1
|
Mendes G, Faulk B, Kaparthi B, Irion AR, Fong BL, Bayless K, Bondos SE. Genetic Functionalization of Protein-Based Biomaterials via Protein Fusions. Biomacromolecules 2024; 25:4639-4662. [PMID: 39074364 PMCID: PMC11323028 DOI: 10.1021/acs.biomac.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Proteins implement many useful functions, including binding ligands with unparalleled affinity and specificity, catalyzing stereospecific chemical reactions, and directing cell behavior. Incorporating proteins into materials has the potential to imbue devices with these desirable traits. This review highlights recent advances in creating active materials by genetically fusing a self-assembling protein to a functional protein. These fusion proteins form materials while retaining the function of interest. Key advantages of this approach include elimination of a separate functionalization step during materials synthesis, uniform and dense coverage of the material by the functional protein, and stabilization of the functional protein. This review focuses on macroscale materials and discusses (i) multiple strategies for successful protein fusion design, (ii) successes and limitations of the protein fusion approach, (iii) engineering solutions to bypass any limitations, (iv) applications of protein fusion materials, including tissue engineering, drug delivery, enzyme immobilization, electronics, and biosensing, and (v) opportunities to further develop this useful technique.
Collapse
Affiliation(s)
- Gabriela
Geraldo Mendes
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Fralin
Biomedical Research Institute, Virginia
Tech University, Roanoke, Virginia 24016, United States
| | - Britt Faulk
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| | - Bhavika Kaparthi
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Andrew R. Irion
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Brandon Look Fong
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Kayla Bayless
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Sarah E. Bondos
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Swanson P, Arnold GP, Curley CE, Wakita SC, Waters JDV, Balog ERM. Understanding the Phase Behavior of a Multistimuli-Responsive Elastin-like Polymer: Insights from Dynamic Light Scattering Analysis. J Phys Chem B 2024; 128:5756-5765. [PMID: 38830627 PMCID: PMC11181320 DOI: 10.1021/acs.jpcb.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Elastin-like polymers are a class of stimuli-responsive protein polymers that hold immense promise in applications such as drug delivery, hydrogels, and biosensors. Yet, understanding the intricate interplay of factors influencing their stimuli-responsive behavior remains a challenging frontier. Using temperature-controlled dynamic light scattering and zeta potential measurements, we investigate the interactions between buffer, pH, salt, water, and protein using an elastin-like polymer containing ionizable lysine residues. We observed the elevation of transition temperature in the presence of the common buffering agent HEPES at low concentrations, suggesting a "salting-in" effect of HEPES as a cosolute through weak association with the protein. Our findings motivate a more comprehensive investigation of the influence of buffer and other cosolute molecules on elastin-like polymer behavior.
Collapse
Affiliation(s)
- Peter
C. Swanson
- School of Mathematical and
Physical Sciences, University of New England, Biddeford, Maine 04005, United States
| | - Galen P. Arnold
- School of Mathematical and
Physical Sciences, University of New England, Biddeford, Maine 04005, United States
| | - Carolyn E. Curley
- School of Mathematical and
Physical Sciences, University of New England, Biddeford, Maine 04005, United States
| | - Savannah C. Wakita
- School of Mathematical and
Physical Sciences, University of New England, Biddeford, Maine 04005, United States
| | - Jeffery D. V. Waters
- School of Mathematical and
Physical Sciences, University of New England, Biddeford, Maine 04005, United States
| | - Eva Rose M. Balog
- School of Mathematical and
Physical Sciences, University of New England, Biddeford, Maine 04005, United States
| |
Collapse
|
3
|
Díez Pérez T, Tafoya AN, Peabody DS, Lakin MR, Hurwitz I, Carroll NJ, López GP. Isolation of nucleic acids using liquid-liquid phase separation of pH-sensitive elastin-like polypeptides. Sci Rep 2024; 14:10157. [PMID: 38698072 PMCID: PMC11065875 DOI: 10.1038/s41598-024-60648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
Extraction of nucleic acids (NAs) is critical for many methods in molecular biology and bioanalytical chemistry. NA extraction has been extensively studied and optimized for a wide range of applications and its importance to society has significantly increased. The COVID-19 pandemic highlighted the importance of early and efficient NA testing, for which NA extraction is a critical analytical step prior to the detection by methods like polymerase chain reaction. This study explores simple, new approaches to extraction using engineered smart nanomaterials, namely NA-binding, intrinsically disordered proteins (IDPs), that undergo triggered liquid-liquid phase separation (LLPS). Two types of NA-binding IDPs are studied, both based on genetically engineered elastin-like polypeptides (ELPs), model IDPs that exhibit a lower critical solution temperature in water and can be designed to exhibit LLPS at desired temperatures in a variety of biological solutions. We show that ELP fusion proteins with natural NA-binding domains can be used to extract DNA and RNA from physiologically relevant solutions. We further show that LLPS of pH responsive ELPs that incorporate histidine in their sequences can be used for both binding, extraction and release of NAs from biological solutions, and can be used to detect SARS-CoV-2 RNA in samples from COVID-positive patients.
Collapse
Affiliation(s)
- Telmo Díez Pérez
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ashley N Tafoya
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - David S Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Matthew R Lakin
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Computer Science, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ivy Hurwitz
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Nick J Carroll
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Gabriel P López
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA.
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
4
|
Kim H, Taslakjian B, Kim S, Tirrell MV, Guler MO. Therapeutic Peptides, Proteins and their Nanostructures for Drug Delivery and Precision Medicine. Chembiochem 2024; 25:e202300831. [PMID: 38408302 DOI: 10.1002/cbic.202300831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Peptide and protein nanostructures with tunable structural features, multifunctionality, biocompatibility and biomolecular recognition capacity enable development of efficient targeted drug delivery tools for precision medicine applications. In this review article, we present various techniques employed for the synthesis and self-assembly of peptides and proteins into nanostructures. We discuss design strategies utilized to enhance their stability, drug-loading capacity, and controlled release properties, in addition to the mechanisms by which peptide nanostructures interact with target cells, including receptor-mediated endocytosis and cell-penetrating capabilities. We also explore the potential of peptide and protein nanostructures for precision medicine, focusing on applications in personalized therapies and disease-specific targeting for diagnostics and therapeutics in diseases such as cancer.
Collapse
Affiliation(s)
- HaRam Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Boghos Taslakjian
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Sarah Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Matthew V Tirrell
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| |
Collapse
|
5
|
Kang MJ, Roh KH, Lee JS, Lee JH, Park S, Lim DW. Vascular Endothelial Growth Factor Receptor 1 Targeting Fusion Polypeptides with Stimuli-Responsiveness for Anti-angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384534 DOI: 10.1021/acsami.3c03989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Genetically engineered fusion polypeptides have been investigated to introduce unique bio-functionality and improve some therapeutic activity for anti-angiogenesis. We report herein that stimuli-responsive, vascular endothelial growth factor receptor 1 (VEGFR1) targeting fusion polypeptides composed of a VEGFR1 (fms-like tyrosine kinase-1 (Flt1)) antagonist, an anti-Flt1 peptide, and a thermally responsive elastin-based polypeptide (EBP) were rationally designed at the genetic level, biosynthesized, and purified by inverse transition cycling to develop potential anti-angiogenic fusion polypeptides to treat neovascular diseases. A series of hydrophilic EBPs with different block lengths were fused with an anti-Flt1 peptide, forming anti-Flt1-EBPs, and the effect of EBP block length on their physicochemical properties was examined. While the anti-Flt1 peptide decreased phase-transition temperatures of anti-Flt1-EBPs, compared with EBP blocks, anti-Flt1-EBPs were soluble under physiological conditions. The anti-Flt1-EBPs dose dependently inhibited the binding of VEGFR1 against vascular endothelial growth factor (VEGF) as well as tube-like network formation of human umbilical vein endothelial cells under VEGF-triggered angiogenesis in vitro because of the specific binding between anti-Flt1-EBPs and VEGFR1. Furthermore, the anti-Flt1-EBPs suppressed laser-induced choroidal neovascularization in a wet age-related macular degeneration mouse model in vivo. Our results indicate that anti-Flt1-EBPs as VEGFR1-targeting fusion polypeptides have great potential for efficacious anti-angiogenesis to treat retinal-, corneal-, and choroidal neovascularization.
Collapse
Affiliation(s)
- Min Jeong Kang
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Kug-Hwan Roh
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Jae Sang Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae Hee Lee
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - SaeGwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Dong Woo Lim
- Department of Bionano Engineering and Department of Bionanotechnology, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
6
|
Dai Y, You L, Chilkoti A. Engineering synthetic biomolecular condensates. NATURE REVIEWS BIOENGINEERING 2023; 1:1-15. [PMID: 37359769 PMCID: PMC10107566 DOI: 10.1038/s44222-023-00052-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 06/28/2023]
Abstract
The concept of phase-separation-mediated formation of biomolecular condensates provides a new framework to understand cellular organization and cooperativity-dependent cellular functions. With growing understanding of how biological systems drive phase separation and how cellular functions are encoded by biomolecular condensates, opportunities have emerged for cellular control through engineering of synthetic biomolecular condensates. In this Review, we discuss how to construct synthetic biomolecular condensates and how they can regulate cellular functions. We first describe the fundamental principles by which biomolecular components can drive phase separation. Next, we discuss the relationship between the properties of condensates and their cellular functions, which informs the design of components to create programmable synthetic condensates. Finally, we describe recent applications of synthetic biomolecular condensates for cellular control and discuss some of the design considerations and prospective applications.
Collapse
Affiliation(s)
- Yifan Dai
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| |
Collapse
|
7
|
Kneuttinger AC. A guide to designing photocontrol in proteins: methods, strategies and applications. Biol Chem 2022; 403:573-613. [PMID: 35355495 DOI: 10.1515/hsz-2021-0417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Light is essential for various biochemical processes in all domains of life. In its presence certain proteins inside a cell are excited, which either stimulates or inhibits subsequent cellular processes. The artificial photocontrol of specifically proteins is of growing interest for the investigation of scientific questions on the organismal, cellular and molecular level as well as for the development of medicinal drugs or biocatalytic tools. For the targeted design of photocontrol in proteins, three major methods have been developed over the last decades, which employ either chemical engineering of small-molecule photosensitive effectors (photopharmacology), incorporation of photoactive non-canonical amino acids by genetic code expansion (photoxenoprotein engineering), or fusion with photoreactive biological modules (hybrid protein optogenetics). This review compares the different methods as well as their strategies and current applications for the light-regulation of proteins and provides background information useful for the implementation of each technique.
Collapse
Affiliation(s)
- Andrea C Kneuttinger
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
8
|
Ngo ACR, Josef Schultes FP, Maier A, Hadewig SNH, Tischler D. Improving biocatalytic properties of an azoreductase via the N-terminal fusion of formate dehydrogenase. Chembiochem 2022; 23:e202100643. [PMID: 35080802 PMCID: PMC9305538 DOI: 10.1002/cbic.202100643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/19/2022] [Indexed: 11/07/2022]
Abstract
Azoreductases require NAD(P)H to reduce azo dyes but the costly price of NAD(P)H limits its application. Formate dehydrogenase (FDH) allows NAD(P)+ recycling and therefore, the fusion of these two biocatalysts seems promising. This study investigated the changes to the fusion protein involving azoreductase (AzoRo) of Rhodococcus opacus 1CP and FDH (FDHC23S and FDHC23SD195QY196H) of Candida boidinii in different positions with His-tag as the linker. The position affected enzyme activities as AzoRo activity decreased by 20-fold when it is in the N-terminus of the fusion protein. FDHC23S+AzoRo was the most active construct and was further characterized. Enzymatic activities of FDHC23S+AzoRo decreased compared to parental enzymes but showed improved substrate scope - accepting bulkier dyes. Moreover, pH has an influence on the stability and activity of the fusion protein because at pH 6 (pH that is suboptimal for FDH), the dye reduction decreased to more than 50% and this could be attributed to the impaired NADH supply for the AzoRo part.
Collapse
Affiliation(s)
- Anna Christina R Ngo
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Biologie und Biotechnologie, GERMANY
| | | | - Artur Maier
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum, biologie und biotechnologie, GERMANY
| | | | - Dirk Tischler
- Ruhr-Universität Bochum, Biologie und Biotechnologie, Universitatsstr. 150, NDEF 06 748, Mikrobielle Biotechnologie, 44780, Bochum, GERMANY
| |
Collapse
|
9
|
Vaikari VP, Park M, Keossayan L, MacKay JA, Alachkar H. Anti-CD99 scFv-ELP nanoworms for the treatment of acute myeloid leukemia. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 29:102236. [PMID: 32535112 PMCID: PMC7508895 DOI: 10.1016/j.nano.2020.102236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/13/2020] [Accepted: 05/31/2020] [Indexed: 01/23/2023]
Abstract
CD99 is a transmembrane glycoprotein shown to be upregulated in various malignancies. We have previously reported CD99 to be highly upregulated and present a viable therapeutic target in acute myeloid leukemia (AML). Currently, no therapy against CD99 is under clinical investigation. As a surface molecule, CD99 can be targeted with an antibody-based approach. Here, we have developed a new modality to target CD99 by engineering a fusion protein composed of a single-chain variable fragment antibody (anti-CD99 scFv) conjugated with a high molecular weight elastin-like polypeptide (ELP), A192: α-CD99-A192. This fusion protein assembles into multi-valent nanoworm with optimal physicochemical properties and favorable pharmacokinetic parameters (half-life: 16 h). α-CD99-A192 nanoworms demonstrated excellent in vitro and in vivo anti-leukemic effects. α-CD99-A192 induced apoptotic cell death in AML cell lines and primary blasts and prolonged overall survival of AML xenograft mouse model.
Collapse
MESH Headings
- 12E7 Antigen/antagonists & inhibitors
- 12E7 Antigen/genetics
- 12E7 Antigen/immunology
- Animals
- Antibodies, Monoclonal/pharmacology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Mice
- Nanoparticles/chemistry
- Peptides/genetics
- Peptides/immunology
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Vijaya Pooja Vaikari
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Mincheol Park
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Lena Keossayan
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Houda Alachkar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
10
|
Park M, Vaikari VP, Lam AT, Zhang Y, MacKay JA, Alachkar H. Anti-FLT3 nanoparticles for acute myeloid leukemia: Preclinical pharmacology and pharmacokinetics. J Control Release 2020; 324:317-329. [PMID: 32428520 PMCID: PMC7473778 DOI: 10.1016/j.jconrel.2020.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
FLT3 receptor is an important therapeutic target in acute myeloid leukemia due to high incidence of mutations associated with poor clinical outcome. Targeted therapies against the FLT3 receptor, including small-molecule FLT3 tyrosine kinase inhibitors (TKIs) and anti-FLT3 antibodies, have demonstrated promising preclinical and even clinical efficacy. Yet, even with the current FDA approval for two FLT3 inhibitors, these modalities were unable to cure AML or significantly extend the lives of patients with a common mutation called FLT3-ITD. While FLT3 is a viable target, the approaches to inhibit its activity were inadequate. To develop a new modality for targeting FLT3, our team engineered an α-FLT3-A192 fusion protein composed of a single chain variable fragment antibody conjugated with an elastin-like polypeptide. These fusion proteins assemble into multi-valent nanoparticles with excellent stability and pharmacokinetic properties as well as in vitro and in vivo pharmacological activity in cellular and xenograft murine models of AML. In conclusion, α-FLT3-A192 fusions appear to be a viable new modality for targeting FLT3 in AML and warrant further preclinical development to bring it into the clinic.
Collapse
Affiliation(s)
- Mincheol Park
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Vijaya Pooja Vaikari
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Albert T Lam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, United States; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, United States; Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, United States
| | - John Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States; Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, United States
| | - Houda Alachkar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, United States; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
11
|
Abstract
Elastin-like polypeptides (ELPs) are stimulus-responsive biopolymers derived from human elastin. Their unique properties—including lower critical solution temperature phase behavior and minimal immunogenicity—make them attractive materials for a variety of biomedical applications. ELPs also benefit from recombinant synthesis and genetically encoded design; these enable control over the molecular weight and precise incorporation of peptides and pharmacological agents into the sequence. Because their size and sequence are defined, ELPs benefit from exquisite control over their structure and function, qualities that cannot be matched by synthetic polymers. As such, ELPs have been engineered to assemble into unique architectures and display bioactive agents for a variety of applications. This review discusses the design and representative biomedical applications of ELPs, focusing primarily on their use in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Anastasia K. Varanko
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jonathan C. Su
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
12
|
Wang S, Lin R, Ren Y, Zhang T, Lu H, Wang L, Fan D. Non-chromatographic purification of thermostable endoglucanase from Thermotoga maritima by fusion with a hydrophobic elastin-like polypeptide. Protein Expr Purif 2020; 173:105634. [PMID: 32325232 DOI: 10.1016/j.pep.2020.105634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/26/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Endoglucanase EG12B from Thermotoga maritima is a thermophilic cellulase that has great potential for industrial applications. Here, to enable the selective purification of EG12B in a simple and efficient manner, an elastin-like polypeptide (ELP), which acts as a thermally responsive polypeptide, was fused with EG12B to enable its inverse phase transition cycling (ITC). A small gene library comprising ELPs from ELP5 to ELP50 was constructed using recursive directional ligation by plasmid reconstruction. ELP50 was added to the C-terminus of EG12B as a fusion tag to obtain the expression vector pET28-EG12B-ELP50, which was transformed into Escherichia coli BL21 (DE3) to enable the expression of fusion protein via IPTG induction. Gray scanning analysis revealed that the EG12B-ELP50 expression level was up to about 35% of the total cellular proteins. After three rounds of ITC, 8.14 mg of EG12B-ELP50 was obtained from 500-mL lysogeny broth culture medium. The recovery rate and purification fold of EG12B-ELP50 purified by ITC reached 78.1% and 11.8, respectively. The cellulase activity assay showed that EG12B-ELP50 had a better thermostability, higher optimal temperature, and longer half-life than those of free EG12B. Overall, our results suggested that ELP50 could be used as a favorable fusion tag, providing a rapid, simple, and inexpensive strategy for non-chromatographic target-protein purification.
Collapse
Affiliation(s)
- Shanshan Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, China.
| | - Rui Lin
- Department of Gastroenterology and Hepatology, Tianjin Medical University, General Hospital, Tianjin, 300052, China
| | - Yanyan Ren
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, 710069, China.
| |
Collapse
|
13
|
Ancín M, Sanz-Barrio R, Santamaría E, Fernández-San Millán A, Larraya L, Veramendi J, Farran I. Functional Improvement of Human Cardiotrophin 1 Produced in Tobacco Chloroplasts by Co-expression with Plastid Thioredoxin m. PLANTS 2020; 9:plants9020183. [PMID: 32024318 PMCID: PMC7076529 DOI: 10.3390/plants9020183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/24/2022]
Abstract
Human cardiotrophin 1 (CT1), a cytokine with excellent therapeutic potential, was previously expressed in tobacco chloroplasts. However, the growth conditions required to reach the highest expression levels resulted in an impairment of its bioactivity. In the present study, we have examined new strategies to modulate the expression of this recombinant protein in chloroplasts so as to enhance its production and bioactivity. In particular, we assessed the effect of both the fusion and co-expression of Trx m with CT1 on the production of a functional CT1 by using plastid transformation. Our data revealed that the Trx m fusion strategy was useful to increase the expression levels of CT1 inside the chloroplasts, although CT1 bioactivity was significantly impaired, and this was likely due to steric hindrance between both proteins. By contrast, the expression of functional CT1 was increased when co-expressed with Trx m, because we demonstrated that recombinant CT1 was functionally active during an in vitro signaling assay. While Trx m/CT1 co-expression did not increase the amount of CT1 in young leaves, our results revealed an increase in CT1 protein stability as the leaves aged in this genotype, which also improved the recombinant protein's overall production. This strategy might be useful to produce other functional biopharmaceuticals in chloroplasts.
Collapse
Affiliation(s)
- María Ancín
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Ruth Sanz-Barrio
- National Centre for Biotechnology, Plant Molecular Genetics Department, CSIC, 28049 Madrid, Spain
| | - Eva Santamaría
- Hepatology Program, University of Navarra, CIMA, E-31008 Pamplona, Spain;
- CIBERehd, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Alicia Fernández-San Millán
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Luis Larraya
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Jon Veramendi
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Inmaculada Farran
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
- Correspondence: ; Tel.: +34-948-168034
| |
Collapse
|
14
|
Israeli B, Vaserman L, Amiram M. Multi‐Site Incorporation of Nonstandard Amino Acids into Protein‐Based Biomaterials. Isr J Chem 2019. [DOI: 10.1002/ijch.201900043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bar Israeli
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Livne Vaserman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| |
Collapse
|
15
|
Lin CY, Liu JC. Incorporation of short, charged peptide tags affects the temperature responsiveness of positively-charged elastin-like polypeptides. J Mater Chem B 2019; 7:5245-5256. [PMID: 31384872 PMCID: PMC7098454 DOI: 10.1039/c9tb00821g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elastin-like polypeptides (ELPs) are recombinant protein domains exhibiting lower critical solution temperature (LCST) behavior. This LCST behavior is controlled not only by intrinsic factors including amino acid composition and polypeptide chain length but also by non-ELP fusion domains. Here, we report that the presence of a composite non-ELP sequence that includes both His and T7 tags or a short Ser-Lys-Gly-Pro-Gly (SKGPG) sequence can dramatically change the LCST behavior of a positively-charged ELP domain. Both the His and T7 tags have been widely used in recombinant protein design to enable affinity chromatography and serve as epitopes for protein detection. The SKGPG sequence has been used to improve the expression of ELPs. Both the composite tag and the SKGPG sequence are <15% of the total length of the ELP fusion proteins. Despite the small size of the composite tag, its incorporation imparted pH-sensitive LCST behavior to the positively-charged ELP fusion protein. This pH sensitivity was not observed with the incorporation of the SKGPG sequence. The pH sensitivity results from both electrostatic and hydrophobic interactions between the composite tag and the positively-charged ELP domain. The hydrophobicity of the composite tag also alters the ELP interaction with Hofmeister salts by changing the overall hydrophobicity of the fusion protein. Our results suggest that incorporation of short tag sequences should be considered when designing temperature-responsive ELPs and provide insights into utilizing both electrostatic and hydrophobic interactions to design temperature-responsive recombinant proteins as well as synthetic polymers.
Collapse
Affiliation(s)
- Charng-Yu Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA. and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Asai D, Fukuda T, Morokuma K, Funamoto D, Yamaguchi Y, Mori T, Katayama Y, Shibayama K, Nakashima H. Injectable Polypeptide Hydrogel Depot System for Assessment of the Immune Response-Inducing Efficacy of Sustained Antigen Release Alone. Macromol Biosci 2019; 19:e1900167. [PMID: 31430065 DOI: 10.1002/mabi.201900167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Vaccines typically contain an antigen, delivery system (vehicle), and adjuvant, all of which contribute to inducing a potent immune response. Consequently, design of new vaccines is difficult, because the contributions and interactions of these components are difficult to distinguish. Here, it is aimed to develop an easy-to-use, non-immunogenic, injectable depot system for sustained antigen release that will be suitable for assessing the efficacy of prolonged antigen exposure per se for inducing an immune response. This should mimic real-life infections. Recombinant elastin-like polypeptides with periodic cysteine residues (cELPs) are selected, which reportedly show little or no immunogenicity, as carriers and tetanus toxoid (Ttd) as an antigen. After subcutaneous injection of the mixture, cELP rapidly forms a disulfide cross-linked hydrogel in situ, within which Ttd is physically incorporated, affording a biodegradable antigen depot. A series of Ttd-containing hydrogels is examined. A single injection induces high levels of tetanus antibody with high avidity for at least 20 weeks in mice. The chain length of cELP proves critical, whereas differences in hydrophobicity has little effect, although hydrophilic cELPs are more rapidly biodegraded. This system's ability to distinguish the contribution of sustained antigen release to antibody induction should be helpful for rational design of next-generation vaccines.
Collapse
Affiliation(s)
- Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, 216-8511, Japan
| | - Tadashi Fukuda
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Kazunori Morokuma
- Quality Control Department, KM Biologics Co., Ltd., 1-6-1 Okubo, Kita-ku, Kumamoto, 860-8568, Japan
| | - Daiki Funamoto
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuko Yamaguchi
- Quality Control Department, KM Biologics Co., Ltd., 1-6-1 Okubo, Kita-ku, Kumamoto, 860-8568, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Hideki Nakashima
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, 216-8511, Japan
| |
Collapse
|
17
|
Ge Z, Xiong Z, Zhang D, Li X, Zhang G. Unique Phase Transition of Exogenous Fusion Elastin-like Polypeptides in the Solution Containing Polyethylene Glycol. Int J Mol Sci 2019; 20:E3560. [PMID: 31330842 PMCID: PMC6678693 DOI: 10.3390/ijms20143560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022] Open
Abstract
Elastin-Like polypeptides (ELPs), as well-known temperature-controlled bio-macromolecules, are widely used. However, little is known about the interactions between ELPs and macromolecules, which is an important yet neglected problem. Here, the phase transition characteristics of an ELPs-SpyCatcher fusion protein (E-C) in the presence of polyethylene glycol (PEG) in single salts (Na2CO3, Na2SO4, NaCl) solutions were investigated using a UV spectrophotometer, DLC, and fluorescence spectroscopy, and we got some interesting results. The phases transition of E-C occurred at a concentration lower than 0.5 mol/L Na2CO3/PEG2000, while in single Na2CO3 (<0.5 mol/L), the phase transition of E-C did not occur. In the Na2CO3/PEG solution, we observed a unique two-step phase transition of E-C when the Na2CO3 concentration was 0.5 mol/L and PEG2000 concentration was less than 0.15 g/mL, respectively. In the Na2CO3/PEG2000 solution, the phase-transition temperature of E-C decreased with the increase of PEG concentration, but increased in the Na2SO4/PEG2000 solution, while it remained unchanged in the NaCl/PEG2000 solution. However, the phase-transition temperature of the linear ELPs40 decreased under the same salts/PEG2000 solutions. We also addressed the possible molecular mechanism of the interesting results. In contrast to the current well-understood salts-ELPs interactions, this work provides some new insights into the interaction between the PEG-salts-ELPs in solution.
Collapse
Affiliation(s)
- Zhongqi Ge
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, Fujian 361021, China
| | - Ziyang Xiong
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, Fujian 361021, China
| | - Dandan Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xialan Li
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, Fujian 361021, China.
| |
Collapse
|
18
|
Gapizov SS, Petrovskaya LE, Shingarova LN, Kryukova EA, Boldyreva EF, Lukashev EP, Yakimov SA, Svirshchevskaya EV, Dolgikh DA, Kirpichnikov MP. Fusion with an albumin-binding domain improves pharmacokinetics of an αvβ3-integrin binding fibronectin scaffold protein. Biotechnol Appl Biochem 2019; 66:617-625. [PMID: 31140614 DOI: 10.1002/bab.1762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Abstract
Fusion with an albumin-binding domain (ABD) of streptococcal protein G represents a popular approach for half-life extension of small protein therapeutics in the organism. To increase the circulation time of engineered αvβ3-integrin-binding protein (JCL) based on the 10th human fibronectin type III domain (10 Fn3), we have constructed several fusions with ABD with different orientations of the partner proteins and linker length. The recombinant proteins were expressed in Escherichia coli cells and purified by nickel-affinity chromatography. All fusion proteins bound human serum albumin (HSA) in ELISA assay; however, fusions with longer linkers demonstrated better performance. Interaction of ABD-L15 -JCL and JCL-L14 -ABD with HSA was confirmed by analytical size exclusion chromatography and pull-down assays. Surprisingly, the thermal stability of ABD-L15 -JCL was dramatically decreased in comparison with JCL and JCL-L14 -ABD proteins. Pharmacokinetic studies revealed that JCL-L14 -ABD circulated in murine blood about 10 times longer than ABD-L15 -JCL and 960 times longer than JCL. Biodistribution studies of JCL-L14 -ABD in mice revealed its increased level in blood and a decreased accumulation in liver and kidneys in comparison with JCL. Obtained results demonstrate the utility of the fusion with ABD for half-life extension of the binding proteins based on 10 Fn3.
Collapse
Affiliation(s)
- S Sh Gapizov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russian Federation.,Department of Biology, M. V. Lomonosov Moscow State University, 119234, Moscow, Russian Federation
| | - L E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russian Federation
| | - L N Shingarova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russian Federation
| | - E A Kryukova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russian Federation
| | - E F Boldyreva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russian Federation
| | - E P Lukashev
- Department of Biology, M. V. Lomonosov Moscow State University, 119234, Moscow, Russian Federation
| | - S A Yakimov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russian Federation
| | - E V Svirshchevskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russian Federation
| | - D A Dolgikh
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russian Federation.,Department of Biology, M. V. Lomonosov Moscow State University, 119234, Moscow, Russian Federation
| | - M P Kirpichnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russian Federation.,Department of Biology, M. V. Lomonosov Moscow State University, 119234, Moscow, Russian Federation
| |
Collapse
|
19
|
Ibáñez-Fonseca A, Flora T, Acosta S, Rodríguez-Cabello JC. Trends in the design and use of elastin-like recombinamers as biomaterials. Matrix Biol 2019; 84:111-126. [PMID: 31288085 DOI: 10.1016/j.matbio.2019.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
Elastin-like recombinamers (ELRs), which derive from one of the repetitive domains found in natural elastin, have been intensively studied in the last few years from several points of view. In this mini review, we discuss all the recent works related to the investigation of ELRs, starting with those that define these polypeptides as model intrinsically disordered proteins or regions (IDPs or IDRs) and its relevance for some biomedical applications. Furthermore, we summarize the current knowledge on the development of drug, vaccine and gene delivery systems based on ELRs, while also emphasizing the use of ELR-based hydrogels in tissue engineering and regenerative medicine (TERM). Finally, we show different studies that explore applications in other fields, and several examples that describe biomaterial blends in which ELRs have a key role. This review aims to give an overview of the recent advances regarding ELRs and to encourage further investigation of their properties and applications.
Collapse
Affiliation(s)
- Arturo Ibáñez-Fonseca
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Tatjana Flora
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Sergio Acosta
- BIOFORGE Lab, CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011 Valladolid, Spain
| | | |
Collapse
|
20
|
Engineered Ribonucleoprotein Granules Inhibit Translation in Protocells. Mol Cell 2019; 75:66-75.e5. [PMID: 31175012 DOI: 10.1016/j.molcel.2019.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 03/05/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022]
Abstract
Liquid granules rich in intrinsically disordered proteins and RNA play key roles in critical cellular functions such as RNA processing and translation. Many details of the mechanism via which this occurs remain to be elucidated. Motivated by the lacuna in the field and by the prospects of developing de novo artificial granules that provide extrinsic control of translation, we report a bottom-up approach to engineer ribonucleoprotein granules composed of a recombinant RNA-binding IDP that exhibits phase behavior in water. We developed a kinetic model to illustrate that these granules inhibit translation through reversible or irreversible sequestration of mRNA. Within monodisperse droplets capable of transcription and translation, we experimentally demonstrate temporal inhibition of translation by using designer IDPs that exhibit tunable phase behavior. This work lays the foundation for developing artificial granules that promise to further our mechanistic understanding of their naturally occurring counterparts.
Collapse
|
21
|
Fletcher EE, Yan D, Kosiba AA, Zhou Y, Shi H. Biotechnological applications of elastin-like polypeptides and the inverse transition cycle in the pharmaceutical industry. Protein Expr Purif 2019; 153:114-120. [PMID: 30217600 DOI: 10.1016/j.pep.2018.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Proteins are essential throughout the biological and biomedical sciences and the purification strategies of proteins of interest have advanced over centuries. Elastin-like polypeptides (ELPs) are compound polymers that have recently been highlighted for their sharp and reversible phase transition property when heated above their lower critical solution temperature (LCST). ELPs preserve this behavior when fused to a protein, and as a result providing a simple method to isolate a recombinant ELP fusion protein from cell contaminants by taking the solution through the soluble and insoluble phase of the ELP fusion protein, a technique designated as the inverse transition cycle (ITC). ITC is considered an inexpensive and efficient way of purifying recombinant ELP fusion proteins. In addition, ELPs render recombinant fusion protein more stability and a longer clear time in blood stream, which give ELPs a lot of valuable applications in the biotechnological and pharmaceutical industry. This article reviews the modernizations of ELPs and briefly highlights on the possible use of technologies such as the automatic piston discharge (APD) centrifuges to improve the efficiency of the ITC in the pharmaceutical industry to obtain benefits.
Collapse
Affiliation(s)
- Emmanuella E Fletcher
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Dandan Yan
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Anthony A Kosiba
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China.
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, PR China.
| |
Collapse
|
22
|
Zhou Y, Li X, Yan D, Addai Peprah F, Ji X, Fletcher EE, Wang Y, Wang Y, Gu J, Lin F, Shi H. Multifunctional elastin-like polypeptide renders β-glucosidase enzyme phase transition and high stability. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:157. [PMID: 31249620 PMCID: PMC6589881 DOI: 10.1186/s13068-019-1497-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/11/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND In the enzymatic conversion of biomass, it becomes an important issue to efficiently and cost-effectively degrade cellulose into fermentable glucose. β-Glucosidase (Bgluc), an essential member of cellulases, plays a critical role in cellulosic biomass degradation. The difficulty in improving the stability of Bgluc has been a bottleneck in the enzyme-dependent cellulose degradation. The traditional method of protein purification, however, leads to higher production cost and a decrease in activity. To simplify and efficiently purify Bgluc with modified special properties, Bgluc-tagged ELP and His with defined phase transitions was designed to facilitate the process. RESULTS Here, a novel binary ELP and His tag was fused with Bgluc from termite Coptotermes formosanus to construct a Bgluc-linker-ELP-His recombinant fusion protein (BglucLEH). The recombinant plasmid Bgluc expressing a His tag (BglucH) was also constructed. The BglucLEH and BglucH were expressed in E. coli BL21 and purified using inverse transition cycling (ITC) or Ni-NTA resin. The optimum salt concentration for the ITC purification of BglucLEH was 0.5 M (NH4)2SO4 and the specific activity of BglucLEH purified by ITC was 75.5 U/mg for substrate p-NPG, which was slightly higher than that of BglucLEH purified by Ni-NTA (68.2 U/mg). The recovery rate and purification fold of BglucLEH purified by ITC and Ni-NTA were 77.8%, 79.1% and 12.60, 11.60, respectively. The results indicated that purification with ITC was superior to the traditional Ni-NTA. The K m of BglucLEH and BglucH for p-NPG was 5.27 and 5.73 mM, respectively. The K ca t/K m (14.79 S-1 mM-1) of BglucLEH was higher than that of BglucH (12.10 S-1 mM-1). The effects of ELP tag on the enzyme activity, secondary structure and protein stability were also studied. The results showed that ELP tag did not affect the secondary structure or enzyme activity of Bgluc. More importantly, ELP improved the protein stability in harsh conditions such as heating and exposure to denaturant. CONCLUSION The Bgluc-linker-ELP-His system shows wide application prospect in maintaining the activity, efficient purification and improving the stability of Bgluc. These properties of BglucLEH make it an interesting tool to reduce cost, to improve the efficiency of biocatalyst and potentially to enhance the degradation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Xiaofeng Li
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Dandan Yan
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Frank Addai Peprah
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Xingqi Ji
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Emmanuella Esi Fletcher
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Yanwei Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Yingying Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001 People’s Republic of China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| |
Collapse
|
23
|
VerHeul R, Sweet C, Thompson DH. Rapid and simple purification of elastin-like polypeptides directly from whole cells and cell lysates by organic solvent extraction. Biomater Sci 2018; 6:863-876. [PMID: 29488993 DOI: 10.1039/c8bm00124c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Elastin-like polypeptides (ELP) are a well-known class of proteins that are being increasingly utilized in a variety of biomedical applications, due to their beneficial physicochemical properties. A unifying feature of ELP is their demonstration of a sequence tunable inverse transition temperature (Tt) that enables purification using a simple, straightforward process called inverse transition cycling (ITC). Despite the utility of ITC, the process is inherently limited to ELP with an experimentally accessible Tt. Since the underlying basis for the ELP Tt is related to its high overall hydrophobicity, we anticipated that ELP would be excellent candidates for purification by organic extraction. We report the first method for rapidly purifying ELP directly from whole E. coli cells or clarified lysates using pure organic solvents and solvent mixtures, followed by aqueous back extraction. Our results show that small ELP and a large ELP-fusion protein can be isolated in high yield from whole cells or cell lysates with greater than 95% purity in less than 30 min and with very low levels of LPS and DNA contamination.
Collapse
Affiliation(s)
- Ross VerHeul
- Department of Chemistry, Purdue Center for Cancer Research, Multi-disciplinary Cancer Research Facility, Purdue University, 1203 W State Street, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
24
|
Wang Y, Tan X, Zong Y, Lu H, Zhang X, Xia X, Sun H. Enhancing purification and plasma stability of porcine interferon-α/γ by fusion to elastin-like polypeptide. Vet Immunol Immunopathol 2018; 203:60-64. [PMID: 30243375 DOI: 10.1016/j.vetimm.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 07/27/2018] [Accepted: 08/12/2018] [Indexed: 10/28/2022]
Abstract
The clinical use of recombinant interferons (rIFNs) is limited by higher purification cost and quick clearance from circulation. Elastin-like polypeptides (ELPs) are a novel tag for recombinant protein purification and half-life extension. In this study, we evaluated the feasibility of ELP fusion for simple purification and half-life extension of recombinant porcine IFNs (rPoIFNs). After construction of five different fusion expression vectors, we optimized the conditions for soluble protein expression and purification. SDS-PAGE analysis showed that, unlike PoIFNα-His and PoIFNγ-His, PoIFNα-ELP, ELP-PoIFNα and PoIFNαγ-ELP were expressed mainly as soluble proteins at 20 ℃. The optimal conditions for the inverse transition cycling (ITC) of three ELP fusion proteins were 2 M NaCl at 28 ℃. After two rounds of ITC, the three ELP fusion proteins were purified to more than 90% purities, which were comparable to that of affinity-purified PoIFNα-His and PoIFNγ-His. Cytopathic effect inhibition assay showed that the five rPoIFNs had potent but different antiviral activities against two different viruses on two different cell types. The plasma solubility assay showed that the three ELP-fused rPoIFNs remained as soluble proteins under the physical conditions. The plasma stability of three ELP-fused rPoIFNs was significantly improved in comparison with that of PoIFN-α. These data suggest that ELP fusion is a feasible strategy to enhance purification and plasma stability of rPoIFNs.
Collapse
Affiliation(s)
- Yajie Wang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiao Tan
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yang Zong
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Huipeng Lu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Zhang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoli Xia
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Huaichang Sun
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
25
|
da Costa A, Pereira AM, Gomes AC, Rodriguez-Cabello JC, Casal M, Machado R. Production of bioactive hepcidin by recombinant DNA tagging with an elastin-like recombinamer. N Biotechnol 2018; 46:45-53. [PMID: 30012422 DOI: 10.1016/j.nbt.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
With the lack of new chemical antibiotics and increasing pathogen resistance to those available, new alternatives are being explored. Antimicrobial peptides (AMPs) with a broad range of effects, including antibacterial, antifungal, and antiviral actions, have emerged as one of the options. They can be produced by recombinant DNA technology, but the chromatographic methods used for peptide purification are expensive and time consuming. Here, we describe the design, production, purification and assessment of the antibacterial activity of the human peptide hepcidin, using an elastin-like recombinamer as fusion partner. The recombinant protein Hep-A200 was produced in Escherichia coli and purified by a non-chromatographic procedure, exploiting the thermal properties of the A200 elastin-like recombinamer. Recombinant Hep-A200 was found to retain antibacterial activity against Gram-positive and Gram-negative species.
Collapse
Affiliation(s)
- A da Costa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - A M Pereira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - A C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J C Rodriguez-Cabello
- Bioforge (Group for Advanced Materials and Nanobiotechnology), Edificio LUCIA, Universidad de Valladolid, Valladolid, Spain; Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-47011 Valladolid, Spain
| | - M Casal
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - R Machado
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
26
|
Chen W, Zhou S, Ge L, Wu W, Jiang X. Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers. Biomacromolecules 2018; 19:1732-1745. [PMID: 29690764 DOI: 10.1021/acs.biomac.8b00218] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most nanocarriers possess low drug loading, resulting in frequently repeated administration and thereby high cost and increased side effects. Furthermore, the characteristics of nanocarrier materials, especially the drug loading capacity, plays a vital role in the drug delivery efficacy. In this review, we focus on the readily translatable polymeric drug delivery systems with high drug loading, which are comprised of biocompatible polymers such as poly(ethylene glycol), poly( N-vinylpyrrolidone), polyoxazoline, natural proteins like albumin and casein, non-natural proteins such as recombinant elastin-like polypeptides, as well as nucleic acids. At the end of this review, applications of these polymeric nanocarriers on the delivery of proteins and gene drugs are also briefly discussed.
Collapse
Affiliation(s)
- Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , P. R. China
| | - Sensen Zhou
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , P. R. China
| | - Lei Ge
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , P. R. China
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , P. R. China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
27
|
Column Chromatography Free Purification of Recombinant α-Amylase from Bacillus licheniformis by Tagging with Hydrophobic Elastin Like Polypeptide. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40011-017-0862-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Despanie J, Dhandhukia JP, Hamm-Alvarez SF, MacKay JA. Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines. J Control Release 2016; 240:93-108. [PMID: 26578439 PMCID: PMC5767577 DOI: 10.1016/j.jconrel.2015.11.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Elastin-like polypeptides (ELPs) constitute a genetically engineered class of 'protein polymers' derived from human tropoelastin. They exhibit a reversible phase separation whereby samples remain soluble below a transition temperature (Tt) but form amorphous coacervates above Tt. Their phase behavior has many possible applications in purification, sensing, activation, and nanoassembly. As humanized polypeptides, they are non-immunogenic, substrates for proteolytic biodegradation, and can be decorated with pharmacologically active peptides, proteins, and small molecules. Recombinant synthesis additionally allows precise control over ELP architecture and molecular weight, resulting in protein polymers with uniform physicochemical properties suited to the design of multifunctional biologics. As such, ELPs have been employed for various uses including as anti-cancer agents, ocular drug delivery vehicles, and protein trafficking modulators. This review aims to offer the reader a catalogue of ELPs, their various applications, and potential for commercialization across a broad spectrum of fields.
Collapse
Affiliation(s)
- Jordan Despanie
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - Jugal P Dhandhukia
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90033, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033-9121, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
29
|
Kim H, Chen W. A non-chromatographic protein purification strategy using Src 3 homology domains as generalized capture domains. J Biotechnol 2016; 234:27-34. [DOI: 10.1016/j.jbiotec.2016.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
|
30
|
Production of a polar fish antimicrobial peptide in Escherichia coli using an ELP-intein tag. J Biotechnol 2016; 234:83-89. [PMID: 27485812 DOI: 10.1016/j.jbiotec.2016.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 02/02/2023]
Abstract
An important aspect related to infectious pathogens is their exceptional adaptability in developing resistance, which leads to a perpetual challenge in the discovery of antimicrobial drugs with novel mechanisms of action. Among them, antimicrobial peptides (AMPs) stand out as promising anti-infective molecules. In order to overcome the high costs associated with isolation from natural sources or chemical synthesis of AMPs we propose the expression of Pa-MAP 2, a polyalanine AMP. Pa-MAP 2 was fused to an ELP-intein tag where the ELP (Elastin-like polypeptide) was used to promote aggregation and fast and cost-effective isolation after expression, and the intein was used to stimulate a controlled AMP release. For these, the vector pET21a was used to produce Pa-MAP 2 fused to the N-termini region of a modified Mxe GyrA intein followed by 60 repetitions of ELP. Purified Pa-MAP 2 showed a MIC of 25μM against E. coli ATCC 8739. Batch fermentation demonstrated that Pa-MAP-2 can be produced in both rich and defined media at yields 50-fold higher than reported for other AMPs produced by the ELP-intein system, and in comparable yields to expression systems with protease or chemical cleavage.
Collapse
|
31
|
Yeboah A, Cohen RI, Rabolli C, Yarmush ML, Berthiaume F. Elastin-like polypeptides: A strategic fusion partner for biologics. Biotechnol Bioeng 2016; 113:1617-27. [DOI: 10.1002/bit.25998] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Agnes Yeboah
- Department of Chemical and Biochemical Engineering; Rutgers University; Piscataway New Jersey
| | - Rick I. Cohen
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway 08854 New Jersey
| | - Charles Rabolli
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway 08854 New Jersey
| | - Martin L. Yarmush
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway 08854 New Jersey
- Center for Engineering in Medicine; Massachusetts General Hospital and Shriners Burns Hospital; Boston Massachusetts
| | - Francois Berthiaume
- Department of Biomedical Engineering; Rutgers University; 599 Taylor Road Piscataway 08854 New Jersey
| |
Collapse
|
32
|
Moua PS, Gonzalez A, Oshiro KT, Tam V, Li ZH, Chang J, Leung W, Yon A, Thor D, Venkatram S, Franz AH, Risser DD, Lin-Cereghino J, Lin-Cereghino GP. Differential secretion pathways of proteins fused to the Escherichia coli maltose binding protein (MBP) in Pichia pastoris. Protein Expr Purif 2016; 124:1-9. [PMID: 27079175 DOI: 10.1016/j.pep.2016.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 01/13/2023]
Abstract
The Escherichia coli maltose binding protein (MBP) is an N-terminal fusion partner that was shown to enhance the secretion of some heterologous proteins from the yeast Pichia pastoris, a popular host for recombinant protein expression. The amount of increase in secretion was dependent on the identity of the cargo protein, and the fusions were proteolyzed prior to secretion, limiting its use as a purification tag. In order to overcome these obstacles, we used the MBP as C-terminal partner for several cargo peptides. While the Cargo-MBP proteins were no longer proteolyzed in between these two moieties when the MBP was in this relative position, the secretion efficiency of several fusions was lower than when MBP was located at the opposite end of the cargo protein (MBP-Cargo). Furthermore, fluorescence analysis suggested that the MBP-EGFP and EGFP-MBP proteins followed different routes within the cell. The effect of several Pichia pastoris beta-galactosidase supersecretion (bgs) strains, mutants showing enhanced secretion of select reporters, was also investigated on both MBP-EGFP and EGFP-MBP. While the secretion efficiency, proteolysis and localization of the MBP-EGFP was influenced by the modified function of Bgs13, EGFP-MBP behavior was not affected in the bgs strain. Taken together, these results indicate that the location of the MBP in a fusion affects the pathway and trans-acting factors regulating secretion in P. pastoris.
Collapse
Affiliation(s)
- Pachai S Moua
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Alfonso Gonzalez
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Kristin T Oshiro
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Vivian Tam
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Zhiguo Harry Li
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, United States
| | - Jennifer Chang
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Wilson Leung
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Amy Yon
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Der Thor
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, United States
| | - Sri Venkatram
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Andreas H Franz
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, United States
| | - Douglas D Risser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Joan Lin-Cereghino
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States
| | - Geoff P Lin-Cereghino
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States.
| |
Collapse
|
33
|
Ott W, Nicolaus T, Gaub HE, Nash MA. Sequence-Independent Cloning and Post-Translational Modification of Repetitive Protein Polymers through Sortase and Sfp-Mediated Enzymatic Ligation. Biomacromolecules 2016; 17:1330-8. [DOI: 10.1021/acs.biomac.5b01726] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wolfgang Ott
- Center
for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | | | | | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4056 Basel, Switzerland
- Department
of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH-Zürich), 4058 Basel, Switzerland
| |
Collapse
|
34
|
Yeo GC, Aghaei-Ghareh-Bolagh B, Brackenreg EP, Hiob MA, Lee P, Weiss AS. Fabricated Elastin. Adv Healthc Mater 2015; 4:2530-2556. [PMID: 25771993 PMCID: PMC4568180 DOI: 10.1002/adhm.201400781] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/09/2015] [Indexed: 12/18/2022]
Abstract
The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement.
Collapse
Affiliation(s)
- Giselle C. Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Behnaz Aghaei-Ghareh-Bolagh
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Edwin P. Brackenreg
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Matti A. Hiob
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Pearl Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
| | - Anthony S. Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
- School of Molecular Bioscience, The University of Sydney, NSW 2006, Australia
- Bosch Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
35
|
Hamid Akash MS, Rehman K, Chen S. Natural and Synthetic Polymers as Drug Carriers for Delivery of Therapeutic Proteins. POLYM REV 2015. [DOI: 10.1080/15583724.2014.995806] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Smits FCM, Buddingh BC, van Eldijk MB, van Hest JCM. Elastin-like polypeptide based nanoparticles: design rationale toward nanomedicine. Macromol Biosci 2014; 15:36-51. [PMID: 25407963 DOI: 10.1002/mabi.201400419] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/17/2014] [Indexed: 11/06/2022]
Abstract
Elastin-like polypeptides (ELPs) are characterized by a high sequence control, temperature responsiveness and biocompatibility, which make them highly interesting as smart materials for application in nanomedicine. In particular the construction of ELP-based nanoparticles has recently become a focal point of attention in materials research. This review will give an overview of the ELP-based nanoparticles that have been developed until now and their underlying design principles. First a short introduction on ELPs and their stimulus-responsive behavior will be given. This characteristic has been applied for the development of ELP-based block copolymers that can self-assemble into nanoparticles. Both the fully ELP-based as well as several ELP hybrid materials that have been reported to form nanoparticles will be discussed, which is followed by a concise description of the promising biomedical applications reported for this class of materials.
Collapse
Affiliation(s)
- Ferdinanda C M Smits
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
37
|
Arnold L, Chen R. Novel thermo-responsive fucose binding ligands for glycoprotein purification by affinity precipitation. Biotechnol Bioeng 2013; 111:413-7. [DOI: 10.1002/bit.25118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lindsay Arnold
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia 30332-0100
| | - Rachel Chen
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia 30332-0100
| |
Collapse
|
38
|
Amiram M, Luginbuhl KM, Li X, Feinglos MN, Chilkoti A. A depot-forming glucagon-like peptide-1 fusion protein reduces blood glucose for five days with a single injection. J Control Release 2013; 172:144-151. [PMID: 23928357 DOI: 10.1016/j.jconrel.2013.07.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 01/04/2023]
Abstract
Peptide drugs are an exciting class of pharmaceuticals for the treatment of a variety of diseases; however, their short half-life dictates multiple and frequent injections causing undesirable side effects. Herein, we describe a novel peptide delivery system that seeks to combine the attractive features of prolonged circulation time with a prolonged release formulation. This system consists of glucagon-like peptide-1, a type-2 diabetes drug fused to a thermally responsive, elastin-like-polypeptide (ELP) that undergoes a soluble-insoluble phase transition between room temperature and body temperature, thereby forming an injectable depot. We synthesized a set of GLP-1-ELP fusions and verified their proteolytic stability and potency in vitro. Significantly, a single injection of depot forming GLP-1-ELP fusions reduced blood glucose levels in mice for up to 5 days, 120 times longer than an injection of the native peptide. These findings demonstrate the unique advantages of using ELPs to release peptide-ELP fusions from a depot combined with enhanced systemic circulation to create a tunable peptide delivery system.
Collapse
Affiliation(s)
- M Amiram
- Department of Biomedical Engineering, Duke University, Durham 27708, USA
| | - K M Luginbuhl
- Department of Biomedical Engineering, Duke University, Durham 27708, USA
| | - X Li
- Department of Biomedical Engineering, Duke University, Durham 27708, USA
| | - M N Feinglos
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham 27710, USA
| | - A Chilkoti
- Department of Biomedical Engineering, Duke University, Durham 27708, USA.
| |
Collapse
|
39
|
Akash MSH, Rehman K, Chen S. IL-1Ra and its delivery strategies: inserting the association in perspective. Pharm Res 2013; 30:2951-66. [PMID: 23794040 DOI: 10.1007/s11095-013-1118-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/11/2013] [Indexed: 01/11/2023]
Abstract
Interleukin-1 receptor antagonist (IL-1Ra) is a naturally occurring anti-inflammatory antagonist of interleukin-1 family of pro-inflammatory cytokines. The broad spectrum anti-inflammatory effects of IL-1Ra have been investigated against various auto-immune diseases such as diabetes mellitus, rheumatoid arthritis. Despite of its outstanding broad spectrum anti-inflammatory effects, IL-1Ra has short biological half-life (4-6 h) and to cope with this problem, up till now, many delivery strategies have been applied either to extend the half-life and/or prolong the steady-state sustained release of IL-1Ra from its target site. Here in our present paper, we have provided an overview of all approaches attempted to prolong the duration of therapeutic effects of IL-1Ra either by fusing IL-1Ra using fusion protein technology to extend the half-life and/or development of new dosage forms using various biodegradable polymers to prolong its steady-state sustained release at the site of administration. These approaches have been characterized by their intended impact on either in vitro release characteristics and/or pharmacokinetic and pharmacodynamic parameters of IL-1Ra. We have also compared these delivery strategies with each other on the basis of bioactivity of IL-1Ra after fusion with fusion protein partner and/or encapsulation with biodegradable polymer.
Collapse
Affiliation(s)
- Muhammad Sajid Hamid Akash
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China,
| | | | | |
Collapse
|
40
|
Elastin-based protein polymer nanoparticles carrying drug at both corona and core suppress tumor growth in vivo. J Control Release 2013; 171:330-8. [PMID: 23714121 DOI: 10.1016/j.jconrel.2013.05.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/09/2013] [Accepted: 05/18/2013] [Indexed: 11/22/2022]
Abstract
Numerous nanocarriers of small molecules depend on either non-specific physical encapsulation or direct covalent linkage. In contrast, this manuscript explores an alternative encapsulation strategy based on high-specificity avidity between a small molecule drug and its cognate protein target fused to the corona of protein polymer nanoparticles. With the new strategy, the drug associates tightly to the carrier and releases slowly, which may decrease toxicity and promote tumor accumulation via the enhanced permeability and retention effect. To test this hypothesis, the drug Rapamycin (Rapa) was selected for its potent anti-proliferative properties, which give it immunosuppressant and anti-tumor activity. Despite its potency, Rapa has low solubility, low oral bioavailability, and rapid systemic clearance, which make it an excellent candidate for nanoparticulate drug delivery. To explore this approach, genetically engineered diblock copolymers were constructed from elastin-like polypeptides (ELPs) that assemble small (<100nm) nanoparticles. ELPs are protein polymers of the sequence (Val-Pro-Gly-Xaa-Gly)n, where the identity of Xaa and n determine their assembly properties. Initially, a screening assay for model drug encapsulation in ELP nanoparticles was developed, which showed that Rose Bengal and Rapa have high non-specific encapsulation in the core of ELP nanoparticles with a sequence where Xaa=Ile or Phe. While excellent at entrapping these drugs, their release was relatively fast (2.2h half-life) compared to their intended mean residence time in the human body. Having determined that Rapa can be non-specifically entrapped in the core of ELP nanoparticles, FK506 binding protein 12 (FKBP), which is the cognate protein target of Rapa, was genetically fused to the surface of these nanoparticles (FSI) to enhance their avidity towards Rapa. The fusion of FKBP to these nanoparticles slowed the terminal half-life of drug release to 57.8h. To determine if this class of drug carriers has potential applications in vivo, FSI/Rapa was administered to mice carrying a human breast cancer model (MDA-MB-468). Compared to free drug, FSI encapsulation significantly decreased gross toxicity and enhanced the anti-cancer activity. In conclusion, protein polymer nanoparticles decorated with the cognate receptor of a high potency, low solubility drug (Rapa) efficiently improved drug loading capacity and its release. This approach has applications to the delivery of Rapa and its analogs; furthermore, this strategy has broader applications in the encapsulation, targeting, and release of other potent small molecules.
Collapse
|
41
|
Christensen T, Hassouneh W, Trabbic-Carlson K, Chilkoti A. Predicting transition temperatures of elastin-like polypeptide fusion proteins. Biomacromolecules 2013; 14:1514-9. [PMID: 23565607 DOI: 10.1021/bm400167h] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elastin-like polypeptides (ELPs) are thermally sensitive peptide polymers that undergo thermally triggered phase separation and this behavior is imparted to soluble proteins when they are fused to an ELP. The transition temperature of the ELP fusion protein is observed to be different than that of a free ELP, indicating that the surface properties of the fused protein modulate the thermal behavior of ELPs. Understanding this effect is important for the rational design of applications that exploit the phase transition behavior of ELP fusion proteins. We had previously developed a biophysical model that explained the effect of hydrophobic proteins on depressing the transition temperature of ELP fusion proteins relative to free ELP. Here, we extend the model to elucidate the effect of hydrophilic proteins on the thermal behavior of ELP fusion proteins. A linear correlation was found between overall residue composition of accessible protein surface weighted by a characteristic transition temperature for each residue and the difference in transition temperatures between the ELP protein fusion and the corresponding free ELP. In breaking down the contribution of residues to polar, nonpolar, and charged, the model revealed that charged residues are the most important parameter in altering the transition temperature of an ELP fusion relative to the free ELP.
Collapse
Affiliation(s)
- Trine Christensen
- Department of Biomedical Engineering, Campus Box 90281 and Center for Biologically Inspired Materials and Material Systems, Duke University, Durham, North Carolina 27708, United States
| | | | | | | |
Collapse
|
42
|
Schmidt SR. Fusion Proteins: Applications and Challenges. FUSION PROTEIN TECHNOLOGIES FOR BIOPHARMACEUTICALS 2013:1-24. [DOI: 10.1002/9781118354599.ch1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Injectable protease-operated depots of glucagon-like peptide-1 provide extended and tunable glucose control. Proc Natl Acad Sci U S A 2013; 110:2792-7. [PMID: 23359691 DOI: 10.1073/pnas.1214518110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Peptide drugs are an exciting class of pharmaceuticals increasingly used for the treatment of a variety of diseases; however, their main drawback is a short half-life, which dictates multiple and frequent injections and an undesirable "peak-and-valley" pharmacokinetic profile, which can cause undesirable side-effects. Synthetic prolonged release formulations can provide extended release of biologically active native peptide, but their synthetic nature can be an obstacle to production and utilization. Motivated by these limitations, we have developed a new and entirely genetically encoded peptide delivery system--Protease Operated Depots (PODs)--to provide sustained and tunable release of a peptide drug from an injectable s.c. depot. We demonstrate proof-of-concept of PODs, by fusion of protease cleavable oligomers of glucagon-like peptide-1, a type-2 diabetes drug, and a thermally responsive, depot-forming elastin-like-polypeptide that undergoes a thermally triggered inverse phase transition below body temperature, thereby forming an injectable depot. We constructed synthetic genes for glucagon-like peptide-1 PODs and demonstrated their high-yield expression in Escherichia coli and facile purification by a nonchromatographic scheme we had previously developed. Remarkably, a single injection of glucagon-like peptide-1 PODs was able to reduce blood glucose levels in mice for up to 5 d, 120 times longer than an injection of the native peptide drug. These findings demonstrate that PODs provide the first genetically encoded alternative to synthetic peptide encapsulation schemes for sustained delivery of peptide therapeutics.
Collapse
|
44
|
Yang K, Su Y, Li J, Sun J, Yang Y. Expression and purification of the antimicrobial peptide cecropin AD by fusion with cationic elastin-like polypeptides. Protein Expr Purif 2012; 85:200-3. [PMID: 22651919 DOI: 10.1016/j.pep.2012.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 11/17/2022]
Abstract
Cationic elastin-like polypeptides (CELP) are thermally responsive polypeptides that undergo an inverse temperature phase transition, and the recombinant CELP fusion proteins may be purified by inverse transition cycling (ITC). To obtain high-purity antimicrobial peptide cecropin AD (CAD), CELP was placed at the N-terminus of CAD and the expression vector pET28a-CELP-CAD was constructed. The expression vector was then transformed into Escherichia coli BL21 (DE3) to express the recombinant protein. After three rounds of ITC, enterokinase digestion and another hot spin, 1.2mg recombinant CAD was purified from 100ml culture medium. The antimicrobial test indicated that the high-purity CAD had strong antimicrobial activity against E. coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | | | | | | | | |
Collapse
|
45
|
Akash MSH, Shen Q, Rehman K, Chen S. Interleukin-1 receptor antagonist: a new therapy for type 2 diabetes mellitus. J Pharm Sci 2012; 101:1647-58. [PMID: 22271340 DOI: 10.1002/jps.23057] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 12/27/2011] [Accepted: 01/04/2011] [Indexed: 02/06/2023]
Abstract
Various complex mechanisms and their multifactorial pathways decisively provoke low-grade local and systemic inflammation in β-cells of pancreatic islets and peripheral tissues to induce β-cells' dysfunction and apoptosis, insulin resistance, and ultimately, overt type 2 diabetes mellitus (T2DM). Conventional antidiabetic agents are being less popular, as they have some potential adverse effects. Currently, many anti-inflammatory therapeutic modalities are being investigated to abate the infuriating effects of inducers of T2DM and among them, interleukin-1 receptor antagonist (IL-1Ra) is the only one that has been approved by US Food and Drug Administration. We have compared IL-1Ra with other anti-inflammatory agents and conventional antidiabetic agents. Although, IL-1Ra has broad-spectrum anti-inflammatory activities, it also has some limitations due to its short half-life. To overcome the problem of short half-life of IL-1Ra, recently, we fused IL-1Ra in recombinant human serum albumin and expressed it in Pichia pastoris. Its bioactivity was also checked by IL-1-induced A375.S2 apoptotic cells. Furthermore, we have also formulated IL-1Ra with Pluronic F-127-based thermosensitive gel and investigated its in vitro characteristics to prolong its therapeutic effects. Further studies are required to investigate its therapeutic effects against diabetes and diabetes-associated complications.
Collapse
Affiliation(s)
- Muhammad Sajid Hamid Akash
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | | | | | | |
Collapse
|
46
|
Hassouneh W, MacEwan SR, Chilkoti A. Fusions of elastin-like polypeptides to pharmaceutical proteins. Methods Enzymol 2012; 502:215-37. [PMID: 22208987 DOI: 10.1016/b978-0-12-416039-2.00024-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Elastin-like polypeptides (ELPs) are a class of stimulus-responsive biopolymers whose physicochemical properties and biocompatibility are particularly suitable for in vivo applications, such as drug delivery and tissue engineering. The lower critical solution temperature (LCST) behavior of ELPs allows them to be utilized as soluble macromolecules below their LCST, or as self-assembled nanoscale particles such as micelles, micron-scale coacervates, or viscous gels above their LCST, depending on the ELP architecture. As each ELP sequence is specified at its genetic level, functionalization of an ELP with peptides and proteins is simple to accomplish by the fusion of a gene encoding an ELP with that of the peptide or protein of interest. Protein ELP fusions, where the appended protein serves a therapeutic or targeting function, are suitable for applications in which the ELP can improve the systemic pharmacokinetics and biodistribution of the protein, or can be used as an injectable depot for sustained, local protein delivery. Here we describe considerations in the design of therapeutic protein ELP fusions and provide details of their gene design, expression, and purification.
Collapse
Affiliation(s)
- Wafa Hassouneh
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | | |
Collapse
|
47
|
Abstract
Elastomeric polypeptides are very interesting biopolymers and are characterized by rubber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. This chapter focuses on elastin and resilin - two elastomeric biopolymers - and the recombinant polypeptides derived from them (elastin-like polypeptides and resilin-like polypeptides). This chapter also discusses the applications of these recombinant polypeptides in the fields of purification, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Mark B. van Eldijk
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Christopher L. McGann
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jan C.M. van Hest
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
48
|
Dai M, Haghpanah J, Singh N, Roth EW, Liang A, Tu RS, Montclare JK. Artificial Protein Block Polymer Libraries Bearing Two SADs: Effects of Elastin Domain Repeats. Biomacromolecules 2011; 12:4240-6. [DOI: 10.1021/bm201083d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Min Dai
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| | - Jennifer Haghpanah
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| | - Navjot Singh
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| | - Eric W. Roth
- Skirball Institute Image Core
Facility, New York University Medical Center, New York, New York 10016, United States
| | - Alice Liang
- Skirball Institute Image Core
Facility, New York University Medical Center, New York, New York 10016, United States
| | - Raymond S. Tu
- Department of Chemical Engineering, City College of New York, New York, New York 10031,
United States
| | - Jin Kim Montclare
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
- Department
of Biochemistry, SUNY Downstate Medical Center, Brooklyn, New York 11203,
United States
| |
Collapse
|
49
|
Girotti A, Fernández-Colino A, López IM, Rodríguez-Cabello JC, Arias FJ. Elastin-like recombinamers: Biosynthetic strategies and biotechnological applications. Biotechnol J 2011; 6:1174-86. [DOI: 10.1002/biot.201100116] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/16/2011] [Accepted: 07/28/2011] [Indexed: 01/02/2023]
|
50
|
Chen Y, Youn P, Furgeson DY. Thermo-targeted drug delivery of geldanamycin to hyperthermic tumor margins with diblock elastin-based biopolymers. J Control Release 2011; 155:175-83. [PMID: 21846483 DOI: 10.1016/j.jconrel.2011.07.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/19/2011] [Accepted: 07/29/2011] [Indexed: 02/06/2023]
Abstract
The tumor margins are the barrier to hepatocellular carcinoma (HCC) eradication for tumors>3 cm. Indeed, inadequately treated tumor margins commonly result in local and regional HCC recurrence with increased size and mass. Tumor recurrence is a common problem with chemotherapy, radiotherapy, thermal ablation, and/or surgical resection, by the inability to properly treat the tumor core and the tumor margins. Here we present novel thermosensitive biopolymer-drug conjugates for thermo-targeted chemotherapy at hyperthermic isotherms produced by focal, locoregional thermal ablation. The chemotherapeutic target is heat shock protein 90 (HSP90), a key molecular chaperone of several, and potent pro-oncogenic pathways including Akt, Raf-1, and mutated p53 that is upregulated in HCC. To inhibit HSP90, we have chosen geldanamycin (GA), a potent HSP90 inhibitor. GA has gained significant attention for its low IC50 ~ 1 nM and inhibition of Akt and Raf-1, amongst other critical pro-oncogenic pathways. Despite such evidence, clinical trials of GA have not shown promise due to off-target toxicity and poor formulation design. Here, we propose using diblock elastin-based biopolymers as a Ringsdorf macromolecular GA solubilizer--a new generation containing functional poly(Asp)/(Glu) blocks for facile drug conjugation and an ELP block for thermo-targeting of hyperthermic ablative margins. GA release is controlled by pH-sensitive, covalent hydrazone bonds with the biopolymer backbone to avoid systemic toxicity and off-target effects. The resultant biopolymer-conjugates form stable nanoconstructs and display tunable, acute phase transitions at high temperatures. Drug release kinetics are favorable with or without the presence of serum. Thermo-targeted chemotherapy and synchronous thermal ablation provide a unique opportunity for simultaneous destruction of the HCC ablative margins and tumor core for focal, locoregional control of HCC.
Collapse
MESH Headings
- Ablation Techniques
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/therapeutic use
- Benzoquinones/administration & dosage
- Benzoquinones/chemistry
- Benzoquinones/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/surgery
- Drug Carriers/chemistry
- Drug Stability
- Elastin/chemistry
- Elastin/genetics
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/genetics
- Hot Temperature
- Humans
- Hydrophobic and Hydrophilic Interactions
- Kinetics
- Lactams, Macrocyclic/administration & dosage
- Lactams, Macrocyclic/chemistry
- Lactams, Macrocyclic/therapeutic use
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/surgery
- Microscopy, Electron, Transmission
- Molecular Structure
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- Particle Size
- Phase Transition
- Solubility
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Streptomyces/genetics
- Surface Properties
- Transition Temperature
Collapse
|