1
|
Wang L, Chen YX, Meng XJ, Liang HY, Zhang YD, Zhou HH, Liu YH, Chen XY, Liu ZH, Li SM, Kang WY. Effects of undescribed iridoids in Patrinia punctiflora on insulin resistance in HepG2 cells. Fitoterapia 2024; 178:106160. [PMID: 39098734 DOI: 10.1016/j.fitote.2024.106160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Patrinia punctiflora is a medical and edible Chinese herb with high nutritional and medicinal value. The continuing study of its chemical constituents led to the isolation of six iridoids, which were previously unreported compounds, patriscabioins PU (1-6). Their structures were characterized and confirmed with NMR (1D & 2D), HRMS, IR and UV. Among them, compound 5 was screened to evaluate its insulin resistance activity on an IR-HepG-2 cell model. Compound 5 had no cytotoxicity compared with the control group and could promote glucose uptake in IR-HepG-2 cells. Through further mechanism studies, the undescribed compound 5 could increase the expression levels of PI-3 K, p-AKT, GLUT4 and p-GSK3β proteins. Moreover, the expression of PEPCK and G6Pase proteins, which are key gluconeogenic enzymes, was also inhibited. Thus, compound 5 promotes the transfer of GLUT4 to the plasma membrane by activating the PI-3 K/AKT signaling pathway, at the same time, promotes glycogen synthesis and inhibits the onset of gluconeogenesis, which in turn ameliorates insulin resistance.
Collapse
Affiliation(s)
- Li Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China; Luohe Food Engineering Vocational University, Luohe 462300, China
| | - Yi-Xiao Chen
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
| | - Xin-Jing Meng
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Hai-Yang Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Ya-Dan Zhang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Hui-Hui Zhou
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Yu-Hang Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Xiao-Yu Chen
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Zhen-Hua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China.
| | - Shi-Ming Li
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| | - Wen-Yi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
The Mechanism by Which Amentoflavone Improves Insulin Resistance in HepG2 Cells. Molecules 2016; 21:molecules21050624. [PMID: 27187341 PMCID: PMC6274486 DOI: 10.3390/molecules21050624] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 01/08/2023] Open
Abstract
Background: The aim of this study was to explore the mechanism by which amentoflavone (AME) improves insulin resistance in a human hepatocellular liver carcinoma cell line (HepG2). Methods: A model of insulin resistant cells was established in HepG2 by treatment with high glucose and insulin. The glucose oxidase method was used to detect the glucose consumption in each group. To determine the mechanism by which AME improves insulin resistance in HepG2 cells, enzyme-linked immunosorbent assay (ELISA) and western blotting were used to detect the expression of phosphatidyl inositol 3-kinase (PI3K), Akt, and pAkt; the activity of the enzymes involved in glucose metabolism; and the levels of inflammatory cytokines. Results: Insulin resistance was successfully induced in HepG2 cells. After treatment with AME, the glucose consumption increased significantly in HepG2 cells compared with the model group (MG). The expression of PI3K, Akt, and pAkt and the activity of 6-phosphofructokinas (PFK-1), glucokinase (GCK), and pyruvate kinase (PK) increased, while the activity of glycogen synthase kinase-3 (GSK-3), phosphoenolpyruvate carboxylase kinase (PEPCK), and glucose-6-phosphatase (G-6-Pase) as well as the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and C reactive protein (CRP) decreased. Conclusions: The mechanism by which treatment with AME improves insulin resistance in HepG2 cells may involve the PI3K-Akt signaling pathway, the processes of glucose oxygenolysis, glycogen synthesis, gluconeogenesis and inflammatory cytokine expression.
Collapse
|
3
|
Abstract
Obesity has emerged as one of the major global epidemics of the 21st century and is now reaching alarming proportions. Obese subjects have an increased morbidity and mortality, decreased quality of life and a major risk of developing pathologies such as diabetes mellitus, insulin resistance and cardiovascular disease. Obesity is a complex disease characterised by an increase in body fat mass resulting from an imbalance between energy intake and expenditure. Signal integration between adipose tissue, other peripheral organs and the CNS seems to regulate energy homeostasis. Proteomics may be useful in unravelling the pathogenesis of obesity, since a combination of genetic predisposition and environmental factors account for its development. Most of the proteomic studies performed to date have focused on protein profiling of adipose tissue in different models of experimental obesity and the study of the adipocyte differentiation process. Another issue that has recently attracted attention is the characterisation of the adipocyte secretome, which may be important in signalling to other organs and in regulating energy balance. Target identification of potential therapies has also been investigated by proteomics. This review focuses on the contributions of proteomics to understanding the molecular mechanisms of obesity and their potential therapies.
Collapse
Affiliation(s)
| | - Ramon Gomis
- Diabetes and Obesity Laboratory-Endocrinology and Nutrition Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
4
|
Proteomic analysis in type 2 diabetes patients before and after a very low calorie diet reveals potential disease state and intervention specific biomarkers. PLoS One 2014; 9:e112835. [PMID: 25415563 PMCID: PMC4240577 DOI: 10.1371/journal.pone.0112835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/26/2014] [Indexed: 01/20/2023] Open
Abstract
Very low calorie diets (VLCD) with and without exercise programs lead to major metabolic improvements in obese type 2 diabetes patients. The mechanisms underlying these improvements have so far not been elucidated fully. To further investigate the mechanisms of a VLCD with or without exercise and to uncover possible biomarkers associated with these interventions, blood samples were collected from 27 obese type 2 diabetes patients before and after a 16-week VLCD (Modifast ∼450 kcal/day). Thirteen of these patients followed an exercise program in addition to the VCLD. Plasma was obtained from 27 lean and 27 obese controls as well. Proteomic analysis was performed using mass spectrometry (MS) and targeted multiple reaction monitoring (MRM) and a large scale isobaric tags for relative and absolute quantitation (iTRAQ) approach. After the 16-week VLCD, there was a significant decrease in body weight and HbA1c in all patients, without differences between the two intervention groups. Targeted MRM analysis revealed differences in several proteins, which could be divided in diabetes-associated (fibrinogen, transthyretin), obesity-associated (complement C3), and diet-associated markers (apolipoproteins, especially apolipoprotein A-IV). To further investigate the effects of exercise, large scale iTRAQ analysis was performed. However, no proteins were found showing an exercise effect. Thus, in this study, specific proteins were found to be differentially expressed in type 2 diabetes patients versus controls and before and after a VLCD. These proteins are potential disease state and intervention specific biomarkers. Trial Registration Controlled-Trials.com ISRCTN76920690
Collapse
|
5
|
Zhou JY, Dann GP, Liew CW, Smith RD, Kulkarni RN, Qian WJ. Unraveling pancreatic islet biology by quantitative proteomics. Expert Rev Proteomics 2012; 8:495-504. [PMID: 21819304 DOI: 10.1586/epr.11.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pancreatic islets of Langerhans play a critical role in maintaining blood glucose homeostasis by secreting insulin and several other important peptide hormones. Impaired insulin secretion due to islet dysfunction is linked to the pathogenesis underlying both Type 1 and Type 2 diabetes. Over the past 5 years, emerging proteomic technologies have been applied to dissect the signaling pathways that regulate islet functions and gain an understanding of the mechanisms of islet dysfunction relevant to diabetes. Herein, we briefly review some of the recent quantitative proteomic studies involving pancreatic islets geared towards gaining a better understanding of islet biology relevant to metabolic diseases.
Collapse
Affiliation(s)
- Jian-Ying Zhou
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | |
Collapse
|
6
|
Pathobiochemical changes in diabetic skeletal muscle as revealed by mass-spectrometry-based proteomics. J Nutr Metab 2012; 2012:893876. [PMID: 22523676 PMCID: PMC3317182 DOI: 10.1155/2012/893876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 12/09/2011] [Accepted: 12/19/2011] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance in skeletal muscle tissues and diabetes-related muscle weakness are serious pathophysiological problems of increasing medical importance. In order to determine global changes in the protein complement of contractile tissues due to diabetes mellitus, mass-spectrometry-based proteomics has been applied to the investigation of diabetic muscle. This review summarizes the findings from recent proteomic surveys of muscle preparations from patients and established animal models of type 2 diabetes. The potential impact of novel biomarkers of diabetes, such as metabolic enzymes and molecular chaperones, is critically examined. Disease-specific signature molecules may be useful for increasing our understanding of the molecular and cellular mechanisms of insulin resistance and possibly identify new therapeutic options that counteract diabetic abnormalities in peripheral organ systems. Importantly, the biomedical establishment of biomarkers promises to accelerate the development of improved diagnostic procedures for characterizing individual stages of diabetic disease progression, including the early detection of prediabetic complications.
Collapse
|
7
|
Baiges I, Palmfeldt J, Bladé C, Gregersen N, Arola L. Lipogenesis is decreased by grape seed proanthocyanidins according to liver proteomics of rats fed a high fat diet. Mol Cell Proteomics 2010; 9:1499-513. [PMID: 20332082 DOI: 10.1074/mcp.m000055-mcp201] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bioactive proanthocyanidins have been reported to have several beneficial effects on health in relation to metabolic syndrome, type 2 diabetes, and cardiovascular disease. We studied the effect of grape seed proanthocyanidin extract (GSPE) in rats fed a high fat diet (HFD). This is the first study of the effects of flavonoids on the liver proteome of rats suffering from metabolic syndrome. Three groups of rats were fed over a period of 13 weeks either a chow diet (control), an HFD, or a high fat diet supplemented for the last 10 days with GSPE (HFD + GSPE). The liver proteome was fractionated, using a Triton X-114-based two-phase separation, into soluble and membrane protein fractions so that total proteome coverage was considerably improved. The data from isobaric tag for relative and absolute quantitation (iTRAQ)-based nano-LC-MS/MS analysis revealed 90 proteins with a significant (p < 0.05) minimal expression difference of 20% due to metabolic syndrome (HFD versus control) and 75 proteins due to GSPE treatment (HFD + GSPE versus HFD). The same animals have previously been studied (Quesada, H., del Bas, J. M., Pajuelo, D., Díaz, S., Fernandez-Larrea, J., Pinent, M., Arola, L., Salvadó, M. J., and Bladé, C. (2009) Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. Int. J. Obes. 33, 1007-1012), and GSPE was shown to correct dyslipidemia observed in HFD-fed rats probably through the repression of hepatic lipogenesis. Our data corroborate those findings with an extensive list of proteins describing the induction of hepatic glycogenesis, glycolysis, and fatty acid and triglyceride synthesis in HFD, whereas the opposite pattern was observed to a large extent in GSPE-treated animals. GSPE was shown to have a wider effect than previously thought, and putative targets of GSPE involved in the reversal of the symptoms of metabolic syndrome were revealed. Some of these novel candidate proteins such as GFPT1, CD36, PLAA (phospholipase A(2)-activating protein), METTL7B, SLC30A1, several G signaling proteins, and the sulfide-metabolizing ETHE1 and SQRDL (sulfide-quinone reductase-like) might be considered as drug targets for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Isabel Baiges
- Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | | | | | | | | |
Collapse
|
8
|
From Our Sister Journal: Proteomics 6/2008. Proteomics 2008. [DOI: 10.1002/pmic.200890024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|