1
|
Woxholt S, Ueland T, Aukrust P, Anstensrud AK, Broch K, Tøllefsen IM, Seljeflot I, Halvorsen B, Dahl TB, Huse C, Andersen GØ, Gullestad L, Wiseth R, Damås JK, Kleveland O. Effect of tocilizumab on endothelial and platelet-derived CXC-chemokines and their association with inflammation and myocardial injury in STEMI patients undergoing primary PCI. Int J Cardiol 2024; 418:132613. [PMID: 39374793 DOI: 10.1016/j.ijcard.2024.132613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/29/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Tocilizumab improves myocardial salvage in ST-elevation myocardial infarction (STEMI) patients when administered before percutaneous coronary intervention (PCI). The mechanisms underlying ischemia-reperfusion injury remain unclear. In this sub-study, we investigated whether endothelial and platelet-derived CXC chemokines are involved, as they represent inflammatory mediators from two cell types relevant to myocardial infarction. Associations between these chemokines and neutrophils, C-reactive protein (CRP), troponin T (TnT), myocardial salvage index (MSI), microvascular obstruction (MVO), and infarct size. METHODS This is a sub-study of the ASSAIL-MI trial, a double-blind clinical trial that randomized 199 STEMI patients to receive either 280 mg tocilizumab (n = 101) or placebo (n = 98) intravenously before PCI. Blood samples were collected prior to infusion, at day 1-2, 3-7, and at 3 and 6 months. Heparin was administered before baseline in 150 patients, while 49 received it after. We measured CXC-chemokines CXCL4, CXCL5, CXCL6, CXCL7, and CXCL12 using immunoassays. Cardiac MRI was performed in the first week and at 6 months. RESULTS Tocilizumab did not significantly affect CXC-chemokines levels. Although some correlations were observed between chemokine levels and neutrophil counts and CRP, none of the CXC chemokines were associated with infarct size, MSI, MVO, or TnT levels. Notably, CXCL 12 levels increased in patients who received heparin before baseline, while other CXC-chemokines decreased significantly. CONCLUSION This study suggests that the beneficial effects of tocilizumab in STEMI patients are not due to changes in circulating endothelial or platelet-derived CXC-chemokines, compared to placebo. However, heparin significantly influences the levels of these chemokines.
Collapse
Affiliation(s)
- Sindre Woxholt
- Clinic of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Thrombosis Research and Expertise Center (TREC), The Arctic University of Norway, Tromsø, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Disease, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | | | - Ingebjørg Seljeflot
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Camilla Huse
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Geir Øystein Andersen
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Department of Cardiology, Oslo Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rune Wiseth
- Clinic of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jan Kristian Damås
- Department of Infectious Disease, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of clinical and Molecular medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ola Kleveland
- Clinic of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
2
|
Andersson KE, Williams K. Cellular regenerative therapy in stress urinary incontinence: new frontiers?-a narrative review. Transl Androl Urol 2024; 13:1709-1716. [PMID: 39280677 PMCID: PMC11399031 DOI: 10.21037/tau-22-682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/10/2023] [Indexed: 09/18/2024] Open
Abstract
Background and Objective Even if treatment with stem cells has been shown to be safe and effective in many patients with stress urinary incontinence (SUI), there is still room for improvement using other regenerative medicine alternatives. Since the beneficial effects of stem cells are probably mediated by secretion of factors rather than by the cells themselves there is a good rationale for further exploring the therapeutic effects of the secretome and/or its components. However, homing factors such as stromal derived growth factor 1 (SDF-1; CXCL12), stimulation of stem cell growth and stem cell mobilization in vivo using low intensity shock wave therapy (Li-ESWT) or regenerative electrical stimulation (RES), are also promising approaches. Methods A literature search was performed based on PubMed, Scopus and Google Scholar. The search criteria included original basic science articles, systematic reviews and randomized control trials. All studies were published between 2000 and 2023. Selected, peer-reviewed studies were further analyzed to identify those of relevance. Keywords searched included: "female stress incontinence", "homing factors", "CXCL12", "secretome", "low intensity shockwave therapy" and "regenerative electrical stimulation". The peer-reviewed publications on the key word subjects that contained a novel addition to the existing body of literature were included. Key Content and Findings There is evidence from studies on non-human primates (NHPs) with experimental urinary sphincter injury that CXCL12 can restore sphincter structure and function. Studies with homing factors in human patients with SUI are still to be performed. A large number of clinical studies on the use of secretome or secretome products from mesenchymal stem cells (MSCs) on indications other than human SUI are already available. However, controlled clinical trials on patients with SUI, have to the best of our knowledge, not yet been performed. Also, RES has not been studied in patients with SUI. In contrast, there is clinical evidence that Li-ESWT may improve female SUI. Conclusions Treatment with homing factors, MSC secretome/secretome components, Li-ESWT and RES are promising frontiers in the treatment of human SUI caused by sphincter damage.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
- Institute for Laboratory Medicine, Lund University, Lund, Sweden
| | - Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
3
|
Liu Y, Liu A, Li X, Liao Q, Zhang W, Zhu L, Ye RD. Cryo-EM structure of monomeric CXCL12-bound CXCR4 in the active state. Cell Rep 2024; 43:114578. [PMID: 39093700 DOI: 10.1016/j.celrep.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
CXCR4 binding of its endogenous agonist CXCL12 leads to diverse functions, including bone marrow retention of hematopoietic progenitors and cancer metastasis. However, the structure of the CXCL12-bound CXCR4 remains unresolved despite available structures of CXCR4 in complex with antagonists. Here, we present the cryoelectron microscopy (cryo-EM) structure of the CXCL12-CXCR4-Gi complex at an overall resolution of 2.65 Å. CXCL12 forms a 1:1 stoichiometry complex with CXCR4, following the two-site model. The first 8 amino acids of mature CXCL12 are crucial for CXCR4 activation by forming polar interactions with minor sub-pocket residues in the transmembrane binding pocket. The 3.2-Å distance between V3 of CXCL12 and the "toggle switch" W6.48 marks the deepest insertion among all chemokine-receptor pairs, leading to conformational changes of CXCR4 for G protein activation. These results, combined with functional assays and computational analysis, provide the structural basis for CXCR4 activation by CXCL12.
Collapse
Affiliation(s)
- Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, China
| | - Xinyu Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Weijia Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518048, China.
| |
Collapse
|
4
|
Yen JH, Chang CC, Hsu HJ, Yang CH, Mani H, Liou JW. C-X-C motif chemokine ligand 12-C-X-C chemokine receptor type 4 signaling axis in cancer and the development of chemotherapeutic molecules. Tzu Chi Med J 2024; 36:231-239. [PMID: 38993827 PMCID: PMC11236080 DOI: 10.4103/tcmj.tcmj_52_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 04/18/2024] [Indexed: 07/13/2024] Open
Abstract
Chemokines are small, secreted cytokines crucial in the regulation of a variety of cell functions. The binding of chemokine C-X-C motif chemokine ligand 12 (CXCL12) (stromal cell-derived factor 1) to a G-protein-coupled receptor C-X-C chemokine receptor type 4 (CXCR4) triggers downstream signaling pathways with effects on cell survival, proliferation, chemotaxis, migration, and gene expression. Intensive and extensive investigations have provided evidence suggesting that the CXCL12-CXCR4 axis plays a pivotal role in tumor development, survival, angiogenesis, metastasis, as well as in creating tumor microenvironment, thus implying that this axis is a potential target for the development of cancer therapies. The structures of CXCL12 and CXCR4 have been resolved with experimental methods such as X-ray crystallography, NMR, or cryo-EM. Therefore, it is possible to apply structure-based computational approaches to discover, design, and modify therapeutic molecules for cancer treatments. Here, we summarize the current understanding of the roles played by the CXCL12-CXCR4 signaling axis in cellular functions linking to cancer progression and metastasis. This review also provides an introduction to protein structures of CXCL12 and CXCR4 and the application of computer simulation and analysis in understanding CXCR4 activation and antagonist binding. Furthermore, examples of strategies and current progress in CXCL12-CXCR4 axis-targeted development of therapeutic anticancer inhibitors are discussed.
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Hao-Jen Hsu
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
| | - Chin-Hao Yang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hemalatha Mani
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Je-Wen Liou
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
5
|
Pang C, Li Y, Shi M, Fan Z, Gao X, Meng Y, Liu S, Gao C, Su P, Wang X, Zhan H. Expression and clinical value of CXCR4 in high grade gastroenteropancreatic neuroendocrine neoplasms. Front Endocrinol (Lausanne) 2024; 15:1281622. [PMID: 38524630 PMCID: PMC10960360 DOI: 10.3389/fendo.2024.1281622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Background CXC chemokine receptor 4 (CXCR4) is associated with the progression and metastasis of numerous malignant tumors. However, its relationship with Gastroenteropancreatic Neuroendocrine Neoplasms Grade 3 (GEP-NENs G3) is unclear. The aim of this study was to characterize the expression of CXCR4 in GEP-NENS and to explore the clinical and prognostic value of CXCR4. Methods This study retrospectively collected clinical and pathological data from patients with GEP-NENs who receiving surgery in Qilu Hospital of Shandong University from January 2013 to April 2021, and obtained the overall survival of the patients based on follow-up. Immunohistochemistry (IHC) was performed on pathological paraffin sections to observe CXCR4 staining. Groups were made according to pathological findings. Kaplan-Meier (K-M) curve was used to evaluate prognosis. SPSS 26.0 was used for statistical analysis. Results 100 GEP-NENs G3 patients were enrolled in this study. There was a significant difference in primary sites (P=0.002), Ki-67 index (P<0.001), and Carcinoembryonic Antigen (CEA) elevation (P=0.008) between neuroendocrine tumor (NET) G3 and neuroendocrine carcinoma (NEC). CXCR4 was highly expressed only in tumors, low or no expressed in adjacent tissues (P<0.001). The expression level of CXCR4 in NEC was significantly higher than that in NET G3 (P=0.038). The K-M curves showed that there was no significant difference in overall survival between patients with high CXCR4 expression and patients with low CXCR4 expression, either in GEP-NEN G3 or NEC (P=0.920, P=0.842. respectively). Conclusion Differential expression of CXCR4 was found between tumor and adjacent tissues and between NET G3 and NEC. Our results demonstrated that CXCR4 can be served as a new IHC diagnostic indicator in the diagnosis and differential diagnosis of GEP-NENs G3. Further studies with multi-center, large sample size and longer follow-up are needed to confirm the correlation between CXCR4 expression level and prognosis.
Collapse
Affiliation(s)
- Chaoyu Pang
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yongzheng Li
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming Shi
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Gao
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yufan Meng
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shujie Liu
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Changhao Gao
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao Wang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Mantonico MV, De Leo F, Quilici G, Colley LS, De Marchis F, Crippa M, Mezzapelle R, Schulte T, Zucchelli C, Pastorello C, Carmeno C, Caprioglio F, Ricagno S, Giachin G, Ghitti M, Bianchi ME, Musco G. The acidic intrinsically disordered region of the inflammatory mediator HMGB1 mediates fuzzy interactions with CXCL12. Nat Commun 2024; 15:1201. [PMID: 38331917 PMCID: PMC10853541 DOI: 10.1038/s41467-024-45505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Chemokine heterodimers activate or dampen their cognate receptors during inflammation. The CXCL12 chemokine forms with the fully reduced (fr) alarmin HMGB1 a physiologically relevant heterocomplex (frHMGB1•CXCL12) that synergically promotes the inflammatory response elicited by the G-protein coupled receptor CXCR4. The molecular details of complex formation were still elusive. Here we show by an integrated structural approach that frHMGB1•CXCL12 is a fuzzy heterocomplex. Unlike previous assumptions, frHMGB1 and CXCL12 form a dynamic equimolar assembly, with structured and unstructured frHMGB1 regions recognizing the CXCL12 dimerization surface. We uncover an unexpected role of the acidic intrinsically disordered region (IDR) of HMGB1 in heterocomplex formation and its binding to CXCR4 on the cell surface. Our work shows that the interaction of frHMGB1 with CXCL12 diverges from the classical rigid heterophilic chemokines dimerization. Simultaneous interference with multiple interactions within frHMGB1•CXCL12 might offer pharmacological strategies against inflammatory conditions.
Collapse
Affiliation(s)
- Malisa Vittoria Mantonico
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
| | - Federica De Leo
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Experimental Therapeutics Program, IFOM ETS - The AIRC Institute of Molecular Oncology and AIRC, Fondazione AIRC per la Ricerca sul Cancro ETS, Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Liam Sean Colley
- HMGBiotech S.r.l., 20133, Milan, Italy
- School of Medicine and Surgery, Università Milano-Bicocca, 20126, Milan, Italy
| | - Francesco De Marchis
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Crippa
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rosanna Mezzapelle
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Pastorello
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Camilla Carmeno
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Caprioglio
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, 35131, Padova, Italy
| | - Michela Ghitti
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Marco Emilio Bianchi
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
7
|
Yahiro I, Barnuevo KDE, Sato O, Mohapatra S, Toyoda A, Itoh T, Ohno K, Matsuyama M, Chakraborty T, Ohta K. Modeling the SDF-1/CXCR4 protein using advanced artificial intelligence and antagonist screening for Japanese anchovy. Front Physiol 2024; 15:1349119. [PMID: 38370015 PMCID: PMC10869568 DOI: 10.3389/fphys.2024.1349119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
SDF-1/CXCR4 chemokine signaling are indispensable for cell migration, especially the Primordial Germ Cell (PGC) migration towards the gonadal ridge during early development. We earlier found that this signaling is largely conserved in the Japanese anchovy (Engraulis japonicus, EJ), and a mere treatment of CXCR4 antagonist, AMD3100, leads to germ cell depletion and thereafter gonad sterilization. However, the effect of AMD3100 was limited. So, in this research, we scouted for CXCR4 antagonist with higher potency by employing advanced artificial intelligence deep learning-based computer simulations. Three potential candidates, AMD3465, WZ811, and LY2510924, were selected and in vivo validation was conducted using Japanese anchovy embryos. We found that seven transmembrane motif of EJ CXCR4a and EJ CXCR4b were extremely similar with human homolog while the CXCR4 chemokine receptor N terminal (PF12109, essential for SDF-1 binding) was missing in EJ CXCR4b. 3D protein analysis and cavity search predicted the cavity in EJ CXCR4a to be five times larger (6,307 ų) than that in EJ CXCR4b (1,241 ų). Docking analysis demonstrated lower binding energy of AMD3100 and AMD3465 to EJ CXCR4a (Vina score -9.6) and EJ CXCR4b (Vina score -8.8), respectively. Furthermore, we observed significant PGC mismigration in microinjected AMD3465 treated groups at 10, 100 and 1 × 105 nM concentration in 48 h post fertilized embryos. The other three antagonists showed various degrees of PGC dispersion, but no significant effect compared to their solvent control at tested concentrations was observed. Cumulatively, our results suggests that AMD3645 might be a better candidate for abnormal PGC migration in Japanese anchovy and warrants further investigation.
Collapse
Affiliation(s)
- Issei Yahiro
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | - Oga Sato
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Sipra Mohapatra
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Aqua-Bioresource Innovation Center, Kyushu University, Saga, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | - Takehiko Itoh
- School and Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Kaoru Ohno
- National Institute for Basic Biology (NIBB), Aichi, Japan
| | | | - Tapas Chakraborty
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Aqua-Bioresource Innovation Center, Kyushu University, Saga, Japan
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Aqua-Bioresource Innovation Center, Kyushu University, Saga, Japan
| |
Collapse
|
8
|
Mayo KH. Heterologous Interactions with Galectins and Chemokines and Their Functional Consequences. Int J Mol Sci 2023; 24:14083. [PMID: 37762385 PMCID: PMC10531749 DOI: 10.3390/ijms241814083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Extra- and intra-cellular activity occurs under the direction of numerous inter-molecular interactions, and in any tissue or cell, molecules are densely packed, thus promoting those molecular interactions. Galectins and chemokines, the focus of this review, are small, protein effector molecules that mediate various cellular functions-in particular, cell adhesion and migration-as well as cell signaling/activation. In the past, researchers have reported that combinations of these (and other) effector molecules act separately, yet sometimes in concert, but nevertheless physically apart and via their individual cell receptors. This view that each effector molecule functions independently of the other limits our thinking about functional versatility and cooperation, and, in turn, ignores the prospect of physiologically important inter-molecular interactions, especially when both molecules are present or co-expressed in the same cellular environment. This review is focused on such protein-protein interactions with chemokines and galectins, the homo- and hetero-oligomeric structures that they can form, and the functional consequences of those paired interactions.
Collapse
Affiliation(s)
- Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Kim Y, Lee J, Lee C, Lawler S. Role of senescent tumor cells in building a cytokine shield in the tumor microenvironment: mathematical modeling. J Math Biol 2022; 86:14. [PMID: 36512100 DOI: 10.1007/s00285-022-01850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/29/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Cellular senescence can induce dual effects (promotion or inhibition) on cancer progression. While immune cells naturally respond and migrate toward various chemotactic sources from the tumor mass, various factors including senescent tumor cells (STCs) in the tumor microenvironment may affect this chemotactic movement. In this work, we investigate the mutual interactions between the tumor cells and the immune cells that either inhibit or facilitate tumor growth by developing a mathematical model that consists of taxis-reaction-diffusion equations and receptor kinetics for the key players in the interaction network. We apply a mathematical model to a transwell Boyden chamber invasion assay used in the experiments to illustrate that STCs can play a pivotal role in negating immune attack through tight regulation of intra- and extra-cellular signaling molecules. In particular, we show that senescent tumor cells in cell cycle arrest can block intratumoral infiltration of CD8+ T cells by secreting a high level of CXCL12, which leads to significant reduction its receptors, CXCR4, on T cells, and thus impaired chemotaxis. The predictions of nonlinear responses to CXCL12 were in good agreement with experimental data. We tested several hypotheses on immune-tumor interactions under various biochemical conditions in the tumor microenvironment and developed new concepts for anti-tumor strategies targeting senescence induced immune impairment.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Junho Lee
- Department of Mathematics, Konkuk University, Seoul, 05029, Republic of Korea
| | - Chaeyoung Lee
- Department of Mathematics, Korea University, Seoul, Republic of Korea
| | - Sean Lawler
- Department of Pathology and Laboratory Medicine, Brown Cancer Center, Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Gutjahr JC, Crawford KS, Jensen DR, Naik P, Peterson FC, Samson GPB, Legler DF, Duchene J, Veldkamp CT, Rot A, Volkman BF. The dimeric form of CXCL12 binds to atypical chemokine receptor 1. Sci Signal 2021; 14:14/696/eabc9012. [PMID: 34404752 DOI: 10.1126/scisignal.abc9012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pleiotropic chemokine CXCL12 is involved in diverse physiological and pathophysiological processes, including embryogenesis, hematopoiesis, leukocyte migration, and tumor metastasis. It is known to engage the classical receptor CXCR4 and the atypical receptor ACKR3. Differential receptor engagement can transduce distinct cellular signals and effects as well as alter the amount of free, extracellular chemokine. CXCR4 binds both monomeric and the more commonly found dimeric forms of CXCL12, whereas ACKR3 binds monomeric forms. Here, we found that CXCL12 also bound to the atypical receptor ACKR1 (previously known as Duffy antigen/receptor for chemokines or DARC). In vitro nuclear magnetic resonance spectroscopy and isothermal titration calorimetry revealed that dimeric CXCL12 bound to the extracellular N terminus of ACKR1 with low nanomolar affinity, whereas the binding affinity of monomeric CXCL12 was orders of magnitude lower. In transfected MDCK cells and primary human Duffy-positive erythrocytes, a dimeric, but not a monomeric, construct of CXCL12 efficiently bound to and internalized with ACKR1. This interaction between CXCL12 and ACKR1 provides another layer of regulation of the multiple biological functions of CXCL12. The findings also raise the possibility that ACKR1 can bind other dimeric chemokines, thus potentially further expanding the role of ACKR1 in chemokine retention and presentation.
Collapse
Affiliation(s)
- Julia C Gutjahr
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Kyler S Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Davin R Jensen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Prachi Naik
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guerric P B Samson
- Biotechnology Institute Thurgau (BITg), University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, 8280 Kreuzlingen, Switzerland.,Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Johan Duchene
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336 Munich, Germany
| | | | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK. .,Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336 Munich, Germany.,Centre for Inflammation and Therapeutic Innovation, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
11
|
Schmid FA, Williams JK, Kessler TM, Stenzl A, Aicher WK, Andersson KE, Eberli D. Treatment of Stress Urinary Incontinence with Muscle Stem Cells and Stem Cell Components: Chances, Challenges and Future Prospects. Int J Mol Sci 2021; 22:3981. [PMID: 33921532 PMCID: PMC8069473 DOI: 10.3390/ijms22083981] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
Urinary incontinence (UI) is a major problem in health care and more than 400 million people worldwide suffer from involuntary loss of urine. With an increase in the aging population, UI is likely to become even more prominent over the next decades and the economic burden is substantial. Among the different subtypes of UI, stress urinary incontinence (SUI) is the most prevalent and focus of this review. The main underlying causes for SUI are pregnancy and childbirth, accidents with direct trauma to the pelvis or medical treatments that affect the pelvic floor, such as surgery or irradiation. Conservative approaches for the treatment of SUI are pelvic physiotherapy, behavioral and lifestyle changes, and the use of pessaries. Current surgical treatment options include slings, colposuspensions, bulking agents and artificial urinary sphincters. These treatments have limitations with effectiveness and bear the risk of long-term side effects. Furthermore, surgical options do not treat the underlying pathophysiological causes of SUI. Thus, there is an urgent need for alternative treatments, which are effective, minimally invasive and have only a limited risk for adverse effects. Regenerative medicine is an emerging field, focusing on the repair, replacement or regeneration of human tissues and organs using precursor cells and their components. This article critically reviews recent advances in the therapeutic strategies for the management of SUI and outlines future possibilities and challenges.
Collapse
Affiliation(s)
- Florian A. Schmid
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - J. Koudy Williams
- Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (J.K.W.); (K.-E.A.)
| | - Thomas M. Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland;
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tubingen, University of Tubingen, 72076 Tubingen, Germany; (A.S.); (W.K.A.)
| | - Wilhelm K. Aicher
- Department of Urology, University Hospital Tubingen, University of Tubingen, 72076 Tubingen, Germany; (A.S.); (W.K.A.)
| | - Karl-Erik Andersson
- Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (J.K.W.); (K.-E.A.)
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| |
Collapse
|
12
|
Bennington J, Lankford S, Magalhaes RS, Shankle D, Fanning J, Kartini C, Suparto I, Kusumawardhani W, Putra MA, Mariya S, Badlani G, Williams JK. Chemokine Therapy in Cats With Experimental Renal Fibrosis and in a Kidney Disease Pilot Study. Front Vet Sci 2021; 8:646087. [PMID: 33748219 PMCID: PMC7969654 DOI: 10.3389/fvets.2021.646087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Chronic tubulointerstitial fibrosis is a common final pathway leading to end stage kidney disease in cats and has no effective treatment. The use of cell-based molecules to treat kidney fibrosis may be a promising approach. The objectives were to test the effects of intra-renal chemokine CXCL12 injection in a pre-clinical cat model of unilateral ischemia/reperfusion (I/R)-induced kidney fibrosis and then, within a clinical pilot study, test the safety/feasibility of CXCL12 injection in cats that might have early chronic kidney disease (CKD). Methods: Pre-clinical: Thirty cats received intra-renal injection of 100, 200, or 400 ng of recombinant human CXCL12, or sterile saline, into the I/R kidney 70 days post-injury, or were non-injured, non-injected controls (n = 6/group). Kidney collagen content was quantified 4 months post-treatment using Masson's Trichrome and Picrosirius Red (PSR) stained tissues. In a separate study (n = 2) exploring short-term effects of CXCL12, 200 ng CXCL12 was injected into I/R kidneys and then harvested either 30 min (n = 1) or 1 month (n = 1) post-injection. Kidney concentrations of CXCL12, matrix metalloproteinase 1 (MMP-1), and lysyl oxidase-like enzyme 2 (LOXL-2) were quantified via ELISA. Clinical Pilot: 14 client-owned cats with potential early kidney disease received a single-treatment, bilateral intra-renal injection of 200 ng CXCL12 (n = 7), or received no injection (n = 7). Blood/urine samples were collected monthly for 9 months to assess renal function and CKD staging. Results: Pre-clinical: I/R increased the affected kidney collagen content, which both mid and high doses of CXCL12 restored to normal (ps < 0.05 vs. untreated). I/R increased collagen fiber width, which both mid and high doses of CXCL12 restored to normal (p < 0.001 vs. untreated). Early changes in kidney MMP-1, associated with collagen breakdown, and subsequent decreases in LOXL-2, associated with collagen cross-linking, in response to CXCL12 treatment may contribute to these findings. Clinical Pilot: Bilateral intra-renal injection of CXCL12 using ultrasound guidance in cats with CKD was feasible and safe in a general practice clinical setting with no obvious side effects noted during the 9-month follow-up period. Conclusions: Intra-renal injection of CXCL12 may prove to be an effective treatment for kidney fibrosis in cats with CKD. Additional mechanistic and clinical evaluations are needed.
Collapse
Affiliation(s)
- Julie Bennington
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Shannon Lankford
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Renata S. Magalhaes
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Douglas Shankle
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Jason Fanning
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, United States
| | - Cucu Kartini
- Praktek Dokter Hewan Bersama Joint Veterinary Practice, Sunter, Indonesia
| | - Irma Suparto
- Primate Research Center, Institut Pertanian Bogor, Bogor Agricultural University, Bogor, Indonesia
| | | | - M. ArRaniri Putra
- Praktek Dokter Hewan Bersama Joint Veterinary Practice, Sunter, Indonesia
| | - Silmi Mariya
- Primate Research Center, Institut Pertanian Bogor, Bogor Agricultural University, Bogor, Indonesia
| | - Gopal Badlani
- Department of Urology, Wake Forest Baptist Health, Winston-Salem, NC, United States
| | - J. Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| |
Collapse
|
13
|
De Leo F, Quilici G, De Marchis F, Mantonico MV, Bianchi ME, Musco G. Discovery of 5,5'-Methylenedi-2,3-Cresotic Acid as a Potent Inhibitor of the Chemotactic Activity of the HMGB1·CXCL12 Heterocomplex Using Virtual Screening and NMR Validation. Front Chem 2020; 8:598710. [PMID: 33324614 PMCID: PMC7726319 DOI: 10.3389/fchem.2020.598710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
HMGB1 is a key molecule that both triggers and sustains inflammation following infection or injury, and is involved in a large number of pathologies, including cancer. HMGB1 participates in the recruitment of inflammatory cells, forming a heterocomplex with the chemokine CXCL12 (HMGB1·CXCL12), thereby activating the G-protein coupled receptor CXCR4. Thus, identification of molecules that disrupt this heterocomplex can offer novel pharmacological opportunities to treat inflammation-related diseases. To identify new HMGB1·CXCL12 inhibitors we have performed a study on the ligandability of the single HMG boxes of HMGB1 followed by a virtual screening campaign on both HMG boxes using Zbc Drugs and three different docking programs (Glide, AutoDock Vina, and AutoDock 4.2.6). The best poses in terms of scoring functions, visual inspection, and predicted ADME properties were further filtered according to a pharmacophore model based on known HMGB1 binders and clustered according to their structures. Eight compounds representative of the clusters were tested for HMGB1 binding by NMR. We identified 5,5'-methylenedi-2,3-cresotic acid (2a) as a binder of both HMGB1 and CXCL12; 2a also targets the HMGB1·CXCL12 heterocomplex. In cell migration assays 2a inhibited the chemotactic activity of HMGB1·CXCL12 with IC50 in the subnanomolar range, the best documented up to now. These results pave the way for future structure activity relationship studies to optimize the pharmacological targeting of HMGB1·CXCL12 for anti-inflammatory purposes.
Collapse
Affiliation(s)
- Federica De Leo
- Biomolecular Nuclear Magnetic Resonance Laboratory, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giacomo Quilici
- Biomolecular Nuclear Magnetic Resonance Laboratory, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco De Marchis
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| | - Malisa Vittoria Mantonico
- Biomolecular Nuclear Magnetic Resonance Laboratory, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Emilio Bianchi
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Giovanna Musco
- Biomolecular Nuclear Magnetic Resonance Laboratory, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
14
|
Natural and engineered chemokine (C-X-C motif) receptor 4 agonists prevent acute respiratory distress syndrome after lung ischemia-reperfusion injury and hemorrhage. Sci Rep 2020; 10:11359. [PMID: 32647374 PMCID: PMC7347544 DOI: 10.1038/s41598-020-68425-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/24/2020] [Indexed: 12/31/2022] Open
Abstract
We compared therapeutic properties of natural and engineered chemokine (C-X-C motif) receptor 4 (CXCR4) agonists in a rat acute respiratory distress syndrome (ARDS) model utilizing the PaO2/FiO2-ratio as a clinically relevant primary outcome criterion. Ventilated rats underwent unilateral lung ischemia from t = 0–70 min plus hemorrhage to a mean arterial blood pressure (MAP) of 30 mmHg from t = 40–70 min, followed by reperfusion/fluid resuscitation until t = 300 min. Natural CXCR4 agonists (CXCL12, ubiquitin) and engineered CXCL12 variants (CXCL121, CXCL22, CXCL12K27A/R41A/R47A, CXCL12 (3–68)) were administered within 5 min of fluid resuscitation. Animals treated with vehicle or CXCL12 (3–68) reached criteria for mild and moderate ARDS between t = 90–120 min and t = 120–180 min, respectively, and remained in moderate ARDS until t = 300 min. Ubiquitin, CXCL12, CXCL121 and CXCL122 prevented ARDS development. Potencies of CXCL12/CXCL121/CXCL122 were higher than the potency of ubiquitin. CXCL12K27A/R41A/R47A was inefficacious. CXCL121 > CXCL12 stabilized MAP and reduced fluid requirements. CXCR4 agonists at doses that preserved lung function reduced histological injury of the post-ischemic lung and reduced mortality from 55 to 9%. Our findings suggest that CXCR4 protein agonists prevent development of ARDS and reduce mortality in a rat model, and that development of new engineered protein therapeutics with improved pharmacological properties for ARDS is possible.
Collapse
|
15
|
Moussouras NA, Hjortø GM, Peterson FC, Szpakowska M, Chevigné A, Rosenkilde MM, Volkman BF, Dwinell MB. Structural Features of an Extended C-Terminal Tail Modulate the Function of the Chemokine CCL21. Biochemistry 2020; 59:1338-1350. [PMID: 32182428 DOI: 10.1021/acs.biochem.0c00047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The chemokines CCL21 and CCL19, through binding of their cognate receptor CCR7, orchestrate lymph node homing of dendritic cells and naïve T cells. CCL21 differs from CCL19 via an unstructured 32 residue C-terminal domain. Previously described roles for the CCL21 C-terminus include GAG-binding, spatial localization to lymphatic vessels, and autoinhibitory modulation of CCR7-mediated chemotaxis. While truncation of the C-terminal tail induced chemical shift changes in the folded chemokine domain, the structural basis for its influence on CCL21 function remains largely unexplored. CCL21 concentration-dependent NMR chemical shifts revealed weak, nonphysiological self-association that mimics the truncation of the C-terminal tail. We generated a series of C-terminal truncation variants to dissect the C-terminus influence on CCL21 structure and receptor activation. Using NMR spectroscopy, we found that CCL21 residues 80-90 mediate contacts with the chemokine domain. In cell-based assays for CCR7 and ACKR4 activation, we also found that residues 92-100 reduced CCL21 potency in calcium flux, cAMP inhibition, and β-arrestin recruitment. Taken together, these structure-function studies support a model wherein intramolecular interactions with specific residues of the flexible C-terminus stabilize a less active monomer conformation of the CCL21. We speculate that the autoinhibitory intramolecular contacts between the C-terminal tail and chemokine body are disrupted by GAG binding and/or interactions with the CCR7 receptor to ensure optimal functionality.
Collapse
Affiliation(s)
- Natasha A Moussouras
- From the Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael B Dwinell
- From the Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
16
|
De Leo F, Quilici G, Tirone M, De Marchis F, Mannella V, Zucchelli C, Preti A, Gori A, Casalgrandi M, Mezzapelle R, Bianchi ME, Musco G. Diflunisal targets the HMGB1/CXCL12 heterocomplex and blocks immune cell recruitment. EMBO Rep 2019; 20:e47788. [PMID: 31418171 PMCID: PMC6776901 DOI: 10.15252/embr.201947788] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022] Open
Abstract
Extracellular HMGB1 triggers inflammation following infection or injury and supports tumorigenesis in inflammation-related malignancies. HMGB1 has several redox states: reduced HMGB1 recruits inflammatory cells to injured tissues forming a heterocomplex with CXCL12 and signaling via its receptor CXCR4; disulfide-containing HMGB1 binds to TLR4 and promotes inflammatory responses. Here we show that diflunisal, an aspirin-like nonsteroidal anti-inflammatory drug (NSAID) that has been in clinical use for decades, specifically inhibits in vitro and in vivo the chemotactic activity of HMGB1 at nanomolar concentrations, at least in part by binding directly to both HMGB1 and CXCL12 and disrupting their heterocomplex. Importantly, diflunisal does not inhibit TLR4-dependent responses. Our findings clarify the mode of action of diflunisal and open the way to the rational design of functionally specific anti-inflammatory drugs.
Collapse
Affiliation(s)
- Federica De Leo
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
- Università Vita‐Salute San RaffaeleMilanItaly
- Chromatin Dynamics UnitDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Giacomo Quilici
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | | | - Francesco De Marchis
- Chromatin Dynamics UnitDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Valeria Mannella
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
- Center for Translational Genomics and Bioinformatics (CTGB)IRCCS Policlinico San DonatoSan Donato MilaneseItaly
| | - Chiara Zucchelli
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | | | - Alessandro Gori
- Istituto di Chimica del Riconoscimento MolecolareCNRMilanItaly
| | | | - Rosanna Mezzapelle
- Chromatin Dynamics UnitDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Marco E Bianchi
- Università Vita‐Salute San RaffaeleMilanItaly
- Chromatin Dynamics UnitDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Giovanna Musco
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| |
Collapse
|
17
|
Spiller S, Panitz N, Limasale YDP, Atallah PM, Schirmer L, Bellmann-Sickert K, Blaszkiewicz J, Koehling S, Freudenberg U, Rademann J, Werner C, Beck-Sickinger AG. Modulation of Human CXCL12 Binding Properties to Glycosaminoglycans To Enhance Chemotactic Gradients. ACS Biomater Sci Eng 2019; 5:5128-5138. [DOI: 10.1021/acsbiomaterials.9b01139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sabrina Spiller
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Nydia Panitz
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Yanuar Dwi Putra Limasale
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Passant Morsi Atallah
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Lucas Schirmer
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Kathrin Bellmann-Sickert
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Joanna Blaszkiewicz
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Sebastian Koehling
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Jörg Rademann
- Freie Universität Berlin, Medicinal Chemistry, Königin-Luise-Strasse 2+4, Berlin 14195, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Strasse 6, 01069 Dresden, Germany
| | - Annette G. Beck-Sickinger
- Universität Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Fassi EMA, Sgrignani J, D'Agostino G, Cecchinato V, Garofalo M, Grazioso G, Uguccioni M, Cavalli A. Oxidation State Dependent Conformational Changes of HMGB1 Regulate the Formation of the CXCL12/HMGB1 Heterocomplex. Comput Struct Biotechnol J 2019; 17:886-894. [PMID: 31333815 PMCID: PMC6617219 DOI: 10.1016/j.csbj.2019.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
High-mobility Group Box 1 (HMGB1) is an abundant protein present in all mammalian cells and involved in several processes. During inflammation or tissue damage, HMGB1 is released in the extracellular space and, depending on its redox state, can form a heterocomplex with CXCL12. The heterocomplex acts exclusively via the chemokine receptor CXCR4 enhancing leukocyte recruitment. Here, we used multi-microsecond molecular dynamics (MD) simulations to elucidate the effect of the disulfide bond on the structure and dynamics of HMGB1. The results of the MD simulations show that the presence or lack of the disulfide bond between Cys23 and Cys45 modulates the conformational space explored by HMGB1, making the reduced protein more suitable to form a complex with CXCL12.
Collapse
Key Words
- CXCL12
- CXCL12, C-X-C motif chemokine 12
- CXCR4, C-X-C chemokine receptor type 4
- Conformational ensemble
- HMGB1
- HMGB1, High-mobility Group Box 1
- MD, Molecular dynamics
- Molecular dynamics
- Protein-protein docking
- RMSD, Root mean square deviation
- RoG, Radius of gyration
- SASA, Solvent accessible surface area
- TLR2 or TLR4, Toll-like Receptor 2 or 4
- ds-HMGB1, Disulfide High-mobility Group Box 1
- fr-HMGB1, Full reduced High-mobility Group Box 1
Collapse
Affiliation(s)
- Enrico M A Fassi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Gianluca D'Agostino
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland
| | - Maura Garofalo
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,University of Lausanne (UNIL), CH-1015, Lausanne, Switzerland
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,Humanitas University, Department of Biomedical Sciences, 20090, Pieve Emanuele, Milan, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, CH-6500 Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
19
|
Yang XY, Ozawa S, Kato Y, Maehata Y, Izukuri K, Ikoma T, Kanamori K, Akasaka T, Suzuki K, Iwabuchi H, Kurata SI, Katoh I, Sakurai T, Kiyono T, Hata RI. C-X-C Motif Chemokine Ligand 14 is a Unique Multifunctional Regulator of Tumor Progression. Int J Mol Sci 2019; 20:E1872. [PMID: 31014014 PMCID: PMC6514660 DOI: 10.3390/ijms20081872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 01/27/2023] Open
Abstract
Cancer is a leading cause of death and disease worldwide, with a tremendous financial impact. Thus, the development of cost-effective novel approaches for suppressing tumor growth and progression is essential. In an attempt to identify the mechanisms responsible for tumor suppression, we screened for molecules downregulated in a cancer progression model and found that the chemokine CXCL14, also called BRAK, was the most significantly downregulated. Increasing the production of CXCL14 protein by transfecting tumor cells with a CXCL14 expression vector and transplanting the cells into the back skin of immunodeficient mice suppressed tumor cell growth compared with that of parental tumor cells, suggesting that CXCL14 suppressed tumor growth in vivo. However, some studies have reported that over-expression of CXCL14, especially in stromal cells, stimulated the progression of tumor formation. Transgenic mice expressing 10-fold more CXCL14 protein than wild-type C57BL/6 mice showed reduced rates of chemical carcinogenesis, transplanted tumor growth, and metastasis without apparent side effects. CXCL14 also acts as an antimicrobial molecule. In this review, we highlight recent studies involving the identification and characterization of CXCL14 in cancer progression and discuss the reasons for the context-dependent effects of CXCL14 on tumor formation.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan.
| | - Shigeyuki Ozawa
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama 963-8611, Japan.
| | - Yojiro Maehata
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Kazuhito Izukuri
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Oral Science, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Takeharu Ikoma
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Keisuke Kanamori
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Tetsu Akasaka
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Critical Care Medicine and Dentistry, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Kenji Suzuki
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Hiroshi Iwabuchi
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Shun-Ichi Kurata
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Iyoko Katoh
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Takashi Sakurai
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, Department of Cell Culture Technology, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | - Ryu-Ichiro Hata
- Oral Health Science Research Center, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
- Department of Dentomaxillofacial Diagnosis and Treatment, Graduate School of Kanagawa Dental University, Yokosuka 238-8580, Japan.
| |
Collapse
|
20
|
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44:51-68. [PMID: 30396776 DOI: 10.1016/j.cytogfr.2018.10.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
CXCL12 is a CXC chemokine that traditionally has been classified as a homeostatic chemokine. It contributes to physiological processes such as embryogenesis, hematopoiesis and angiogenesis. In contrast to these homeostatic functions, increased expression of CXCL12 in general, or of a specific CXCL12 splicing variant has been demonstrated in various pathologies. In addition to this increased or differential transcription of CXCL12, also upregulation of its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) contributes to the onset or progression of diseases. Moreover, posttranslational modification of CXCL12 during disease progression, through interaction with locally produced molecules or enzymes, also affects CXCL12 activity, adding further complexity. As CXCL12, CXCR4 and ACKR3 are broadly expressed, the number of pathologies wherein CXCL12 is involved is growing. In this review, the role of the CXCL12/CXCR4/ACKR3 axis will be discussed for the most prevalent pathologies. Administration of CXCL12-neutralizing antibodies or small-molecule antagonists of CXCR4 or ACKR3 delays disease onset or prevents disease progression in cancer, viral infections, inflammatory bowel diseases, rheumatoid arthritis and osteoarthritis, asthma and acute lung injury, amyotrophic lateral sclerosis and WHIM syndrome. On the other hand, CXCL12 has protective properties in Alzheimer's disease and multiple sclerosis, has a beneficial role in wound healing and has crucial homeostatic properties in general.
Collapse
Affiliation(s)
- Rik Janssens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
21
|
Hitchinson B, Eby JM, Gao X, Guite-Vinet F, Ziarek JJ, Abdelkarim H, Lee Y, Okamoto Y, Shikano S, Majetschak M, Heveker N, Volkman BF, Tarasova NI, Gaponenko V. Biased antagonism of CXCR4 avoids antagonist tolerance. Sci Signal 2018; 11:11/552/eaat2214. [PMID: 30327409 DOI: 10.1126/scisignal.aat2214] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repeated dosing of drugs targeting G protein-coupled receptors can stimulate antagonist tolerance, which reduces their efficacy; thus, strategies to avoid tolerance are needed. The efficacy of AMD3100, a competitive antagonist of the chemokine receptor CXCR4 that mobilizes leukemic blasts from the bone marrow into the blood to sensitize them to chemotherapy, is reduced after prolonged treatment. Tolerance to AMD3100 increases the abundance of CXCR4 on the surface of leukemic blasts, which promotes their rehoming to the bone marrow. AMD3100 inhibits both G protein signaling by CXCR4 and β-arrestin1/2-dependent receptor endocytosis. We demonstrated that biased antagonists of G protein-dependent chemotaxis but not β-arrestin1/2 recruitment and subsequent receptor endocytosis avoided tolerance. The peptide antagonist X4-2-6, which is derived from transmembrane helix 2 and extracellular loop 1 of CXCR4, limited chemotaxis and signaling but did not promote CXCR4 accumulation on the cell surface or cause tolerance. The activity of X4-2-6 was due to its distinct mechanism of inhibition of CXCR4. The peptide formed a ternary complex with the receptor and its ligand, the chemokine CXCL12. Within this complex, X4-2-6 released the portion of CXCL12 critical for receptor-mediated activation of G proteins but enabled the rest of the chemokine to recruit β-arrestins to the receptor. In contrast, AMD3100 displaced all components of the chemokine responsible for CXCR4 activation. We further identified a small molecule with similar biased antagonist properties to those of X4-2-6, which may provide a viable alternative to patients when antagonist tolerance prevents drugs from reaching efficacy.
Collapse
Affiliation(s)
- Ben Hitchinson
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Jonathan M Eby
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago, Chicago, IL, USA
| | - Xianlong Gao
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago, Chicago, IL, USA.,Department of Surgery, Morsani College of Medicine, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Francois Guite-Vinet
- Department of Biochemistry, Research Centre, Sainte-Justine Hospital, Montréal, Quebec, Canada
| | - Joshua J Ziarek
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Youngshim Lee
- Division of Bioscience and Biotechnology, Biomolecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Yukari Okamoto
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Sojin Shikano
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthias Majetschak
- Department of Surgery, Burn and Shock Trauma Research Institute, Loyola University Chicago, Chicago, IL, USA.,Department of Surgery, Morsani College of Medicine, University of South Florida, College of Medicine, Tampa, FL, USA
| | - Nikolaus Heveker
- Department of Biochemistry, Research Centre, Sainte-Justine Hospital, Montréal, Quebec, Canada
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nadya I Tarasova
- Cancer and Inflammation Program, National Cancer Institute, P.O. Box B, Frederick, MD, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
22
|
Haybar H, Shahrabi S, Deris Zayeri Z, Pezeshki S. Strategies to increase cardioprotection through cardioprotective chemokines in chemotherapy-induced cardiotoxicity. Int J Cardiol 2018; 269:276-282. [DOI: 10.1016/j.ijcard.2018.07.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/19/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
|
23
|
Thomas MA, He J, Peterson FC, Huppler AR, Volkman BF. The Solution Structure of CCL28 Reveals Structural Lability that Does Not Constrain Antifungal Activity. J Mol Biol 2018; 430:3266-3282. [PMID: 29913161 DOI: 10.1016/j.jmb.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/18/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
The chemokine CCL28 is constitutively expressed in mucosal tissues and is abundant in low-salt mucosal secretions. Beyond its traditional role as a chemoattractant, CCL28 has been shown to act as a potent and broad-spectrum antimicrobial agent with particular efficacy against the commensal fungus and opportunistic pathogen Candida albicans. However, the structural features that allow CCL28 to perform its chemotactic and antimicrobial functions remain unknown. Here, we report the structure of CCL28, solved using nuclear magnetic resonance spectroscopy. CCL28 adopts the canonical chemokine tertiary fold, but also has a disordered C-terminal domain that is partially tethered to the core by a non-conserved disulfide bond. Structure-function analysis reveals that removal of the C-terminal tail reduces the antifungal activity of CCL28 without disrupting its structural integrity. Conversely, removal of the non-conserved disulfide bond destabilizes the tertiary fold of CCL28 without altering its antifungal effects. Moreover, we report that CCL28 unfolds in response to low pH but is stabilized by the presence of salt. To explore the physiologic relevance of the observed structural lability of CCL28, we investigated the effects of pH and salt on the antifungal activity of CCL28 in vitro. We found that low pH enhances the antifungal potency of CCL28, but also that this pH effect is independent of CCL28's tertiary fold. Given its dual role as a chemoattractant and antimicrobial agent, our results suggest that changes in the salt concentration or pH at mucosal sites may fine-tune CCL28's functional repertoire by adjusting the thermostability of its structure.
Collapse
Affiliation(s)
- Monica A Thomas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jie He
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anna R Huppler
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
24
|
Zinn-Björkman L, Adler FR. Modeling factors that regulate cell cooperativity in the zebrafish posterior lateral line primordium. J Theor Biol 2018; 444:93-99. [PMID: 29470991 DOI: 10.1016/j.jtbi.2018.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 01/10/2023]
Abstract
Collective cell migration is an integral part of organismal development. We consider migration of the zebrafish primordium during development of the posterior lateral line, a sensory system that detects water movement patterns. Experiments have shown that the chemokine ligand CXCL12a and its receptors CXCR4b and CXCR7b are key players for driving migration of the primordium, while FGF signaling helps maintain cohesion. In this work, we formulate a mathematical model of a laser ablated primordium separated into two smaller cell collectives: a leading collective that responds to local CXCL12a levels and a trailing collective that migrates up a local FGF gradient. Our model replicates recent experimental results, while also predicting a "runaway" behavior when FGF gradient response is inhibited. We also use our model to estimate diffusion coefficients of CXCL12a and FGF in the lateral line.
Collapse
Affiliation(s)
- Leif Zinn-Björkman
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States.
| | - Frederick R Adler
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States; School of Biology, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
25
|
Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23-dependent murine model. Proc Natl Acad Sci U S A 2017; 114:12460-12465. [PMID: 29109267 DOI: 10.1073/pnas.1704958114] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the infiltration of T cell and other immune cells to the skin in response to injury or autoantigens. Conventional, as well as unconventional, γδ T cells are recruited to the dermis and epidermis by CCL20 and other chemokines. Together with its receptor CCR6, CCL20 plays a critical role in the development of psoriasiform dermatitis in mouse models. We screened a panel of CCL20 variants designed to form dimers stabilized by intermolecular disulfide bonds. A single-atom substitution yielded a CCL20 variant (CCL20 S64C) that acted as a partial agonist for the chemokine receptor CCR6. CCL20 S64C bound CCR6 and induced intracellular calcium release, consistent with G-protein activation, but exhibited minimal chemotactic activity. Instead, CCL20 S64C inhibited CCR6-mediated T cell migration with nominal impact on other chemokine receptor signaling. When given in an IL-23-dependent mouse model for psoriasis, CCL20 S64C prevented psoriatic inflammation and the up-regulation of IL-17A and IL-22. Our results validate CCR6 as a tractable therapeutic target for psoriasis and demonstrate the value of CCL20 S64C as a lead compound.
Collapse
|
26
|
The unique structural and functional features of CXCL12. Cell Mol Immunol 2017; 15:299-311. [PMID: 29082918 DOI: 10.1038/cmi.2017.107] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
The CXC chemokine CXCL12 is an important factor in physiological and pathological processes, including embryogenesis, hematopoiesis, angiogenesis and inflammation, because it activates and/or induces migration of hematopoietic progenitor and stem cells, endothelial cells and most leukocytes. Therefore, CXCL12 activity is tightly regulated at multiple levels. CXCL12 has the unique property of existing in six splice variants in humans, each having a specific tissue distribution and in vivo activity. Controlled splice variant transcription and mRNA stability determine the CXCL12 expression profile. CXCL12 fulfills its functions in homeostatic and pathological conditions by interacting with its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) and by binding to glycosaminoglycans (GAGs) in tissues and on the endothelium to allow a proper presentation to passing leukocytes. Homodimerizaton and heterodimerization of CXCL12 and its receptors can alter their signaling activity, as exemplified by the synergy between CXCL12 and other chemokines in leukocyte migration assays. Receptor binding may also initiate CXCL12 internalization and its subsequent removal from the environment. Furthermore, CXCL12 activity is regulated by posttranslational modifications. Proteolytic removal of NH2- or COOH-terminal amino acids, citrullination of arginine residues by peptidyl arginine deiminases or nitration of tyrosine residues reduce CXCL12 activity. This review summarizes the interactions of CXCL12 with the cellular environment and discusses the different levels of CXCL12 activity regulation.
Collapse
|
27
|
Miller MC, Mayo KH. Chemokines from a Structural Perspective. Int J Mol Sci 2017; 18:ijms18102088. [PMID: 28974038 PMCID: PMC5666770 DOI: 10.3390/ijms18102088] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 01/04/2023] Open
Abstract
Chemokines are a family of small, highly conserved cytokines that mediate various biological processes, including chemotaxis, hematopoiesis, and angiogenesis, and that function by interacting with cell surface G-Protein Coupled Receptors (GPCRs). Because of their significant involvement in various biological functions and pathologies, chemokines and their receptors have been the focus of therapeutic discovery for clinical intervention. There are several sub-families of chemokines (e.g., CXC, CC, C, and CX3C) defined by the positions of sequentially conserved cysteine residues. Even though all chemokines also have a highly conserved, three-stranded β-sheet/α-helix tertiary structural fold, their quarternary structures vary significantly with their sub-family. Moreover, their conserved tertiary structures allow for subunit swapping within and between sub-family members, thus promoting the concept of a “chemokine interactome”. This review is focused on structural aspects of CXC and CC chemokines, their functional synergy and ability to form heterodimers within the chemokine interactome, and some recent developments in structure-based chemokine-targeted drug discovery.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Molecular characterization of sdf1 and cxcr4 in the Mozambique tilapia, Oreochromis mossambicus. Anim Reprod Sci 2017; 176:51-63. [DOI: 10.1016/j.anireprosci.2016.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 11/22/2022]
|
29
|
Roy I, Getschman AE, Volkman BF, Dwinell MB. Exploiting agonist biased signaling of chemokines to target cancer. Mol Carcinog 2016; 56:804-813. [PMID: 27648825 DOI: 10.1002/mc.22571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022]
Abstract
As knowledge of growth-independent functions of cancer cells is expanding, exploration into the role of chemokines in modulating cancer pathogenesis, particularly metastasis, continues to develop. However, more study into the mechanisms whereby chemokines direct the migration of cancer cells is needed before specific therapies can be generated to target metastasis. Herein, we draw attention to the longstanding conundrum in the field of chemokine biology that chemokines stimulate migration in a biphasic manner; and explore this phenomenon's impact on chemokine function in the context of cancer. Typically, low concentrations of chemokines lead to chemotactic migration and higher concentrations halt migration. The signaling mechanisms that govern this phenomenon remain unclear. Over the last decade, we have defined a novel signaling mechanism for regulation of chemokine migration through ligand oligomerization and biased agonist signaling. We provide insight into this new paradigm for chemokine signaling and discuss how it will impact future exploration into chemokine function and biology. In the pursuit of producing more novel cancer therapies, we suggest a framework for pharmaceutical application of the principles of chemokine oligomerization and biased agonist signaling in cancer. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ishan Roy
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin.,MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
30
|
Cross-talk between the dipeptidyl peptidase-4 and stromal cell-derived factor-1 in stem cell homing and myocardial repair: Potential impact of dipeptidyl peptidase-4 inhibitors. Pharmacol Ther 2016; 167:100-107. [PMID: 27484974 DOI: 10.1016/j.pharmthera.2016.07.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/16/2016] [Indexed: 12/11/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4), glycyl-prolyl-naphthylamidase, is a serine protease that catalyzes the hydrolysis of various proline-containing polypeptides. It is involved in the inactivation of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), having in this way a profound influence on glucose metabolism. During organ damage, stromal and endothelial cells produce a chemokine known as stromal cell-derived factor-1 (SDF-1), a powerful chemoattractant of stem/progenitor cells. SDF-1 binds to a specific α-chemokine receptor (CXCR4) and can be degraded by proteases, including matrix DPP-4/CD26, presented in the circulation, or activated in injured tissues. DPP-4 inhibition has received considerable attention because of its significant therapeutic benefits in the regulation of insulin secretion and tissue insulin sensitivity, the regulation of tumor growth and metastasis, angiogenesis, tissue repair, especially after myocardial infarction, and regulation of endocrine function. Inhibition of circulating proteases appears to maintain the optimal endogenous SDF-1 concentration and may enhance homing of endothelial progenitor cells. In the present article, we present an overview of some basic facts about the role of DPP-4 in glucose homeostasis, the mechanism of its inhibition, and a brief summary of available DPP-4 inhibitors. Furthermore, since protection against the overactivity of proteases is important for restorating cardiac function and repair after myocardial damage, necrosis and apoptosis, we propose that administration of a DPP-4 inhibitor may also be beneficial following myocardial infarction by the prevention of cleavage of stem cell chemoattractant cytokine SDF-1.
Collapse
|
31
|
Nevins AM, Subramanian A, Tapia JL, Delgado DP, Tyler RC, Jensen DR, Ouellette AJ, Volkman BF. A Requirement for Metamorphic Interconversion in the Antimicrobial Activity of Chemokine XCL1. Biochemistry 2016; 55:3784-93. [PMID: 27305837 DOI: 10.1021/acs.biochem.6b00353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemokines make up a superfamily of ∼50 small secreted proteins (8-12 kDa) involved in a host of physiological processes and disease states, with several previously shown to have direct antimicrobial activity comparable to that of defensins in efficacy. XCL1 is a unique metamorphic protein that interconverts between the canonical chemokine fold and a novel all-β-sheet dimer. Phylogenetic analysis suggests that, within the chemokine family, XCL1 is most closely related to CCL20, which exhibits antibacterial activity. The in vitro antimicrobial activity of WT-XCL1 and structural variants was quantified using a radial diffusion assay (RDA) and in solution bactericidal assays against Gram-positive and Gram-negative species of bacteria. Comparisons of WT-XCL1 with variants that limit metamorphic interconversion showed a loss of antimicrobial activity when restricted to the conserved chemokine fold. These results suggest that metamorphic folding of XCL1 is required for potent antimicrobial activity.
Collapse
Affiliation(s)
- Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Akshay Subramanian
- Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles, California 90089, United States
| | - Jazma L Tapia
- Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles, California 90089, United States
| | - David P Delgado
- Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles, California 90089, United States
| | - Robert C Tyler
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Davin R Jensen
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - André J Ouellette
- Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles, California 90089, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
32
|
Panitz N, Theisgen S, Samsonov SA, Gehrcke JP, Baumann L, Bellmann-Sickert K, Köhling S, Pisabarro MT, Rademann J, Huster D, Beck-Sickinger AG. The structural investigation of glycosaminoglycan binding to CXCL12 displays distinct interaction sites. Glycobiology 2016; 26:1209-1221. [DOI: 10.1093/glycob/cww059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 05/15/2016] [Accepted: 05/15/2016] [Indexed: 12/14/2022] Open
|
33
|
Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016; 114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions.
Collapse
Affiliation(s)
- Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Joshua J Ziarek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Pierre-Arnaud Gauthier
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
34
|
Smith EW, Nevins AM, Qiao Z, Liu Y, Getschman AE, Vankayala SL, Kemp MT, Peterson FC, Li R, Volkman BF, Chen Y. Structure-Based Identification of Novel Ligands Targeting Multiple Sites within a Chemokine-G-Protein-Coupled-Receptor Interface. J Med Chem 2016; 59:4342-51. [PMID: 27058821 DOI: 10.1021/acs.jmedchem.5b02042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CXCL12 is a human chemokine that recognizes the CXCR4 receptor and is involved in immune responses and metastatic cancer. Interactions between CXCL12 and CXCR4 are an important drug target but, like other elongated protein-protein interfaces, present challenges for small molecule ligand discovery due to the relatively shallow and featureless binding surfaces. Calculations using an NMR complex structure revealed a binding hot spot on CXCL12 that normally interacts with the I4/I6 residues from CXCR4. Virtual screening was performed against the NMR model, and subsequent testing has verified the specific binding of multiple docking hits to this site. Together with our previous results targeting two other binding pockets that recognize sulfotyrosine residues (sY12 and sY21) of CXCR4, including a new analog against the sY12 binding site reported herein, we demonstrate that protein-protein interfaces can often possess multiple sites for engineering specific small molecule ligands that provide lead compounds for subsequent optimization by fragment based approaches.
Collapse
Affiliation(s)
- Emmanuel W Smith
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Zhen Qiao
- Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, and Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yan Liu
- Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, and Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Sai L Vankayala
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - M Trent Kemp
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Rongshi Li
- Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, and Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| |
Collapse
|
35
|
Lu J, Chatterjee M, Schmid H, Beck S, Gawaz M. CXCL14 as an emerging immune and inflammatory modulator. JOURNAL OF INFLAMMATION-LONDON 2016; 13:1. [PMID: 26733763 PMCID: PMC4700668 DOI: 10.1186/s12950-015-0109-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022]
Abstract
CXCL14, a relatively novel chemokine, is a non-ELR (glutamic acid-leucine-arginine) chemokine with a broad spectrum of biological activities. CXCL14 mainly contributes to the regulation of immune cell migration, also executes antimicrobial immunity. The identity of the receptor for CXCL14 still remains obscure and therefore the intracellular signaling pathway is not entirely delineated. The present review summarizes the contribution of CXCL14 in these two aspects and discusses the biological mechanisms regulating CXCL14 expression and potential CXCL14 mediated functional implications in a variety of cells.
Collapse
Affiliation(s)
- Jing Lu
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Mita Chatterjee
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Hannes Schmid
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Sandra Beck
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Universität Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Roy I, McAllister DM, Gorse E, Dixon K, Piper CT, Zimmerman NP, Getschman AE, Tsai S, Engle DD, Evans DB, Volkman BF, Kalyanaraman B, Dwinell MB. Pancreatic Cancer Cell Migration and Metastasis Is Regulated by Chemokine-Biased Agonism and Bioenergetic Signaling. Cancer Res 2015; 75:3529-42. [PMID: 26330165 DOI: 10.1158/0008-5472.can-14-2645] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) invariably succumb to metastatic disease, but the underlying mechanisms that regulate PDAC cell movement and metastasis remain little understood. In this study, we investigated the effects of the chemokine gene CXCL12, which is silenced in PDAC tumors, yet is sufficient to suppress growth and metastasis when re-expressed. Chemokines like CXCL12 regulate cell movement in a biphasic pattern, with peak migration typically in the low nanomolar concentration range. Herein, we tested the hypothesis that the biphasic cell migration pattern induced by CXCL12 reflected a biased agonist bioenergetic signaling that might be exploited to interfere with PDAC metastasis. In human and murine PDAC cell models, we observed that nonmigratory doses of CXCL12 were sufficient to decrease oxidative phosphorylation and glycolytic capacity and to increase levels of phosphorylated forms of the master metabolic kinase AMPK. Those same doses of CXCL12 locked myosin light chain into a phosphorylated state, thereby decreasing F-actin polymerization and preventing cell migration in a manner dependent upon AMPK and the calcium-dependent kinase CAMKII. Notably, at elevated concentrations of CXCL12 that were insufficient to trigger chemotaxis of PDAC cells, AMPK blockade resulted in increased cell movement. In two preclinical mouse models of PDAC, administration of CXCL12 decreased tumor dissemination, supporting our hypothesis that chemokine-biased agonist signaling may offer a useful therapeutic strategy. Our results offer a mechanistic rationale for further investigation of CXCL12 as a potential therapy to prevent or treat PDAC metastasis.
Collapse
Affiliation(s)
- Ishan Roy
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Donna M McAllister
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Egal Gorse
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kate Dixon
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Clinton T Piper
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Noah P Zimmerman
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin. MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Susan Tsai
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Douglas B Evans
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin. MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin. MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
37
|
Veldkamp CT, Koplinski CA, Jensen DR, Peterson FC, Smits KM, Smith BL, Johnson SK, Lettieri C, Buchholz WG, Solheim JC, Volkman BF. Production of Recombinant Chemokines and Validation of Refolding. Methods Enzymol 2015; 570:539-65. [PMID: 26921961 DOI: 10.1016/bs.mie.2015.09.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The diverse roles of chemokines in normal immune function and many human diseases have motivated numerous investigations into the structure and function of this family of proteins. Recombinant chemokines are often used to study how chemokines coordinate the trafficking of immune cells in various biological contexts. A reliable source of biologically active protein is vital for any in vitro or in vivo functional analysis. In this chapter, we describe a general method for the production of recombinant chemokines and robust techniques for efficient refolding that ensure consistently high biological activity. Considerations for initiating development of protocols consistent with Current Good Manufacturing Practices (cGMPs) to produce biologically active chemokines suitable for use in clinical trials are also discussed.
Collapse
Affiliation(s)
- Christopher T Veldkamp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Chemistry, University of Wisconsin-Whitewater, Whitewater, Wisconsin, USA.
| | - Chad A Koplinski
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Davin R Jensen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kaitlin M Smits
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; The Eppley Institute and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Brittney L Smith
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; The Eppley Institute and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scott K Johnson
- Biological Process Development Facility, College of Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Christina Lettieri
- Department of Pediatrics, Children's Hospital and Medical Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Wallace G Buchholz
- Biological Process Development Facility, College of Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Joyce C Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA; The Eppley Institute and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
38
|
Bach HH, Wong YM, Tripathi A, Nevins AM, Gamelli RL, Volkman BF, Byron KL, Majetschak M. Chemokine (C-X-C motif) receptor 4 and atypical chemokine receptor 3 regulate vascular α₁-adrenergic receptor function. Mol Med 2014; 20:435-47. [PMID: 25032954 DOI: 10.2119/molmed.2014.00101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/14/2014] [Indexed: 12/23/2022] Open
Abstract
Chemokine (C-X-C motif) receptor (CXCR) 4 and atypical chemokine receptor (ACKR) 3 ligands have been reported to modulate cardiovascular function in various disease models. The underlying mechanisms, however, remain unknown. Thus, it was the aim of the present study to determine how pharmacological modulation of CXCR4 and ACKR3 regulate cardiovascular function. In vivo administration of TC14012, a CXCR4 antagonist and ACKR3 agonist, caused cardiovascular collapse in normal animals. During the cardiovascular stress response to hemorrhagic shock, ubiquitin, a CXCR4 agonist, stabilized blood pressure, whereas coactivation of CXCR4 and ACKR3 with CXC chemokine ligand 12 (CXCL12), or blockade of CXCR4 with AMD3100 showed opposite effects. While CXCR4 and ACKR3 ligands did not affect myocardial function, they selectively altered vascular reactivity upon α1-adrenergic receptor (AR) activation in pressure myography experiments. CXCR4 activation with ubiquitin enhanced α1-AR-mediated vasoconstriction, whereas ACKR3 activation with various natural and synthetic ligands antagonized α1-AR-mediated vasoconstriction. The opposing effects of CXCR4 and ACKR3 activation by CXCL12 could be dissected pharmacologically. CXCR4 and ACKR3 ligands did not affect vasoconstriction upon activation of voltage-operated Ca(2+) channels or endothelin receptors. Effects of CXCR4 and ACKR3 agonists on vascular α1-AR responsiveness were independent of the endothelium. These findings suggest that CXCR4 and ACKR3 modulate α1-AR reactivity in vascular smooth muscle and regulate hemodynamics in normal and pathological conditions. Our observations point toward CXCR4 and ACKR3 as new pharmacological targets to control vasoreactivity and blood pressure.
Collapse
Affiliation(s)
- Harold H Bach
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Yee M Wong
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Abhishek Tripathi
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Richard L Gamelli
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kenneth L Byron
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Matthias Majetschak
- Department of Surgery, Loyola University Chicago, Maywood, Illinois, United States of America Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
39
|
Chen G, Wang W, Meng S, Zhang L, Wang W, Jiang Z, Yu M, Cui Q, Li M. CXC chemokine CXCL12 and its receptor CXCR4 in tree shrews (Tupaia belangeri): structure, expression and function. PLoS One 2014; 9:e98231. [PMID: 24858548 PMCID: PMC4032326 DOI: 10.1371/journal.pone.0098231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 04/30/2014] [Indexed: 12/11/2022] Open
Abstract
Chemokines are small secreted proteins functionally involved in the immune system's regulation of lymphocyte migration across numerous mammalian species. Given its growing popularity in immunological models, we investigated the structure and function of chemokine CXCL12 protein in tree shrews. We found that CXCL12 and its receptor CXCR4 in tree shrew had structural similarities to their homologous human proteins. Phylogenetic analysis supports the view that tree shrew is evolutionarily-close to the primates. Our results also showed that the human recombinant CXCL12 protein directly enhanced the migration of tree shrew's lymphocytes in vitro, while AMD3100 enhanced the mobilization of hematopoietic progenitor cells (HPCs) from bone marrow into peripheral blood in tree shrew in vivo. Collectively, these findings suggested that chemokines in tree shrews may play the same or similar roles as those in humans, and that the tree shrew is a viable animal model for studying human immunological diseases.
Collapse
Affiliation(s)
- Guiyuan Chen
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming, China
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Dali University, Dali, China
| | - Wei Wang
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming, China
- Department of Rheumatology & Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shengke Meng
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming, China
| | - Lichao Zhang
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenxue Wang
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming, China
| | - Zongmin Jiang
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming, China
| | - Min Yu
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming, China
| | - Qinghua Cui
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming, China
| | - Meizhang Li
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming, China
- * E-mail:
| |
Collapse
|
40
|
Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 2014; 7:545-94. [PMID: 24828484 PMCID: PMC4035769 DOI: 10.3390/ph7050545] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/11/2022] Open
Abstract
As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between -3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc) are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
41
|
Guyon A. CXCL12 chemokine and GABA neurotransmitter systems crosstalk and their putative roles. Front Cell Neurosci 2014; 5:115. [PMID: 24808825 PMCID: PMC4009426 DOI: 10.3389/fncel.2014.00115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/08/2014] [Indexed: 11/28/2022] Open
Abstract
Since CXCL12 and its receptors, CXCR4 and CXCR7, have been found in the brain, the role of this chemokine has been expanded from chemoattractant in the immune system to neuromodulatory in the brain. Several pieces of evidence suggest that this chemokine system could crosstalk with the GABAergic system, known to be the main inhibitory neurotransmitter system in the brain. Indeed, GABA and CXCL12 as well as their receptors are colocalized in many cell types including neurons and there are several examples in which these two systems interact. Several mechanisms can be proposed to explain how these systems interact, including receptor–receptor interactions, crosstalk at the level of second messenger cascades, or direct pharmacological interactions, as GABA and GABAB receptor agonists/antagonists have been shown to be allosteric modulators of CXCR4. The interplay between CXCL12/CXCR4-CXCR7 and GABA/GABAA-GABAB receptors systems could have many physiological implications in neurotransmission, cancer and inflammation. In addition, the GABAB agonist baclofen is currently used in medicine to treat spasticity in patients with spinal cord injury, cerebral palsy, traumatic brain injury, multiple sclerosis, and other disorders. More recently it has also been used in the treatment of alcohol dependence and withdrawal. The allosteric effects of this agent on CXCR4 could contribute to these beneficial effects or at the opposite, to its side effects.
Collapse
Affiliation(s)
- Alice Guyon
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Nice Sophia Antipolis Valbonne, France
| |
Collapse
|
42
|
Tamamis P, Floudas CA. Elucidating a key component of cancer metastasis: CXCL12 (SDF-1α) binding to CXCR4. J Chem Inf Model 2014; 54:1174-88. [PMID: 24660779 PMCID: PMC4004218 DOI: 10.1021/ci500069y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The chemotactic signaling induced
by the binding of chemokine CXCL12
(SDF-1α) to chemokine receptor CXCR4 is of significant biological
importance and is a potential therapeutic axis against HIV-1. However,
as CXCR4 is overexpressed in certain cancer cells, the CXCL12:CXCR4
signaling is involved in tumor metastasis, progression, angiogenesis,
and survival. Motivated by the pivotal role of the CXCL12:CXCR4 axis
in cancer, we employed a comprehensive set of computational tools,
predominantly based on free energy calculations and molecular dynamics
simulations, to obtain insights into the molecular recognition of
CXCR4 by CXCL12. We report, what is to our knowledge, the first computationally
derived CXCL12:CXCR4 complex structure which is in remarkable agreement
with experimental findings and sheds light into the functional role
of CXCL12 and CXCR4 residues which are associated with binding and
signaling. Our results reveal that the CXCL12 N-terminal domain is
firmly bound within the CXCR4 transmembrane domain, and the central
24–50 residue domain of CXCL12 interacts with the upper N-terminal
domain of CXCR4. The stability of the CXCL12:CXCR4 complex structure
is attributed to an abundance of nonpolar and polar intermolecular
interactions, including salt bridges formed between positively charged
CXCL12 residues and negatively charged CXCR4 residues. The success
of the computational protocol can mainly be attributed to the nearly
exhaustive docking conformational search, as well as the heterogeneous
dielectric implicit water-membrane-water model used to simulate and
select the optimum conformations. We also recently utilized this protocol
to elucidate the binding of an HIV-1 gp120 V3 loop in complex with
CXCR4, and a comparison between the molecular recognition of CXCR4
by CXCL12 and the HIV-1 gp120 V3 loop shows that both CXCL12 and the
HIV-1 gp120 V3 loop share the same CXCR4 binding pocket, as they mostly
interact with the same CXCR4 residues.
Collapse
Affiliation(s)
- Phanourios Tamamis
- Department of Chemical and Biological Engineering, Princeton University , New Jersey 08544, United States
| | | |
Collapse
|
43
|
Roy I, Zimmerman NP, Mackinnon AC, Tsai S, Evans DB, Dwinell MB. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis. PLoS One 2014; 9:e90400. [PMID: 24594697 PMCID: PMC3942415 DOI: 10.1371/journal.pone.0090400] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/29/2014] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites.
Collapse
Affiliation(s)
- Ishan Roy
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Noah P. Zimmerman
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - A. Craig Mackinnon
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Douglas B. Evans
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Michael B. Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
44
|
Szatmary AC, Stuelten CH, Nossal R. Improving the design of the agarose spot assay for eukaryotic cell chemotaxis. RSC Adv 2014; 4:57343-57349. [PMID: 25530845 DOI: 10.1039/c4ra08572h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Migration of cells along gradients of effector molecules, i.e., chemotaxis, is necessary in immune response and is involved in development and cancer metastasis. The experimental assessment of chemotaxis thus is of high interest. The agarose spot assay is a simple tissue culture system used to analyze chemotaxis. Although direction sensing requires gradients to be sufficiently steep, how the chemical gradients developed in this assay change over time, and thus, under what conditions chemotaxis is plausible, has not yet been determined. Here, we use numerical solution of the diffusion equation to determine the chemoattractant gradient produced in the assay. Our analysis shows that, for the usual spot size, the lifetime of the assay is optimized if the chemoattractant concentration in the spot is initially 30 times the dissociation constant of the chemoattractant-receptor bond. This result holds regardless of the properties of the chemoattractant. With this initial concentration, the chemoattractant gradient falls to the minimum threshold for directional sensing at the same time that the concentration drops to the optimal level for detecting gradient direction. If a higher initial chemoattractant concentration is used, the useful lifetime of the assay is likely to be shortened because receptor saturation may decrease the cells' sensitivity to the gradient; lower initial concentrations would result in too little chemoattractant for the cells to detect. Moreover, chemoattractants with higher diffusion coefficients would sustain gradients for less time. Based on previous measurements of the diffusion coefficients of the chemoattractants EGF and CXCL12, we estimate that the assay will produce gradients that cells can sense for a duration of 10 h for EGF and 5 h for CXCL12. These gradient durations are comparable to what can be achieved with the Boyden chamber assay. The analysis presented in this work facilitates determination of suitable parameters for the assay, and can be used to assess whether observed cell motility is likely due to chemotaxis or chemokinesis.
Collapse
Affiliation(s)
- Alex C Szatmary
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health, and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christina H Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ralph Nossal
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health, and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
45
|
Bernini A, Henrici De Angelis L, Morandi E, Spiga O, Santucci A, Assfalg M, Molinari H, Pillozzi S, Arcangeli A, Niccolai N. Searching for protein binding sites from Molecular Dynamics simulations and paramagnetic fragment-based NMR studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:561-6. [PMID: 24373878 DOI: 10.1016/j.bbapap.2013.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 11/30/2022]
Abstract
Hotspot delineation on protein surfaces represents a fundamental step for targeting protein-protein interfaces. Disruptors of protein-protein interactions can be designed provided that the sterical features of binding pockets, including the transient ones, can be defined. Molecular Dynamics, MD, simulations have been used as a reliable framework for identifying transient pocket openings on the protein surface. Accessible surface area and intramolecular H-bond involvement of protein backbone amides are proposed as descriptors for characterizing binding pocket occurrence and evolution along MD trajectories. TEMPOL induced paramagnetic perturbations on (1)H-(15)N HSQC signals of protein backbone amides have been analyzed as a fragment-based search for surface hotspots, in order to validate MD predicted pockets. This procedure has been applied to CXCL12, a small chemokine responsible for tumor progression and proliferation. From combined analysis of MD data and paramagnetic profiles, two CXCL12 sites suitable for the binding of small molecules were identified. One of these sites is the already well characterized CXCL12 region involved in the binding to CXCR4 receptor. The other one is a transient pocket predicted by Molecular Dynamics simulations, which could not be observed from static analysis of CXCL12 PDB structures. The present results indicate how TEMPOL, instrumental in identifying this transient pocket, can be a powerful tool to delineate minor conformations which can be highly relevant in dynamic discovery of antitumoral drugs.
Collapse
Affiliation(s)
- Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | | - Edoardo Morandi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; SienaBioGrafiX Srl, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Serena Pillozzi
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50134 Florence, Italy
| | - Annarosa Arcangeli
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50134 Florence, Italy
| | - Neri Niccolai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; SienaBioGrafiX Srl, 53100 Siena, Italy.
| |
Collapse
|
46
|
Takekoshi T, Wu X, Mitsui H, Tada Y, Kao MC, Sato S, Dwinell MB, Hwang ST. CXCR4 negatively regulates keratinocyte proliferation in IL-23-mediated psoriasiform dermatitis. J Invest Dermatol 2013; 133:2530-2537. [PMID: 23528817 PMCID: PMC3972890 DOI: 10.1038/jid.2013.151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 02/08/2023]
Abstract
CXCR4 is expressed by basal keratinocytes (KCs), but little is known about its function in inflamed skin. We crossed K14-Cre and CXCR4(flox/flox (f/f)) transgenic mice, resulting in mice with specific loss of the CXCR4 gene in K14-expressing cells (K14-CXCR4KO), including basal KCs. K14-CXCR4KO pups had no obvious skin defects. We compared K14-CXCR4KO and CXCR4(f/f) control mice in an IL-23-mediated psoriasiform dermatitis model and measured skin edema, and histologic and immunohistological changes. IL-23-treated K14-CXCR4KO mice showed a 1.3-fold increase in mean ear swelling, a 2-fold increase in epidermal thickness, and greater parakeratosis. IL-23-treated wild-type (WT) mice showed weak CXCR4 expression in areas of severe epidermal hyperplasia, but strong CXCR4 expression in nonhyperplastic regions, suggesting that CXCR4 may regulate KC proliferation. To test this hypothesis, we overexpressed CXCR4 in HaCaT KC cells and treated them with IL-22 and/or CXCL12 (chemokine (C-X-C motif) ligand 12). CXCL12 blocked IL-22-mediated HaCaT cell proliferation in vitro and synergized with IL-22 in upregulating SOCS3 (suppressor of cytokine signaling 3), a key regulator of STAT3 (signal transducer and activator of transcription 3). SOCS3 was required for CXCR4-mediated growth inhibition. In human psoriatic skin, both CXCR4 and SOCS3 were upregulated in the junctional region at the border of psoriatic plaques. Thus, CXCR4 has an unexpected role in inhibiting KC proliferation and mitigating the effects of proliferative T helper type 17 cytokines.
Collapse
Affiliation(s)
- Tomonori Takekoshi
- Department of Dermatology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, Wisconsin, USA; Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Xuesong Wu
- Department of Dermatology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, Wisconsin, USA
| | - Hiroshi Mitsui
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yayoi Tada
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mandy C Kao
- Department of Dermatology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, Wisconsin, USA
| | - Shinichi Sato
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sam T Hwang
- Department of Dermatology, Medical College of Wisconsin and Froedtert Hospital, Milwaukee, Wisconsin, USA.
| |
Collapse
|
47
|
Ziarek JJ, Getschman AE, Butler SJ, Taleski D, Stephens B, Kufareva I, Handel TM, Payne RJ, Volkman BF. Sulfopeptide probes of the CXCR4/CXCL12 interface reveal oligomer-specific contacts and chemokine allostery. ACS Chem Biol 2013; 8:1955-63. [PMID: 23802178 DOI: 10.1021/cb400274z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tyrosine sulfation is a post-translational modification that enhances protein-protein interactions and may identify druggable sites in the extracellular space. The G protein-coupled receptor CXCR4 is a prototypical example with three potential sulfation sites at positions 7, 12, and 21. Each receptor sulfotyrosine participates in specific contacts with its chemokine ligand in the structure of a soluble, dimeric CXCL12:CXCR4(1-38) complex, but their relative importance for CXCR4 binding and activation by the monomeric chemokine remains undefined. NMR titrations with short sulfopeptides showed that the tyrosine motifs of CXCR4 varied widely in their contributions to CXCL12 binding affinity and site specificity. Whereas the Tyr21 sulfopeptide bound the same site as in previously solved structures, the Tyr7 and Tyr12 sulfopeptides interacted nonspecifically. Surprisingly, the unsulfated Tyr7 peptide occupied a hydrophobic site on the CXCL12 monomer that is inaccessible in the CXCL12 dimer. Functional analysis of CXCR4 mutants validated the relative importance of individual CXCR4 sulfotyrosine modifications (Tyr21 > Tyr12 > Tyr7) for CXCL12 binding and receptor activation. Biophysical measurements also revealed a cooperative relationship between sulfopeptide binding at the Tyr21 site and CXCL12 dimerization, the first example of allosteric behavior in a chemokine. Future ligands that occupy the sTyr21 recognition site may act as both competitive inhibitors of receptor binding and allosteric modulators of chemokine function. Together, our data suggests that sulfation does not ubiquitously enhance complex affinity and that distinct patterns of tyrosine sulfation could encode oligomer selectivity, implying another layer of regulation for chemokine signaling.
Collapse
Affiliation(s)
- Joshua J. Ziarek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
53226, United States
| | - Anthony E. Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
53226, United States
| | | | - Deni Taleski
- School
of Chemistry, The University of Sydney,
NSW 2006, Australia
| | - Bryan Stephens
- Skaggs
School of Pharmacy and
Pharmaceutical Science, University of California, San Diego, La Jolla, California 93093, United States
| | - Irina Kufareva
- Skaggs
School of Pharmacy and
Pharmaceutical Science, University of California, San Diego, La Jolla, California 93093, United States
| | - Tracy M. Handel
- Skaggs
School of Pharmacy and
Pharmaceutical Science, University of California, San Diego, La Jolla, California 93093, United States
| | - Richard J. Payne
- School
of Chemistry, The University of Sydney,
NSW 2006, Australia
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
53226, United States
| |
Collapse
|
48
|
Cavalla F, Reyes M, Vernal R, Alvarez C, Paredes R, García-Sesnich J, Infante M, Fariña V, Barrón I, Hernández M. High levels of CXC ligand 12/stromal cell-derived factor 1 in apical lesions of endodontic origin associated with mast cell infiltration. J Endod 2013; 39:1234-9. [PMID: 24041383 DOI: 10.1016/j.joen.2013.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/09/2013] [Accepted: 06/29/2013] [Indexed: 12/16/2022]
Abstract
INTRODUCTION CXC ligand 12/stromal-derived factor-1 (CXCL12/SDF-1) is a pleiotropic chemokine that regulates the influx of a wide range of leukocytes. The aim of this study was to characterize CXCL12/SDF-1 in apical lesions (ALs) of endodontic origin, with special emphasis in associated immune cell populations. METHODS In this case-control study, 29 individuals with chronic apical periodontitis and 21 healthy volunteers were enrolled. ALs and healthy periodontal ligament samples were obtained for tissue homogenization, immune Western blotting, and enzyme-linked immunosorbent assay to determine CXCL12/SDF-1 forms and levels. Anatomopathologic diagnosis, immunostaining for CXCL12/SDF-1, CD117-CXCL12/SDF-1, and toluidine blue were also performed to identify tissue and cell localization. Finally, a set of tissue samples were digested and analyzed by flow cytometry to identify CXCL12/SDF-1 in different immune cell populations. Data were analyzed with Stata v11 and WinDi 2.9 software, and significance was considered if P < .05. RESULTS CXCL12/SDF-1 was predominantly identified as monomers; levels of CXCL12/SDF-1 were significantly higher in ALs compared with controls, and it was primarily localized to inflammatory infiltrates. Expression of CXCL12/SDF-1 was colocalized to mast cells in tissue sections. Furthermore, CD117(+) mast cells were the second most frequent infiltrating cells and the main CXCL12/SDF-1 expressing cells, followed by CD4(+) lymphocytes, monocytes/macrophages, neutrophils, and dendritic cells. CONCLUSIONS ALs of endodontic origin demonstrated higher levels of CXCL12/SDF-1 compared with controls. CXCL12/SDF-1 was identified in immune cell populations, whereas mast cells represented the major CXCL12/SDF-1 expressing cells, suggesting that this chemokine might play a central role in apical tissue destruction, most probably inducing persistent recruitment of immune cells, particularly of mast cells.
Collapse
Affiliation(s)
- Franco Cavalla
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rajasekaran D, Fan C, Meng W, Pflugrath JW, Lolis EJ. Structural insight into the evolution of a new chemokine family from zebrafish. Proteins 2013; 82:708-16. [PMID: 23900850 DOI: 10.1002/prot.24380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 01/19/2023]
Abstract
The mammalian chemokine family is segregated into four families - CC, CXC, CX3C, and XC-based on the arrangement of cysteines and the corresponding disulfides. Sequencing of the Danio rerio (zebrafish) genome has identified more than double the amount of human chemokines with the absence of the CX3C family and the presence of a new family, CX. The only other family with a single cysteine in the N-terminal region is the XC family. Human lymphotactin (XCL1) has two interconverting structures due to dynamic changes that occur in the protein. Similar to an experiment with XCL1 that identified the two structural forms, we probed for multiple forms of zCXL1 using heparin affinity. The results suggest only a single form of CXL1 is present. We used sulfur-SAD phasing to determine the three-dimensional structure CXL1. Zebrafish CXL1 (zCXL1) has three disulfides that appear to be important for a stable structure. One disulfide is common to all chemokines except those that belong to the XC family, another is similar to a subset of CC chemokines containing three disulfides, but the third disulfide is unique to the CX family. We analyzed the electrostatic potential of the zCXL1 structure and identified the likely heparin-binding site for glycosaminoglycans (GAGs). zCXL1 has a similar sequence identity with human CCL5 and CXCL12, but the structure is more related to CCL5. Our structural analysis supports the phylogenetic and genomic studies on the evolution of the CXL family.
Collapse
Affiliation(s)
- Deepa Rajasekaran
- Department of Pharmacology, Yale University, New Haven, Connecticut, 06520-8066
| | | | | | | | | |
Collapse
|
50
|
Rapp C, Snow S, Laufer T, McClendon CL. The role of tyrosine sulfation in the dimerization of the CXCR4:SDF-1 complex. Protein Sci 2013; 22:1025-36. [PMID: 23740770 PMCID: PMC3832039 DOI: 10.1002/pro.2288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/18/2013] [Accepted: 05/20/2013] [Indexed: 11/09/2022]
Abstract
Oligomerization of G protein-coupled receptors is a recognized mode of regulation of receptor activities, with alternate oligomeric states resulting in different signaling functions. The CXCR4 chemokine receptor is a G protein-coupled receptor that is post-translationally modified by tyrosine sulfation at three sites on its N-terminus (Y7, Y12, Y21), leading to enhanced affinity for its ligand, stromal cell derived factor (SDF-1, also called CXCL12). The complex has been implicated in cancer metastasis and is a therapeutic target in cancer treatment. Using molecular dynamics simulation of NMR-derived structures of the CXCR4 N-terminus in complex with SDF-1, and calculations of electrostatic binding energies for these complexes, we address the role of tyrosine sulfation in this complex. Our results show that sulfation stabilizes the dimeric state of the CXCR4:SDF-1 complex through hydrogen bonding across the dimer interface, conformational changes in residues at the dimer interface, and an enhancement in electrostatic binding energies associated with dimerization. These findings suggest a mechanism through which post-translational modifications such as tyrosine sulfation might regulate downstream function through modulation of the oligomeric state of the modified system.
Collapse
Affiliation(s)
- Chaya Rapp
- Department of Chemistry and Biochemistry, Stern College for Women, Yeshiva University, New York, New York, USA.
| | | | | | | |
Collapse
|