1
|
Xi X, Yang Y, Chen Q, Ma J, Wang X, Deng Y, Wang X, Li Y. GnT-V-mediated aberrant N-glycosylation of TIMP-1 promotes diabetic retinopathy progression. Mol Biol Rep 2024; 51:428. [PMID: 38499842 PMCID: PMC10948582 DOI: 10.1007/s11033-024-09388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) signaling pathway plays an important role in the progression of diabetic retinopathy (DR). The glycosylation modification process of many key functional proteins in DR patients is abnormal. However, the potential involvement of abnormal N-glycoproteins in DR progression remains unclear. METHODS Glycoproteomic profiling of the vitreous humor was performed. The level of protein and N-glycoprotein was confirmed by Western blot and Lectin blot, respectively. The cell viability and migration efficiency were detected by CCK-8 and Transwell assay. Flow cytometry was conducted to analyze the level of cell apoptosis and reactive oxygen specie. Malondialdehyde, superoxide dismutase activity and VEGF content were detected by Enzyme linked immunosorbent assays. The interaction of metalloproteinase 1 (TIMP-1) with N-acetylglucosamine transferase V (GnT-V) was detected by GST pull-down. Hematoxylin and eosin staining and choroidal and retinal flat mount stained with fluorescein isothiocyanate-Dextran assay were used for functional research in vivo. RESULTS We found that N-glycosylation was up-regulated in DR rats and high glucose (HG)-induced human retinal pigment epithelium cell line ARPE-19. HG-induced inhibited the viability of ARPE-19 cells and promoted cell apoptosis and oxidative stress (OS), but these effects were reversed with kifunensine treatment, GnT-V knockdown and TIMP-1 mutation. Additionally, GnT-V binds to TIMP-1 to promote N-glycosylation of TIMP-1. Over-expression of GnT-V inhibited the viability of ARPE-19 cells and promoted cell apoptosis, OS and VEGF release, which these effects were reversed with TIMP-1 mutation. Interestingly, over-expression of GnT-V promoted retinal microvascular endothelial cells (RMECs) angiogenesis but was revered with TIMP-1 mutation, which was terminally boosted by VEGF-A treatment. Finally, knockdown of GnT-V relieved DR progression. CONCLUSION The findings indicate that GnT-V can promote RMECs angiogenesis and ARPE-19 cells injury through activation VEGF signaling pathway by increasing TIMP-1 N-glycosylation level, which provides a new theoretical basis for the prevention of DR.
Collapse
Affiliation(s)
- Xiaoting Xi
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China
| | - Yanni Yang
- Ophthalmology Department, The Second Hospital of Ningbo, Ningbo, 315010, Zhejiang, China
| | - Qianbo Chen
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China
| | - Jia Ma
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China
| | - Xuewei Wang
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China
| | - Yachun Deng
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China
| | - Xi Wang
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China
| | - Yan Li
- Ophthalmology Department, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
2
|
Cao X, Wu VWY, Han Y, Hong H, Wu Y, Kong APS, Lui KO, Tian XY. Role of Argininosuccinate Synthase 1 -Dependent L-Arginine Biosynthesis in the Protective Effect of Endothelial Sirtuin 3 Against Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307256. [PMID: 38233193 DOI: 10.1002/advs.202307256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Indexed: 01/19/2024]
Abstract
Atherosclerosis is initiated with endothelial cell (EC) dysfunction and vascular inflammation under hyperlipidemia. Sirtuin 3 (SIRT3) is a mitochondrial deacetylase. However, the specific role of endothelial SIRT3 during atherosclerosis remains poorly understood. The present study aims to study the role and mechanism of SIRT3 in EC function during atherosclerosis. Wild-type Sirt3f/f mice and endothelium-selective SIRT3 knockout Sirt3f/f; Cdh5Cre/+ (Sirt3EC-KO) mice are injected with adeno-associated virus (AAV) to overexpress PCSK9 and fed with high-cholesterol diet (HCD) for 12 weeks to induce atherosclerosis. Sirt3EC-KO mice exhibit increased atherosclerotic plaque formation, along with elevated macrophage infiltration, vascular inflammation, and reduced circulating L-arginine levels. In human ECs, SIRT3 inhibition resulted in heightened vascular inflammation, reduced nitric oxide (NO) production, increased reactive oxygen species (ROS), and diminished L-arginine levels. Silencing of SIRT3 results in hyperacetylation and deactivation of Argininosuccinate Synthase 1 (ASS1), a rate-limiting enzyme involved in L-arginine biosynthesis, and this effect is abolished in mutant ASS1. Furthermore, L-arginine supplementation attenuates enhanced plaque formation and vascular inflammation in Sirt3EC-KO mice. This study provides compelling evidence supporting the protective role of endothelial SIRT3 in atherosclerosis and also suggests a critical role of SIRT3-induced deacetylation of ASS1 by ECs for arginine synthesis.
Collapse
Affiliation(s)
- Xiaoyun Cao
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Vivian Wei Yan Wu
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Yumeng Han
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Huiling Hong
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Yalan Wu
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Alice Pik Shan Kong
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| |
Collapse
|
3
|
Choi HP, Yang JH, Azadzoi KM. Differential Post-Translational Modifications of Proteins in Bladder Ischemia. Biomedicines 2023; 12:81. [PMID: 38255188 PMCID: PMC10813800 DOI: 10.3390/biomedicines12010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Clinical and basic research suggests that bladder ischemia may be an independent variable in the development of lower urinary tract symptoms (LUTS). We have reported that ischemic changes in the bladder involve differential expression and post-translational modifications (PTMs) of the protein's functional domains. In the present study, we performed in-depth analysis of a previously reported proteomic dataset to further characterize proteins PTMs in bladder ischemia. Our proteomic analysis of proteins in bladder ischemia detected differential formation of non-coded amino acids (ncAAs) that might have resulted from PTMs. In-depth analysis revealed that three groups of proteins in the bladder proteome, including contractile proteins and their associated proteins, stress response proteins, and cell signaling-related proteins, are conspicuously impacted by ischemia. Differential PTMs of proteins by ischemia seemed to affect important signaling pathways in the bladder and provoke critical changes in the post-translational structural integrity of the stress response, contractile, and cell signaling-related proteins. Our data suggest that differential PTMs of proteins may play a role in the development of cellular stress, sensitization of smooth muscle cells to contractile stimuli, and deferential cell signaling in bladder ischemia. These observations may provide the foundation for future research to validate and define clinical translation of the modified biomarkers for precise diagnosis of bladder dysfunction and the development of new therapeutic targets against LUTS.
Collapse
Affiliation(s)
- Han-Pil Choi
- Proteomics Laboratory, VA Boston Healthcare System, Boston, MA 02130, USA;
| | - Jing-Hua Yang
- Proteomics Laboratory, Department of Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130, USA;
| | - Kazem M. Azadzoi
- Departments of Urology and Pathology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA 02130, USA
| |
Collapse
|
4
|
Rogers HT, Roberts DS, Larson EJ, Melby JA, Rossler KJ, Carr AV, Brown KA, Ge Y. Comprehensive Characterization of Endogenous Phospholamban Proteoforms Enabled by Photocleavable Surfactant and Top-down Proteomics. Anal Chem 2023; 95:13091-13100. [PMID: 37607050 PMCID: PMC10597709 DOI: 10.1021/acs.analchem.3c01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Top-down mass spectrometry (MS)-based proteomics has become a powerful tool for analyzing intact proteins and their associated post-translational modifications (PTMs). In particular, membrane proteins play critical roles in cellular functions and represent the largest class of drug targets. However, the top-down MS characterization of endogenous membrane proteins remains challenging, mainly due to their intrinsic hydrophobicity and low abundance. Phospholamban (PLN) is a regulatory membrane protein located in the sarcoplasmic reticulum and is essential for regulating cardiac muscle contraction. PLN has diverse combinatorial PTMs, and their dynamic regulation has significant influence on cardiac contractility and disease. Herein, we have developed a rapid and robust top-down proteomics method enabled by a photocleavable anionic surfactant, Azo, for the extraction and comprehensive characterization of endogenous PLN from cardiac tissue. We employed a two-pronged top-down MS approach using an online reversed-phase liquid chromatography tandem MS method on a quadrupole time-of-flight MS and a direct infusion method via an ultrahigh-resolution Fourier-transform ion cyclotron resonance MS. We have comprehensively characterized the sequence and combinatorial PTMs of endogenous human cardiac PLN. We have shown the site-specific localization of phosphorylation to Ser16 and Thr17 by MS/MS for the first time and the localization of S-palmitoylation to Cys36. Moreover, we applied our method to characterize PLN in disease and reported the significant reduction of PLN phosphorylation in human failing hearts with ischemic cardiomyopathy. Taken together, we have developed a streamlined top-down targeted proteomics method for comprehensive characterization of combinatorial PTMs in PLN toward better understanding the role of PLN in cardiac contractility.
Collapse
Affiliation(s)
- Holden T. Rogers
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eli J. Larson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kalina J. Rossler
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Austin V. Carr
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
5
|
Wang J, Zhu X, Wang S, Zhang Y, Hua W, Liu Z, Zheng Y, Lu X. Phosphoproteomic and proteomic profiling in post-infarction chronic heart failure. Front Pharmacol 2023; 14:1181622. [PMID: 37405054 PMCID: PMC10315476 DOI: 10.3389/fphar.2023.1181622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Background: Post-infarction chronic heart failure is the most common type of heart failure. Patients with chronic heart failure show elevated morbidity and mortality with limited evidence-based therapies. Phosphoproteomic and proteomic analysis can provide insights regarding molecular mechanisms underlying post-infarction chronic heart failure and explore new therapeutic approaches. Methods and results: Global quantitative phosphoproteomic and proteomic analysis of left ventricular tissues from post-infarction chronic heart failure rats were performed. A total of 33 differentially expressed phosphorylated proteins (DPPs) and 129 differentially expressed proteins were identified. Bioinformatic analysis indicated that DPPs were enriched mostly in nucleocytoplasmic transport and mRNA surveillance pathway. Bclaf1 Ser658 was identified after construction of Protein-Protein Interaction Network and intersection with Thanatos Apoptosis Database. Predicted Upstream Kinases of DPPs based on kinase-substrate enrichment analysis (KSEA) app showed 13 kinases enhanced in heart failure. Proteomic analysis showed marked changes in protein expression related to cardiac contractility and metabolism. Conclusion: The present study marked phosphoproteomics and proteomics changes in post-infarction chronic heart failure. Bclaf1 Ser658 might play a critical role in apoptosis in heart failure. PRKAA1, PRKACA, and PAK1 might serve as potential therapeutic targets for post-infarction chronic heart failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu Zheng
- *Correspondence: Yu Zheng, ; Xiao Lu,
| | - Xiao Lu
- *Correspondence: Yu Zheng, ; Xiao Lu,
| |
Collapse
|
6
|
Rogers HT, Roberts DS, Larson EJ, Melby JA, Rossler KJ, Carr AV, Brown KA, Ge Y. Comprehensive Characterization of Endogenous Phospholamban Proteoforms Enabled by Photocleavable Surfactant and Top-down Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536120. [PMID: 37090578 PMCID: PMC10120617 DOI: 10.1101/2023.04.12.536120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Top-down mass spectrometry (MS)-based proteomics has become a powerful tool for analyzing intact proteins and their associated post-translational modification (PTMs). In particular, membrane proteins play critical roles in cellular functions and represent the largest class of drug targets. However, the top-down MS characterization of endogenous membrane proteins remains challenging, mainly due to their intrinsic hydrophobicity and low abundance. Phospholamban (PLN) is a regulatory membrane protein located in the sarcoplasmic reticulum and is essential for regulating cardiac muscle contraction. PLN has diverse combinatorial PTMs and their dynamic regulation has significant influence on cardiac contractility and disease. Herein, we have developed a rapid and robust top-down proteomics method enabled by a photocleavable anionic surfactant, Azo, for the extraction and comprehensive characterization of endogenous PLN from cardiac tissue. We employed a two-pronged top-down MS approach using an online reversed-phase liquid chromatography tandem MS (LC-MS/MS) method on a quadrupole time-of-flight (Q-TOF) MS and a direct infusion method via an ultrahigh-resolution Fourier-transform ion cyclotron resonance (FTICR) MS. We have comprehensively characterized the sequence and combinatorial PTMs of endogenous human cardiac PLN. We have shown the site-specific localization of phosphorylation to Ser16 and Thr17 by MS/MS for the first time and the localization of S-palmitoylation to Cys36. Taken together, we have developed a streamlined top-down targeted proteomics method for comprehensive characterization of combinatorial PTMs in PLN toward better understanding the role of PLN in cardiac contractility.
Collapse
|
7
|
Wang Y, Yan S, Liu X, Deng F, Wang P, Yang L, Hu L, Huang K, He J. PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ 2022; 29:1982-1995. [PMID: 35383293 PMCID: PMC9525272 DOI: 10.1038/s41418-022-00990-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Doxorubicin (DOX), a commonly used antitumor agent, is often accompanied by its dosage-dependent cardiotoxicity, which incorporates ferroptosis in its pathogenesis. Protein arginine methyltransferase 4 (PRMT4) is a transcription regulator involved in the modulation of oxidative stress and autophagy, but its role in DOX-induced cardiomyopathy (DIC) and ferroptosis remains elusive. Herein, we aimed to investigate the involvement and the underlying mechanisms of PRMT4 in the pathogenesis of DIC. Our present study revealed that the expression level of PRMT4 was markedly decreased in DOX-treated cardiomyocytes. Interestingly, it is noted that PRMT4 overexpression accelerated ferroptosis to aggravate DIC, while its gene disruption or pharmaceutical inhibition exhibited the opposite effect. Mechanistically, our observation demonstrated that PRMT4 interacted with the nuclear factor erythroid 2-related factor 2 (Nrf2) to promote its enzymatic methylation, which restricted the nuclear translocation of Nrf2 and subsequently suppressed the transcription of glutathione peroxidase 4 (GPX4). Importantly, the detrimental role of PRMT4 in DOX-induced cardiomyocyte ferroptosis was abolished by Nrf2 activation or Fer-1 administration. Collectively, our data reveal that PRMT4 inhibits Nrf2/GPX4 signaling to accelerate ferroptosis in DIC, suggesting that targeting PRMT4 may present as a potential preventive strategy against the development of DIC.
Collapse
Affiliation(s)
- Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shu Yan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xuemei Liu
- Department of functional medicine, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Fei Deng
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Pengchao Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liuye Yang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lizhi Hu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiangui He
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Emenike B, Nwajiobi O, Raj M. Covalent Chemical Tools for Profiling Post-Translational Modifications. Front Chem 2022; 10:868773. [PMID: 35860626 PMCID: PMC9289218 DOI: 10.3389/fchem.2022.868773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
Nature increases the functional diversity of the proteome through posttranslational modifications (PTMs); a process that involves the proteolytic processing or catalytic attachment of diverse functional groups onto proteins. These modifications modulate a host of biological activities and responses. Consequently, anomalous PTMs often correlate to a host of diseases, hence there is a need to detect these transformations, both qualitatively and quantitatively. One technique that has gained traction is the use of robust chemical strategies to label different PTMs. By utilizing the intrinsic chemical reactivity of the different chemical groups on the target amino acid residues, this strategy can facilitate the delineation of the overarching and inclusionary roles of these different modifications. Herein, we will discuss the current state of the art in post-translational modification analysis, with a direct focus on covalent chemical methods used for detecting them.
Collapse
|
9
|
Yang Y, Wang H, Zhao H, Miao X, Guo Y, Zhuo L, Xu Y. A GSK3-SRF Axis Mediates Angiotensin II Induced Endothelin Transcription in Vascular Endothelial Cells. Front Cell Dev Biol 2021; 9:698254. [PMID: 34381779 PMCID: PMC8350349 DOI: 10.3389/fcell.2021.698254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelin, encoded by ET1, is a vasoactive substance primarily synthesized in vascular endothelial cells (VECs). Elevation of endothelin levels, due to transcriptional hyperactivation, has been observed in a host of cardiovascular diseases. We have previously shown that serum response factor (SRF) is a regulator of ET1 transcription in VECs. Here we report that angiotensin II (Ang II) induced ET1 transcription paralleled activation of glycogen synthase kinase 3 (GSK3) in cultured VECs. GSK3 knockdown or pharmaceutical inhibition attenuated Ang II induced endothelin expression. Of interest, the effect of GSK3 on endothelin transcription relied on the conserved SRF motif within the ET1 promoter. Further analysis revealed that GSK3 interacted with and phosphorylated SRF at serine 224. Phosphorylation of SRF by GSK3 did not influence its recruitment to the ET1 promoter. Instead, GSK3-mediated SRF phosphorylation potentiated its interaction with MRTF-A, a key co-factor for SRF, which helped recruit the chromatin remodeling protein BRG1 to the ET1 promoter resulting in augmented histone H3 acetylation/H3K4 trimethylation. Consistently, over-expression of a constitutively active GSK enhanced Ang II-induced ET1 transcription and knockdown of either MRTF-A or BRG1 abrogated the enhancement of ET1 transcription. In conclusion, our data highlight a previously unrecognized mechanism that contributes to the transcriptional regulation of endothelin. Targeting this GSK3-SRF axis may yield novel approaches in the intervention of cardiovascular diseases.
Collapse
Affiliation(s)
- Yuyu Yang
- Jiangsu Key Laboratory for Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Huidi Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hongwei Zhao
- Jiangsu Key Laboratory for Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yan Guo
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Lili Zhuo
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Yang JH, Niu W, Li Y, Azadzoi KM. Impairment of AMPK-α2 augments detrusor contractions in bladder ischemia. Investig Clin Urol 2021; 62:600-609. [PMID: 34387036 PMCID: PMC8421994 DOI: 10.4111/icu.20210095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Ischemia disrupts cellular energy homeostasis. Adenosine monophosphate-activated protein kinase alpha-2 (AMPK-α2) is a subunit of AMPK that senses cellular energy deprivation and signals metabolic stress. Our goal was to examine the expression levels and functional role of AMPK-α2 in bladder ischemia. MATERIALS AND METHODS Iliac artery atherosclerosis and bladder ischemia were engendered in apolipoprotein E knockout rats by partial arterial endothelial denudation using a balloon catheter. After eight weeks, total and phosphorylated AMPK-α2 expression was analyzed by western blotting. Structural integrity of AMPK-α2 protein was assessed by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). Functional role of AMPK-α2 was examined by treating animals with the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D ribofuranoside (AICAR). Tissue contractility was measured in the organ bath and bladder nerve density was examined by immunostaining. RESULTS Total AMPK-α2 expression increased in bladder ischemia, while phosphorylated AMPK-α2 was significantly downregulated. LC-MS/MS suggested post-translational modification of AMPK-α2 functional domains including phosphorylation sites, suggesting accumulation of catalytically inactive AMPK-α2 in bladder ischemia. Treatment of rats with AICAR diminished the force of overactive detrusor contractions and increased bladder capacity but did not have a significant effect on the frequency of bladder contractions. AICAR diminished contractile reactivity of ischemic tissues in the organ bath and prevented loss of nerve fibers in bladder ischemia. CONCLUSIONS Ischemia induces post-translational modification of AMPK-α2 protein. Impairment of AMPK-α2 may contribute to overactive detrusor contractions and loss of nerve fibers in bladder ischemia. AMPK activators may have therapeutic potential against detrusor overactivity and neurodegeneration in bladder conditions involving ischemia.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Department of Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Wanting Niu
- Research Section, VA Boston Healthcare System, Boston, MA, USA
| | - Yedan Li
- Research Section, VA Boston Healthcare System, Boston, MA, USA
| | - Kazem M Azadzoi
- Department of Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology,VA Boston Healthcare System, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
11
|
Detection of single peptide with only one amino acid modification via electronic fingerprinting using reengineered durable channel of Phi29 DNA packaging motor. Biomaterials 2021; 276:121022. [PMID: 34298441 DOI: 10.1016/j.biomaterials.2021.121022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022]
Abstract
Protein post-translational modification (PTM) is crucial to modulate protein interactions and activity in various biological processes. Emerging evidence has revealed PTM patterns participate in the pathology onset and progression of various diseases. Current PTM identification relies mainly on mass spectrometry-based approaches that limit the assessment to the entire protein population in question. Here we report a label-free method for the detection of the single peptide with only one amino acid modification via electronic fingerprinting using reengineered durable channel of phi29 DNA packaging motor, which bears the deletion of 25-amino acids (AA) at the C-terminus or 17-AA at the internal loop of the channel. The mutant channels were used to detect propionylation modification via single-molecule fingerprinting in either the traditional patch-clamp or the portable MinION™ platform of Oxford Nanopore Technologies. Up to 2000 channels are available in the MinION™ Flow Cells. The current signatures and dwell time of individual channels were identified. Peptides with only one propionylation were differentiated. Excitingly, identification of single or multiple modifications on the MinION™ system was achieved. The successful application of PTM differentiation on the MinION™ system represents a significant advance towards developing a label-free and high-throughput detection platform utilizing nanopores for clinical diagnosis based on PTM.
Collapse
|
12
|
Gähwiler EKN, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Front Cell Dev Biol 2021; 9:639699. [PMID: 34262897 PMCID: PMC8273765 DOI: 10.3389/fcell.2021.639699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) originate from the reprogramming of adult somatic cells using four Yamanaka transcription factors. Since their discovery, the stem cell (SC) field achieved significant milestones and opened several gateways in the area of disease modeling, drug discovery, and regenerative medicine. In parallel, the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) revolutionized the field of genome engineering, allowing the generation of genetically modified cell lines and achieving a precise genome recombination or random insertions/deletions, usefully translated for wider applications. Cardiovascular diseases represent a constantly increasing societal concern, with limited understanding of the underlying cellular and molecular mechanisms. The ability of iPSCs to differentiate into multiple cell types combined with CRISPR-Cas9 technology could enable the systematic investigation of pathophysiological mechanisms or drug screening for potential therapeutics. Furthermore, these technologies can provide a cellular platform for cardiovascular tissue engineering (TE) approaches by modulating the expression or inhibition of targeted proteins, thereby creating the possibility to engineer new cell lines and/or fine-tune biomimetic scaffolds. This review will focus on the application of iPSCs, CRISPR-Cas9, and a combination thereof to the field of cardiovascular TE. In particular, the clinical translatability of such technologies will be discussed ranging from disease modeling to drug screening and TE applications.
Collapse
Affiliation(s)
- Eric K. N. Gähwiler
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Marcy Martin
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, United States
| | - Bramasta Nugraha
- Molecular Parasitology Lab, Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
13
|
Yang JH, Choi HP, Yang A, Azad R, Chen F, Liu Z, Azadzoi KM. Post-Translational Modification Networks of Contractile and Cellular Stress Response Proteins in Bladder Ischemia. Cells 2021; 10:cells10051031. [PMID: 33925542 PMCID: PMC8145895 DOI: 10.3390/cells10051031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Molecular mechanisms underlying bladder dysfunction in ischemia, particularly at the protein and protein modification levels and downstream pathways, remain largely unknown. Here we describe a comparison of protein sequence variations in the ischemic and normal bladder tissues by measuring the mass differences of the coding amino acids and actual residues crossing the proteome. A large number of nonzero delta masses (11,056) were detected, spanning over 1295 protein residues. Clustering analysis identified 12 delta mass clusters that were significantly dysregulated, involving 30 upregulated (R2 > 0.5, ratio > 2, p < 0.05) and 33 downregulated (R2 > 0.5, ratio < −2, p < 0.05) proteins in bladder ischemia. These protein residues had different mass weights from those of the standard coding amino acids, suggesting the formation of non-coded amino acid (ncAA) residues in bladder ischemia. Pathway, gene ontology, and protein–protein interaction network analyses of these ischemia-associated delta-mass containing proteins indicated that ischemia provoked several amino acid variations, potentially post-translational modifications, in the contractile proteins and stress response molecules in the bladder. Accumulation of ncAAs may be a novel biomarker of smooth muscle dysfunction, with diagnostic potential for bladder dysfunction. Our data suggest that systematic assessment of global protein modifications may be crucial to the characterization of ischemic conditions in general and the pathomechanism of bladder dysfunction in ischemia.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Department of Surgery, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA 02130, USA;
- Proteomics Laboratory, VA Boston Healthcare System, Boston, MA 02130, USA;
- Correspondence: (J.-H.Y.); (K.M.A.); Tel.: +1-857-364-5602 (K.M.A.)
| | - Han-Pil Choi
- Proteomics Laboratory, VA Boston Healthcare System, Boston, MA 02130, USA;
| | - Annie Yang
- Department of Surgery, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA 02130, USA;
| | - Roya Azad
- Departments of Urology and Pathology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA 02130, USA; (R.A.); (F.C.); (Z.L.)
| | - Fengmei Chen
- Departments of Urology and Pathology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA 02130, USA; (R.A.); (F.C.); (Z.L.)
| | - Zhangsuo Liu
- Departments of Urology and Pathology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA 02130, USA; (R.A.); (F.C.); (Z.L.)
| | - Kazem M. Azadzoi
- Departments of Urology and Pathology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA 02130, USA; (R.A.); (F.C.); (Z.L.)
- Correspondence: (J.-H.Y.); (K.M.A.); Tel.: +1-857-364-5602 (K.M.A.)
| |
Collapse
|
14
|
Microelectrode Arrays: A Valuable Tool to Analyze Stem Cell-Derived Cardiomyocytes. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Gao J, Shao K, Chen X, Li Z, Liu Z, Yu Z, Aung LHH, Wang Y, Li P. The involvement of post-translational modifications in cardiovascular pathologies: Focus on SUMOylation, neddylation, succinylation, and prenylation. J Mol Cell Cardiol 2020; 138:49-58. [DOI: 10.1016/j.yjmcc.2019.11.146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
|
16
|
Tang S, Yang Y. Post-translational modifications: Novel mechanism to clarify the cardioprotective effects of remote ischemic conditioning. Int J Cardiol 2019; 288:27. [PMID: 31101229 DOI: 10.1016/j.ijcard.2019.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Shaoqun Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yunzhao Yang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
17
|
Abstract
It is now possible to collect large sums of health-related data which has the potential to transform healthcare. Proteomics, with its central position as downstream of genetics and epigenetic inputs and upstream of biochemical outputs and integrators of environmental signals, is well-positioned to contribute to health discoveries and management. We present our perspective on the role of proteomics and other Omics in precision health and medicine.
Collapse
Affiliation(s)
- Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
18
|
Effect of Sodium Thiosulfate Postconditioning on Ischemia-Reperfusion Injury Induced Mitochondrial Dysfunction in Rat Heart. J Cardiovasc Transl Res 2018; 11:246-258. [PMID: 29721767 DOI: 10.1007/s12265-018-9808-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022]
Abstract
The recent research on the therapeutic applications of sodium thiosulfate (STS) has gained importance in the treatment of cardiovascular diseases. Progressively through the present work, we have demonstrated that postconditioning of isolated rat heart subjected to ischemia-reperfusion injury using STS had preserved the mitochondrial structure, function, and number. Heart comprising of two mitochondrial subpopulations interfibrillar (IFM-involved in contractile function) and subsarcolemmal (SSM-involved in metabolic function), STS postconditioning imparted a state of hypometabolism to SSM, thereby reducing the metabolic demand of the reperfused heart. The IFM, on the other hand, provided the energy required to maintain contraction. Moreover, the hypometabolic state induced in SSM can lower the free radical release in addition to STS innate ability to act as an antioxidant and radical scavenger, all of which collectively provided cardioprotection. Therefore, drugs targeting IFM specifically or those reducing the energy demand for SSM can be suitable targets for myocardial ischemia-reperfusion injury.
Collapse
|
19
|
Herr DJ, Baarine M, Aune SE, Li X, Ball LE, Lemasters JJ, Beeson CC, Chou JC, Menick DR. HDAC1 localizes to the mitochondria of cardiac myocytes and contributes to early cardiac reperfusion injury. J Mol Cell Cardiol 2017; 114:309-319. [PMID: 29224834 DOI: 10.1016/j.yjmcc.2017.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 01/15/2023]
Abstract
RATIONALE Recent evidence indicates that histone deacetylase enzymes (HDACs) contribute to ischemia reperfusion (I/R) injury, and pan-HDAC inhibitors have been shown to be cardioprotective when administered either before an ischemic insult or during reperfusion. We have shown previously that selective inhibition of class I HDACs provides superior cardioprotection when compared to pan-HDAC inhibition in a pretreatment model, but selective class I HDAC inhibition has not been tested during reperfusion, and specific targets of class I HDACs in I/R injury have not been identified. OBJECTIVE We hypothesized that selective inhibition of class I HDACs with the drug MS-275 (entinostat) during reperfusion would improve recovery from I/R injury in the first hour of reperfusion. METHODS AND RESULTS Hearts from male Sprague-Dawley rats were subjected to ex vivo I/R injury±MS-275 class I HDAC inhibition during reperfusion alone. MS-275 significantly attenuated I/R injury, as indicated by improved LV function and tissue viability at the end of reperfusion. Unexpectedly, we observed that HDAC1 is present in the mitochondria of cardiac myocytes, but not fibroblasts or endothelial cells. We then designed mitochondria-restricted and mitochondria-excluded HDAC inhibitors, and tested both in our ex vivo I/R model. The selective inhibition of mitochondrial HDAC1 attenuated I/R injury to the same extent as MS-275, whereas the mitochondrial-excluded inhibitor did not. Further assays demonstrated that these effects are attributable to a decrease in SDHA activity and subsequent metabolic ROS production in reperfusion. CONCLUSIONS We demonstrate for the first time that HDAC1 is present within the mitochondria of cardiac myocytes, and mitochondrial HDAC1 contributes significantly to I/R injury within the first hour of reperfusion.
Collapse
Affiliation(s)
- Daniel J Herr
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Mauhamad Baarine
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Sverre E Aune
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Xiaoyang Li
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - John J Lemasters
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States; Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - James C Chou
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Donald R Menick
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29425, United States.
| |
Collapse
|
20
|
Al Hariri M, Elmedawar M, Zhu R, Jaffa MA, Zhao J, Mirzaei P, Ahmed A, Kobeissy F, Ziyadeh FN, Mechref Y, Jaffa AA. Proteome profiling in the aorta and kidney of type 1 diabetic rats. PLoS One 2017; 12:e0187752. [PMID: 29121074 PMCID: PMC5679573 DOI: 10.1371/journal.pone.0187752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/25/2017] [Indexed: 01/04/2023] Open
Abstract
Diabetes is associated with a number of metabolic and cardiovascular risk factors that contribute to a high rate of microvascular and macrovascular complications. The risk factors and mechanisms that contribute to the development of micro- and macrovascular disease in diabetes are not fully explained. In this study, we employed mass spectrometric analysis using tandem LC-MS/MS to generate a proteomic profile of protein abundance and post-translational modifications (PTM) in the aorta and kidney of diabetic rats. In addition, systems biology analyses were employed to identify key protein markers that can provide insights into molecular pathways and processes that are differentially regulated in the aorta and kidney of type 1 diabetic rats. Our results indicated that 188 (111 downregulated and 77 upregulated) proteins were significantly identified in the aorta of diabetic rats compared to normal controls. A total of 223 (109 downregulated and 114 upregulated) proteins were significantly identified in the kidney of diabetic rats compared to normal controls. When the protein profiles from the kidney and aorta of diabetic and control rats were analyzed by principal component analysis, a distinct separation of the groups was observed. In addition, diabetes resulted in a significant increase in PTM (oxidation, phosphorylation, and acetylation) of proteins in the kidney and aorta and this effect was partially reversed by insulin treatment. Ingenuity pathway analysis performed on the list of differentially expressed proteins depicted mitochondrial dysfunction, oxidative phosphorylation and acute phase response signaling to be among the altered canonical pathways by diabetes in both tissues. The findings of the present study provide a global proteomics view of markers that highlight the mechanisms and putative processes that modulate renal and vascular injury in diabetes.
Collapse
Affiliation(s)
- Moustafa Al Hariri
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohamad Elmedawar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rui Zhu
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Lubbock, Texas, United States of America
| | - Miran A. Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Lubbock, Texas, United States of America
| | - Parvin Mirzaei
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Lubbock, Texas, United States of America
| | - Adnan Ahmed
- Center for Biotechnology & Genomics, Texas Tech University, Canton & Main, Experimental Sciences building, Lubbock, Texas, United States of America
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fuad N. Ziyadeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Lubbock, Texas, United States of America
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
21
|
Azimzadeh O, Tapio S. Proteomics landscape of radiation-induced cardiovascular disease: somewhere over the paradigm. Expert Rev Proteomics 2017; 14:987-996. [PMID: 28976223 DOI: 10.1080/14789450.2017.1388743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Epidemiological studies clearly show that thoracic or whole body exposure to ionizing radiation increases the risk of cardiac morbidity and mortality. Radiation-induced cardiovascular disease (CVD) has been intensively studied during the last ten years but the underlying molecular mechanisms are still poorly understood. Areas covered: Heart proteomics is a powerful tool holding promise for the future research. The central focus of this review is to compare proteomics data on radiation-induced CVD with data arising from proteomics of healthy and diseased cardiac tissue in general. In this context we highlight common and unique features of radiation-related and other heart pathologies. Future prospects and challenges of the field are discussed. Expert commentary: Data from comprehensive cardiac proteomics have deepened the knowledge of molecular mechanisms involved in radiation-induced cardiac dysfunction. State-of-the-art proteomics has the potential to identify novel diagnostic and therapeutic markers of this disease.
Collapse
Affiliation(s)
- Omid Azimzadeh
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| | - Soile Tapio
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| |
Collapse
|
22
|
Ledee D, Kang MA, Kajimoto M, Purvine S, Brewer H, Pasa-Tolic L, Portman MA. Quantitative cardiac phosphoproteomics profiling during ischemia-reperfusion in an immature swine model. Am J Physiol Heart Circ Physiol 2017; 313:H125-H137. [PMID: 28455290 PMCID: PMC5538860 DOI: 10.1152/ajpheart.00842.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 01/26/2023]
Abstract
Ischemia-reperfusion (I/R) results in altered metabolic and molecular responses, and phosphorylation is one of the most noted regulatory mechanisms mediating signaling mechanisms during physiological stresses. To expand our knowledge of the potential phosphoproteomic changes in the myocardium during I/R, we used Isobaric Tags for Relative and Absolute Quantitation-based analyses in left ventricular samples obtained from porcine hearts under control or I/R conditions. The data are available via ProteomeXchange with identifier PXD006066. We identified 1,896 phosphopeptides within left ventricular control and I/R porcine samples. Significant differential phosphorylation between control and I/R groups was discovered in 111 phosphopeptides from 86 proteins. Analysis of the phosphopeptides using Motif-x identified five motifs: (..R..S..), (..SP..), (..S.S..), (..S…S..), and (..S.T..). Semiquantitative immunoblots confirmed site location and directional changes in phosphorylation for phospholamban and pyruvate dehydrogenase E1, two proteins known to be altered by I/R and identified by this study. Novel phosphorylation sites associated with I/R were also identified. Functional characterization of the phosphopeptides identified by our methodology could expand our understanding of the signaling mechanisms involved during I/R damage in the heart as well as identify new areas to target therapeutic strategies.NEW & NOTEWORTHY We used Isobaric Tags for Relative and Absolute Quantitation technology to investigate the phosphoproteomic changes that occur in cardiac tissue under ischemia-reperfusion conditions. The results of this study provide an extensive catalog of phosphoproteins, both predicted and novel, associated with ischemia-reperfusion, thereby identifying new pathways for investigation.
Collapse
Affiliation(s)
- Dolena Ledee
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
- Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Min A Kang
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
| | - Masaki Kajimoto
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington
| | - Samuel Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington; and
| | - Heather Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington; and
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington; and
| | - Michael A Portman
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, Washington;
- Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
23
|
Da Silva-Ferrada E, Ribeiro-Rodrigues TM, Rodríguez MS, Girão H. Proteostasis and SUMO in the heart. Int J Biochem Cell Biol 2016; 79:443-450. [PMID: 27662810 DOI: 10.1016/j.biocel.2016.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/31/2022]
Abstract
Heart proteostasis relies on a complex and integrated network of molecular processes surveilling organ performance under physiological and pathological conditions. For this purpose, cardiac cells depend on the correct function of their proteolytic systems, such as the ubiquitin-proteasome system (UPS), autophagy and the calpain system. Recently, the role of protein SUMOylation (an ubiquitin-like modification), has emerged as important modulator of cardiac proteostasis, which will be the focus of this review.
Collapse
Affiliation(s)
- Elisa Da Silva-Ferrada
- Institute for Biomedical Imaging and Life Sciences (IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Institute for Biomedical Imaging and Life Sciences (IBILI) (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| | - Teresa M Ribeiro-Rodrigues
- Institute for Biomedical Imaging and Life Sciences (IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Institute for Biomedical Imaging and Life Sciences (IBILI) (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| | - Manuel S Rodríguez
- Institut des Technologies Avancées en Sciences du Vivant (ITAV), Université de Toulouse, CNRS, UPS, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, France
| | - Henrique Girão
- Institute for Biomedical Imaging and Life Sciences (IBILI) Research Consortium, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Institute for Biomedical Imaging and Life Sciences (IBILI) (CNC.IBILI), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
24
|
Chen IY, Matsa E, Wu JC. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat Rev Cardiol 2016; 13:333-49. [PMID: 27009425 DOI: 10.1038/nrcardio.2016.36] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of human induced pluripotent stem cell (hiPSC) technology has revitalized the efforts in the past decade to realize more fully the potential of human embryonic stem cells for scientific research. Adding to the possibility of generating an unlimited amount of any cell type of interest, hiPSC technology now enables the derivation of cells with patient-specific phenotypes. Given the introduction and implementation of the large-scale Precision Medicine Initiative, hiPSC technology will undoubtedly have a vital role in the advancement of cardiovascular research and medicine. In this Review, we summarize the progress that has been made in the field of hiPSC technology, with particular emphasis on cardiovascular disease modelling and drug development. The growing roles of hiPSC technology in the practice of precision medicine will also be discussed.
Collapse
Affiliation(s)
- Ian Y Chen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Elena Matsa
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph C Wu
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
25
|
Josić D, Andjelković U. The Role of Proteomics in Personalized Medicine. Per Med 2016. [DOI: 10.1007/978-3-319-39349-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Lindoso RS, Sandim V, Collino F, Carvalho AB, Dias J, da Costa MR, Zingali RB, Vieyra A. Proteomics of cell-cell interactions in health and disease. Proteomics 2015; 16:328-44. [PMID: 26552723 DOI: 10.1002/pmic.201500341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/29/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022]
Abstract
The mechanisms of cell-cell communications are now under intense study by proteomic approaches. Proteomics has unraveled changes in protein profiling as the result of cell interactions mediated by ligand/receptor, hormones, soluble factors, and the content of extracellular vesicles. Besides being a brief overview of the main and profitable methodologies now available (evaluating theory behind the methods, their usefulness, and pitfalls), this review focuses on-from a proteome perspective-some signaling pathways and post-translational modifications (PTMs), which are essential for understanding ischemic lesions and their recovery in two vital organs in mammals, the heart, and the kidney. Knowledge of misdirection of the proteome during tissue recovery, such as represented by the convergence between fibrosis and cancer, emerges as an important tool in prognosis. Proteomics of cell-cell interaction is also especially useful for understanding how stem cells interact in injured tissues, anticipating clues for rational therapeutic interventions. In the effervescent field of induced pluripotency and cell reprogramming, proteomic studies have shown what proteins from specialized cells contribute to the recovery of infarcted tissues. Overall, we conclude that proteomics is at the forefront in helping us to understand the mechanisms that underpin prevalent pathological processes.
Collapse
Affiliation(s)
- Rafael S Lindoso
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil
| | - Vanessa Sandim
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil.,Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Federica Collino
- Department of Medical Sciences and Molecular Biotechnology Center, University of Turin, Turin, Italy.,Translational Center of Regenerative Medicine, University of Turin/Fresenius Medical Care, Turin, Italy
| | - Adriana B Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil
| | - Juliana Dias
- National Institute of Cancer, Rio de Janeiro, RJ, Brazil
| | - Milene R da Costa
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Russolina B Zingali
- National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil.,Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Proteomic Network of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, RJ, Brazil.,Translational Biomedicine Graduate Program, Grand Rio University, Duque de Caxias, RJ, Brazil
| |
Collapse
|
27
|
Wende AR. Post-translational modifications of the cardiac proteome in diabetes and heart failure. Proteomics Clin Appl 2015; 10:25-38. [PMID: 26140508 PMCID: PMC4698356 DOI: 10.1002/prca.201500052] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/03/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
Abstract
Cardiovascular complications are the leading cause of death in diabetic patients. Decades of research has focused on altered gene expression, altered cellular signaling, and altered metabolism. This work has led to better understanding of disease progression and treatments aimed at reversing or stopping this deadly process. However, one of the pieces needed to complete the puzzle and bridge the gap between altered gene expression and changes in signaling/metabolism is the proteome and its host of modifications. Defining the mechanisms of regulation includes examining protein levels, localization, and activity of the functional component of cellular machinery. Excess or misutilization of nutrients in obesity and diabetes may lead to PTMs contributing to cardiovascular disease progression. PTMs link regulation of metabolic changes in the healthy and diseased heart with regulation of gene expression itself (e.g. epigenetics), protein enzymatic activity (e.g. mitochondrial oxidative capacity), and function (e.g. contractile machinery). Although a number of PTMs are involved in each of these pathways, we will highlight the role of the serine and threonine O‐linked addition of β‐N‐acetyl‐glucosamine or O‐GlcNAcylation. This nexus of nutrient supply, utilization, and storage allows for the modification and translation of mitochondrial function to many other aspects of the cell.
Collapse
Affiliation(s)
- Adam R Wende
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
28
|
Lindsey ML, Mayr M, Gomes AV, Delles C, Arrell DK, Murphy AM, Lange RA, Costello CE, Jin YF, Laskowitz DT, Sam F, Terzic A, Van Eyk J, Srinivas PR. Transformative Impact of Proteomics on Cardiovascular Health and Disease: A Scientific Statement From the American Heart Association. Circulation 2015. [PMID: 26195497 DOI: 10.1161/cir.0000000000000226] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The year 2014 marked the 20th anniversary of the coining of the term proteomics. The purpose of this scientific statement is to summarize advances over this period that have catalyzed our capacity to address the experimental, translational, and clinical implications of proteomics as applied to cardiovascular health and disease and to evaluate the current status of the field. Key successes that have energized the field are delineated; opportunities for proteomics to drive basic science research, facilitate clinical translation, and establish diagnostic and therapeutic healthcare algorithms are discussed; and challenges that remain to be solved before proteomic technologies can be readily translated from scientific discoveries to meaningful advances in cardiovascular care are addressed. Proteomics is the result of disruptive technologies, namely, mass spectrometry and database searching, which drove protein analysis from 1 protein at a time to protein mixture analyses that enable large-scale analysis of proteins and facilitate paradigm shifts in biological concepts that address important clinical questions. Over the past 20 years, the field of proteomics has matured, yet it is still developing rapidly. The scope of this statement will extend beyond the reaches of a typical review article and offer guidance on the use of next-generation proteomics for future scientific discovery in the basic research laboratory and clinical settings.
Collapse
|
29
|
Pagel O, Loroch S, Sickmann A, Zahedi RP. Current strategies and findings in clinically relevant post-translational modification-specific proteomics. Expert Rev Proteomics 2015; 12:235-53. [PMID: 25955281 PMCID: PMC4487610 DOI: 10.1586/14789450.2015.1042867] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry-based proteomics has considerably extended our knowledge about the occurrence and dynamics of protein post-translational modifications (PTMs). So far, quantitative proteomics has been mainly used to study PTM regulation in cell culture models, providing new insights into the role of aberrant PTM patterns in human disease. However, continuous technological and methodical developments have paved the way for an increasing number of PTM-specific proteomic studies using clinical samples, often limited in sample amount. Thus, quantitative proteomics holds a great potential to discover, validate and accurately quantify biomarkers in body fluids and primary tissues. A major effort will be to improve the complete integration of robust but sensitive proteomics technology to clinical environments. Here, we discuss PTMs that are relevant for clinical research, with a focus on phosphorylation, glycosylation and proteolytic cleavage; furthermore, we give an overview on the current developments and novel findings in mass spectrometry-based PTM research.
Collapse
Affiliation(s)
- Oliver Pagel
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| | | | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| |
Collapse
|