS/MS. For the transcriptomic analysis we employed Illumina RatRef-12v1 Expression BeadChip. Results In the proteomic analysis we identified 2030 myocardial proteins, of which 66 proteins were differentially expressed. The mRNA expression analysis identified 851 differentially expressed mRNAs. Conclusions The differentially expressed proteins confirm a switch in the substrate preference from fatty acids to other sources in the failing heart. Failing hearts showed downregulation of the major calcium transporters SERCA2 and ryanodine receptor 2 and altered expression of creatine kinases. Decreased expression of two NADPH producing proteins suggests a decreased redox reserve. Overexpression of annexins supports their possible potential as HF biomarkers. Most importantly, among the most up-regulated proteins in ACF hearts were monoamine oxidase A and transglutaminase 2 that are both potential attractive targets of low molecular weight inhibitors in future HF therapy.
Collapse
Affiliation(s)
- Jiri Petrak
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hollander JM, Baseler WA, Dabkowski ER. Proteomic remodeling of mitochondria in heart failure. ACTA ACUST UNITED AC 2011; 17:262-8. [PMID: 22103917 DOI: 10.1111/j.1751-7133.2011.00254.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heart failure (HF) is a common disease that has been attributed, in part, to deprivation of cardiac energy. As a result, the interplay between metabolism and adenosine triphosphate production is fundamental in determining the mechanisms driving the disease progression. Due to its central role in energy production, metabolism, calcium homeostasis, and oxidative stress, the mitochondrion has been suggested to play a pivotal role in the progression of the heart to failure. Nevertheless, the mitochondrion's specific role(s) and the proteins contributing to the development and progression of HF are not entirely clear. Thus, changes in mitochondrial proteomic make-up during HF have garnered great interest. With the continued development of advanced tools for assessing proteomic make-up, characterization of mitochondrial proteomic changes during disease states such as HF are being realized. These studies have begun to identify potential biomarkers of disease progression as well as protein targets that may provide an avenue for therapeutic intervention. The goal of this review is to highlight some of the changes in mitochondrial proteomic make-up that are associated with the development of HF in an effort to identify target axes and candidate proteins contributing to disease development. Results from a number of different HF models will be evaluated to gain insight into some of the similarities and differences in mitochondrial proteomic alterations associated with morphological and functional changes that result from the disease. Congest Heart Fail.
Collapse
Affiliation(s)
- John M Hollander
- Division of Exercise Physiology and Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, USA.
| | | | | |
Collapse
|
23
|
Zhang H, Ding L, Fang X, Shi Z, Zhang Y, Chen H, Yan X, Dai J. Biological responses to perfluorododecanoic acid exposure in rat kidneys as determined by integrated proteomic and metabonomic studies. PLoS One 2011; 6:e20862. [PMID: 21677784 PMCID: PMC3108999 DOI: 10.1371/journal.pone.0020862] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background Perfluorododecanoic acid (PFDoA) is a perfluorinated carboxylic chemical (PFC) that has broad applications and distribution in the environment. While many studies have focused on hepatotoxicity, immunotoxicity, and reproductive toxicity of PFCAs, few have investigated renal toxicity. Methodology/Principal Findings Here, we used comparative proteomic and metabonomic technologies to provide a global perspective on renal response to PFDoA. Male rats were exposed to 0, 0.05, 0.2, and 0.5 mg/kg/day of PFDoA for 110 days. After 2-D DIGE and MALDI TOF/TOF analysis, 79 differentially expressed proteins between the control and the PFDoA treated rats (0.2 and 0.5 mg-dosed groups) were successfully identified. These proteins were mainly involved in amino acid metabolism, the tricarboxylic acid cycle, gluconeogenesis, glycolysis, electron transport, and stress response. Nuclear magnetic resonance-based metabonomic analysis showed an increase in pyruvate, lactate, acetate, choline, and a variety of amino acids in the highest dose group. Furthermore, the profiles of free amino acids in the PFDoA treated groups were investigated quantitatively by high-coverage quantitative iTRAQ-LC MS/MS, which showed levels of sarcosine, asparagine, histidine, 1-methylhistidine, Ile, Leu, Val, Trp, Tyr, Phe, Cys, and Met increased markedly in the 0.5 mg dosed group, while homocitrulline, α-aminoadipic acid, β-alanine, and cystathionine decreased. Conclusion/Significance These observations provide evidence that disorders in glucose and amino acid metabolism may contribute to PFDoA nephrotoxicity. Additionally, α2u globulin may play an important role in protecting the kidneys from PFDoA toxicity.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lina Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xuemei Fang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhimin Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yating Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hebing Chen
- National Center of Biomedical Analysis, Beijing, People's Republic of China
| | - Xianzhong Yan
- National Center of Biomedical Analysis, Beijing, People's Republic of China
- * E-mail: (XY); (JD)
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (XY); (JD)
| |
Collapse
|
24
|
Mittal A, Hickey AJR, Chai CC, Loveday BPT, Thompson N, Dare A, Delahunt B, Cooper GJS, Windsor JA, Phillips ARJ. Early organ-specific mitochondrial dysfunction of jejunum and lung found in rats with experimental acute pancreatitis. HPB (Oxford) 2011; 13:332-41. [PMID: 21492333 PMCID: PMC3093645 DOI: 10.1111/j.1477-2574.2010.00290.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Multiple organ dysfunction is the main cause of death in severe acute pancreatitis. Primary mitochondrial dysfunction plays a central role in the development and progression of organ failure in critical illness. The present study investigated mitochondrial function in seven tissues during early experimental acute pancreatitis. METHODS Twenty-eight male Wistar rats (463 ± 2 g; mean ± SEM) were studied. Group 1 (n= 8), saline control; Group 2 (n= 6), caerulein-induced mild acute pancreatitis; Group 3 (n= 7) sham surgical controls; and Group 4 (n= 7), taurocholate-induced severe acute pancreatitis. Animals were euthanased at 6 h from the induction of acute pancreatitis and mitochondrial function was assessed in the heart, lung, liver, kidney, pancreas, duodenum and jejunum by mitochondrial respirometry. RESULTS Significant early mitochondrial dysfunction was present in the pancreas, lung and jejunum in both models of acute pancreatitis, however, the Heart, liver, kidney and duodenal mitochondria were unaffected. CONCLUSIONS The present study provides the first description of early organ-selective mitochondrial dysfunction in the lung and jejunum during acute pancreatitis. Research is now needed to identify the underlying pathophysiology behind the organ selective mitochondrial dysfunction, and the potential benefits of early mitochondrial-specific therapies in acute pancreatitis.
Collapse
Affiliation(s)
- Anubhav Mittal
- Department of Surgery, Faculty of Medical and Health SciencesAuckland, New Zealand
| | - Anthony JR Hickey
- The Maurice Wilkins CentreAuckland, New Zealand,School of Biological Sciences, University of AucklandAuckland, New Zealand
| | - Chau C Chai
- School of Biological Sciences, University of AucklandAuckland, New Zealand
| | - Benjamin PT Loveday
- Department of Surgery, Faculty of Medical and Health SciencesAuckland, New Zealand
| | - Nichola Thompson
- Department of Surgery, Faculty of Medical and Health SciencesAuckland, New Zealand
| | - Anna Dare
- Department of Surgery, Faculty of Medical and Health SciencesAuckland, New Zealand
| | - Brett Delahunt
- Department of Pathology and Molecular Medicine, Wellington School of Medicine, University of OtagoWellington, New Zealand
| | - Garth JS Cooper
- The Maurice Wilkins CentreAuckland, New Zealand,School of Biological Sciences, University of AucklandAuckland, New Zealand
| | - John A Windsor
- Department of Surgery, Faculty of Medical and Health SciencesAuckland, New Zealand,The Maurice Wilkins CentreAuckland, New Zealand
| | - Anthony RJ Phillips
- Department of Surgery, Faculty of Medical and Health SciencesAuckland, New Zealand,The Maurice Wilkins CentreAuckland, New Zealand,School of Biological Sciences, University of AucklandAuckland, New Zealand
| |
Collapse
|
25
|
Jüllig M, Chen X, Middleditch MJ, Vazhoor G, Hickey AJ, Gong D, Lu J, Zhang S, Phillips ARJ, Cooper GJS. Illuminating the molecular basis of diabetic arteriopathy: a proteomic comparison of aortic tissue from diabetic and healthy rats. Proteomics 2011; 10:3367-78. [PMID: 20707005 DOI: 10.1002/pmic.201000276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Arterial disease is a major diabetic complication, yet the component molecular mechanisms of diabetic arteriopathy remain poorly understood. In order to identify major proteins/pathways implicated in diabetic arteriopathy, we studied the effect of 16-wk untreated streptozotocin-induced diabetes on the rat aortic proteome. Specific protein levels in isolated aortas were compared in six discrete, pair-wise (streptozotocin-diabetic and non-diabetic age-matched controls) experiments in which individual proteins were identified and quantified by iTRAQ combined with LC-MS/MS. A total of 398 unique non-redundant proteins were identified in at least one experiment and 208 were detected in three or more. Between-group comparisons revealed significant changes or trends towards changes in relative abundance of 51 proteins (25 increased, 26 decreased). Differences in levels of selected proteins were supported by Western blotting and/or enzyme assays. The most prominent diabetes-associated changes were in groups of proteins linked to oxidative stress responses and the structure/function of myofibrils and microfilaments. Indexes of mitochondrial content were measurably lower in aortic tissue from diabetic animals. Functional cluster analysis also showed decreased levels of glycolytic enzymes and mitochondrial electron transport system-complex components. These findings newly implicate several proteins/functional pathways in the pathogenesis of arteriosclerosis/diabetic arteriopathy.
Collapse
Affiliation(s)
- Mia Jüllig
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Biologically active factors produced by the intestine and transported by the aqueous and protein fraction of mesenteric lymph are now thought to contribute significantly to the development of distant organ failure in hemorrhagic shock. Despite the likely relevance of the protein composition of mesenteric lymph conditioned by hemorrhagic shock, there is no detailed description of its proteome. The aim of this study was to provide the first comprehensive description of the proteome of hemorrhagic shock-conditioned mesenteric lymph. Mesenteric lymph was collected from 16 male Wistar rats randomized to group 1 (n = 8) sham control and group 2 (n = 8) with hemorrhagic shock. The lymph was subjected to proteomic analysis using iTRAQ and liquid chromatography-tandem mass spectrometry. Sixty of the 245 proteins had a significant increase in their relative abundance in the hemorrhagic shock group. A bioinformatics approach highlighted the importance of the key gene ontology pathways relating to response to injury and metabolic responses as changing most significantly in shock. Using an interactome, we identified several highly connected proteins: 14-3-3 Zeta, 14-3-3 epsilon, actin, aldolase A, calmodulin, cofilin 1, cystatin C, fatty acid-binding protein 4, profilin 1, prolyl 4-hydrolase, peptidylprolyl isomerase, and transgelin. This study provides the first detailed description of protein changes in hemorrhagic shock-conditioned mesenteric lymph, and using a bioinformatics approach, we identified several targets for possible further research.
Collapse
|
27
|
Baseler WA, Dabkowski ER, Williamson CL, Croston TL, Thapa D, Powell MJ, Razunguzwa TT, Hollander JM. Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction. Am J Physiol Regul Integr Comp Physiol 2010; 300:R186-200. [PMID: 21048079 DOI: 10.1152/ajpregu.00423.2010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Diabetic cardiomyopathy is associated with increased risk of heart failure in type 1 diabetic patients. Mitochondrial dysfunction is suggested as an underlying contributor to diabetic cardiomyopathy. Cardiac mitochondria are characterized by subcellular spatial locale, including mitochondria located beneath the sarcolemma, subsarcolemmal mitochondria (SSM), and mitochondria situated between the myofibrils, interfibrillar mitochondria (IFM). The goal of this study was to determine whether type 1 diabetic insult in the heart influences proteomic make-up of spatially distinct mitochondrial subpopulations and to evaluate the role of nuclear encoded mitochondrial protein import. Utilizing multiple proteomic approaches (iTRAQ and two-dimensional-differential in-gel electrophoresis), IFM proteomic make-up was impacted by type 1 diabetes mellitus to a greater extent than SSM, as evidenced by decreased abundance of fatty acid oxidation and electron transport chain proteins. Mitochondrial phosphate carrier and adenine nucleotide translocator, as well as inner membrane translocases, were decreased in the diabetic IFM (P < 0.05 for both). Mitofilin, a protein involved in cristae morphology, was diminished in the diabetic IFM (P < 0.05). Posttranslational modifications, including oxidations and deamidations, were most prevalent in the diabetic IFM. Mitochondrial heat shock protein 70 (mtHsp70) was significantly decreased in diabetic IFM (P < 0.05). Mitochondrial protein import was decreased in the diabetic IFM with no change in the diabetic SSM (P < 0.05). Taken together, these results indicate that mitochondrial proteomic alterations in the type 1 diabetic heart are more pronounced in the IFM. Further, proteomic alterations are associated with nuclear encoded mitochondrial protein import dysfunction and loss of an essential mitochondrial protein import constituent, mtHsp70, implicating this process in the pathogenesis of the diabetic heart.
Collapse
Affiliation(s)
- Walter A Baseler
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, 1 Medical Center Dr., Morgantown, WV 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gong D, Chen X, Middleditch M, Huang L, Vazhoor Amarsingh G, Reddy S, Lu J, Zhang S, Ruggiero K, Phillips ARJ, Cooper GJS. Quantitative proteomic profiling identifies new renal targets of copper(II)-selective chelation in the reversal of diabetic nephropathy in rats. Proteomics 2009; 9:4309-20. [PMID: 19634143 DOI: 10.1002/pmic.200900285] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study aimed to identify new diabetic nephropathy (DN)-related proteins and renal targets of the copper(II)-selective chelator, triethylenetetramine (TETA) in streptozotocin-diabetic rats. We used the recently developed iTRAQ technology to compare renal protein profiles among non-diabetic, diabetic, and TETA-treated diabetic rats. In diabetic kidneys, tubulointerstitial nephritis antigen (TINag), voltage-dependent anion-selective channel (VDAC) 1, and VDAC2 were up-regulated in parallel with alterations in expression of proteins with functions in oxidative stress and oxidative phosphorylation (OxPhos) pathways. By contrast, mitochondrial HSP 60, Cu/Zn-superoxide dismutase, glutathione S-transferase alpha3 and aquaporin-1 were down-regulated in diabetic kidneys. Following TETA treatment, levels of D-amino acid oxidase-1, epoxide hydrolase-1, aquaporin-1, and a number of mitochondrial proteins were normalized, with concomitant amelioration of albuminuria. Changes in levels of TINag, collagen VIalpha1, actinin 4alpha, apoptosis-inducing factor 1, cytochrome C, histone H3, VDAC1, and aquaporin-1 were confirmed by Western blotting or immunohistochemistry. Changes in expression of proteins related to tubulointerstitial function, podocyte structure, and mitochondrial apoptosis are implicated in the mechanism of DN and their reversal by TETA. These findings are consistent with the hypothesis that this new experimental therapy may be useful for treatment of DN.
Collapse
Affiliation(s)
- Deming Gong
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Palmfeldt J, Vang S, Stenbroen V, Pedersen CB, Christensen JH, Bross P, Gregersen N. Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress. Proteome Sci 2009; 7:20. [PMID: 19476632 PMCID: PMC2695441 DOI: 10.1186/1477-5956-7-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 05/28/2009] [Indexed: 01/17/2023] Open
Abstract
Background Mitochondrial proteins are central to various metabolic activities and are key regulators of apoptosis. Disturbance of mitochondrial proteins is therefore often associated with disease. Large scale protein data are required to capture the mitochondrial protein levels and mass spectrometry based proteomics is suitable for generating such data. To study the relative quantities of mitochondrial proteins in cells from cultivated human skin fibroblasts we applied a proteomic method based on nanoLC-MS/MS analysis of iTRAQ-labeled peptides. Results When fibroblast cultures were exposed to mild metabolic stress – by cultivation in galactose medium- the amount of mitochondria appeared to be maintained whereas the levels of individual proteins were altered. Proteins of respiratory chain complex I and IV were increased together with NAD+-dependent isocitrate dehydrogenase of the citric acid cycle illustrating cellular strategies to cope with altered energy metabolism. Furthermore, quantitative protein data, with a median standard error below 6%, were obtained for the following mitochondrial pathways: fatty acid oxidation, citric acid cycle, respiratory chain, antioxidant systems, amino acid metabolism, mitochondrial translation, protein quality control, mitochondrial morphology and apoptosis. Conclusion The robust analytical platform in combination with a well-defined compendium of mitochondrial proteins allowed quantification of single proteins as well as mapping of entire pathways. This enabled characterization of the interplay between metabolism and stress response in human cells exposed to mild stress.
Collapse
Affiliation(s)
- Johan Palmfeldt
- Institute of Clinical Medicine, Aarhus University Hospital, University of Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
30
|
Jüllig M, Hickey AJR, Chai CC, Skea GL, Middleditch MJ, Costa S, Choong SY, Philips ARJ, Cooper GJS. Is the failing heart out of fuel or a worn engine running rich? A study of mitochondria in old spontaneously hypertensive rats. Proteomics 2008; 8:2556-72. [PMID: 18563753 DOI: 10.1002/pmic.200700977] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hypertension now affects about 600 million people worldwide and is a leading cause of death in the Western world. The spontaneously hypertensive rat (SHR), provides a useful model to investigate hypertensive heart failure (HF). The SHR model replicates the clinical progression of hypertension in humans, wherein early development of hypertension is followed by a long stable period of compensated cardiac hypertrophy that slowly progresses to HF. Although the hypertensive failing heart generally shows increased substrate preference towards glucose and impaired mitochondrial function, the cause-and-effect relationship between these characteristics is incompletely understood. To explore these pathogenic processes, we compared cardiac mitochondrial proteomes of 20-month-old SHR and Wistar-Kyoto controls by iTRAQ-labelling combined with multidimensional LC/MS/MS. Of 137 high-scoring proteins identified, 79 differed between groups. Changes were apparent in several metabolic pathways, chaperone and antioxidant systems, and multiple subunits of the oxidative phosphorylation complexes were increased (complexes I, III and IV) or decreased (complexes II and V) in SHR heart mitochondria. Respiration assays on skinned fibres and isolated mitochondria showed markedly lower respiratory capacity on succinate. Enzyme activity assays often also showed mismatches between increased protein expression and activities suggesting elevated protein expression may be compensatory in the face of pathological stress.
Collapse
Affiliation(s)
- Mia Jüllig
- School of Biological Sciences and Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|