1
|
Livzan MA, Gaus OV, Popello DV. Eating habits and stomach cancer risk. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2023:89-97. [DOI: 10.31146/1682-8658-ecg-211-3-89-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Stomach cancer (GC) ranks fifth in the structure of cancer incidence and remains the third leading cause of cancer mortality worldwide. The formation of gastric cancer occurs under the influence of genetic and epigenetic factors. Among the latter, eating habits play a significant role. Primary prevention of cancer through lifestyle and dietary changes is an important and high priority strategy in modern health care. This article presents an overview and systematization of the available data on the influence of nutritional factors on the risk of gastric cancer formation.
Collapse
Affiliation(s)
| | | | - D. V. Popello
- Central State Medical Academy of the Administration of President of the Russian Federation
| |
Collapse
|
2
|
Eagleson KL, Levitt P. Alterations in the Proteome of Developing Neocortical Synaptosomes in the Absence of MET Signaling Revealed by Comparative Proteomics. Dev Neurosci 2023; 45:126-138. [PMID: 36882009 PMCID: PMC10239366 DOI: 10.1159/000529981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Alterations in the expression of genes encoding proteins involved in synapse formation, maturation, and function are a hallmark of many neurodevelopmental and psychiatric disorders. For example, there is reduced neocortical expression of the MET receptor tyrosine kinase (MET) transcript and protein in Autism Spectrum Disorder (ASD) and Rett syndrome. Preclinical in vivo and in vitro models manipulating MET signaling reveal that the receptor modulates excitatory synapse development and maturation in select forebrain circuits. The molecular adaptations underlying the altered synaptic development remain unknown. We performed a comparative mass spectrometry analysis of synaptosomes generated from the neocortex of wild type and Met null mice during the peak of synaptogenesis (postnatal day 14; data are available from ProteomeXchange with identifier PXD033204). The analyses revealed broad disruption of the developing synaptic proteome in the absence of MET, consistent with the localization of MET protein in pre- and postsynaptic compartments, including proteins associated with the neocortical synaptic MET interactome and those encoded by syndromic and ASD risk genes. In addition to an overrepresentation of altered proteins associated with the SNARE complex, multiple proteins in the ubiquitin-proteasome system and associated with the synaptic vesicle, as well as proteins that regulate actin filament organization and synaptic vesicle exocytosis/endocytosis, were disrupted. Taken together, the proteomic changes are consistent with structural and functional changes observed following alterations in MET signaling. We hypothesize that the molecular adaptations following Met deletion may reflect a general mechanism that produces circuit-specific molecular changes due to loss or reduction of synaptic signaling proteins.
Collapse
Affiliation(s)
- Kathie L Eagleson
- Department of Pediatrics and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Pat Levitt
- Department of Pediatrics and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,
| |
Collapse
|
3
|
A Positively Selected fur-R88H Mutation Enhances Helicobacter pylori Fitness in a High-Salt Environment and Alters Fur-Dependent Regulation of Gene Expression. Infect Immun 2023; 91:e0042022. [PMID: 36633416 PMCID: PMC9933627 DOI: 10.1128/iai.00420-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Both Helicobacter pylori infection and a high-salt diet are risk factors for gastric cancer. We previously showed that a mutation in fur (encoding the ferric uptake regulator variant Fur-R88H) was positively selected in H. pylori strains isolated from experimentally infected Mongolian gerbils receiving a high-salt diet. In the present study, we report that continuous H. pylori growth in high-salt conditions in vitro also leads to positive selection of the fur-R88H mutation. Competition experiments with strains containing wild-type fur or fur-R88H, each labeled with unique nucleotide barcodes, showed that the fur-R88H mutation enhances H. pylori fitness under high-salt conditions but reduces H. pylori fitness under routine culture conditions. The fitness advantage of the fur-R88H mutant under high-salt conditions was abrogated by the addition of supplemental iron. To test the hypothesis that the fur-R88H mutation alters the regulatory properties of Fur, we compared the transcriptional profiles of strains containing wild-type fur or fur-R88H. Increased transcript levels of fecA2, which encodes a predicted TonB-dependent outer membrane transporter, were detected in the fur-R88H variant compared to those in the strain containing wild-type fur under both high-salt and routine conditions. Competition experiments showed that fecA2 contributes to H. pylori fitness under both high-salt and routine conditions. These results provide new insights into mechanisms by which the fur-R88H mutation confers a selective advantage to H. pylori in high-salt environments.
Collapse
|
4
|
Schalich K, Rajagopala S, Das S, O’Connell R, Yan F. Intestinal epithelial cell-derived components regulate transcriptome of Lactobacillus rhamnosus GG. Front Microbiol 2023; 13:1051310. [PMID: 36687654 PMCID: PMC9846326 DOI: 10.3389/fmicb.2022.1051310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/24/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Intestinal epithelial cells (IECs) provide the frontline responses to the gut microbiota for maintaining intestinal homeostasis. Our previous work revealed that IEC-derived components promote the beneficial effects of a commensal and probiotic bacterium, Lactobacillus rhamnosus GG (LGG). This study aimed to elucidate the regulatory effects of IEC-derived components on LGG at the molecular level. Methods Differential gene expression in LGG cultured with IEC-derived components at the timepoint between the exponential and stationary phase was studied by RNA sequencing and functional analysis. Results The transcriptomic profile of LGG cultured with IEC-derived components was significantly different from that of control LGG, with 231 genes were significantly upregulated and 235 genes significantly down regulated (FDR <0.05). The Clusters of Orthologous Groups (COGs) and Gene Ontology (GO) analysis demonstrated that the predominant genes enriched by IEC-derived components are involved in nutrient acquisition, including transporters for amino acids, metals, and sugars, biosynthesis of amino acids, and in the biosynthesis of cell membrane and cell wall, including biosynthesis of fatty acid and lipoteichoic acid. In addition, genes associated with cell division and translation are upregulated by IEC-derived components. The outcome of the increased transcription of these genes is supported by the result that IEC-derived components significantly promoted LGG growth. The main repressed genes are associated with the metabolism of amino acids, purines, carbohydrates, glycerophospholipid, and transcription, which may reflect regulation of metabolic mechanisms in response to the availability of nutrients in bacteria. Discussion These results provide mechanistic insight into the interactions between the gut microbiota and the host.
Collapse
Affiliation(s)
- Kasey Schalich
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Seesandra Rajagopala
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Suman Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ryan O’Connell
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Fang Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States,*Correspondence: Fang Yan,
| |
Collapse
|
5
|
Wroblewski LE, Peek RM. Clinical Pathogenesis, Molecular Mechanisms of Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:25-52. [PMID: 38231214 PMCID: PMC10924282 DOI: 10.1007/978-3-031-47331-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human pathogen Helicobacter pylori is the strongest known risk factor for gastric disease and cancer, and gastric cancer remains a leading cause of cancer-related death across the globe. Carcinogenic mechanisms associated with H. pylori are multifactorial and are driven by bacterial virulence constituents, host immune responses, environmental factors such as iron and salt, and the microbiota. Infection with strains that harbor the cytotoxin-associated genes (cag) pathogenicity island, which encodes a type IV secretion system (T4SS) confer increased risk for developing more severe gastric diseases. Other important H. pylori virulence factors that augment disease progression include vacuolating cytotoxin A (VacA), specifically type s1m1 vacA alleles, serine protease HtrA, and the outer-membrane adhesins HopQ, BabA, SabA and OipA. Additional risk factors for gastric cancer include dietary factors such as diets that are high in salt or low in iron, H. pylori-induced perturbations of the gastric microbiome, host genetic polymorphisms, and infection with Epstein-Barr virus. This chapter discusses in detail host factors and how H. pylori virulence factors augment the risk of developing gastric cancer in human patients as well as how the Mongolian gerbil model has been used to define mechanisms of H. pylori-induced inflammation and cancer.
Collapse
Affiliation(s)
- Lydia E Wroblewski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Lim AR, Vincent BG, Weaver AM, Rathmell WK. Sunitinib and Axitinib increase secretion and glycolytic activity of small extracellular vesicles in renal cell carcinoma. Cancer Gene Ther 2022; 29:683-696. [PMID: 34088993 PMCID: PMC8642495 DOI: 10.1038/s41417-021-00345-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) encompass a wide range of vesicles that are released by all cell types. They package protein, nucleic acids, metabolites, and other cargo that can be delivered to recipient cells and affect their phenotypes. However, little is known about how pharmaceutical agents can alter EV secretion, protein and metabolic cargo, and the active biological processes taking place in these vesicles. In this study, we isolated EVs from human renal cell carcinoma (RCC) cells treated with tyrosine kinase inhibitors (TKIs) Sunitinib and Axitinib. We found these TKIs increase the number of large (lEVs) and small extracellular vesicles (sEVs) secreted from RCC cells in a dose-dependent manner. In addition, quantitative proteomics revealed that metabolic proteins are enriched in sEVs secreted from Sunitinib-treated cells. In particular, the glucose transporter GLUT1 was enriched in sEVs purified from TKI-treated cells. These sEVs displayed increased glucose uptake and glycolytic metabolism compared to sEVs released from vehicle-treated cells. Overexpression of GLUT1 in RCC cells augmented GLUT1 levels in sEVs, which subsequently displayed higher glucose uptake and glycolytic activity. Together, these findings suggest that these TKIs alter metabolic cargo and activity in RCC sEVs.
Collapse
Affiliation(s)
- Aaron R Lim
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alissa M Weaver
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - W Kimryn Rathmell
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Interplay between Amoxicillin Resistance and Osmotic Stress in Helicobacter pylori. J Bacteriol 2022; 204:e0004522. [PMID: 35389254 DOI: 10.1128/jb.00045-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rising antibiotic resistance rates are a growing concern for all pathogens, including Helicobacter pylori. We previously examined the association of specific mutations in PBP1 with amoxicillin resistance and fitness in H. pylori and found that V374L and N562Y mutations were associated with resistance, but also resulted in fitness defects. Furthermore, we found that hyperosmotic stress differentially altered the fitness of strains bearing these mutations; survival of the V374L strain was decreased by hyperosmotic stress, but the N562Y strain showed increased cell survival relative to that of wild-type G27. The finding that amoxicillin-resistant strains show environmentally dictated changes in fitness suggests a previously unexplored interaction between amoxicillin resistance and osmotic stress in H. pylori. Here, we further characterized the interaction between osmotic stress and amoxicillin resistance. Wild-type and isogenic PBP1 mutant strains were exposed to amoxicillin, various osmotic stressors, or combined antibiotic and osmotic stress, and viability was monitored. While subinhibitory concentrations of NaCl did not affect H. pylori viability, the combination of NaCl and amoxicillin resulted in synergistic killing; this was true even for the antibiotic-resistant strains. Moreover, similar synergy was found with other beta-lactams, but not with antibiotics that did not target the cell wall. Similar synergistic killing was also demonstrated when KCl was utilized as the osmotic stressor. Conversely, osmolar equivalent concentrations of sucrose antagonized amoxicillin-mediated killing. Taken together, our results support a previously unrecognized interaction between amoxicillin resistance and osmotic stress in H. pylori. These findings have interesting implications for the effectiveness of antibiotic therapy for this pathogen. IMPORTANCE Rising antibiotic resistance rates in H. pylori are associated with increased rates of treatment failure. Understanding how stressors impact antibiotic resistance may shed light on the development of future treatment strategies. Previous studies found that mutations in PBP1 that conferred resistance to amoxicillin were also associated with a decrease in bacterial fitness. The current study demonstrated that osmotic stress can enhance beta lactam-mediated killing of H. pylori. The source of osmotic stress was found to be important for these interactions. Given that relatively little is known about how H. pylori responds to osmotic stress, these findings fill important knowledge gaps on this topic and provide interesting implications for the effectiveness of antibiotic therapy for this pathogen.
Collapse
|
8
|
Comparative Genomic Analysis of Statistically Significant Genomic Islands of Helicobacter pylori strains for better understanding the disease prognosis. Biosci Rep 2022; 42:230988. [PMID: 35258077 PMCID: PMC8935386 DOI: 10.1042/bsr20212084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial virulence factors are often located in their genomic islands (GIs). Helicobacter pylori, a highly diverse organism is reported to be associated with several gastrointestinal diseases like, gastritis, gastric cancer, peptic ulcer, duodenal ulcer etc. A novel similarity score-based comparative analysis with GIs of fifty H. pylori strains revealed clear idea of the various factors which promote disease progression. Two putative pathogenic GIs in some of the H. pylori strains were identified. One GI, having a putative labile enterotoxin and other dynamin-like proteins (DLPs), is predicted to increase the release of toxin by membrane vesicular formation. Another island contains a virulence-associated protein D (vapD) which is a component of a type-II toxin-antitoxin system (TAs), leads to enhance the severity of the H. pylori infection. Besides the well-known virulence factors like CagA, and VacA, several GIs have been identified which showed to have direct or indirect impact on H. pylori clinical outcomes. One such GI, containing lipopolysaccharide (LPS) biosynthesis genes was revealed to be directly connected with disease development by inhibiting the immune response. Another collagenase-containing GI worsens ulcers by slowing down the healing process. GI consisted of fliD operon was found to be connected to flagellar assembly and biofilm production. By residing in biofilms, bacteria can avoid antibiotic therapy, resulting in chronic infection. Along with well-studied CagA and VacA virulent genes, it is equally important to study these identified virulence factors for better understanding H. pylori induced disease prognosis.
Collapse
|
9
|
Rueda-Robles A, Rubio-Tomás T, Plaza-Diaz J, Álvarez-Mercado AI. Impact of Dietary Patterns on H. pylori Infection and the Modulation of Microbiota to Counteract Its Effect. A Narrative Review. Pathogens 2021; 10:875. [PMID: 34358024 PMCID: PMC8308520 DOI: 10.3390/pathogens10070875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the stomach and can induce gastric disease and intra-gastric lesions, including chronic gastritis, peptic ulcers, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. This bacterium is responsible for long-term complications of gastric disease. The conjunction of host genetics, immune response, bacterial virulence expression, diet, micronutrient availability, and microbiome structure influence the disease outcomes related to chronic H. pylori infection. In this regard, the consumption of unhealthy and unbalanced diets can induce microbial dysbiosis, which infection with H. pylori may contribute to. However, to date, clinical trials have reported controversial results and current knowledge in this field is inconclusive. Here, we review preclinical studies concerning the changes produced in the microbiota that may be related to H. pylori infection, as well as the involvement of diet. We summarize and discuss the last approaches based on the modulation of the microbiota to improve the negative impact of H. pylori infection and their potential translation from bench to bedside.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
| | - Teresa Rubio-Tomás
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- School of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Julio Plaza-Diaz
- Children’s Hospital Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., Armilla, 18016 Granada, Spain;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| |
Collapse
|
10
|
Abstract
Helicobacter pylori is present in approximately one-half of the world's population. There are significant differences in prevalence based on region, age, race/ethnicity, and socioeconomic status. H pylori is the most common cause of infection-related cancers. Studies have demonstrated the relationship between H pylori infection and gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. H pylori has features and enzymatic properties allowing it to survive in the acidic stomach environment, and has specific virulence factors that promote an increased risk of gastric pathology. Eradication of H pylori is first-line therapy for mucosa-associated lymphoid tissue lymphoma and decreases the risk of gastric adenocarcinoma.
Collapse
|
11
|
Patel MR, Weaver AM. Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling. Cell Rep 2021; 34:108829. [PMID: 33691102 PMCID: PMC8002899 DOI: 10.1016/j.celrep.2021.108829] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/05/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022] Open
Abstract
Neuronal synapse formation is critical for brain development and depends on secreted factors from astrocytes. Here, we report that small extracellular vesicles (EVs) secreted from primary astrocytes, but not from neurons or C6 glioma cells, greatly enhance spine and synapse formation by primary cortical neurons. A comparative proteomics analysis of small EVs from astrocytes, neurons, and C6 glioma cells identified fibulin-2 as a promising EV cargo to regulate synaptogenesis. Treatment of cortical neurons with recombinant fibulin-2 increased the formation of spines and synapses, similar to the effect of small EVs. In addition, treatment of neurons with fibulin-2 or astrocyte-derived small EVs led to increased phosphorylation of Smad2, an indicator of TGF-β signaling. Finally, the effects of fibulin-2 and astrocyte-derived small EVs on synapse formation were reversed by inhibiting transforming growth factor β (TGF-β) signaling. These data suggest a model in which astrocyte EVs promote synapse formation via fibulin-2-mediated activation of TGF-β signaling.
Collapse
Affiliation(s)
- Mikin R Patel
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Kim J, Oh A, Truong H, Laszkowska M, Camargo MC, Abrams J, Hur C. Low sodium diet for gastric cancer prevention in the United States: Results of a Markov model. Cancer Med 2020; 10:684-692. [PMID: 33259151 PMCID: PMC7877368 DOI: 10.1002/cam4.3615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/20/2020] [Accepted: 10/30/2020] [Indexed: 11/23/2022] Open
Abstract
Background and Aims High sodium consumption has been associated with an increased risk of gastric cancer. The mean daily sodium intake in the United States substantially exceeds the national recommended amount. The low sodium‐DASH diet has been shown to decrease the risk of cardiovascular disease in the United States, but its impact on gastric cancer has not been well studied. We therefore aimed to model the impact and cost‐effectiveness of the low sodium‐DASH diet for gastric cancer prevention in the U.S. population. Methods A Markov cohort state‐transition model was developed to simulate the impact of the low sodium‐DASH diet on gastric cancer outcomes for the average 40‐year‐old in the United States compared to no intervention. Primary outcomes of interest were gastric cancer incidence and incremental cost‐effectiveness ratios (ICER). Results Our model found that compared to the no intervention cohort, the risk of gastric cancer decreased by 24.8% for males and 21.2% for females on the low sodium‐DASH diet. 27 cases and 14 cases per 10,000 individuals were prevented for males and females, respectively, in the intervention group. The ICER for the low sodium‐DASH diet strategy was $287,726 for males and $423,878 for females compared to the no intervention strategy. Conclusions Using a Markov model of gastric cancer risk, we found that adherence to a low sodium‐DASH diet could decrease the risk of gastric cancer. This intervention was not cost‐effective due to the high cost of a low sodium‐DASH accordant diet, but significantly improved for high‐risk populations and when the cost of the diet became slightly more affordable.
Collapse
Affiliation(s)
- Judith Kim
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aaron Oh
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Han Truong
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Monika Laszkowska
- Department of Medicine, Gastroenterology, Hepatology, and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Julian Abrams
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Chin Hur
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Xiao Y, Xie J, Liu L, Huang W, Han Q, Qin J, Liu S, Jiang Z. NAD(P)-dependent steroid dehydrogenase-like protein and neutral cholesterol ester hydrolase 1 serve as novel markers for early detection of gastric cancer identified using quantitative proteomics. J Clin Lab Anal 2020; 35:e23652. [PMID: 33219617 PMCID: PMC7891516 DOI: 10.1002/jcla.23652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the third most common cause of cancer deaths worldwide. In the present study, we aimed to identify novel GC biomarkers by integrating isobaric tags of relative and absolute quantitation (iTRAQ) for aberrantly expressed proteins in GC patients. METHODS Using stable isotope tags, we labeled an initial discovery group comprising four paired gastric cancer and adjacent gastric tissue samples, and subjected them to LC-ESI-MS/MS. We used a validation set comprising 129 paired gastric cancer and adjacent gastric tissues from patients and benign healthy controls to validate the candidate targets. RESULTS We identified two proteins, NAD(P)-dependent steroid dehydrogenase-like (NSDHL) and neutral cholesterol ester hydrolase 1 (NCEH1), that were significantly overexpressed in GC tissues. The sensitivity and specificity of NSDHL were 80.6% and 74.4%, respectively, in GC compared with a sensitivity of 25.6% in adjacent tissues and 24% in benign healthy controls. The area under the ROC curve (AUC) for NSDHL was 0.810 for GC detection. Overexpression of NSDHL in GC was significantly correlated with local tumor invasion. The sensitivity and specificity of NCEH1 were 77.5% and 73.6%, respectively, in GC compared with a sensitivity of 26.4% in adjacent tissues and 20% in benign controls. The AUC for NSDHL was 0.792. Overexpression of NCEH1 was significantly associated with tumor histological classification and local invasion. Moreover, a combined analysis of NSDHL and NCEH1 achieved a sensitivity and specificity of 85.7% and 83%, respectively, and the AUC was 0.872. The combined analysis of NSDHL and NCEH1 was significantly correlated with histological grade and TNM Ⅱ-Ⅳ staging. CONCLUSIONS iTRAQ-labeled quantitative proteomics represents a powerful method to identify novel cancer biomarkers. The present study identified NSDHL and NCEH1 as useful biomarkers for screening, diagnosis, and prognosis of patients with gastric cancer.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jiebin Xie
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lan Liu
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Wentao Huang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Qiang Han
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jiayi Qin
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Shunying Liu
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhen Jiang
- Department of Biochemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
14
|
Eagleson KL, Villaneuva M, Southern RM, Levitt P. Proteomic and mitochondrial adaptations to early-life stress are distinct in juveniles and adults. Neurobiol Stress 2020; 13:100251. [PMID: 33344706 PMCID: PMC7739184 DOI: 10.1016/j.ynstr.2020.100251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/02/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
Exposure to early-life stress (ELS) increases risk for poor mental and physical health outcomes that emerge at different stages across the lifespan. Yet, how age interacts with ELS to impact the expression of specific phenotypes remains largely unknown. An established limited-bedding paradigm was used to induce ELS in mouse pups over the early postnatal period. Initial analyses focused on the hippocampus, based on documented sensitivity to ELS in humans and various animal models, and the large body of data reporting anatomical and physiological outcomes in this structure using this ELS paradigm. An unbiased discovery proteomics approach revealed distinct adaptations in the non-nuclear hippocampal proteome in male versus female offspring at two distinct developmental stages: juvenile and adult. Gene ontology and KEGG pathway analyses revealed significant enrichment in proteins associated with mitochondria and the oxidative phosphorylation (OXPHOS) pathway in response to ELS in female hippocampus only. To determine whether the protein adaptations to ELS reflected altered function, mitochondrial respiration (driven through complexes II-IV) and complex I activity were measured in isolated hippocampal mitochondria using a Seahorse X96 Flux analyzer and immunocapture ELISA, respectively. ELS had no effect on basal respiration in either sex at either age. In contrast, ELS increased OXPHOS capacity in juvenile males and females, and reduced OXPHOS capacity in adult females but not adult males. A similar pattern of ELS-induced changes was observed for complex I activity. These data suggest that initial adaptations in juvenile hippocampus due to ELS were not sustained in adults. Mitochondrial adaptations to ELS were also exhibited peripherally by liver. Overall, the temporal distinctions in mitochondrial responses to ELS show that ELS-generated adaptations and outcomes are complex over the lifespan. This may contribute to differences in the timing of appearance of mental and physical disturbances, as well as potential sex differences that influence only select outcomes.
Collapse
Key Words
- AA, antimycin A
- ADP, adenosine diphosphate
- CI, confidence interval
- Complex I activity
- ELS, early-life stress
- Early-life stress
- FCCP, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone
- GO, gene ontology
- HCD, high energy C-trap dissociation
- Hippocampus
- Liver
- MS/MS, tandem mass spectrometry
- Mitochondrial respiration
- OCR, oxygen consumption rate
- OXPHOS, oxidative phosphorylation
- P, postnatal day
- Proteomics
- SCX, strong cation exchange
- iTRAQ, isobaric tag for relative and absolute quantitation
- oligo, oligomycin
Collapse
Affiliation(s)
- Kathie L. Eagleson
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Miranda Villaneuva
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rebecca M. Southern
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Kumar S, Paul D, Bhushan B, Wakchaure GC, Meena KK, Shouche Y. Traversing the "Omic" landscape of microbial halotolerance for key molecular processes and new insights. Crit Rev Microbiol 2020; 46:631-653. [PMID: 32991226 DOI: 10.1080/1040841x.2020.1819770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-2005, the biology of the salt afflicted habitats is predominantly studied employing high throughput "Omic" approaches comprising metagenomics, transcriptomics, metatranscriptomics, metabolomics, and proteomics. Such "Omic-based" studies have deciphered the unfamiliar details about microbial salt-stress biology. The MAGs (Metagenome-assembled genomes) of uncultured halophilic microbial lineages such as Nanohaloarchaea and haloalkaliphilic members within CPR (Candidate Phyla Radiation) have been reconstructed from diverse hypersaline habitats. The study of MAGs of such uncultured halophilic microbial lineages has unveiled the genomic basis of salt stress tolerance in "yet to culture" microbial lineages. Furthermore, functional metagenomic approaches have been used to decipher the novel genes from uncultured microbes and their possible role in microbial salt-stress tolerance. The present review focuses on the new insights into microbial salt-stress biology gained through different "Omic" approaches. This review also summarizes the key molecular processes that underlie microbial salt-stress response, and their role in microbial salt-stress tolerance has been confirmed at more than one "Omic" levels.
Collapse
Affiliation(s)
- Satish Kumar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India.,ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Dhiraj Paul
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Bharat Bhushan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - G C Wakchaure
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Kamlesh K Meena
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| |
Collapse
|
16
|
Cai Y, Wang C, Chen Z, Xu Z, Li H, Li W, Sun Y. Transporters HP0939, HP0497, and HP0471 participate in intrinsic multidrug resistance and biofilm formation in Helicobacter pylori by enhancing drug efflux. Helicobacter 2020; 25:e12715. [PMID: 32548895 DOI: 10.1111/hel.12715] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The multidrug resistance of Helicobacter pylori is becoming an increasingly serious issue. It is therefore necessary to study the mechanism of multidrug resistance of H pylori. We have previously identified that the HP0939, HP0497, and HP0471 transporters affect the efflux of drugs from H pylori. As efflux pumps participate in bacterial multidrug resistance and biofilm formation, we hypothesized that these transporters could be involved in the multidrug resistance and biofilm formation of H pylori. MATERIALS AND METHODS We therefore constructed three knockout strains, Δhp0939, Δhp0497, and Δhp0471, and three high-expression strains, Hp0939he , Hp0497he , and Hp0471he , using the wild-type (WT) 26 695 strain of H pylori as the template. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of wild strains, knockout strains, and high-expression strains to amoxicillin, metronidazole, and other antibiotics were measured. The efflux capacity of high-expression strains and wild strains was compared by Hoechst 33 342 accumulation assay. RESULTS Determination of the MIC and MBC of the antibiotics revealed that the knockout strains were more sensitive to antibiotics, while the high-expression strains were less sensitive to antibiotics, compared to the WT. The ability of the high-expression strains to efflux drugs was significantly higher than that of the WT. We also induced H pylori to form biofilms, and observed that the knockout strains could barely form biofilms and were more sensitive to several antibiotics, compared to the WT. The mRNA expression of hp0939, hp0497, and hp0471 in the clinically sensitive and multidrug-resistant strains was determined, and it was found that these genes were highly expressed in the multidrug-resistant strains that were isolated from the clinics. CONCLUSIONS In this study, we found three transporters involved in intrinsic multidrug resistance of H pylori.
Collapse
Affiliation(s)
- Yuying Cai
- Department of Microbiology, Key Laboratory of Medical Microbiology and Parasitology, Guizhou Medical University, Guiyang, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Caixia Wang
- Department of Microbiology, Key Laboratory of Medical Microbiology and Parasitology, Guizhou Medical University, Guiyang, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhenghong Chen
- Department of Microbiology, Key Laboratory of Medical Microbiology and Parasitology, Guizhou Medical University, Guiyang, China
| | - Zhengzheng Xu
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, China
| | - Huanjie Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, China
| | - Wenjuan Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, China
| |
Collapse
|
17
|
Tripathi A, Singha UK, Paromov V, Hill S, Pratap S, Rose K, Chaudhuri M. The Cross Talk between TbTim50 and PIP39, Two Aspartate-Based Protein Phosphatases, Maintains Cellular Homeostasis in Trypanosoma brucei. mSphere 2019; 4:e00353-19. [PMID: 31391278 PMCID: PMC6686227 DOI: 10.1128/msphere.00353-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Trypanosoma brucei, the infectious agent of a deadly disease known as African trypanosomiasis, undergoes various stresses during its digenetic life cycle. We previously showed that downregulation of T. brucei mitochondrial inner membrane protein translocase 50 (TbTim50), an aspartate-based protein phosphatase and a component of the translocase of the mitochondrial inner membrane (TIM), increased the tolerance of procyclic cells to oxidative stress. Using comparative proteomics analysis and further validating the proteomics results by immunoblotting, here we discovered that TbTim50 downregulation caused an approximately 5-fold increase in the levels of PIP39, which is also an aspartate-based protein phosphatase and is primarily localized in glycosomes. A moderate upregulation of a number of glycosomal enzymes was also noticed due to TbTim50 knockdown. We found that the rate of mitochondrial ATP production by oxidative phosphorylation decreased and that substrate-level phosphorylation increased due to depletion of TbTim50. These results were correlated with relative increases in the levels of trypanosome alternative oxidase and hexokinase and a reduced-growth phenotype in low-glucose medium. The levels and activity of the mitochondrial superoxide dismutase and glutaredoxin levels were increased due to TbTim50 knockdown. Furthermore, we show that TbTim50 downregulation increased the cellular AMP/ATP ratio, and as a consequence, phosphorylation of AMP-activated protein kinase (AMPK) was increased. Knocking down both TbTim50 and TbPIP39 reduced PIP39 levels as well as AMPK phosphorylation and reduced T. brucei tolerance to oxidative stress. These results suggest that TbTim50 and PIP39, two protein phosphatases in mitochondria and glycosomes, respectively, cross talk via the AMPK pathway to maintain cellular homeostasis in the procyclic form of T. bruceiIMPORTANCETrypanosoma brucei, the infectious agent of African trypanosomiasis, must adapt to strikingly different host environments during its digenetic life cycle. Developmental regulation of mitochondrial activities is an essential part of these processes. We have shown previously that mitochondrial inner membrane protein translocase 50 in T. brucei (TbTim50) possesses a dually specific phosphatase activity and plays a role in the cellular stress response pathway. Using proteomics analysis, here we have elucidated a novel connection between TbTim50 and a protein phosphatase of the same family, PIP39, which is also a differentiation-related protein localized in glycosomes. We found that these two protein phosphatases cross talk via the AMPK pathway and modulate cellular metabolic activities under stress. Together, our results indicate the importance of a TbTim50 and PIP39 cascade for communication between mitochondria and other cellular parts in regulation of cell homeostasis in T. brucei.
Collapse
Affiliation(s)
- Anuj Tripathi
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Ujjal K Singha
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Victor Paromov
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Salisha Hill
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Siddharth Pratap
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Kristie Rose
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Caston RR, Loh JT, Voss BJ, McDonald WH, Scholz MB, McClain MS, Cover TL. Effect of environmental salt concentration on the Helicobacter pylori exoproteome. J Proteomics 2019; 202:103374. [PMID: 31063819 DOI: 10.1016/j.jprot.2019.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/20/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection and a high salt diet are each risk factors for gastric cancer. In this study, we tested the hypothesis that environmental salt concentration influences the composition of the H. pylori exoproteome. H. pylori was cultured in media containing varying concentrations of sodium chloride, and aliquots were fractionated and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified proteins that were selectively released into the extracellular space, and we identified selectively released proteins that were differentially abundant in culture supernatants, depending on the environmental salt concentration. We also used RNA-seq analysis to identify genes that were differentially expressed in response to environmental salt concentration. The salt-responsive proteins identified by proteomic analysis and salt-responsive genes identified by RNA-seq analysis were mostly non-concordant, but the secreted toxin VacA was salt-responsive in both analyses. Western blot analysis confirmed that VacA levels in the culture supernatant were increased in response to high salt conditions, and quantitative RT-qPCR experiments confirmed that vacA transcription was upregulated in response to high salt conditions. These results indicate that environmental salt concentration influences the composition of the H. pylori exoproteome, which could contribute to the increased risk of gastric cancer associated with a high salt diet. SIGNIFICANCE: Helicobacter pylori-induced alterations in the gastric mucosa have been attributed, at least in part, to the actions of secreted H. pylori proteins. In this study, we show that H. pylori growth in high salt concentrations leads to increased levels of a secreted VacA toxin. Salt-induced alterations in the composition of the H. pylori exoproteome is relevant to the increased risk of gastric cancer associated with consumption of a high salt diet.
Collapse
Affiliation(s)
- Rhonda R Caston
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John T Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bradley J Voss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - W Hayes McDonald
- Proteomics Laboratory, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew B Scholz
- Vanderbilt Technologies for Advanced Genetics (VANTAGE), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark S McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Timothy L Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
19
|
Noto JM, Rose KL, Hachey AJ, Delgado AG, Romero-Gallo J, Wroblewski LE, Schneider BG, Shah SC, Cover TL, Wilson KT, Israel DA, Roa JC, Schey KL, Zavros Y, Piazuelo MB, Peek RM. Carcinogenic Helicobacter pylori Strains Selectively Dysregulate the In Vivo Gastric Proteome, Which May Be Associated with Stomach Cancer Progression. Mol Cell Proteomics 2019; 18:352-371. [PMID: 30455363 PMCID: PMC6356085 DOI: 10.1074/mcp.ra118.001181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is the strongest risk factor for gastric cancer. Initial interactions between H. pylori and its host originate at the microbial-gastric epithelial cell interface, and contact between H. pylori and gastric epithelium activates signaling pathways that drive oncogenesis. One microbial constituent that increases gastric cancer risk is the cag pathogenicity island, which encodes a type IV secretion system that translocates the effector protein, CagA, into host cells. We previously demonstrated that infection of Mongolian gerbils with a carcinogenic cag+H. pylori strain, 7.13, recapitulates many features of H. pylori-induced gastric cancer in humans. Therefore, we sought to define gastric proteomic changes induced by H. pylori that are critical for initiation of the gastric carcinogenic cascade. Gastric cell scrapings were harvested from H. pylori-infected and uninfected gerbils for quantitative proteomic analyses using isobaric tags for relative and absolute quantitation (iTRAQ). Quantitative proteomic analysis of samples from two biological replicate experiments quantified a total of 2764 proteins, 166 of which were significantly altered in abundance by H. pylori infection. Pathway mapping identified significantly altered inflammatory and cancer-signaling pathways that included Rab/Ras signaling proteins. Consistent with the iTRAQ results, RABEP2 and G3BP2 were significantly up-regulated in vitro, ex vivo in primary human gastric monolayers, and in vivo in gerbil gastric epithelium following infection with H. pylori strain 7.13 in a cag-dependent manner. Within human stomachs, RABEP2 and G3BP2 expression in gastric epithelium increased in parallel with the severity of premalignant and malignant lesions and was significantly elevated in intestinal metaplasia and dysplasia, as well as gastric adenocarcinoma, compared with gastritis alone. These results indicate that carcinogenic strains of H. pylori induce dramatic and specific changes within the gastric proteome in vivo and that a subset of altered proteins within pathways with oncogenic potential may facilitate the progression of gastric carcinogenesis in humans.
Collapse
Affiliation(s)
- Jennifer M Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kristie L Rose
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amanda J Hachey
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alberto G Delgado
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Judith Romero-Gallo
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lydia E Wroblewski
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Barbara G Schneider
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shailja C Shah
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Timothy L Cover
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee;; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keith T Wilson
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee;; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dawn A Israel
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Juan Carlos Roa
- Department of Pathology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Kevin L Schey
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yana Zavros
- Department of Pharmacology and System Physiology, University of Cincinnati, Cincinnati, Ohio
| | - M Blanca Piazuelo
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard M Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee;.
| |
Collapse
|
20
|
Role of a Stem-Loop Structure in Helicobacter pylori cagA Transcript Stability. Infect Immun 2019; 87:IAI.00692-18. [PMID: 30510104 DOI: 10.1128/iai.00692-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori CagA is a secreted effector protein that contributes to gastric carcinogenesis. Previous studies showed that there is variation among H. pylori strains in the steady-state levels of CagA and that a strain-specific motif downstream of the cagA transcriptional start site (the +59 motif) is associated with both high levels of CagA and premalignant gastric histology. The cagA 5' untranslated region contains a predicted stem-loop-forming structure adjacent to the +59 motif. In the current study, we investigated the effect of the +59 motif and the adjacent stem-loop on cagA transcript levels and cagA mRNA stability. Using site-directed mutagenesis, we found that mutations predicted to disrupt the stem-loop structure resulted in decreased steady-state levels of both the cagA transcript and the CagA protein. Additionally, these mutations resulted in a decreased cagA mRNA half-life. Mutagenesis of the +59 motif without altering the stem-loop structure resulted in reduced steady-state cagA transcript and CagA protein levels but did not affect cagA transcript stability. cagA transcript stability was not affected by increased sodium chloride concentrations, an environmental factor known to augment cagA transcript levels and CagA protein levels. These results indicate that both a predicted stem-loop structure and a strain-specific +59 motif in the cagA 5' untranslated region influence the levels of cagA expression.
Collapse
|
21
|
Jiang Z, Zhang C, Gan L, Jia Y, Xiong Y, Chen Y, Wang Z, Wang L, Luo H, Li J, Zhu R, Ji X, Yu Q, Wang L. iTRAQ-Based Quantitative Proteomics Approach Identifies Novel Diagnostic Biomarkers That Were Essential for Glutamine Metabolism and Redox Homeostasis for Gastric Cancer. Proteomics Clin Appl 2019; 13:e1800038. [PMID: 30485682 DOI: 10.1002/prca.201800038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 11/18/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To screen the novel biomarkers for gastric cancer and to determine the values of glutaminase 1 (GLS1) and gamma-glutamylcyclotransferase (GGCT) for detecting gastric cancer. EXPERIMENTAL DESIGN A discovery group of four paired gastric cancer tissue samples are labeled with Isobaric tag for relative and absolute quantitation agents and identified with LC-ESI-MS/MS. A validation group of 168 gastric cancer samples and 30 healthy controls are used to validate the expression of GLS1 and GGCT. RESULTS Four hundred and thirty-one proteins are found differentially expressed in gastric cancer tissues. Of these proteins, GLS1 and GGCT are found overexpressed in gastric cancer patients, with sensitivity of 75.6% (95% CI: 69-82.2%) and specificity of 81% (95% CI: 75-87%) for GLS1, and with sensitivity of 63.1% (95% CI: 55.7-71.5%) and specificity of 60.7% (95% CI: 53.3-68.2%) for GGCT. The co-expression of GLS1 and GGCT in gastric cancer tissues has sensitivity of 78.1% (95% CI: 70.1-86.1%) and specificity of 86.5% (95% CI: 79.5-93.4%). Moreover, both GLS1 and GGCT present higher expression of 82.6% (95% CI: 68.5-99.4%) and 73.9% (95% CI: 54.5-93.3%) in lymph node metastasis specimen than those in non-lymph node metastasis specimen. The areas under ROC curves are up to 0.734 for the co-expression of GLS1 and GGCT in gastric cancer. The co-expression of GLS1 and GGCT is strongly associated with histological grade, lymph node metastasis, and TNM stage Ⅲ/Ⅳ. CONCLUSIONS AND CLINICAL RELEVANCE The present study provides the quantitative proteomic analysis of gastric cancer tissues to identify prognostic biomarkers of gastric cancer. The co-expression level of GLS1 and GGCT is of great clinical value to serve as diagnostic and therapeutic biomarkers for early gastric cancer.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Biochemistry, Nanchong Key Laboratory of Metabolic Drugs and Biological Products, School of Preclinical Medicine, North Sichuan Medical, College, Nanchong, 637100, P. R. China
| | - Chenghua Zhang
- Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, 637100, P. R. China
| | - Li Gan
- Department of Anatomy, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, 637100, P. R. China
| | - Yuewang Jia
- Department of Biochemistry, Nanchong Key Laboratory of Metabolic Drugs and Biological Products, School of Preclinical Medicine, North Sichuan Medical, College, Nanchong, 637100, P. R. China
| | - Yu Xiong
- Department of Biochemistry, Nanchong Key Laboratory of Metabolic Drugs and Biological Products, School of Preclinical Medicine, North Sichuan Medical, College, Nanchong, 637100, P. R. China
| | - Yujiang Chen
- Department of Biochemistry, Nanchong Key Laboratory of Metabolic Drugs and Biological Products, School of Preclinical Medicine, North Sichuan Medical, College, Nanchong, 637100, P. R. China
| | - Zhi Wang
- Department of Biochemistry, Nanchong Key Laboratory of Metabolic Drugs and Biological Products, School of Preclinical Medicine, North Sichuan Medical, College, Nanchong, 637100, P. R. China
| | - Linfeng Wang
- Department of Biochemistry, Nanchong Key Laboratory of Metabolic Drugs and Biological Products, School of Preclinical Medicine, North Sichuan Medical, College, Nanchong, 637100, P. R. China
| | - Hao Luo
- Department of Biochemistry, Nanchong Key Laboratory of Metabolic Drugs and Biological Products, School of Preclinical Medicine, North Sichuan Medical, College, Nanchong, 637100, P. R. China
| | - Juexi Li
- Department of Biochemistry, Nanchong Key Laboratory of Metabolic Drugs and Biological Products, School of Preclinical Medicine, North Sichuan Medical, College, Nanchong, 637100, P. R. China
| | - Rui Zhu
- Department of Biochemistry, Nanchong Key Laboratory of Metabolic Drugs and Biological Products, School of Preclinical Medicine, North Sichuan Medical, College, Nanchong, 637100, P. R. China
| | - Xingli Ji
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Qin Yu
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Li Wang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, 646000, P. R. China
| |
Collapse
|
22
|
Noto JM, Chopra A, Loh JT, Romero-Gallo J, Piazuelo MB, Watson M, Leary S, Beckett AC, Wilson KT, Cover TL, Mallal S, Israel DA, Peek RM. Pan-genomic analyses identify key Helicobacter pylori pathogenic loci modified by carcinogenic host microenvironments. Gut 2018; 67:1793-1804. [PMID: 28924022 PMCID: PMC5857411 DOI: 10.1136/gutjnl-2017-313863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/30/2017] [Accepted: 07/15/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Helicobacter pylori is the strongest risk factor for gastric cancer; however, the majority of infected individuals do not develop disease. Pathological outcomes are mediated by complex interactions among bacterial, host and environmental constituents, and two dietary factors linked with gastric cancer risk are iron deficiency and high salt. We hypothesised that prolonged adaptation of H. pylori to in vivo carcinogenic microenvironments results in genetic modification important for disease. DESIGN Whole genome sequencing of genetically related H. pylori strains that differ in virulence and targeted H. pylori sequencing following prolonged exposure of bacteria to in vitro carcinogenic conditions were performed. RESULTS A total of 180 unique single nucleotide polymorphisms (SNPs) were identified among the collective genomes when compared with a reference H. pylori genome. Importantly, common SNPs were identified in isolates harvested from iron-depleted and high salt carcinogenic microenvironments, including an SNP within fur (FurR88H). To investigate the direct role of low iron and/or high salt, H. pylori was continuously cultured in vitro under low iron or high salt conditions to assess fur genetic variation. Exposure to low iron or high salt selected for the FurR88H variant after only 5 days. To extend these results, fur was sequenced in 339 clinical H. pylori strains. Among the isolates examined, 17% (40/232) of strains isolated from patients with premalignant lesions harboured the FurR88H variant, compared with only 6% (6/107) of strains from patients with non-atrophic gastritis alone (p=0.0034). CONCLUSION These results indicate that specific genetic variation arises within H. pylori strains during in vivo adaptation to conditions conducive for gastric carcinogenesis.
Collapse
Affiliation(s)
- Jennifer M Noto
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - John T Loh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Judith Romero-Gallo
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M Blanca Piazuelo
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark Watson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Amber C Beckett
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith T Wilson
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timothy L Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA,Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, Tennessee, USA
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia,Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, Tennessee, USA
| | - Dawn A Israel
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard M Peek
- Department of Medicine, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Chen X, Hu Y, Xie Y, Wang Y. High salt diet can down-regulate TFF2 expression level in gastric mucosa of MGs after H. pylori infection. Microb Pathog 2018; 118:316-321. [PMID: 29601867 DOI: 10.1016/j.micpath.2018.03.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022]
Abstract
This study aimed to elucidate the effect of Helicobacter pylori (H. pylori) and high salt diet on Trefoil factor 2 (TFF2) expression level of Mongolian gerbils (MGs) gastric mucosa. The results of H. pylori identification and histopathology showed that H. pylori infected MGs model was built successfully. According to the immunohistochemical staining results, 25% (4/16) of H. pylori infected MGs with high salt diet showed high TFF2 expression, which was significantly lower than H. pylori infection group 61% (11/18)(P = 0.045). The results suggested that High salt diet could down-regulated TFF2 expression level of MGs gastric mucosa induced by H. pylori infection.
Collapse
Affiliation(s)
- Xue Chen
- Department of Pathology, Shenyang Medical College, No.146, Huanghe North Avenue, Shenyang, Liaoning, China
| | - You Hu
- Department of Pathology, Shenyang Medical College, No.146, Huanghe North Avenue, Shenyang, Liaoning, China
| | - Ying Xie
- Department of Pathology, Shenyang Medical College, No.146, Huanghe North Avenue, Shenyang, Liaoning, China
| | - Ying Wang
- Department of Pathology, Shenyang Medical College, No.146, Huanghe North Avenue, Shenyang, Liaoning, China.
| |
Collapse
|
24
|
High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins. Infect Immun 2018; 86:IAI.00626-17. [PMID: 29229727 DOI: 10.1128/iai.00626-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori infection and high dietary salt intake are risk factors for the development of gastric adenocarcinoma. One possible mechanism by which a high-salt diet could influence gastric cancer risk is by modulating H. pylori gene expression. In this study, we utilized transcriptome sequencing (RNA-seq) methodology to compare the transcriptional profiles of H. pylori grown in media containing different concentrations of sodium chloride. We identified 118 differentially expressed genes (65 upregulated and 53 downregulated in response to high-salt conditions), including multiple members of 14 operons. Twenty-nine of the differentially expressed genes encode proteins previously shown to undergo salt-responsive changes in abundance, based on proteomic analyses. Real-time reverse transcription (RT)-PCR analyses validated differential expression of multiple genes encoding outer membrane proteins, including adhesins (SabA and HopQ) and proteins involved in iron acquisition (FecA2 and FecA3). Transcript levels of sabA, hopA, and hopQ are increased under high-salt conditions, whereas transcript levels of fecA2 and fecA3 are decreased under high-salt conditions. Transcription of sabA, hopA, hopQ, and fecA3 is derepressed in an arsS mutant strain, but salt-responsive transcription of these genes is not mediated by the ArsRS two-component system, and the CrdRS and FlgRS two-component systems do not have any detectable effects on transcription of these genes. In summary, these data provide a comprehensive view of H. pylori transcriptional alterations that occur in response to high-salt environmental conditions.
Collapse
|
25
|
Loconte V, Kekez I, Matković-Čalogović D, Zanotti G. Structural characterization of FlgE2 protein fromHelicobacter pylorihook. FEBS J 2017; 284:4328-4342. [DOI: 10.1111/febs.14312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/28/2017] [Accepted: 10/25/2017] [Indexed: 01/01/2023]
Affiliation(s)
| | - Ivana Kekez
- Divison of General and Inorganic Chemistry; Department of Chemistry; Faculty of Science; University of Zagreb; Croatia
| | - Dubravka Matković-Čalogović
- Divison of General and Inorganic Chemistry; Department of Chemistry; Faculty of Science; University of Zagreb; Croatia
| | | |
Collapse
|
26
|
Bernardini G, Figura N, Ponzetto A, Marzocchi B, Santucci A. Application of proteomics to the study of Helicobacter pylori and implications for the clinic. Expert Rev Proteomics 2017; 14:477-490. [PMID: 28513226 DOI: 10.1080/14789450.2017.1331739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) is a gram-negative bacterium that colonizes the gastric epithelium and mucous layer of more than half the world's population. H. pylori is a primary human pathogen, responsible for the development of chronic gastritis, peptic ulceration and gastric cancer. Proteomics is impacting several aspects of medical research: understanding the molecular basis of infection and disease manifestation, identification of therapeutic targets and discovery of clinically relevant biomarkers. Areas covered: The main aim of the present review is to provide a comprehensive overview of the contribution of proteomics to the study of H. pylori infection pathophysiology. In particular, we focused on the role of the bacterium and its most important virulence factor, CagA, in the progression of gastric cells transformation and cancer progression. We also discussed the proteomic approaches aimed at the investigation of the host response to bacterial infection. Expert commentary: In the field of proteomics of H. pylori, comprehensive analysis of clinically relevant proteins (functional proteomics) rather than entire proteomes will result in important medical outcomes. Finally, we provided an outlook on the potential development of proteomics in H. pylori research.
Collapse
Affiliation(s)
- Giulia Bernardini
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Natale Figura
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Antonio Ponzetto
- b Dipartimento di Scienze Mediche , Università degli Studi di Torino , Torino , Italy
| | - Barbara Marzocchi
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| | - Annalisa Santucci
- a Dipartimento di Biotecnologie , Chimica e Farmacia, Università degli Studi di Siena , Siena , Italy
| |
Collapse
|
27
|
The Bifunctional Enzyme SpoT Is Involved in the Clarithromycin Tolerance of Helicobacter pylori by Upregulating the Transporters HP0939, HP1017, HP0497, and HP0471. Antimicrob Agents Chemother 2017; 61:AAC.02011-16. [PMID: 28242673 PMCID: PMC5404559 DOI: 10.1128/aac.02011-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/21/2017] [Indexed: 01/30/2023] Open
Abstract
Clarithromycin (CLA) is a commonly recommended drug for Helicobacter pylori eradication. However, the prevalence of CLA-resistant H. pylori is increasing. Although point mutations in the 23S rRNA are key factors for CLA resistance, other factors, including efflux pumps and regulation genes, are also involved in the resistance of H. pylori to CLA. Guanosine 3′-diphosphate 5′-triphosphate and guanosine 3′,5′-bispyrophosphate [(p)ppGpp)], which are synthesized by the bifunctional enzyme SpoT in H. pylori, play an important role for some bacteria to adapt to antibiotic pressure. Nevertheless, no related research involving H. pylori has been reported. In addition, transporters have been found to be related to bacterial drug resistance. Therefore, this study investigated the function of SpoT in H. pylori resistance to CLA by examining the shifts in the expression of transporters and explored the role of transporters in the CLA resistance of H. pylori. A ΔspoT strain was constructed in this study, and it was shown that SpoT is involved in H. pylori tolerance of CLA by upregulating the transporters HP0939, HP1017, HP0497, and HP0471. This was assessed using a series of molecular and biochemical experiments and a cDNA microarray. Additionally, the knockout of genes hp0939, hp0471, and hp0497 in the resistant strains caused a reduction or loss (the latter in the Δhp0497 strain) of resistance to CLA. Furthermore, the average expression levels of these four transporters in clinical CLA-resistant strains were considerably higher than those in clinical CLA-sensitive strains. Taken together, our results revealed a novel molecular mechanism of H. pylori adaption to CLA stress.
Collapse
|
28
|
Dietary Composition Influences Incidence of Helicobacter pylori-Induced Iron Deficiency Anemia and Gastric Ulceration. Infect Immun 2016; 84:3338-3349. [PMID: 27620719 DOI: 10.1128/iai.00479-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022] Open
Abstract
Epidemiologic studies have provided conflicting data regarding an association between Helicobacter pylori infection and iron deficiency anemia (IDA) in humans. Here, a Mongolian gerbil model was used to investigate a potential role of H. pylori infection, as well as a possible role of diet, in H. pylori-associated IDA. Mongolian gerbils (either H. pylori infected or uninfected) received a normal diet or one of three diets associated with increased H. pylori virulence: high-salt, low-iron, or a combination of a high-salt and low-iron diet. In an analysis of all infected animals compared to uninfected animals (independent of diet), H. pylori-infected gerbils had significantly lower hemoglobin values than their uninfected counterparts at 16 weeks postinfection (P < 0.0001). The mean corpuscular volume (MCV) and serum ferritin values were significantly lower in H. pylori-infected gerbils than in uninfected gerbils, consistent with IDA. Leukocytosis and thrombocytosis were also detected in infected gerbils, indicating the presence of a systemic inflammatory response. In comparison to uninfected gerbils, H. pylori-infected gerbils had a higher gastric pH, a higher incidence of gastric ulcers, and a higher incidence of fecal occult blood loss. Anemia was associated with the presence of gastric ulceration but not gastric cancer. Infected gerbils consuming diets with a high salt content developed gastric ulcers significantly more frequently than gerbils consuming a normal-salt diet, and the lowest hemoglobin levels were in infected gerbils consuming a high-salt/low-iron diet. These data indicate that H. pylori infection can cause IDA and that the composition of the diet influences the incidence and severity of H. pylori-induced IDA.
Collapse
|
29
|
Nutrition and Helicobacter pylori: Host Diet and Nutritional Immunity Influence Bacterial Virulence and Disease Outcome. Gastroenterol Res Pract 2016; 2016:3019362. [PMID: 27688750 PMCID: PMC5027306 DOI: 10.1155/2016/3019362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/03/2016] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori colonizes the stomachs of greater than 50% of the world's human population making it arguably one of the most successful bacterial pathogens. Chronic H. pylori colonization results in gastritis in nearly all patients; however in a subset of people, persistent infection with H. pylori is associated with an increased risk for more severe disease outcomes including B-cell lymphoma of mucosal-associated lymphoid tissue (MALT lymphoma) and invasive adenocarcinoma. Research aimed at elucidating determinants that mediate disease progression has revealed genetic differences in both humans and H. pylori which increase the risk for developing gastric cancer. Furthermore, host diet and nutrition status have been shown to influence H. pylori-associated disease outcomes. In this review we will discuss how H. pylori is able to create a replicative niche within the hostile host environment by subverting and modifying the host-generated immune response as well as successfully competing for limited nutrients such as transition metals by deploying an arsenal of metal acquisition proteins and virulence factors. Lastly, we will discuss how micronutrient availability or alterations in the gastric microbiome may exacerbate negative disease outcomes associated with H. pylori colonization.
Collapse
|
30
|
Helicobacter pylori adaptation in vivo in response to a high-salt diet. Infect Immun 2015; 83:4871-83. [PMID: 26438795 DOI: 10.1128/iai.00918-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori exhibits a high level of intraspecies genetic diversity. In this study, we investigated whether the diversification of H. pylori is influenced by the composition of the diet. Specifically, we investigated the effect of a high-salt diet (a known risk factor for gastric adenocarcinoma) on H. pylori diversification within a host. We analyzed H. pylori strains isolated from Mongolian gerbils fed either a high-salt diet or a regular diet for 4 months by proteomic and whole-genome sequencing methods. Compared to the input strain and output strains from animals fed a regular diet, the output strains from animals fed a high-salt diet produced higher levels of proteins involved in iron acquisition and oxidative-stress resistance. Several of these changes were attributable to a nonsynonymous mutation in fur (fur-R88H). Further experiments indicated that this mutation conferred increased resistance to high-salt conditions and oxidative stress. We propose a model in which a high-salt diet leads to high levels of gastric inflammation and associated oxidative stress in H. pylori-infected animals and that these conditions, along with the high intraluminal concentrations of sodium chloride, lead to selection of H. pylori strains that are most fit for growth in this environment.
Collapse
|