1
|
Eggermont L, Lumen N, Van Praet C, Delanghe J, Rottey S, Vermassen T. A comprehensive view of N-glycosylation as clinical biomarker in prostate cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189239. [PMID: 39672278 DOI: 10.1016/j.bbcan.2024.189239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/25/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Alterations in the prostate cancer (PCa) N-glycome have gained attention as a potential biomarker. This comprehensive review explores the diversity of N-glycosylation patterns observed in PCa-related cell lines, tissue, serum and urine, focusing on prostate-specific antigen (PSA) and the total pool of glycoproteins. Within the context of PCa, altered N-glycosylation patterns are a mechanism of immune escape and a disruption in normal glycoprotein distribution and trafficking. Glycoproteins with PCa-induced N-glycosylation patterns tend to accumulate in prostate tissue and the bloodstream, thereby diminishing N-glycan proportions in urine. Based on literary observations, aberrations in N-glycan branching are probably a characteristic of metabolic reprogramming and (chronic) inflammation. Changes in (core) fucosylation, specific N-glycosylation structures (such as N,N'-diacetyllactosamine) and high-mannose glycans otherwise are more likely indicators of cancer development and progression. Further investigation into these PCa-specific alterations holds promise in the discovery of new diagnostic, prognostic and response prediction biomarkers in PCa.
Collapse
Affiliation(s)
- Lissa Eggermont
- Dept. Medical Oncology, Ghent University Hospital, Ghent, Belgium; Biomarkers in Cancer research group, Dept. Basic and Applied Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Nicolaas Lumen
- Cancer Research Institute Ghent, Ghent, Belgium; Dept. Urology, Ghent University Hospital, Ghent, Belgium; Uro-Oncology research group, Dept. Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Charles Van Praet
- Cancer Research Institute Ghent, Ghent, Belgium; Dept. Urology, Ghent University Hospital, Ghent, Belgium; Uro-Oncology research group, Dept. Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Joris Delanghe
- Cancer Research Institute Ghent, Ghent, Belgium; Dept. Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sylvie Rottey
- Dept. Medical Oncology, Ghent University Hospital, Ghent, Belgium; Biomarkers in Cancer research group, Dept. Basic and Applied Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Drug Research Unit Ghent, Ghent University Hospital, Ghent, Belgium
| | - Tijl Vermassen
- Dept. Medical Oncology, Ghent University Hospital, Ghent, Belgium; Biomarkers in Cancer research group, Dept. Basic and Applied Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
2
|
Li P, Xu X, Zhang C, Chang Q, Wang J, Wang W, Ren H. Glycosylation on extracellular vesicles and its detection strategy: Paving the way for clinical use. Int J Biol Macromol 2025; 295:139714. [PMID: 39798737 DOI: 10.1016/j.ijbiomac.2025.139714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Extracellular vesicles (EVs) contain various glycans during their life cycle, from biogenesis to cellular recognition and uptake by recipient cells. EV glycosylation has substantial diagnostic significance in multiple health conditions, highlighting the necessity of determining an accurate glycosylation pattern for EVs from diverse biological fluids. Reliable and accessible glycan detection techniques help to elaborate the glycosylation-related functional alterations of specific proteins or lipids. However, multiple obstacles exist, including the inconsistency in glycosylation patterns between an entire batch of EVs and a specific EV protein, and difficulty in distinguishing glycosylation types after tedious separation and purification procedures. This review outlines recent advances in EV glycan detection, either at the glycomic level for a collection of intact EVs or at the molecular level for a specific protein on EVs. Particular emphasis has been placed on the abundance of EVs in body fluids and their unique characteristics for drug delivery of EVs, indicating an opportunity for diagnostic and therapeutic purposes via EV glycans.
Collapse
Affiliation(s)
- Ping Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Xiao Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Cong Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210042, China
| | - Qi Chang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Weijie Wang
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China.
| | - He Ren
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Bertok T, Jane E, Hires M, Tkac J. N-Acetylated Monosaccharides and Derived Glycan Structures Occurring in N- and O-Glycans During Prostate Cancer Development. Cancers (Basel) 2024; 16:3786. [PMID: 39594740 PMCID: PMC11592093 DOI: 10.3390/cancers16223786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Post-translational modifications of proteins play an important role in their stability, solubility and in vivo function. Also, for several reasons, such as the Golgi fragmentation during cancerogenesis, glycosylation as the most common modification is especially promising in offering high cancer specificity which, in combination with tissue-specific biomarkers available in the case of prostate diseases (PSA, PSMA, PAP), may lead to the development of novel oncodiagnostic approaches. In this review, we present the importance of subterminal glycan structures based on the N-acetylated monosaccharides GlcNAc and GalNAc in N- and also O-glycans, structures of which they are a component (LacNAc, LacdiNAc, branched structures). We also discuss the importance and clinical performance of these structures in cases of prostate cancer diagnostics using lectin-based affinity methods, which could be implemented in clinical laboratory practice in the future.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
- Glycanostics, Kudlakova 7, 841 08 Bratislava, Slovakia
| |
Collapse
|
4
|
Wilczak M, Surman M, Przybyło M. Towards Understanding the Role of the Glycosylation of Proteins Present in Extracellular Vesicles in Urinary Tract Diseases: Contributions to Cancer and Beyond. Molecules 2024; 29:5241. [PMID: 39598633 PMCID: PMC11596185 DOI: 10.3390/molecules29225241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are a population of nanoscale particles surrounded by a phospholipid bilayer, enabling intercellular transfer of bioactive molecules. Once released from the parental cell, EVs can be found in most biological fluids in the human body and can be isolated from them. For this reason, EVs have significant diagnostic potential and can serve as an excellent source of circulating disease biomarkers. Protein glycosylation plays a key role in many biological processes, and aberrant glycosylation is a hallmark of various diseases. EVs have been shown to carry multiple glycoproteins, but little is known about the specific biological roles of these glycoproteins in the context of EVs. Moreover, specific changes in EV glycosylation have been described for several diseases, including cancers and metabolic, cardiovascular, neurological or kidney diseases. Urine is the richest source of EVs, providing almost unlimited (in terms of volume) opportunities for non-invasive EV isolation. Recent studies have also revealed a pathological link between urinary EV glycosylation and urological cancers, as well as other pathologies of the urinary tract. In this review, we discuss recent research advances in this field and the diagnostic/prognostic potential of urinary EV glycosylation. In addition, we summarize common methods for isolating EVs from urine and techniques used to study their glycosylation.
Collapse
Affiliation(s)
- Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland; (M.W.); (M.S.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Lojasiewicza 11 Street, 30-348 Krakow, Poland
| | - Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland; (M.W.); (M.S.)
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 Street, 30-387 Krakow, Poland; (M.W.); (M.S.)
| |
Collapse
|
5
|
Wang X, Zhang L, Cheng L, Wang Y, Li M, Yu J, Ma Z, Ho PCL, Sethi G, Chen X, Wang L, Goh BC. Extracellular vesicle-derived biomarkers in prostate cancer care: Opportunities and challenges. Cancer Lett 2024; 601:217184. [PMID: 39142499 DOI: 10.1016/j.canlet.2024.217184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Prostate cancer (PCa) is the second most prevalent cancer in men worldwide, presenting a significant global public health challenge that necessitates early detection and personalized treatment. Recently, non-invasive liquid biopsy methods have emerged as promising tools to provide insights into the genetic landscape of PCa and monitor disease progression, aiding decision-making at all stages. Research efforts have concentrated on identifying liquid biopsy biomarkers to improve PCa diagnosis, prognosis, and treatment prediction. This article reviews recent research advances over the last five years utilizing extracellular vesicles (EVs) as a natural biomarker library for PCa, and discusses the clinical translation of EV biomarkers, including ongoing trials and key implementation challenges. The findings underscore the transformative role of liquid biopsy, particularly EV-based biomarkers, in revolutionizing PCa diagnosis, prediction, and treatment.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, 434000, China; The Third Clinical Medical College of Yangtze University, Jingzhou, 434000, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Yufei Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, 47500, Subang Jaya, Malaysia
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Boon-Cher Goh
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| |
Collapse
|
6
|
Smack C, Johnson B, Nyalwidhe JO, Semmes OJ, Yang L. Small extracellular vesicles: Roles and clinical application in prostate cancer. Adv Cancer Res 2024; 161:119-190. [PMID: 39032949 DOI: 10.1016/bs.acr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is a significant health problem in the United States. It is remarkably heterogenous, ranging from slow growing disease amenable to active surveillance to highly aggressive forms requiring active treatments. Therefore, being able to precisely determine the nature of disease and appropriately match patients to available and/or novel therapeutics is crucial to improve patients' overall outcome and quality of life. Recently small extracellular vesicles (sEVs), a subset of nanoscale membranous vesicles secreted by various cells, have emerged as important analytes for liquid biopsy and promising vehicles for drug delivery. sEVs contain various biomolecules such as genetic material, proteins, and lipids that recapitulate the characteristics and state of their donor cells. The application of existing and newly developed technologies has resulted in an increased depth of knowledge about biophysical structures, biogenesis, and functions of sEVs. In prostate cancer patients, tumor-derived sEVs can be isolated from biofluids, commonly urine and blood. They mediate intercellular signaling within the tumor microenvironment and distal organ-specific sites, supporting cancer initiation, progression, and metastasis. A mounting body of evidence suggests that sEV components can be potent biomarkers for prostate cancer diagnosis, prognosis, and prediction of disease progression and treatment response. Due to enhanced circulation stability and bio-barrier permeability, sEVs can be also used as effective drug delivery carriers to improve the efficacy and specificity of anti-tumor therapies. This review discusses recent studies on sEVs in prostate cancer and is focused on their role as biomarkers and drug delivery vehicles in the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Caleb Smack
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Benjamin Johnson
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Julius O Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - O John Semmes
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lifang Yang
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
7
|
Pinkeova A, Tomikova A, Bertokova A, Fabinyova E, Bartova R, Jane E, Hroncekova S, Sievert KD, Sokol R, Jirasko M, Kucera R, Eder IE, Horninger W, Klocker H, Ďubjaková P, Fillo J, Bertok T, Tkac J. Glycoprofiling of proteins as prostate cancer biomarkers: A multinational population study. PLoS One 2024; 19:e0300430. [PMID: 38498504 PMCID: PMC10947713 DOI: 10.1371/journal.pone.0300430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
The glycoprofiling of two proteins, the free form of the prostate-specific antigen (fPSA) and zinc-α-2-glycoprotein (ZA2G), was assessed to determine their suitability as prostate cancer (PCa) biomarkers. The glycoprofiling of proteins was performed by analysing changes in the glycan composition on fPSA and ZA2G using lectins (proteins that recognise glycans, i.e. complex carbohydrates). The specific glycoprofiling of the proteins was performed using magnetic beads (MBs) modified with horseradish peroxidase (HRP) and antibodies that selectively enriched fPSA or ZA2G from human serum samples. Subsequently, the antibody-captured glycoproteins were incubated on lectin-coated ELISA plates. In addition, a novel glycoprotein standard (GPS) was used to normalise the assay. The glycoprofiling of fPSA and ZA2G was performed in human serum samples obtained from men undergoing a prostate biopsy after an elevated serum PSA, and prostate cancer patients with or without prior therapy. The results are presented in the form of an ROC (Receiver Operating Curve). A DCA (Decision Curve Analysis) to evaluate the clinical performance and net benefit of fPSA glycan-based biomarkers was also performed. While the glycoprofiling of ZA2G showed little promise as a potential PCa biomarker, the glycoprofiling of fPSA would appear to have significant clinical potential. Hence, the GIA (Glycobiopsy ImmunoAssay) test integrates the glycoprofiling of fPSA (i.e. two glycan forms of fPSA). The GIA test could be used for early diagnoses of PCa (AUC = 0.83; n = 559 samples) with a potential for use in therapy-monitoring (AUC = 0.90; n = 176 samples). Moreover, the analysis of a subset of serum samples (n = 215) revealed that the GIA test (AUC = 0.81) outperformed the PHI (Prostate Health Index) test (AUC = 0.69) in discriminating between men with prostate cancer and those with benign serum PSA elevation.
Collapse
Affiliation(s)
- Andrea Pinkeova
- Glycanostics, Ltd., Bratislava, Slovak Republic
- Institute of Chemistry, Bratislava, Slovak Republic
| | | | | | | | | | - Eduard Jane
- Glycanostics, Ltd., Bratislava, Slovak Republic
- Institute of Chemistry, Bratislava, Slovak Republic
| | | | | | - Roman Sokol
- Private Urological Ambulance, Trencin, Slovak Republic
| | - Michal Jirasko
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Radek Kucera
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Immunochemistry Diagnostics, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Iris E. Eder
- Division of Experimental Urology, Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Wolfgang Horninger
- Division of Experimental Urology, Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Division of Experimental Urology, Department of Urology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Juraj Fillo
- University Hospital Bratislava, Bratislava, Slovakia
| | - Tomas Bertok
- Glycanostics, Ltd., Bratislava, Slovak Republic
- Institute of Chemistry, Bratislava, Slovak Republic
| | - Jan Tkac
- Glycanostics, Ltd., Bratislava, Slovak Republic
- Institute of Chemistry, Bratislava, Slovak Republic
| |
Collapse
|
8
|
Wang W, de Nier CR, Wuhrer M, Lageveen-Kammeijer GS. In-Depth Glycoproteomic Assay of Urinary Prostatic Acid Phosphatase. ACS MEASUREMENT SCIENCE AU 2024; 4:117-126. [PMID: 38404489 PMCID: PMC10885330 DOI: 10.1021/acsmeasuresciau.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 02/27/2024]
Abstract
Prostate-specific antigen (PSA) is a well-known clinical biomarker in prostate cancer (PCa) diagnosis, but a better test is still needed, as the serum-level-based PSA quantification exhibits limited specificity and comes with poor predictive value. Prior to PSA, prostatic acid phosphatase (PAP) was used, but it was replaced by PSA because PSA improved the early detection of PCa. Upon revisiting PAP and its glycosylation specifically, it appears to be a promising new biomarker candidate. Namely, previous studies have indicated that PAP glycoforms differ between PCa and non-PCa individuals. However, an in-depth characterization of PAP glycosylation is still lacking. In this study, we established an in-depth glycoproteomic assay for urinary PAP by characterizing both the micro- and macroheterogeneity of the PAP glycoprofile. For this purpose, PAP samples were analyzed by capillary electrophoresis coupled to mass spectrometry after affinity purification from urine and proteolytic digestion. The developed urinary PAP assay was applied on a pooled DRE (digital rectal examination) urine sample from nine individuals. Three glycosylation sites were characterized, namely N94, N220, and N333, via N-glycopeptide analysis. Taking sialic acid linkage isomers into account, a total of 63, 27, and 4 N-glycan structures were identified, respectively. The presented PAP glycoproteomic assay will enable the determination of potential glycomic biomarkers for the early detection and prognosis of PCa in cohort studies.
Collapse
Affiliation(s)
- Wei Wang
- Leiden
University Medical Center, Center for Proteomics
and Metabolomics, Leiden 2300 RC, The Netherlands
| | - Carmen R. de Nier
- Leiden
University Medical Center, Center for Proteomics
and Metabolomics, Leiden 2300 RC, The Netherlands
| | - Manfred Wuhrer
- Leiden
University Medical Center, Center for Proteomics
and Metabolomics, Leiden 2300 RC, The Netherlands
| | - Guinevere S.M. Lageveen-Kammeijer
- Leiden
University Medical Center, Center for Proteomics
and Metabolomics, Leiden 2300 RC, The Netherlands
- University
of Groningen, Groningen Research
Institute of Pharmacy, Groningen 9713 AV, The Netherlands
| |
Collapse
|
9
|
Liu S, Tu C, Zhang H, Huang H, Liu Y, Wang Y, Cheng L, Liu BF, Ning K, Liu X. Noninvasive serum N-glycans associated with ovarian cancer diagnosis and precancerous lesion prediction. J Ovarian Res 2024; 17:26. [PMID: 38281033 PMCID: PMC10821556 DOI: 10.1186/s13048-024-01350-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most common gynecological tumors with high morbidity and mortality. Altered serum N-glycome has been observed in many diseases, while the association between serum protein N-glycosylation and OC progression remains unclear, particularly for the onset of carcinogenesis from benign neoplasms to cancer. METHODS Herein, a mass spectrometry based high-throughput technique was applied to characterize serum N-glycome profile in individuals with healthy controls, benign neoplasms and different stages of OC. To elucidate the alterations of glycan features in OC progression, an orthogonal strategy with lectin-based ELISA was performed. RESULTS It was observed that the initiation and development of OC was associated with increased high-mannosylationand agalactosylation, concurrently with decreased total sialylation of serum, each of which gained at least moderately accurate merits. The most important individual N-glycans in each glycan group was H7N2, H3N5 and H5N4S2F1, respectively. Notably, serum N-glycome could be used to accurately discriminate OC patients from benign cohorts, with a comparable or even higher diagnostic score compared to CA125 and HE4. Furthermore, bioinformatics analysis based discriminative model verified the diagnostic performance of serum N-glycome for OC in two independent sets. CONCLUSIONS These findings demonstrated the great potential of serum N-glycome for OC diagnosis and precancerous lesion prediction, paving a new way for OC screening and monitoring.
Collapse
Affiliation(s)
- Si Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chang Tu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haobo Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hanhui Huang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanyuan Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kang Ning
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
10
|
Wu L, Gao C. Comprehensive Overview the Role of Glycosylation of Extracellular Vesicles in Cancers. ACS OMEGA 2023; 8:47380-47392. [PMID: 38144130 PMCID: PMC10734006 DOI: 10.1021/acsomega.3c07441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023]
Abstract
Extracellular vesicles (EVs) are membranous structures secreted by various cells carrying diverse biomolecules. Recent advancements in EV glycosylation research have underscored their crucial role in cancer. This review provides a global overview of EV glycosylation research, covering aspects such as specialized techniques for isolating and characterizing EV glycosylation, advances on how glycosylation affects the biogenesis and uptake of EVs, and the involvement of EV glycosylation in intracellular protein expression, cellular metastasis, intercellular interactions, and potential applications in immunotherapy. Furthermore, through an extensive literature review, we explore recent advances in EV glycosylation research in the context of cancer, with a focus on lung, colorectal, liver, pancreatic, breast, ovarian, prostate, and melanoma cancers. The primary objective of this review is to provide a comprehensive update for researchers, whether they are seasoned experts in the field of EVs or newcomers, aiding them in exploring new avenues and gaining a deeper understanding of EV glycosylation mechanisms. This heightened comprehension not only enhances researchers' knowledge of the pathogenic mechanisms of EV glycosylation but also paves the way for innovative cancer diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Linlin Wu
- Department of Clinical
Laboratory
Medicine Center, Yueyang Hospital of Integrated Traditional Chinese
and Western Medicine, Shanghai University
of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chunfang Gao
- Department of Clinical
Laboratory
Medicine Center, Yueyang Hospital of Integrated Traditional Chinese
and Western Medicine, Shanghai University
of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
11
|
Islam MK, Khan M, Gidwani K, Witwer KW, Lamminmäki U, Leivo J. Lectins as potential tools for cancer biomarker discovery from extracellular vesicles. Biomark Res 2023; 11:85. [PMID: 37773167 PMCID: PMC10540341 DOI: 10.1186/s40364-023-00520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023] Open
Abstract
Extracellular vesicles (EVs) have considerable potential as diagnostic, prognostic, and therapeutic agents, in large part because molecular patterns on the EV surface betray the cell of origin and may also be used to "target" EVs to specific cells. Cancer is associated with alterations to cellular and EV glycosylation patterns, and the surface of EVs is enriched with glycan moieties. Glycoconjugates of EVs play versatile roles in cancer including modulating immune response, affecting tumor cell behavior and site of metastasis and as such, paving the way for the development of innovative diagnostic tools and novel therapies. Entities that recognize specific glycans, such as lectins, may thus be powerful tools to discover and detect novel cancer biomarkers. Indeed, the past decade has seen a constant increase in the number of published articles on lectin-based strategies for the detection of EV glycans. This review explores the roles of EV glycosylation in cancer and cancer-related applications. Furthermore, this review summarizes the potential of lectins and lectin-based methods for screening, targeting, separation, and possible identification of improved biomarkers from the surface of EVs.
Collapse
Affiliation(s)
- Md Khirul Islam
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Misba Khan
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Kamlesh Gidwani
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Urpo Lamminmäki
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Janne Leivo
- Department of Life Technologies, Division of Biotechnology, University of Turku, Kiinamyllynkatu 10, 20014, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Wang J, Shewell LK, Day CJ, Jennings MP. N-glycolylneuraminic acid as a carbohydrate cancer biomarker. Transl Oncol 2023; 31:101643. [PMID: 36805917 PMCID: PMC9971276 DOI: 10.1016/j.tranon.2023.101643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/20/2023] Open
Abstract
One of the forms of aberrant glycosylation in human tumors is the expression of N-glycolylneuraminic acid (Neu5Gc). The only known enzyme to biosynthesize Neu5Gc in mammals, cytidine-5'-monophosphate-N-acetylneuraminic acid (CMAH), appears to be genetically inactivated in humans. Regardless, low levels of Neu5Gc have been detected in healthy humans. Therefore, it is proposed that the presence of Neu5Gc in humans is from dietary acquisition, such as red meat. Notably, detection of elevated Neu5Gc levels has been repeatedly found in cancer tissues, cells and serum samples, thereby Neu5Gc-containing antigens may be exploited as a class of cancer biomarkers. Here we review the findings to date on using Neu5Gc-containing tumor glycoconjugates as a class of cancer biomarkers for cancer detection, surveillance, prognosis and therapeutic targets. We review the evidence that supports an emerging hypothesis of de novo Neu5Gc biosynthesis in human cancer cells as a source of Neu5Gc in human tumors, generated under certain metabolic conditions.
Collapse
Affiliation(s)
- Jing Wang
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Lucy K Shewell
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | | | | |
Collapse
|
13
|
Grzesik K, Janik M, Hoja-Łukowicz D. The hidden potential of glycomarkers: Glycosylation studies in the service of cancer diagnosis and treatment. Biochim Biophys Acta Rev Cancer 2023; 1878:188889. [PMID: 37001617 DOI: 10.1016/j.bbcan.2023.188889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Changes in the glycosylation process appear early in carcinogenesis and evolve with the growth and spread of cancer. The correlation of the characteristic glycosylation signature with the tumor stage and the appropriate therapy choice is an important issue in translational medicine. Oncologists also pay attention to extracellular vesicles as reservoirs of new cancer glycomarkers that can be potent for cancer diagnosis/prognosis. In this review, we recall glycomarkers used in oncology and show their new glycoforms of improved clinical relevance. We summarize current knowledge on the biological functions of glycoepitopes in cancer-derived extracellular vesicles and their potential use in clinical practice. Is glycomics a future of cancer diagnosis? It may be, but in combination with other omics analyses than alone.
Collapse
|
14
|
Huang T, Sato Y, Kuramochi A, Ohba Y, Sano M, Miyagishi M, Tateno H, Wadhwa R, Kawasaki K, Uchida T, Ekdahl KN, Nilsson B, Chung UI, Teramura Y. Surface modulation of extracellular vesicles with cell-penetrating peptide-conjugated lipids for improvement of intracellular delivery to endothelial cells. Regen Ther 2023; 22:90-98. [PMID: 36712957 PMCID: PMC9842955 DOI: 10.1016/j.reth.2022.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Exosomes (diameter 30-200 nm) are a subtype of extracellular vesicles secreted by cells containing DNA, microRNA (miRNA), and proteins. Exosomes are expected to be valuable as a means of delivering drugs or functional miRNAs in treatment of diseases. However, the delivery of exosomes is not sufficiently effective, even though exosomes have intrinsic delivery functions. Cell-penetrating peptides (CPPs) are short peptide families that facilitate cellular intake of molecules and vesicles. We previously reported that the modification of cells, and liposomes with CPP-conjugated-lipids, CPPs conjugated with poly (ethylene glycol)-conjugated phospholipids (PEG-lipid), that induce adhesion by CPPs, can be useful for cell-based assays and harvesting liposomes. In this study, we aimed to modulate the exosome surface using Tat peptide (YGRKKRRQRRR)-PEG-lipids to improve intracellular delivery to endothelial cells. We isolated and characterized exosomes from the medium of HEK 293 T cell cultures. Tat conjugated PEG-lipids with different spacer molecular weights and lipid types were incorporated into exosomes using fluorescein isothiocyanate labeling to optimize the number of Tat-PEG-lipids immobilized on the exosome surface. The exosomes modified with Tat-PEG-lipids were incubated with human umbilical vein endothelial cells (HUVECs) to study the interaction. Tat conjugated with 5 kDa PEG and C16 lipids incorporated on the exosome surface were highly detected inside HUVECs by flow cytometry. Fluorescence was negligible in HUVECs for control groups. Thus, Tat-PEG-lipids can be modified on the exosome surface, improving the intracellular delivery of exosomes.
Collapse
Affiliation(s)
- Tianwei Huang
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuya Sato
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akiko Kuramochi
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yoshio Ohba
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Masayuki Sano
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Makoto Miyagishi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan,School of Integrative & Global Majors (SIGMA), Tsukuba Life Science Innovation, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Kazunori Kawasaki
- Material Science RG, Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Takeyuki Uchida
- Material Science RG, Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Ung-il Chung
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuji Teramura
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan,Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden,Master's/Doctoral Program in Life Science Innovation (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan,Corresponding author. Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
15
|
Hallal S, Tűzesi Á, Grau GE, Buckland ME, Alexander KL. Understanding the extracellular vesicle surface for clinical molecular biology. J Extracell Vesicles 2022; 11:e12260. [PMID: 36239734 PMCID: PMC9563386 DOI: 10.1002/jev2.12260] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid-membrane enclosed nanoparticles that play significant roles in health and disease. EVs are abundant in body fluids and carry an array of molecules (proteins, lipids, nucleic acids and glycans) that reflect the identity and activity of their cell-of-origin. While the advent of high throughput omics technologies has allowed in-depth characterisation of EV compositions, how these molecular species are spatially distributed within EV structures is not well appreciated. This is particularly true of the EV surface where a plethora of molecules are reported to be both integral and peripherally associated to the EV membrane. This coronal layer or 'atmosphere' that surrounds the EV membrane contributes to a large, highly interactive and dynamic surface area that is responsible for facilitating EV interactions with the extracellular environment. The EV coronal layer harbours surface molecules that reflect the identity of parent cells, which is likely a highly valuable property in the context of diagnostic liquid biopsies. In this review, we describe the current understanding of the mechanical, electrostatic and molecular properties of the EV surface that offer significant biomarker potential and contribute to a highly dynamic interactome.
Collapse
Affiliation(s)
- Susannah Hallal
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia
| | - Ágota Tűzesi
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Georges E. Grau
- School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Michael E. Buckland
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Kimberley L. Alexander
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
16
|
Mackay S, Hitefield NL, Oduor IO, Roberts AB, Burch TC, Lance RS, Cunningham TD, Troyer DA, Semmes OJ, Nyalwidhe JO. Site-Specific Intact N-Linked Glycopeptide Characterization of Prostate-Specific Membrane Antigen from Metastatic Prostate Cancer Cells. ACS OMEGA 2022; 7:29714-29727. [PMID: 36061737 PMCID: PMC9435049 DOI: 10.1021/acsomega.2c02265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The composition of N-linked glycans that are conjugated to the prostate-specific membrane antigen (PSMA) and their functional significance in prostate cancer progression have not been fully characterized. PSMA was isolated from two metastatic prostate cancer cell lines, LNCaP and MDAPCa2b, which have different tissue tropism and localization. Isolated PSMA was trypsin-digested, and intact glycopeptides were subjected to LC-HCD-EThcD-MS/MS analysis on a Tribrid Orbitrap Fusion Lumos mass spectrometer. Differential qualitative and quantitative analysis of site-specific N-glycopeptides was performed using Byonic and Byologic software. Comparative quantitative analysis demonstrates that multiple glycopeptides at asparagine residues 51, 76, 121, 195, 336, 459, 476, and 638 were in significantly different abundance in the two cell lines (p < 0.05). Biochemical analysis using endoglycosidase treatment and lectin capture confirm the MS and site occupancy data. The data demonstrate the effectiveness of the strategy for comprehensive analysis of PSMA glycopeptides. This approach will form the basis of ongoing experiments to identify site-specific glycan changes in PSMA isolated from disease-stratified clinical samples to uncover targets that may be associated with disease progression and metastatic phenotypes.
Collapse
Affiliation(s)
- Stephen Mackay
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
- University
of North Carolina, Chapel Hill, North Carolina 27516, United States
| | - Naomi L. Hitefield
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
- University
of Georgia, Athens, Georgia 30602, United
States
| | - Ian O. Oduor
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Autumn B. Roberts
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Tanya C. Burch
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Raymond S. Lance
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Spokane
Urology, Spokane, Washington 99202, United States
| | - Tina D. Cunningham
- School of
Health Professions, Eastern Virginia Medical
School, Norfolk, Virginia 23507, United States
| | - Dean A. Troyer
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Oliver J. Semmes
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| | - Julius O. Nyalwidhe
- Leroy
T. Canoles Jr. Cancer Research Center, Eastern
Virginia Medical School, Norfolk, Virginia 23507, United States
- Department
of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, United States
| |
Collapse
|
17
|
MALDI-TOF/MS Analysis of Extracellular Vesicles Released by Cancer Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The direct shedding of extracellular vesicles (EVs) from the plasma membrane is a recognized fundamental method for the intercellular transfer of properties in both physiological and pathological conditions. EVs are classified according to origin, biogenesis, size, content, surface markers, and/or functional properties, and contain various bioactive molecules depending on the physiological state and the type of the cells of origin including lipids, nucleic acids, and proteins. The presence of tumor-derived EVs in body fluids such as blood, ascites, urine, and saliva, together with the important role played in the tumor microenvironment where they intervene at different levels from oncogenesis to metastasis, make EVs a priority target for cancer studies. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can play a leading role in the analysis and characterization of EVs and their load due to its intrinsic advantages such as high throughput, low sample consumption, speed, the cost-effectiveness of the analysis, and the ease of use. This work reviews the main MALDI-TOF applications for the analysis and characterization of extracellular vesicles in the tumor field.
Collapse
|
18
|
Butler W, Huang J. Glycosylation Changes in Prostate Cancer Progression. Front Oncol 2021; 11:809170. [PMID: 35004332 PMCID: PMC8739790 DOI: 10.3389/fonc.2021.809170] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate Cancer (PCa) is the most commonly diagnosed malignancy and second leading cause of cancer-related mortality in men. With the use of next generation sequencing and proteomic platforms, new biomarkers are constantly being developed to both improve diagnostic sensitivity and specificity and help stratify patients into different risk groups for optimal management. In recent years, it has become well accepted that altered glycosylation is a hallmark of cancer progression and that the glycan structures resulting from these mechanisms show tremendous promise as both diagnostic and prognostic biomarkers. In PCa, a wide range of structural alterations to glycans have been reported such as variations in sialylation and fucosylation, changes in branching, altered levels of Lewis and sialyl Lewis antigens, as well as the emergence of high mannose "cryptic" structures, which may be immunogenic and therapeutically relevant. Furthermore, aberrant expression of galectins, glycolipids, and proteoglycans have also been reported and associated with PCa cell survival and metastasis. In this review, we discuss the findings from various studies that have explored altered N- and O-linked glycosylation in PCa tissue and body fluids. We further discuss changes in O-GlcNAcylation as well as altered expression of galectins and glycoconjugates and their effects on PCa progression. Finally, we emphasize the clinical utility and potential impact of exploiting glycans as both biomarkers and therapeutic targets to improve our ability to diagnose clinically relevant tumors as well as expand treatment options for patients with advanced disease.
Collapse
Affiliation(s)
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
19
|
Blaschke CRK, Hartig JP, Grimsley G, Liu L, Semmes OJ, Wu JD, Ippolito JE, Hughes-Halbert C, Nyalwidhe JO, Drake RR. Direct N-Glycosylation Profiling of Urine and Prostatic Fluid Glycoproteins and Extracellular Vesicles. Front Chem 2021; 9:734280. [PMID: 34646811 PMCID: PMC8503230 DOI: 10.3389/fchem.2021.734280] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Expressed prostatic secretions (EPS), also called post digital rectal exam urines, are proximal fluids of the prostate that are widely used for diagnostic and prognostic assays for prostate cancer. These fluids contain an abundant number of glycoproteins and extracellular vesicles secreted by the prostate gland, and the ability to detect changes in their N-glycans composition as a reflection of disease state represents potential new biomarker candidates. Methods to characterize these N-glycan constituents directly from clinical samples in a timely manner and with minimal sample processing requirements are not currently available. In this report, an approach is described to directly profile the N-glycan constituents of EPS urine samples, prostatic fluids and urine using imaging mass spectrometry for detection. An amine reactive slide is used to immobilize glycoproteins from a few microliters of spotted samples, followed by peptide N-glycosidase digestion. Over 100 N-glycan compositions can be detected with this method, and it works with urine, urine EPS, prostatic fluids, and urine EPS-derived extracellular vesicles. A comparison of the N-glycans detected from the fluids with tissue N-glycans from prostate cancer tissues was done, indicating a subset of N-glycans present in fluids derived from the gland lumens. The developed N-glycan profiling is amenable to analysis of larger clinical cohorts and adaptable to other biofluids.
Collapse
Affiliation(s)
- Calvin R K Blaschke
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Jordan P Hartig
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Grace Grimsley
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Liping Liu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.,The Leroy T. Canoles Jr., Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Jennifer D Wu
- Departments of Urology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph E Ippolito
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Chanita Hughes-Halbert
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Julius O Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.,The Leroy T. Canoles Jr., Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
20
|
Extracellular Vesicles: New Tools for Early Diagnosis of Breast and Genitourinary Cancers. Int J Mol Sci 2021; 22:ijms22168430. [PMID: 34445131 PMCID: PMC8395117 DOI: 10.3390/ijms22168430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancers and cancers of the genitourinary tract are the most common malignancies among men and women and are still characterized by high mortality rates. In order to improve the outcomes, early diagnosis is crucial, ideally by applying non-invasive and specific biomarkers. A key role in this field is played by extracellular vesicles (EVs), lipid bilayer-delimited structures shed from the surface of almost all cell types, including cancer cells. Subcellular structures contained in EVs such as nucleic acids, proteins, and lipids can be isolated and exploited as biomarkers, since they directly stem from parental cells. Furthermore, it is becoming even more evident that different body fluids can also serve as sources of EVs for diagnostic purposes. In this review, EV isolation and characterization methods are described. Moreover, the potential contribution of EV cargo for diagnostic discovery purposes is described for each tumor.
Collapse
|
21
|
Glycosylation: Rising Potential for Prostate Cancer Evaluation. Cancers (Basel) 2021; 13:cancers13153726. [PMID: 34359624 PMCID: PMC8345048 DOI: 10.3390/cancers13153726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Aberrant protein glycosylation is a well-known hallmark of cancer and is associated with differential expression of enzymes such as glycosyltransferases and glycosidases. The altered expression of the enzymes triggers cancer cells to produce glycoproteins with specific cancer-related aberrations in glycan structures. Increasing number of data indicate that glycosylation patterns of PSA and other prostate-originated proteins exert a potential to distinguish between benign prostate disease and cancer as well as among different stages of prostate cancer development and aggressiveness. This review summarizes the alterations in glycan sialylation, fucosylation, truncated O-glycans, and LacdiNAc groups outlining their potential applications in non-invasive diagnostic procedures of prostate diseases. Further research is desired to develop more general algorithms exploiting glycobiology data for the improvement of prostate diseases evaluation. Abstract Prostate cancer is the second most commonly diagnosed cancer among men. Alterations in protein glycosylation are confirmed to be a reliable hallmark of cancer. Prostate-specific antigen is the biomarker that is used most frequently for prostate cancer detection, although its lack of sensitivity and specificity results in many unnecessary biopsies. A wide range of glycosylation alterations in prostate cancer cells, including increased sialylation and fucosylation, can modify protein function and play a crucial role in many important biological processes in cancer, including cell signalling, adhesion, migration, and cellular metabolism. In this review, we summarize studies evaluating the prostate cancer associated glycosylation related alterations in sialylation, mainly α2,3-sialylation, core fucosylation, branched N-glycans, LacdiNAc group and presence of truncated O-glycans (sTn, sT antigen). Finally, we discuss the great potential to make use of glycans as diagnostic and prognostic biomarkers for prostate cancer.
Collapse
|
22
|
Hatakeyama S, Yoneyama T, Tobisawa Y, Yamamoto H, Ohyama C. Narrative review of urinary glycan biomarkers in prostate cancer. Transl Androl Urol 2021; 10:1850-1864. [PMID: 33968674 PMCID: PMC8100853 DOI: 10.21037/tau-20-964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. The application of the prostate-specific antigen (PSA) test has improved the diagnosis and treatment of PC. However, the PSA test has become associated with overdiagnosis and overtreatment. Therefore, there is an unmet need for novel diagnostic, prognostic, and predictive biomarkers of PC. Urinary glycoproteins and exosomes are a potential source of PC glycan biomarkers. Urinary glycan profiling can provide noninvasive monitoring of tumor heterogeneity and aggressiveness throughout a treatment course. However, urinary glycan profiling is not popular due to technical disadvantages, such as complicated structural analysis that requires specialized expertise. The technological development of glycan analysis is a rapidly advancing field. A lectin-based microarray can detect aberrant glycoproteins in urine, including PSA glycoforms and exosomes. Glycan enrichment beads can enrich the concentration of N-linked glycans specifically. Capillary electrophoresis, liquid chromatography-tandem mass spectrometry, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry can detect glycans directory. Many studies suggest potential of urinary glycoproteins, exosomes, and glycosyltransferases as a biomarker of PC. Although further technological challenges remain, urinary glycan analysis is one of the promising approaches for cancer biomarker discovery.
Collapse
Affiliation(s)
- Shingo Hatakeyama
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tohru Yoneyama
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hayato Yamamoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chikara Ohyama
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
23
|
Vermassen T, Van Den Broeck A, Lumen N, Callewaert N, Rottey S, Delanghe J. Tissue N-linked glycosylation as potential prognostic biomarker for biochemical recurrence-free survival. Biomarkers 2021; 26:275-285. [PMID: 33657946 DOI: 10.1080/1354750x.2021.1891290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Only few biomarkers have been evaluated for their prognostic value following radical prostatectomy. We explored if tissue N-glycosylation shows prognostic properties for biochemical recurrence (BCR)-free survival. MATERIALS AND METHODS Tissue N-glycosylation profile was determined from 82 prostate cancer (PCa) patients and prognostic features were compared to clinical and biochemical parameters for BCR-free survival. RESULTS Majority presented with Gleason score 3 + 4 (41%), extensive local disease (62%) and without pelvic lymph nodes invasion (83%). Several parameters (low T stage, low Gleason score, low EAU risk groups for BCR, absence of positive surgical margins, high ratio of fucosylated triantennary structures on total of multiantennary structures [3AFc/MA], low ratio of fucosylated biantennary with core-branched N-acetylglucosamine on total of biantennary structures, and high ratio of triantennary structures on total of multiantennary structures) proved to have a univariate beneficial effect on BCR-free survival. Multivariate analysis proved positive surgical margins and 3AFc/MA to be independent prognosticators. CONCLUSIONS Tissue N-glycans are a powerful prognostic tool and can be an asset in PCa as the ratio of 3AFc/MA is independently associated with BCR-free survival. This could be of clinical use in guiding patients following radical prostatectomy, e.g. referral to adjuvant radiotherapy. Further elaboration of this biomarker is warranted.
Collapse
Affiliation(s)
- Tijl Vermassen
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | | | - Nicolaas Lumen
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Nico Callewaert
- Department for Molecular Biomedical Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Joris Delanghe
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Gilgunn S, Murphy K, Stöckmann H, Conroy PJ, Murphy TB, Watson RW, O’Kennedy RJ, Rudd PM, Saldova R. Glycosylation in Indolent, Significant and Aggressive Prostate Cancer by Automated High-Throughput N-Glycan Profiling. Int J Mol Sci 2020; 21:ijms21239233. [PMID: 33287410 PMCID: PMC7730228 DOI: 10.3390/ijms21239233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022] Open
Abstract
The diagnosis and treatment of prostate cancer (PCa) is a major health-care concern worldwide. This cancer can manifest itself in many distinct forms and the transition from clinically indolent PCa to the more invasive aggressive form remains poorly understood. It is now universally accepted that glycan expression patterns change with the cellular modifications that accompany the onset of tumorigenesis. The aim of this study was to investigate if differential glycosylation patterns could distinguish between indolent, significant, and aggressive PCa. Whole serum N-glycan profiling was carried out on 117 prostate cancer patients’ serum using our automated, high-throughput analysis platform for glycan-profiling which utilizes ultra-performance liquid chromatography (UPLC) to obtain high resolution separation of N-linked glycans released from the serum glycoproteins. We observed increases in hybrid, oligomannose, and biantennary digalactosylated monosialylated glycans (M5A1G1S1, M8, and A2G2S1), bisecting glycans (A2B, A2(6)BG1) and monoantennary glycans (A1), and decreases in triantennary trigalactosylated trisialylated glycans with and without core fucose (A3G3S3 and FA3G3S3) with PCa progression from indolent through significant and aggressive disease. These changes give us an insight into the disease pathogenesis and identify potential biomarkers for monitoring the PCa progression, however these need further confirmation studies.
Collapse
Affiliation(s)
- Sarah Gilgunn
- School of Biotechnology, Dublin City University, D09 V209 Dublin 9, Ireland; (S.G.); (R.J.O.)
- National Centre for Sensor Research, Biomedical Diagnostics Institute, Dublin City University, D09 V209 Dublin 9, Ireland
| | - Keefe Murphy
- Department of Mathematics and Statistics, Maynooth University, Maynooth, W23 F2K8 Co. Kildare, Ireland;
| | - Henning Stöckmann
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland; (H.S.); (P.M.R.)
| | - Paul J. Conroy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC 3800, Australia;
| | - T. Brendan Murphy
- UCD School of Mathematics and Statistics, University College Dublin, D04 V1W8 Dublin 4, Ireland;
| | - R. William Watson
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin 4, Ireland;
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, D04 V1W8 Dublin 4, Ireland
| | - Richard J. O’Kennedy
- School of Biotechnology, Dublin City University, D09 V209 Dublin 9, Ireland; (S.G.); (R.J.O.)
- National Centre for Sensor Research, Biomedical Diagnostics Institute, Dublin City University, D09 V209 Dublin 9, Ireland
- Research, Development and Innovation, Qatar Foundation, Luqta Street, Doha 5825, Qatar
| | - Pauline M. Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland; (H.S.); (P.M.R.)
- Bioprocessing Technology Institute, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Co. Dublin, Ireland; (H.S.); (P.M.R.)
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, D04 V1W8 Dublin 4, Ireland
- Correspondence: ; Tel.: +353-1215-8147
| |
Collapse
|
25
|
Separation based characterization methods for the N-glycosylation analysis of prostate-specific antigen. J Pharm Biomed Anal 2020; 194:113797. [PMID: 33288345 DOI: 10.1016/j.jpba.2020.113797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/13/2022]
Abstract
Prostate cancer has the highest malignancy rate diagnosed in men worldwide. Albeit, the gold standard serum prostate-specific antigen (PSA) assays reduced the mortality rate of the disease, the number of false positive diagnoses steeply increased. Therefore, there is an urgent need for complementary biomarkers to enhance the specificity and selectivity of current diagnostic methods. Information about PSA glycosylation can help to fulfill this gap as alterations of its carbohydrate moieties due to cancerous transformation may represent additional markers to distinguish malignant from benign tumors. However, development of suitable methods and instrumentations to investigate the N-glycosylation profile of PSA represents a challenge. In this paper, we critically review the current bioanalytical trends and strategies in the field of PSA glycobiomarker research focusing on separation based characterization methods.
Collapse
|
26
|
Tan Z, Cao L, Wu Y, Wang B, Song Z, Yang J, Cheng L, Yang X, Zhou X, Dai Z, Li X, Guan F. Bisecting GlcNAc modification diminishes the pro-metastatic functions of small extracellular vesicles from breast cancer cells. J Extracell Vesicles 2020; 10:e12005. [PMID: 33304474 PMCID: PMC7710122 DOI: 10.1002/jev2.12005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/21/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Small extracellular vesicles (sEVs) are enriched in glycoconjugates and display specific glycosignatures. Aberrant expression of surface glycoconjugates is closely correlated with cancer progression and metastasis. The essential functions of glycoconjugates in sEVs are poorly understood. In this study, we observed significantly reduced levels of bisecting GlcNAc in breast cancer. Introduction of bisecting GlcNAc into breast cancer cells altered the bisecting GlcNAc status on sEVs, and sEVs with diverse bisecting GlcNAc showed differing functions on recipient cells. Carcinogenesis and metastasis of recipient cells were enhanced by sEVs with low bisecting GlcNAc, and the pro‐metastatic functions of sEVs was diminished by high bisecting GlcNAc modification. We further identified vesicular integrin β1 as a target protein bearing bisecting GlcNAc. Metastasis of recipient cells was strongly suppressed by high bisecting GlcNAc levels on vesicular β1. Our findings demonstrate the important roles of glycoconjugates on sEVs. Modification of sEV glycosylation may contribute to development of novel targets in breast cancer therapy.
Collapse
Affiliation(s)
- Zengqi Tan
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry College of Life Science Northwest University Xi'an P.R. China
| | - Lin Cao
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry College of Life Science Northwest University Xi'an P.R. China
| | - Yurong Wu
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry College of Life Science Northwest University Xi'an P.R. China
| | - Bowen Wang
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry College of Life Science Northwest University Xi'an P.R. China
| | - Zhihui Song
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry College of Life Science Northwest University Xi'an P.R. China
| | - Juhong Yang
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry College of Life Science Northwest University Xi'an P.R. China
| | - Lanming Cheng
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry College of Life Science Northwest University Xi'an P.R. China
| | - Xiaomin Yang
- Department of Breast Surgery The First Affiliated Hospital of Xi'an Jiaotong University Xi'an P.R. China.,Department of Breast Surgery Tumor Hospital of Shaanxi Province Xi'an P.R. China
| | - Xiaoman Zhou
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry College of Life Science Northwest University Xi'an P.R. China
| | - Zhijun Dai
- Department of Breast Surgery The First Affiliated Hospital College of Medicine Zhejiang University Hangzhou P.R. China.,Department of Oncology The Second Affiliated Hospital of Xi'an Jiaotong Xi'an P.R. China
| | - Xiang Li
- School of Medicine Northwest University Xi'an P.R. China
| | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry College of Life Science Northwest University Xi'an P.R. China
| |
Collapse
|
27
|
Lin S, Zhou S, Yuan T. The "sugar-coated bullets" of cancer: Tumor-derived exosome surface glycosylation from basic knowledge to applications. Clin Transl Med 2020; 10:e204. [PMID: 33135347 PMCID: PMC7551131 DOI: 10.1002/ctm2.204] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Scientific interest in exosomes has exploded in recent decades. In 1990 only three articles were published on exosomes, while over 1,700 have already been published half-way into 2020.1 While researchers have shown much interest in exosomes since being discovered in 1981, an appreciation of the potential role of glycans in exosome structure and function has emerged only recently. Glycosylation is one of the most common post-translational modification, which functions in many physiological and pathological aspects of cellular function. Many components of exosomes are heavily glycosylated including proteins, lipids, among others. Thus, glycosylation undoubtedly has a great impact on exosome biosynthesis and function. Despite the importance of glycosylation in exosomes and the recent recognition of them as biomarkers for not only malignancies but also other system dysfunction and disease, the characterization of exosome glycans remains understudied. In this review, we discuss glycosylation patterns of exosomes derived from various tissues, their biological features, and potential for various clinical applications. We highlight state-of-the-art knowledge about the fine structure of exosomes, which will allow researchers to reconstruct them by surface modification. These efforts will likely lead to novel disease-related biomarker discovery, purification tagging, and targeted drug transfer for clinical applications in the future.
Collapse
Affiliation(s)
- Shanyi Lin
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| | - Shumin Zhou
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| | - Ting Yuan
- Department of Orthopaedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| |
Collapse
|
28
|
Li H, Patel V, DiMartino SE, Froehlich JW, Lee RS. An in-depth Comparison of the Pediatric and Adult Urinary N-glycomes. Mol Cell Proteomics 2020; 19:1767-1776. [PMID: 32737218 DOI: 10.1074/mcp.ra120.002225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
We performed an in-depth characterization and comparison of the pediatric and adult urinary glycomes using a nanoLC-MS/MS based glycomics method, which included normal healthy pediatric (1-10 years, n = 21) and adult (21-50 years, n = 22) individuals. A total of 116 N-glycan compositions were identified, and 46 of them could be reproducibly quantified. We performed quantitative comparisons of the 46 glycan compositions between different age and sex groups. The results showed significant quantitative changes between the pediatric and adult cohorts. The pediatric urinary N-glycome was found to contain a higher level of high-mannose (HM), asialylated/afucosylated glycans (excluding HM), neutral fucosylated and agalactosylated glycans, and a lower level of trisialylated glycans compared with the adult. We further analyzed gender-associated glycan changes in the pediatric and adult group, respectively. In the pediatric group, there was almost no difference of glycan levels between males and females. In adult, the majority of glycans were more abundant in males than females, except the high-mannose and tetrasialylated glycans. These findings highlight the importance to consider age-matching and adult sex-matching for urinary glycan studies. The identified normal pediatric and adult urinary glycomes can serve as a baseline reference for comparisons to other disease states affected by glycosylation.
Collapse
Affiliation(s)
- Haiying Li
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Viral Patel
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shannon E DiMartino
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - John W Froehlich
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | - Richard S Lee
- Department of Urology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
29
|
Pang B, Zhu Y, Ni J, Thompson J, Malouf D, Bucci J, Graham P, Li Y. Extracellular vesicles: the next generation of biomarkers for liquid biopsy-based prostate cancer diagnosis. Theranostics 2020; 10:2309-2326. [PMID: 32089744 PMCID: PMC7019149 DOI: 10.7150/thno.39486] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer death for males in western countries. The current gold standard for PCa diagnosis - template needle biopsies - often does not convey a true representation of the molecular profile given sampling error and complex tumour heterogeneity. Presently available biomarker blood tests have limited accuracy. There is a growing demand for novel diagnostic approaches to reduce both the number of men with an abnormal PSA/ DRE who undergo invasive biopsy and the number of cores collected per biopsy. 'Liquid biopsy' is a minimally invasive biofluid-based approach that has the potential to provide information and improve the accuracy of diagnosis for patients' treatment selection, prognostic counselling and development of risk-adjusted follow-up protocols. Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by tumour cells which may provide a real-time snapshot of the entire tumour in a non-invasive way. EVs can regulate physiological processes and mediate systemic dissemination of various types of cancers. Emerging evidence suggests that EVs have crucial roles in PCa development and metastasis. Most importantly, EVs are directly derived from their parent cells with their information. EVs contain components including proteins, mRNAs, DNA fragments, non-coding RNAs and lipids, and play a critical role in intercellular communication. Therefore, EVs hold promise for the discovery of liquid biopsy-based biomarkers for PCa diagnosis. Here, we review the current approaches for EV isolation and analysis, summarise the recent advances in EV protein biomarkers in PCa and focus on liquid biopsy-based EV biomarkers in PCa diagnosis for personalised medicine.
Collapse
Affiliation(s)
- Bairen Pang
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - Ying Zhu
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - Jie Ni
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - James Thompson
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Urology, St George Hospital, Sydney, NSW 2217, Australia
- Garvan Institute of Medical Research/ APCRC, Sydney, UNSW, 2010, Australia
| | - David Malouf
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
- Department of Urology, St George Hospital, Sydney, NSW 2217, Australia
| | - Joseph Bucci
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
- School of Basic Medical Sciences, Zhengzhou University, Henan 450001, China
| |
Collapse
|
30
|
Wu Z, Zhang Z, Xia W, Cai J, Li Y, Wu S. Extracellular vesicles in urologic malignancies-Implementations for future cancer care. Cell Prolif 2019; 52:e12659. [PMID: 31469460 PMCID: PMC6869217 DOI: 10.1111/cpr.12659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs), a heterogeneous group of vesicles differing in size and shape, cargo content and function, are membrane-bound and nano-sized vesicles that could be released by nearly all variations of cells. EVs have gained considerable attention in the past decades for their functions in modulating intercellular signalling and roles as potential pools for the novel diagnostic and prognostic biomarkers, as well as therapeutic targets in several cancers including urological neoplasms. In general, human and animal cells both can release distinct types of EVs, including exosomes, microvesicles, oncosomes and large oncosomes, and apoptotic bodies, while the content of EVs can be divided into proteins, lipids and nucleic acids. However, the lack of standard methods for isolation and detection platforms rein the widespread usage in clinical applications warranted furthermore investigations in the development of reliable, specific and sensitive isolation techniques. Whether and how the EVs work has become pertinent issues. With the aid of high-throughput proteomics or genomics methods, a fully understanding of contents contained in EVs from urogenital tumours, beyond all doubt, will improve our ability to identify the complex genomic alterations in the process of cancer and, in turn, contribute to detect potential therapeutic target and then provide personalization strategy for patient.
Collapse
Affiliation(s)
- Zhangsong Wu
- Medical CollegeShenzhen UniversityShenzhenChina
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
| | - Zhiqiang Zhang
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
| | - Wuchao Xia
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Medical CollegeAnhui University of Science and TechnologyHuainanChina
| | - Jiajia Cai
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Medical CollegeAnhui University of Science and TechnologyHuainanChina
| | - Yuqing Li
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
| | - Song Wu
- Medical CollegeShenzhen UniversityShenzhenChina
- Department of Urological Surgery, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen UniversityShenzhen UniversityShenzhenChina
- Medical CollegeAnhui University of Science and TechnologyHuainanChina
- Department of Urological Surgery, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
31
|
Schuh CMAP, Cuenca J, Alcayaga-Miranda F, Khoury M. Exosomes on the border of species and kingdom intercommunication. Transl Res 2019; 210:80-98. [PMID: 30998903 DOI: 10.1016/j.trsl.2019.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022]
Abstract
Over the last decades exosomes have become increasingly popular in the field of medicine. While until recently they were believed to be involved in the removal of obsolete particles from the cell, it is now known that exosomes are key players in cellular communication, carrying source-specific molecules such as proteins, growth factors, miRNA/mRNA, among others. The discovery that exosomes are not bound to intraspecies interactions, but are also capable of interkingdom communication, has once again revolutionized the field of exosomes research. A rapidly growing body of literature is shedding light at novel sources and participation of exosomes in physiological or regenerative processes, infection and disease. For the purpose of this review we have categorized 6 sources of interest (animal products, body fluids, plants, bacteria, fungus and parasites) and linked their innate roles to the clinics and potential medical applications, such as cell-based therapy, diagnostics or drug delivery.
Collapse
Affiliation(s)
- Christina M A P Schuh
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile; Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.
| | - Jimena Cuenca
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisca Alcayaga-Miranda
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
32
|
Scott E, Munkley J. Glycans as Biomarkers in Prostate Cancer. Int J Mol Sci 2019; 20:E1389. [PMID: 30893936 PMCID: PMC6470778 DOI: 10.3390/ijms20061389] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men, claiming over350,000 lives worldwide annually. Current diagnosis relies on prostate-specific antigen (PSA)testing, but this misses some aggressive tumours, and leads to the overtreatment of non-harmfuldisease. Hence, there is an urgent unmet clinical need to identify new diagnostic and prognosticbiomarkers. As prostate cancer is a heterogeneous and multifocal disease, it is likely that multiplebiomarkers will be needed to guide clinical decisions. Fluid-based biomarkers would be ideal, andattention is now turning to minimally invasive liquid biopsies, which enable the analysis oftumour components in patient blood or urine. Effective diagnostics using liquid biopsies willrequire a multifaceted approach, and a recent high-profile review discussed combining multipleanalytes, including changes to the tumour transcriptome, epigenome, proteome, and metabolome.However, the concentration on genomics-based paramaters for analysing liquid biopsies ispotentially missing a goldmine. Glycans have shown huge promise as disease biomarkers, anddata suggests that integrating biomarkers across multi-omic platforms (including changes to theglycome) can improve the stratification of patients with prostate cancer. A wide range ofalterations to glycans have been observed in prostate cancer, including changes to PSAglycosylation, increased sialylation and core fucosylation, increased O-GlcNacylation, theemergence of cryptic and branched N-glyans, and changes to galectins and proteoglycans. In thisreview, we discuss the huge potential to exploit glycans as diagnostic and prognostic biomarkersfor prostate cancer, and argue that the inclusion of glycans in a multi-analyte liquid biopsy test forprostate cancer will help maximise clinical utility.
Collapse
Affiliation(s)
- Emma Scott
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
33
|
Gézsi A, Kovács Á, Visnovitz T, Buzás EI. Systems biology approaches to investigating the roles of extracellular vesicles in human diseases. Exp Mol Med 2019; 51:1-11. [PMID: 30872567 PMCID: PMC6418293 DOI: 10.1038/s12276-019-0226-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed structures secreted by cells. In the past decade, EVs have attracted substantial attention as carriers of complex intercellular information. They have been implicated in a wide variety of biological processes in health and disease. They are also considered to hold promise for future diagnostics and therapy. EVs are characterized by a previously underappreciated heterogeneity. The heterogeneity and molecular complexity of EVs necessitates high-throughput analytical platforms for detailed analysis. Recently, mass spectrometry, next-generation sequencing and bioinformatics tools have enabled detailed proteomic, transcriptomic, glycomic, lipidomic, metabolomic, and genomic analyses of EVs. Here, we provide an overview of systems biology experiments performed in the field of EVs. Furthermore, we provide examples of how in silico systems biology approaches can be used to identify correlations between genes involved in EV biogenesis and human diseases. Using a knowledge fusion system, we investigated whether certain groups of proteins implicated in the biogenesis/release of EVs were associated with diseases and phenotypes. Furthermore, we investigated whether these proteins were enriched in publicly available transcriptomic datasets using gene set enrichment analysis methods. We found associations between key EV biogenesis proteins and numerous diseases, which further emphasizes the key role of EVs in human health and disease.
Collapse
Affiliation(s)
- András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Árpád Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary.
| |
Collapse
|
34
|
Feng Y, Guo Y, Li Y, Tao J, Ding L, Wu J, Ju H. Lectin-mediated in situ rolling circle amplification on exosomes for probing cancer-related glycan pattern. Anal Chim Acta 2018; 1039:108-115. [DOI: 10.1016/j.aca.2018.07.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023]
|
35
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
36
|
Vlaeminck-Guillem V. Extracellular Vesicles in Prostate Cancer Carcinogenesis, Diagnosis, and Management. Front Oncol 2018; 8:222. [PMID: 29951375 PMCID: PMC6008571 DOI: 10.3389/fonc.2018.00222] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, are now well recognized as major ways by which cancer cells interact with each other and stromal cells. The meaningful messages transmitted by the EVs are carried by all components of the EVs, i.e., the membrane lipids and the cargo (DNAs, RNAs, microRNAs, long non-coding RNAs, proteins). They are clearly part of the armed arsenal by which cancer cells obtain and share more and more advantages to grow and conquer new spaces. Identification of these messages offers a significant opportunity to better understand how a cancer occurs and then develops both locally and distantly. But it also provides a powerful means by which cancer progression can be detected and monitored. In the last few years, significant research efforts have been made to precisely identify how the EV trafficking is modified in cancer cells as compared to normal cells and how this trafficking is altered during cancer progression. Prostate cancer has not escaped this trend. The aim of this review is to describe the results obtained when assessing the meaningful content of prostate cancer- and stromal-derived EVs in terms of a better comprehension of the cellular and molecular mechanisms underlying prostate cancer occurrence and development. This review also deals with the use of EVs as powerful tools to diagnose non-indolent prostate cancer as early as possible and to accurately define, in a personalized approach, its present and potential aggressiveness, its response to treatment (androgen deprivation, chemotherapy, radiation, surgery), and the overall patients’ prognosis.
Collapse
Affiliation(s)
- Virginie Vlaeminck-Guillem
- Medical Unit of Molecular Oncology and Transfer, Department of Biochemistry and Molecular Biology, Centre Hospitalier Lyon-Sud, Hospices Civils of Lyon, Pierre-Bénite, France.,Cancer Research Centre of Lyon, U1052 INSERM, CNRS 5286, Claude Bernard University Lyon 1, Léon Bérard Centre, Lyon, France
| |
Collapse
|
37
|
Dhondt B, Van Deun J, Vermaerke S, de Marco A, Lumen N, De Wever O, Hendrix A. Urinary extracellular vesicle biomarkers in urological cancers: From discovery towards clinical implementation. Int J Biochem Cell Biol 2018; 99:236-256. [PMID: 29654900 DOI: 10.1016/j.biocel.2018.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 12/31/2022]
Abstract
Urine contains cellular elements, biochemicals, and proteins derived from glomerular filtration of plasma, renal tubule excretion, and urogenital tract secretions that reflect an individual's metabolic and pathophysiologic state. Despite intensive research into the discovery of urinary biomarkers to facilitate early diagnosis, accurate prognosis and prediction of therapy response in urological cancers, none of these markers has reached widespread use. Their implementation into daily clinical practice is hampered by a substantial degree of heterogeneity in performance characteristics and uncertainty about reliability, clinical utility and cost-effectiveness, in addition to several technical limitations. Extracellular vesicles (EV) have raised interest as a potential source of biomarker discovery because of their role in intercellular communication and the resemblance of their molecular content to that of the releasing cells. We review currently used urinary biomarkers in the clinic and attempts that have been made to identify EV-derived biomarkers for urological cancers. In addition, we discuss technical and methodological considerations towards their clinical implementation.
Collapse
Affiliation(s)
- Bert Dhondt
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Jan Van Deun
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Silke Vermaerke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipava, Slovenia
| | - Nicolaas Lumen
- Cancer Research Institute Ghent, Ghent, Belgium; Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
38
|
Frost DC, Li L. Recent advances in mass spectrometry-based glycoproteomics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 95:71-123. [PMID: 24985770 DOI: 10.1016/b978-0-12-800453-1.00003-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation plays fundamental roles in many biological processes as one of the most common, and the most complex, posttranslational modification. Alterations in glycosylation profile are now known to be associated with many diseases. As a result, the discovery and detailed characterization of glycoprotein disease biomarkers is a primary interest of biomedical research. Advances in mass spectrometry (MS)-based glycoproteomics and glycomics are increasingly enabling qualitative and quantitative approaches for site-specific structural analysis of protein glycosylation. While the complexity presented by glycan heterogeneity and the wide dynamic range of clinically relevant samples like plasma, serum, cerebrospinal fluid, and tissue make comprehensive analyses of the glycoproteome a challenging task, the ongoing efforts into the development of glycoprotein enrichment, enzymatic digestion, and separation strategies combined with novel quantitative MS methodologies have greatly improved analytical sensitivity, specificity, and throughput. This review summarizes current MS-based glycoproteomics approaches and highlights recent advances in its application to cancer biomarker and neurodegenerative disease research.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA; Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
39
|
Williams C, Royo F, Aizpurua-Olaizola O, Pazos R, Boons GJ, Reichardt NC, Falcon-Perez JM. Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. J Extracell Vesicles 2018. [PMID: 29535851 PMCID: PMC5844028 DOI: 10.1080/20013078.2018.1442985] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It is now acknowledged that extracellular vesicles (EVs) are important effectors in a vast number of biological processes through intercellular transfer of biomolecules. Increasing research efforts in the EV field have yielded an appreciation for the potential role of glycans in EV function. Indeed, recent reports show that the presence of glycoconjugates is involved in EV biogenesis, in cellular recognition and in the efficient uptake of EVs by recipient cells. It is clear that a full understanding of EV biology will require researchers to focus also on EV glycosylation through glycomics approaches. This review outlines the major glycomics techniques that have been applied to EVs in the context of the recent findings. Beyond understanding the mechanisms by which EVs mediate their physiological functions, glycosylation also provides opportunities by which to engineer EVs for therapeutic and diagnostic purposes. Studies characterising the glycan composition of EVs have highlighted glycome changes in various disease states, thus indicating potential for EV glycans as diagnostic markers. Meanwhile, glycans have been targeted as molecular handles for affinity-based isolation in both research and clinical contexts. An overview of current strategies to exploit EV glycosylation and a discussion of the implications of recent findings for the burgeoning EV industry follows the below review of glycomics and its application to EV biology.
Collapse
Affiliation(s)
- Charles Williams
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain.,Glycotechnology Laboratory, CIC BiomaGUNE, San Sebastian, Spain
| | - Felix Royo
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain
| | - Oier Aizpurua-Olaizola
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Raquel Pazos
- Glycotechnology Laboratory, CIC BiomaGUNE, San Sebastian, Spain
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - Juan M Falcon-Perez
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain.,CIBER-BBN, San Sebastian, Spain.,IKERBASQUE Basque Foundation for science, Bilbao, Spain
| |
Collapse
|
40
|
Sequeiros T, Rigau M, Chiva C, Montes M, Garcia-Grau I, Garcia M, Diaz S, Celma A, Bijnsdorp I, Campos A, Di Mauro P, Borrós S, Reventós J, Doll A, Paciucci R, Pegtel M, de Torres I, Sabidó E, Morote J, Olivan M. Targeted proteomics in urinary extracellular vesicles identifies biomarkers for diagnosis and prognosis of prostate cancer. Oncotarget 2018; 8:4960-4976. [PMID: 27903962 PMCID: PMC5354884 DOI: 10.18632/oncotarget.13634] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023] Open
Abstract
Rapid and reliable diagnosis of prostate cancer (PCa) is highly desirable as current used methods lack specificity. In addition, identification of PCa biomarkers that can classify patients into high- and low-risk groups for disease progression at early stage will improve treatment decision-making. Here, we describe a set of protein-combination panels in urinary extracellular vesicles (EVs), defined by targeted proteomics and immunoblotting techniques that improve early non-invasive detection and stratification of PCa patients.We report a two-protein combination in urinary EVs that classifies benign and PCa patients (ADSV-TGM4), and a combination of five proteins able to significantly distinguish between high- and low-grade PCa patients (CD63-GLPK5-SPHM-PSA-PAPP). Proteins composing the panels were validated by immunohistochemistry assays in tissue microarrays (TMAs) confirming a strong link between the urinary EVs proteome and alterations in PCa tissues. Moreover, ADSV and TGM4 abundance yielded a high diagnostic potential in tissue and promising TGM4 prognostic power. These results suggest that the proteins identified in urinary EVs distinguishing high- and low grade PCa are a reflection of histological changes that may be a consequence of their functional involvement in PCa development. In conclusion, our study resulted in the identification of protein-combination panels present in urinary EVs that exhibit high sensitivity and specificity for PCa detection and patient stratification. Moreover, our study highlights the potential of targeted proteomic approaches–such as selected reaction monitoring (SRM)–as diagnostic assay for liquid biopsies via urinary EVs to improve diagnosis and prognosis of suspected PCa patients.
Collapse
Affiliation(s)
- Tamara Sequeiros
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marina Rigau
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Cristina Chiva
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona, Spain.,Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Melania Montes
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Iolanda Garcia-Grau
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marta Garcia
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sherley Diaz
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ana Celma
- Department of Urology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Irene Bijnsdorp
- Department of Urology, VU University Medical Center, Amsterdam, The Netherlands
| | - Alex Campos
- Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Primiano Di Mauro
- Sagetis-Biotech; Grup d'Enginyeria de Materials (GEMAT) Institut Químic de Sarrià, Barcelona, Spain
| | - Salvador Borrós
- Sagetis-Biotech; Grup d'Enginyeria de Materials (GEMAT) Institut Químic de Sarrià, Barcelona, Spain
| | - Jaume Reventós
- Departement of Basic Science, International University of Catalonia, Barcelona, Spain.,IDIBELL-Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Andreas Doll
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Rosanna Paciucci
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Michiel Pegtel
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Inés de Torres
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona, Spain.,Proteomics Unit, Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan Morote
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Department of Urology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Mireia Olivan
- Group of Biomedical Research in Urology, Vall d'Hebron Research Institute (VHIR) and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
41
|
Drake RR, West CA, Mehta AS, Angel PM. MALDI Mass Spectrometry Imaging of N-Linked Glycans in Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:59-76. [PMID: 30484244 DOI: 10.1007/978-981-13-2158-0_4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used for two decades to profile the glycan constituents of biological samples. An adaptation of the method to tissues, MALDI mass spectrometry imaging (MALDI-MSI), allows high-throughput spatial profiling of hundreds to thousands of molecules within a single thin tissue section. The ability to profile N-glycans within tissues using MALDI-MSI is a recently developed method that allows identification and localization of 40 or more N-glycans. The key component is to apply a molecular coating of peptide-N-glycosidase to tissues, an enzyme that releases N-glycans from their protein carrier. In this chapter, the methods and approaches to robustly and reproducibly generate two-dimensional N-glycan tissue maps by MALDI-MSI workflows are summarized. Current strengths and limitations of the approach are discussed, as well as potential future applications of the method.
Collapse
Affiliation(s)
- Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
| | - Connor A West
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
42
|
Jian Q, Yang Z, Shu J, Liu X, Zhang J, Li Z. Lectin BS-I inhibits cell migration and invasion via AKT/GSK-3β/β-catenin pathway in hepatocellular carcinoma. J Cell Mol Med 2017; 22:315-329. [PMID: 28922551 PMCID: PMC5742741 DOI: 10.1111/jcmm.13320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/25/2017] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is most common malignant cancer worldwide; however, the mortality rate of HCC remains high due to the invasion and metastasis of HCC. Thus, exploring novel treatments to prevent the invasion of HCC is needed for improving clinical outcome of this fatal disease. In this study, we identified lectin from Bandeiraea simplicifolia seeds (BS‐I) binds to metastasis‐associated HCC cell surface glycans by a lectin microarray and inhibits HCC cell migration and invasion through downregulating the matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9) and urokinase‐type plasminogen activator (uPA) production. These effects of BS‐I were mediated by inhibiting the activation of AKT/GSK‐3β/β‐catenin pathway and depended on specificity of lectin BS‐I binding to GalNAc. GSK3β inhibitors rescued BS‐I‐mediated inhibition of migration and invasion of HCC cell. Further, we identified that lectin BS‐I interacts with sGrp78, affects membrane localization of sGrp78 and attenuates the binding of sGrp78 and p85 to inhibit the activation of AKT/GSK‐3β/β‐catenin pathway. Overexpression of Grp78 or P85 rescues BS‐I‐mediated inhibition of migration and invasion of HCC cell. These findings demonstrated for the first time that BS‐I can act as a novel potential drug to prevent the invasion of HCC.
Collapse
Affiliation(s)
- Qiang Jian
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, China
| | - Zhao Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, China
| | - Jing Zhang
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi Province, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, Shaanxi Province, China
| |
Collapse
|
43
|
Puhka M, Takatalo M, Nordberg ME, Valkonen S, Nandania J, Aatonen M, Yliperttula M, Laitinen S, Velagapudi V, Mirtti T, Kallioniemi O, Rannikko A, Siljander PRM, af Hällström TM. Metabolomic Profiling of Extracellular Vesicles and Alternative Normalization Methods Reveal Enriched Metabolites and Strategies to Study Prostate Cancer-Related Changes. Am J Cancer Res 2017; 7:3824-3841. [PMID: 29109780 PMCID: PMC5667407 DOI: 10.7150/thno.19890] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Body fluids are a rich source of extracellular vesicles (EVs), which carry cargo derived from the secreting cells. So far, biomarkers for pathological conditions have been mainly searched from their protein, (mi)RNA, DNA and lipid cargo. Here, we explored the small molecule metabolites from urinary and platelet EVs relative to their matched source samples. As a proof-of-concept study of intra-EV metabolites, we compared alternative normalization methods to profile urinary EVs from prostate cancer patients before and after prostatectomy and from healthy controls. Methods: We employed targeted ultra-performance liquid chromatography-tandem mass spectrometry to profile over 100 metabolites in the isolated EVs, original urine samples and platelets. We determined the enrichment of the metabolites in the EVs and analyzed their subcellular origin, pathways and relevant enzymes or transporters through data base searches. EV- and urine-derived factors and ratios between metabolites were tested for normalization of the metabolomics data. Results: Approximately 1 x 1010 EVs were sufficient for detection of metabolite profiles from EVs. The profiles of the urinary and platelet EVs overlapped with each other and with those of the source materials, but they also contained unique metabolites. The EVs enriched a selection of cytosolic metabolites including members from the nucleotide and spermidine pathways, which linked to a number of EV-resident enzymes or transporters. Analysis of the urinary EVs from the patients indicated that the levels of glucuronate, D-ribose 5-phosphate and isobutyryl-L-carnitine were 2-26-fold lower in all pre-prostatectomy samples compared to the healthy control and post-prostatectomy samples (p < 0.05). These changes were only detected from EVs by normalization to EV-derived factors or with metabolite ratios, and not from the original urine samples. Conclusions: Our results suggest that metabolite analysis of EVs from different samples is feasible using a high-throughput platform and relatively small amount of sample material. With the knowledge about the specific enrichment of metabolites and normalization methods, EV metabolomics could be used to gain novel biomarker data not revealed by the analysis of the original EV source materials.
Collapse
|
44
|
Abstract
Extracellular vesicles are a heterogeneous population of microparticles released by virtually all living cells which have been recently widely investigated in different biological fields. They are typically composed of two primary types (exosomes and microvesicles) and are recently commanding increasing attention as mediators of cellular signaling. Indeed, these vesicles can affect recipient cells by carrying and delivering complex cargos of biomolecules (including proteins, lipids and nucleic acids), protected from enzymatic degradation in the environment. Their importance has been demonstrated in the pathophysiology of several organs, in particular in kidney, where different cell types secrete extracellular vesicles that mediate their communication with downstream urinary tract cells. Over the past few years, evidence has been shown that vesicles participate in kidney development and normal physiology. Moreover, EVs are widely demonstrated to be implicated in cellular signaling during renal regenerative and pathological processes. Although many EV mechanisms are still poorly understood, in particular in kidney, the discovery of their role could help to shed light on renal biological processes which are so far elusive. Lastly, extracellular vesicles secreted by renal cells gather in urine, thus becoming a great resource for disease or recovery markers and a promising non-invasive diagnostic instrument for renal disease. In the present review, we discuss the most recent findings on the role of extracellular vesicles in renal physiopathology and their potential implication in diagnosis and therapy.
Collapse
Affiliation(s)
| | - Chiara Gai
- Stem Cell Laboratory, Department of Medical Sciences, University of TurinTurin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of TurinTurin, Italy
| | - Giovanni Camussi
- Stem Cell Laboratory, Department of Medical Sciences, University of TurinTurin, Italy
| |
Collapse
|
45
|
Barrabés S, Llop E, Ferrer-Batallé M, Ramírez M, Aleixandre RN, Perry AS, de Llorens R, Peracaula R. Analysis of urinary PSA glycosylation is not indicative of high-risk prostate cancer. Clin Chim Acta 2017; 470:97-102. [PMID: 28495148 DOI: 10.1016/j.cca.2017.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 11/27/2022]
Abstract
The levels of core fucosylation and α2,3-linked sialic acid in serum Prostate Specific Antigen (PSA), using the lectins Pholiota squarrosa lectin (PhoSL) and Sambucus nigra agglutinin (SNA), can discriminate between Benign Prostatic Hyperplasia (BPH) and indolent prostate cancer (PCa) from aggressive PCa. In the present work we evaluated whether these glycosylation determinants could also be altered in urinary PSA obtained after digital rectal examination (DRE) and could also be useful for diagnosis determinations. For this purpose, α2,6-sialic acid and α1,6-fucose levels of urinary PSA from 53 patients, 18 biopsy-negative and 35 PCa patients of different aggressiveness degree, were analyzed by sandwich ELLA (Enzyme Linked Lectin Assay) using PhoSL and SNA. Changes in the levels of specific glycosylation determinants, that in serum PSA samples were indicative of PCa aggressiveness, were not found in PSA from DRE urine samples. Although urine is a simpler matrix for analyzing PSA glycosylation compared to serum, an immunopurification step was necessary to specifically detect the glycans on the PSA molecule. Those specific glycosylation determinants on urinary PSA were however not useful to improve PCa diagnosis. This could be probably due to the low proportion of PSA from the tumor in urine samples, which precludes the identification of aberrantly glycosylated PSA.
Collapse
Affiliation(s)
- Sílvia Barrabés
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus de Montilivi, 17003 Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus de Montilivi, 17003 Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain
| | - Montserrat Ferrer-Batallé
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus de Montilivi, 17003 Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain
| | - Manel Ramírez
- Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain; Clinic Laboratory, Dr. J. Trueta University Hospital, 17007 Girona, Spain
| | - Rosa N Aleixandre
- Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain; Clinic Laboratory, Dr. J. Trueta University Hospital, 17007 Girona, Spain
| | - Antoinette S Perry
- Cancer Biology and Therapeutics Laboratory, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Rafael de Llorens
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus de Montilivi, 17003 Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus de Montilivi, 17003 Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. J. Trueta University Hospital, 17007 Girona, Spain.
| |
Collapse
|
46
|
Zou G, Benktander JD, Gizaw ST, Gaunitz S, Novotny MV. Comprehensive Analytical Approach toward Glycomic Characterization and Profiling in Urinary Exosomes. Anal Chem 2017; 89:5364-5372. [PMID: 28402650 DOI: 10.1021/acs.analchem.7b00062] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are extracellular nanosized vesicles with lipid bilayers encapsulating nucleic acids and proteins, both with and without glycosylation. While exosomal nucleic acids and proteins have previously been explored to identify cancer biomarkers with some promising results, little information has been available concerning their glycoconjugate content. Exosomes were isolated from normal urine samples through multistep differential centrifugation. The isolated exosomes have an average size of 146 nm and a spherical shape, as determined by dynamic light scattering and transmission electron microscopy, respectively. N-Glycans were enzymatically released from the isolated vesicles. After being reduced and permethylated, N-glycans were measured by MALDI mass spectrometry. Paucimannosidic, high-mannose, and complex type glycans were identified and their relative abundances were determined. Some detailed structures of these glycans were revealed through liquid chromatography/tandem mass spectrometry (LC/MS-MS). The reduced N-glycans, without being permethylated, were also separated and analyzed by LC/MS-MS, and their structures were further detailed through isomeric separation on porous graphitized carbon (PGC) packed in long capillaries. Using microfractionation before LC/MS-MS, minor multiantennary N-glycans were preconcentrated as based on hydrophobicity or charge. Preconcentration of the reduced and permethylated glycans on a C18 cartridge revealed numerous large glycans, whereas fractionation of the reduced N-glycans by ion-exchange cartridges facilitated detection of sulfated glycans. After removing N-glycans from the original sample aliquot, O-glycans were chemically released from urinary exosomes and profiled, revealing some unusual structures.
Collapse
Affiliation(s)
- Guozhang Zou
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - John D Benktander
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Solomon T Gizaw
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Stefan Gaunitz
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Milos V Novotny
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|
47
|
Vermassen T, D'Herde K, Jacobus D, Van Praet C, Poelaert F, Lumen N, Callewaert N, Decaestecker K, Villeirs G, Hoebeke P, Van Belle S, Rottey S, Delanghe J. Release of urinary extracellular vesicles in prostate cancer is associated with altered urinary N-glycosylation profile. J Clin Pathol 2017; 70:838-846. [PMID: 28360190 DOI: 10.1136/jclinpath-2016-204312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/03/2017] [Indexed: 01/02/2023]
Abstract
AIM Nowadays, extracellular vesicles are of great interest in prostate cancer (PCa) research. Asparagine (N)-linked glycosylation could play a significant role in the pathological mechanism of these vesicles. We investigated if prostatic protein N-glycosylation profiles were related to urinary vesicle-associated prostate-specific antigen (PSA) extractability and if this parameter showed diagnostic potential for PCa. METHODS Urinary extracellular vesicles were visualised using transmission electron microscopy. Urinary extracellular vesicles extraction by means of n-butanol allowed determination of urinary vesicle-associated PSA extractability. Diagnostic value was assessed between benign prostate hyperplasia (BPH; n=122) and patients with PCa (n=85). Additionally, correlation with urine N-glycosylation was assessed. RESULTS Urinary extracellular vesicles with a diameter of approximately 100 nm were more abundantly present in urine of patients with PCa versus patients with BPH resulting in a higher vesicle-associated PSA extraction ratio (p<0.001). Next, vesicle-associated PSA extraction ratio was correlated to biantennary core-fucosylation (p=0.003). Finally, vesicle-associated PSA extraction ratio proved beneficial in PCa diagnosis, next to serum PSA and the urinary glycosylation marker (p=0.021). CONCLUSIONS The urinary vesicle-associated PSA extraction ratio is increased in PCa which is a direct result of the abundant presence of extracellular vesicles in urine of patients with PCa. The urinary vesicle-associated PSA extraction ratio was associated with changes in N-glycoforms and showed diagnostic potential. Further research is warranted to unravel the pathological link between N-glycosylation and extracellular vesicles in cancer, as well as to assess the prognostic value of this biomarker.
Collapse
Affiliation(s)
- Tijl Vermassen
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Katharina D'Herde
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Dominique Jacobus
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | | | - Filip Poelaert
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Nicolaas Lumen
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Nico Callewaert
- Unit for Medical Biotechnology, Inflammation Research Center, VIB-Ghent University, Ghent, Belgium
| | | | - Geert Villeirs
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Piet Hoebeke
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Simon Van Belle
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Joris Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
48
|
Drake RR, Powers TW, Jones EE, Bruner E, Mehta AS, Angel PM. MALDI Mass Spectrometry Imaging of N-Linked Glycans in Cancer Tissues. Adv Cancer Res 2016; 134:85-116. [PMID: 28110657 DOI: 10.1016/bs.acr.2016.11.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycosylated proteins account for a majority of the posttranslation modifications of cell surface, secreted, and circulating proteins. Within the tumor microenvironment, the presence of immune cells, extracellular matrix proteins, cell surface receptors, and interactions between stroma and tumor cells are all processes mediated by glycan binding and recognition reactions. Changes in glycosylation during tumorigenesis are well documented to occur and affect all of these associated adhesion and regulatory functions. A MALDI imaging mass spectrometry (MALDI-IMS) workflow for profiling N-linked glycan distributions in fresh/frozen tissues and formalin-fixed paraffin-embedded tissues has recently been developed. The key to the approach is the application of a molecular coating of peptide-N-glycosidase to tissues, an enzyme that cleaves asparagine-linked glycans from their protein carrier. The released N-linked glycans can then be analyzed by MALDI-IMS directly on tissue. Generally 40 or more individual glycan structures are routinely detected, and when combined with histopathology localizations, tumor-specific glycans are readily grouped relative to nontumor regions and other structural features. This technique is a recent development and new approach in glycobiology and mass spectrometry imaging research methodology; thus, potential uses such as tumor-specific glycan biomarker panels and other applications are discussed.
Collapse
Affiliation(s)
- R R Drake
- Medical University of South Carolina, Charleston, SC, United States.
| | - T W Powers
- Medical University of South Carolina, Charleston, SC, United States
| | - E E Jones
- Medical University of South Carolina, Charleston, SC, United States
| | - E Bruner
- Medical University of South Carolina, Charleston, SC, United States
| | - A S Mehta
- Medical University of South Carolina, Charleston, SC, United States
| | - P M Angel
- Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
49
|
Damborský P, Zámorová M, Katrlík J. Determining the binding affinities of prostate-specific antigen to lectins: SPR and microarray approaches. Proteomics 2016; 16:3096-3104. [DOI: 10.1002/pmic.201500466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 10/26/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Pavel Damborský
- Department of Glycobiotechnology; Center for Glycomics; Institute of Chemistry; Slovak Academy of Sciences; Bratislava Slovakia
| | - Martina Zámorová
- Department of Glycobiotechnology; Center for Glycomics; Institute of Chemistry; Slovak Academy of Sciences; Bratislava Slovakia
| | - Jaroslav Katrlík
- Department of Glycobiotechnology; Center for Glycomics; Institute of Chemistry; Slovak Academy of Sciences; Bratislava Slovakia
| |
Collapse
|
50
|
Abstract
Despite considerable research efforts, the finding of reliable tumor biomarkers remains challenging and unresolved. In recent years a novel diagnostic biomedical tool with high potential has been identified in extracellular nanovesicles or exosomes. They are released by the majority of the cells and contain detailed molecular information on the cell of origin including tumor hallmarks. Exosomes can be isolated from easy accessible body fluids, and most importantly, they can at once provide with several biomarkers, with different levels of specificity. Recent clinical evidence shows that the levels of exosomes released into body fluids may by themselves represent a predictive/diagnostic of tumors, discriminating cancer patients from healthy subjects. The aim of this review is to highlight these latest challenging findings to provide novel and groundbreaking ideas for successful tumor early diagnosis and follow-up.
Collapse
|