1
|
Malik A, Khan JM, Al-Amri AM, Altwaijry N, Sharma P, Alhomida A, Sen P. Hexametaphosphate, a Common Food Additive, Aggregated the Hen Egg White Lysozyme. ACS OMEGA 2023; 8:44086-44092. [PMID: 38027328 PMCID: PMC10666150 DOI: 10.1021/acsomega.3c06210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Polyphosphate polymers are chains of phosphate monomers chemically bonded together via phosphoanhydride bonds. They are found in all prokaryotic and eukaryotic organisms and are among the earliest, most anionic, and most mysterious molecules known. They are everywhere, from small cellular components to additives in our food. There is a strong association between hyperphosphatemia and mortality. That is why it is crucial to assess how polyphosphates, as food additives, affect the quality of edible proteins. This study investigated the effect of inexpensive and widely used food additives (hexametaphosphate labeled as E452) on bakery items, meat products, fish, and soft drinks. Using various spectroscopic and microscopic techniques, we examined how hexametaphosphate affected the aggregation propensity, structure, and stability of a commonly used food protein: hen egg white lysozyme (HEWL). The solubility of HEWL is affected in a bimodal fashion by the concentration of hexametaphosphate. The bimodal concentration-dependent effect was also observed in the tertiary and secondary structural changes. Hexametaphosphate-induced HEWL aggregates were amorphous, as evidenced by ThT fluorescence, far-UV CD, and TEM imaging. This study showed that the food additive (hexametaphosphate) may denature and aggregate proteins and may lead to undesirable health issues.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department
of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz M. Al-Amri
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Nojood Altwaijry
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Prerna Sharma
- Geisinger
Commonwealth School of Medicine Scranton, Scranton, Pennsylvania 18509-3240, United States
| | - Abdullah Alhomida
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Priyankar Sen
- Centre
for Bioseparation Technology, VIT University, Vellore 632014, India
| |
Collapse
|
2
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
3
|
Ahanger IA, Parray ZA, Raina N, Bashir S, Ahmad F, Hassan MI, Shahid M, Sharma A, Islam A. Counteraction of the cetyltrimethylammonium bromide-induced protein aggregation by Heparin: Potential impact on protein aggregation and neurodegenerative diseases using biophysical approaches. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
4
|
Khurshid B, Rehman AU, Luo R, Khan A, Wadood A, Anwar J. Heparin-Assisted Amyloidogenesis Uncovered through Molecular Dynamics Simulations. ACS OMEGA 2022; 7:15132-15144. [PMID: 35572757 PMCID: PMC9089684 DOI: 10.1021/acsomega.2c01034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/11/2022] [Indexed: 05/14/2023]
Abstract
Glycosaminoglycans (GAGs), in particular, heparan sulfate and heparin, are found colocalized with Aβ amyloid. They have been shown to enhance fibril formation, suggesting a possible pathological connection. We have investigated heparin's assembly of the KLVFFA peptide fragment using molecular dynamics simulation, to gain a molecular-level mechanistic understanding of how GAGs enhance fibril formation. The simulations reveal an exquisite process wherein heparin accelerates peptide assembly by first "gathering" the peptide molecules and then assembling them. Heparin does not act as a mere template but is tightly coupled to the peptides, yielding a composite protofilament structure. The strong intermolecular interactions suggest composite formation to be a general feature of heparin's interaction with peptides. Heparin's chain flexibility is found to be essential to its fibril promotion activity, and the need for optimal heparin chain length and concentration has been rationalized. These insights yield design rules (flexibility; chain-length) and protocol guidance (heparin:peptide molar ratio) for developing effective heparin mimetics and other functional GAGs.
Collapse
Affiliation(s)
- Beenish Khurshid
- Department
of Biochemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Ashfaq Ur Rehman
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92697, United States
| | - Ray Luo
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92697, United States
| | - Alamzeb Khan
- Department
of Pediatrics, Yale School of Medicine, Yale University, New Haven, Connecticut 06511, United States
| | - Abdul Wadood
- Department
of Biochemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Jamshed Anwar
- Department
of Chemistry, University of Lancaster, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
5
|
Bulyáki É, Kun J, Molnár T, Papp A, Micsonai A, Vadászi H, Márialigeti B, Kovács AI, Gellén G, Yamaguchi K, Lin Y, So M, Józsi M, Schlosser G, Lee YH, Liliom K, Goto Y, Kardos J. Pathogenic D76N Variant of β 2-Microglobulin: Synergy of Diverse Effects in Both the Native and Amyloid States. BIOLOGY 2021; 10:biology10111197. [PMID: 34827190 PMCID: PMC8614874 DOI: 10.3390/biology10111197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023]
Abstract
Simple Summary Elevated β2-microglobulin (β2m) serum levels cause serious complications in patients on long-term kidney dialysis by depositing in the form of amyloid fibrils in the osteoarticular system. Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N β2m mutant exhibiting normal serum levels and a distinct, visceral deposition pattern. D76N β2m showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Despite the extensive research, the molecular bases of the aberrant aggregation of β2m in vivo remains elusive. Here, using a variety of biophysical techniques, we investigated the role of the pathogenic D76N mutation in the amyloid formation of β2m by point mutations affecting the stabilizing ion-pairs of β2m. We found that, relative to WT β2m, the exceptional amyloidogenicity of the pathogenic D76N β2m variant is realized by the synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular matrix proteins. Understanding the underlying molecular mechanisms might help to find target points for effective treatments against diseases associated with the deleterious aggregation of proteins. Abstract β2-microglobulin (β2m), the light chain of the MHC-I complex, is associated with dialysis-related amyloidosis (DRA). Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N β2m variant, which showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Here, we investigated the role of the D76N mutation in the amyloid formation of β2m by point mutations affecting the Asp76-Lys41 ion-pair of WT β2m and the charge cluster on Asp38. Using a variety of biophysical techniques, we investigated the conformational stability and partial unfolding of the native state of the variants, as well as their amyloidogenic propensity and the stability of amyloid fibrils under various conditions. Furthermore, we studied the intermolecular interactions of WT and mutant proteins with various binding partners that might have in vivo relevance. We found that, relative to WT β2m, the exceptional amyloidogenicity of the pathogenic D76N β2m variant is realized by the deleterious synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules (e.g., lipids) and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular components, including extracellular matrix proteins.
Collapse
Affiliation(s)
- Éva Bulyáki
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Judit Kun
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Tamás Molnár
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Alexandra Papp
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (A.P.); (M.J.)
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Henrietta Vadászi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Borbála Márialigeti
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Attila István Kovács
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Gabriella Gellén
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; (K.Y.); (Y.G.)
| | - Yuxi Lin
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (Y.L.); (Y.-H.L.)
| | - Masatomo So
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan; or
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (A.P.); (M.J.)
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (Y.L.); (Y.-H.L.)
- Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University (CNU), Daejeon 34134, Korea
- Research Headquarters, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Károly Liliom
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; (K.Y.); (Y.G.)
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan; or
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
- Correspondence:
| |
Collapse
|
6
|
Najarzadeh Z, Zaman M, Sereikaite V, Strømgaard K, Andreasen M, Otzen DE. Heparin promotes fibrillation of most phenol-soluble modulin virulence peptides from Staphylococcus aureus. J Biol Chem 2021; 297:100953. [PMID: 34270957 PMCID: PMC8363829 DOI: 10.1016/j.jbc.2021.100953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 10/26/2022] Open
Abstract
Phenol-soluble modulins (PSMs), such as α-PSMs, β-PSMs, and δ-toxin, are virulence peptides secreted by different Staphylococcus aureus strains. PSMs are able to form amyloid fibrils, which may strengthen the biofilm matrix that promotes bacterial colonization of and extended growth on surfaces (e.g., cell tissue) and increases antibiotic resistance. Many components contribute to biofilm formation, including the human-produced highly sulfated glycosaminoglycan heparin. Although heparin promotes S. aureus infection, the molecular basis for this is unclear. Given that heparin is known to induce fibrillation of a wide range of proteins, we hypothesized that heparin aids bacterial colonization by promoting PSM fibrillation. Here, we address this hypothesis using a combination of thioflavin T-fluorescence kinetic studies, CD, FTIR, electron microscopy, and peptide microarrays to investigate the mechanism of aggregation, the structure of the fibrils, and identify possible binding regions. We found that heparin accelerates fibrillation of all α-PSMs (except PSMα2) and δ-toxin but inhibits β-PSM fibrillation by blocking nucleation or reducing fibrillation levels. Given that S. aureus secretes higher levels of α-PSM than β-PSM peptides, heparin is therefore likely to promote fibrillation overall. Heparin binding is driven by multiple positively charged lysine residues in α-PSMs and δ-toxins, the removal of which strongly reduced binding affinity. Binding of heparin did not affect the structure of the resulting fibrils, that is, the outcome of the aggregation process. Rather, heparin provided a scaffold to catalyze or inhibit fibrillation. Based on our findings, we speculate that heparin may strengthen the bacterial biofilm and therefore enhance colonization via increased PSM fibrillation.
Collapse
Affiliation(s)
- Zahra Najarzadeh
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark
| | - Masihuz Zaman
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Vita Sereikaite
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
7
|
So M, Kimura Y, Yamaguchi K, Sugiki T, Fujiwara T, Aguirre C, Ikenaka K, Mochizuki H, Kawata Y, Goto Y. Polyphenol-solubility alters amyloid fibril formation of α-synuclein. Protein Sci 2021; 30:1701-1713. [PMID: 34046949 DOI: 10.1002/pro.4130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Amyloid fibrils form above the solubility of amyloidogenic proteins or peptides upon breaking supersaturation, followed by a nucleation and elongation mechanism, which is similar to the crystallization of solutes. Many additives, including salts, detergents, and natural compounds, promote or inhibit amyloid formation. However, the underlying mechanisms of the opposing effects are unclear. We examined the effects of two polyphenols, that is, epigallocatechin gallate (EGCG) and kaempferol-7─O─glycoside (KG), with high and low solubilities, respectively, on the amyloid formation of α-synuclein (αSN). EGCG and KG inhibited and promoted amyloid formation of αSN, respectively, when monitored by thioflavin T (ThT) fluorescence or transmission electron microscopy (TEM). Nuclear magnetic resonance (NMR) analysis revealed that, although interactions of αSN with soluble EGCG increased the solubility of αSN, thus inhibiting amyloid formation, interactions of αSN with insoluble KG reduced the solubility of αSN, thereby promoting amyloid formation. Our study suggests that opposing effects of polyphenols on amyloid formation of proteins and peptides can be interpreted based on the solubility of polyphenols.
Collapse
Affiliation(s)
- Masatomo So
- Institute for Protein Research, Osaka University, Osaka, Japan.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Yuto Kimura
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Keiichi Yamaguchi
- Institute for Protein Research, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | | | | | - Cesar Aguirre
- Institute for Protein Research, Osaka University, Osaka, Japan.,Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Osaka, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Yamaguchi K, So M, Aguirre C, Ikenaka K, Mochizuki H, Kawata Y, Goto Y. Polyphosphates induce amyloid fibril formation of α-synuclein in concentration-dependent distinct manners. J Biol Chem 2021; 296:100510. [PMID: 33676889 PMCID: PMC8059054 DOI: 10.1016/j.jbc.2021.100510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Polyphosphates (polyPs), chains of phosphate residues found in species across nature from bacteria to mammals, were recently reported to accelerate the amyloid fibril formation of many proteins. How polyPs facilitate this process, however, remains unknown. To gain insight into their mechanisms, we used various physicochemical approaches to examine the effects of polyPs of varying chain lengths on ultrasonication-dependent α-synuclein (α-syn) amyloid formation. Although orthophosphate and diphosphate exhibited a single optimal concentration of amyloid formation, triphosphate and longer-chain phosphates exhibited two optima, with the second at a concentration lower than that of orthophosphate or diphosphate. The second optimum decreased markedly as the polyP length increased. This suggested that although the optima at lower polyP concentrations were caused by interactions between negatively charged phosphate groups and the positive charges of α-syn, the optima at higher polyP concentrations were caused by the Hofmeister salting-out effects of phosphate groups, where the effects do not depend on the net charge. NMR titration experiments of α-syn with tetraphosphate combined with principal component analysis revealed that, at low tetraphosphate concentrations, negatively charged tetraphosphates interacted with positively charged "KTK" segments in four KTKEGV repeats located at the N-terminal region. At high concentrations, hydrated tetraphosphates affected the surface-exposed hydrophilic groups of compact α-syn. Taken together, our results suggest that long-chain polyPs consisting of 60 to 70 phosphates induce amyloid formation at sub-μM concentrations, which are comparable with the concentrations of polyPs in the blood or tissues. Thus, these findings may identify a role for polyPs in the pathogenesis of amyloid-related diseases.
Collapse
Affiliation(s)
- Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan; Institute for Protein Research, Osaka University, Osaka, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - César Aguirre
- Institute for Protein Research, Osaka University, Osaka, Japan; Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan; Institute for Protein Research, Osaka University, Osaka, Japan.
| |
Collapse
|
9
|
Ahanger I, Parray ZA, Nasreen K, Ahmad F, Hassan MI, Islam A, Sharma A. Heparin Accelerates the Protein Aggregation via the Downhill Polymerization Mechanism: Multi-Spectroscopic Studies to Delineate the Implications on Proteinopathies. ACS OMEGA 2021; 6:2328-2339. [PMID: 33521471 PMCID: PMC7841943 DOI: 10.1021/acsomega.0c05638] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Heparin is one of the members of the glycosaminoglycan (GAG) family, which has been associated with protein aggregation diseases including Alzheimer's disease, Parkinson's disease, and prion diseases. Here, we investigate heparin-induced aggregation of bovine serum albumin (BSA) using different spectroscopic techniques [absorption, 8-anilino-1-naphthalene sulfonic acid (ANS) and thioflavin T (ThT) fluorescence binding, and far- and near-UV circular dichroism]. Kinetic measurements revealed that heparin is involved in the significant enhancement of aggregation of BSA. The outcomes showed dearth of the lag phase and a considerable change in rate constant, which provides conclusive evidence, that is, heparin-induced BSA aggregation involves the pathway of the downhill polymerization mechanism. Heparin also causes enhancement of fluorescence intensity of BSA significantly. Moreover, heparin was observed to form amyloids and amorphous aggregates of BSA which were confirmed by ThT and ANS fluorescence, respectively. Circular dichroism measurements exhibit a considerable change in the secondary and tertiary structure of the protein due to heparin. In addition, binding studies of heparin with BSA to know the cause of aggregation, isothermal titration calorimetry measurements were exploited, from which heparin was observed to promote the aggregation of BSA by virtue of electrostatic interactions between positively charged amino acid residues of protein and negatively charged groups of GAG. The nature of binding of heparin with BSA is very much apparent with an appreciable heat of interaction and is largely exothermic in nature. Moreover, the Gibbs free energy change (ΔG) is negative, which indicates spontaneous nature of binding, and the enthalpy change (ΔH) and entropy change (ΔS) are also largely negative, which suggest that the interaction is driven by hydrogen bonding.
Collapse
Affiliation(s)
- Ishfaq
Ahmad Ahanger
- Department
of Chemistry, Biochemistry and Forensic Science, Amity School of Applied
Sciences, Amity University Haryana, Gurugram 122 413, India
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Zahoor Ahmad Parray
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Khalida Nasreen
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anurag Sharma
- Department
of Chemistry, Biochemistry and Forensic Science, Amity School of Applied
Sciences, Amity University Haryana, Gurugram 122 413, India
| |
Collapse
|
10
|
Zsila F, Samsonov SA, Maszota-Zieleniak M. Mind Your Dye: The Amyloid Sensor Thioflavin T Interacts with Sulfated Glycosaminoglycans Used To Induce Cross-β-Sheet Motifs. J Phys Chem B 2020; 124:11625-11633. [DOI: 10.1021/acs.jpcb.0c08273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Sergey A. Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | |
Collapse
|
11
|
Sawada M, Yamaguchi K, Hirano M, Noji M, So M, Otzen D, Kawata Y, Goto Y. Amyloid Formation of α-Synuclein Based on the Solubility- and Supersaturation-Dependent Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4671-4681. [PMID: 32271585 DOI: 10.1021/acs.langmuir.0c00426] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amyloid fibrils are formed by denatured proteins when the supersaturation of denatured proteins is broken by agitation, such as ultrasonication, or by seeding, although the detailed mechanism of how solubility and supersaturation regulate amyloid formation remains unclear. To further understand the mechanism of amyloid formation, we examined α-synuclein (α-syn) amyloid formation at varying concentrations of SDS, LPA, heparin, or NaCl at pH 7.5. Amyloid fibrils were formed below or around the critical micelle concentrations (CMCs) of SDS (2.75 mM) and LPA (0.24 mM), although no fibrils were formed above the CMCs. On the other hand, amyloid fibrils were formed with 0.01-2.5 mg/mL of heparin and 0.5-1.0 M NaCl, and amyloid formation was gradually suppressed at higher concentrations of heparin and NaCl. To reproduce these concentration-dependent effects of additives, we constructed two models: (i) the ligand-binding-dependent solubility-modulation model and (ii) the cosolute-dependent direct solubility-modulation model, both of which were used by Tanford and colleagues to analyze the additive-dependent conformational transitions of proteins. The solubility of α-syn was assumed to vary depending on the concentration of additives either by the decreased solubility of the additive-α-syn complex (model i) or by the direct regulation of α-syn solubility (model ii). Both models well reproduced additive-dependent bell-shaped profiles of acceleration and inhibition observed for SDS and LPA. As for heparin and NaCl, participation of amorphous aggregates at high concentrations of additives was suggested. The models confirmed that solubility and supersaturation play major roles in driving amyloid formation in vitro, furthering our understanding of the pathogenesis of amyloidosis in vivo.
Collapse
Affiliation(s)
- Maya Sawada
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Yamaguchi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miki Hirano
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Noji
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama Minami, Tottori 680-8552, Japan
| | - Yuji Goto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Murakami T, Noguchi K, Hachiya N, Kametani F, Tasaki M, Nakaba S, Sassa Y, Yamashita T, Obayashi K, Ando Y, Hamamura M, Kanno T, Kawasako K. Needle-shaped amyloid deposition in rat mammary gland: evidence of a novel amyloid fibril protein. Amyloid 2020; 27:25-35. [PMID: 31615282 DOI: 10.1080/13506129.2019.1675623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloidosis is an extremely rare event in rats. In this study, we report that lipopolysaccharide binding protein (LBP) is the most likely amyloidogenic protein in rat mammary amyloidosis. Histologically, corpora amylacea (CA) and stromal amyloid (SA) were observed in rat mammary glands, and needle-shaped amyloid (NA) was also observed on the surface or gap of CA and SA. Following surveillance in aged rats, NA was observed in 62% of mammary tumours, 25% of male mammary glands and 83% of female mammary glands. Proteomic analysis showed that lactadherin was a major constitutive protein of CA and SA, and both were positive following immunohistochemistry with anti-lactadherin antibodies. In the same analysis, LBP was detected as a prime candidate protein in NA, and NA was positive following immunohistochemistry and immunoelectron microscopy with anti-LBP antibody. Furthermore, synthetic peptides derived from rat LBP formed amyloid fibrils in vitro. Overall, these results provide evidence that LBP is an amyloid precursor protein of NA in rat mammary glands.
Collapse
Affiliation(s)
- Tomoaki Murakami
- Division of Animal Life Science, Graduate School, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Keiichi Noguchi
- Research Center for Science and Technology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Naomi Hachiya
- Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masayoshi Tasaki
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Nakaba
- Division of Natural Resources and Eco-Materials, Graduate School, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Yukiko Sassa
- Division of Animal Life Science, Graduate School, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Taro Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Konen Obayashi
- Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masao Hamamura
- Pathology Department, Nonclinical Research Center, Drug Development Service Segment, LSI Medicine Corporation, Uto, Japan
| | - Takeshi Kanno
- Pathology Department, Nonclinical Research Center, Drug Development Service Segment, LSI Medicine Corporation, Uto, Japan
| | - Kazufumi Kawasako
- Pathology Department, Nonclinical Research Center, Drug Development Service Segment, LSI Medicine Corporation, Uto, Japan
| |
Collapse
|
13
|
Ilyna LY, Kozlov VA, Sapozhnikov SP. Hepatic Mast Cells in Mice with Experimental Amyloidosis. Bull Exp Biol Med 2019; 168:14-17. [PMID: 31741243 DOI: 10.1007/s10517-019-04635-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We studied the response of mast cells in mouse liver to experimental amyloidosis modeled by administration of aqueous solution of soy cream substitute and its correction by spontaneous dry red wine intake per os. Mast cells in mice with amyloidosis and intact mice were presented by α-ortho- and β1-metachromatic non-degranulating forms. In mice with amyloidosis, the relative content of β1-metachromatic mast cells in the capsule and parenchyma of the liver was by 1.8 and 1.5 times higher than in intact animals, respectively. In mice with amyloidosis receiving dry red wine, the proportions of mast cells with different degrees of metachromasy and degranulation were similar to those in intact mice, but the relative content of β1-metachromatic mast cells in the liver parenchyma in these animals was by 1.6 times higher than in intact mice. Therefore, mast cells respond to amyloidosis development by changes in both the metachromasy and degranulation degree; dry red wine can be considered as a factor of amyloidosis prevention.
Collapse
Affiliation(s)
- L Yu Ilyna
- I. N. Ulyanov Chuvash State University, Cheboksary, Russia.
| | - V A Kozlov
- I. N. Ulyanov Chuvash State University, Cheboksary, Russia
| | | |
Collapse
|
14
|
Possible mechanisms of polyphosphate-induced amyloid fibril formation of β 2-microglobulin. Proc Natl Acad Sci U S A 2019; 116:12833-12838. [PMID: 31182591 DOI: 10.1073/pnas.1819813116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyphosphate (polyP), which is found in various microorganisms and human cells, is an anionic biopolymer consisting of inorganic phosphates linked by high-energy phosphate bonds. Previous studies revealed that polyPs strongly promoted the amyloid formation of several amyloidogenic proteins; however, the mechanism of polyP-induced amyloid formation remains unclear. In the present study using β2-microglobulin (β2m), a protein responsible for dialysis-related amyloidosis, we investigated amyloid formation in the presence of various chain lengths of polyPs at different concentrations under both acidic (pH 2.0 to 2.5) and neutral pH (pH 7.0 to 7.5) conditions. We found that the amyloid formation of β2m at acidic pH was significantly accelerated by the addition of polyPs at an optimal polyP concentration, which decreased with an increase in chain length. The results obtained indicated that electrostatic interactions between positively charged β2m and negatively charged polyPs play a major role in amyloid formation. Under neutral pH conditions, long polyP with 60 to 70 phosphates induced the amyloid formation of β2m at several micromoles per liter, a similar concentration range to that in vivo. Since β2m with an isoelectric point of 6.4 has a slightly negative net charge at pH 7, polyPs were unlikely to interact with β2m electrostatically. PolyPs appear to dehydrate water molecules around β2m under the unfolded conformation, leading to the preferential stabilization of less water-exposed amyloid fibrils. These results not only revealed the pH-dependent mechanism of the amyloid formation of β2m but also suggested that polyPs play an important role in the development of dialysis-related amyloidosis.
Collapse
|
15
|
Goto Y, Adachi M, Muta H, So M. Salt-induced formations of partially folded intermediates and amyloid fibrils suggests a common underlying mechanism. Biophys Rev 2017; 10:493-502. [PMID: 29256120 DOI: 10.1007/s12551-017-0370-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 12/26/2022] Open
Abstract
Amyloid fibrils are misfolded forms of proteins and are involved in various diseases. They have been studied extensively with the aim to obtain a comprehensive understanding of protein folding and misfolding and to use this knowledge to develop therapeutic strategies against the associated diseases. Salt conditions are important factors determining the formation and stability of amyloid fibrils. In the 1990s, salt effects were studied extensively to understand the conformational stability of acid-denatured proteins, and the results of these studies revealed the role of electrostatic repulsion in forming the compact intermediate states. In this review, we compare the effects of salts on the compact intermediate states with those on the formation of amyloid fibrils under acidic conditions. The results argue that both protein folding and misfolding are driven by the same forces, although the resultant conformations are distinct because they are monomeric and multimeric reactions, respectively.
Collapse
Affiliation(s)
- Yuji Goto
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan.
| | - Masayuki Adachi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Hiroya Muta
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Masatomo So
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
16
|
Nitani A, Muta H, Adachi M, So M, Sasahara K, Sakurai K, Chatani E, Naoe K, Ogi H, Hall D, Goto Y. Heparin-dependent aggregation of hen egg white lysozyme reveals two distinct mechanisms of amyloid fibrillation. J Biol Chem 2017; 292:21219-21230. [PMID: 29101231 DOI: 10.1074/jbc.m117.813097] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/19/2017] [Indexed: 01/22/2023] Open
Abstract
Heparin, a biopolymer possessing high negative charge density, is known to accelerate amyloid fibrillation by various proteins. Using hen egg white lysozyme, we studied the effects of heparin on protein aggregation at low pH, raised temperature, and applied ultrasonic irradiation, conditions under which amyloid fibrillation was promoted. Heparin exhibited complex bimodal concentration-dependent effects, either accelerating or inhibiting fibrillation at pH 2.0 and 60 °C. At concentrations lower than 20 μg/ml, heparin accelerated fibrillation through transient formation of hetero-oligomeric aggregates. Between 0.1 and 10 mg/ml, heparin rapidly induced amorphous heteroaggregation with little to no accompanying fibril formation. Above 10 mg/ml, heparin again induced fibrillation after a long lag time preceded by oligomeric aggregate formation. Compared with studies performed using monovalent and divalent anions, the results suggest two distinct mechanisms of heparin-induced fibrillation. At low heparin concentrations, initial hen egg white lysozyme cluster formation and subsequent fibrillation is promoted by counter ion binding and screening of repulsive charges. At high heparin concentrations, fibrillation is caused by a combination of salting out and macromolecular crowding effects probably independent of protein net charge. Both fibrillation mechanisms compete against amorphous aggregation, producing a complex heparin concentration-dependent phase diagram. Moreover, the results suggest an active role for amorphous oligomeric aggregates in triggering fibrillation, whereby breakdown of supersaturation takes place through heterogeneous nucleation of amyloid on amorphous aggregates.
Collapse
Affiliation(s)
- Ayame Nitani
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Hiroya Muta
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masayuki Adachi
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kenji Sasahara
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kazumasa Sakurai
- Institute of Advanced Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Eri Chatani
- Department of Chemistry, Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Kazumitsu Naoe
- National Institute of Technology, Nara College, Nara 639-1080, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Suita, Osaka 565-0871, Japan, and
| | - Damien Hall
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.,Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Yuji Goto
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan,
| |
Collapse
|
17
|
Wang B, Pilkington EH, Sun Y, Davis TP, Ke PC, Ding F. Modulating protein amyloid aggregation with nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2017; 4:1772-1783. [PMID: 29230295 PMCID: PMC5722024 DOI: 10.1039/c7en00436b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Direct exposure or intake of nanopaticles (NPs) to the human body can invoke a series of biological responses, some of which are deleterious, and as such the role of NPs in vivo requires thorough examination. Over the past decade, it has been established that biomolecules such as proteins can bind NPs to form a 'corona', where the structures and dynamics of NP-associated proteins can assign new functionality, systemic distribution and toxicity. However, the behavior and fate of NPs in biological systems are still far from being fully understood. Growing evidence has shown that some natural or artificial NPs could either up- or down-regulate protein amyloid aggregation, which is associated with neurodegenerative diseases like Alzheimer's and Parkinson's diseases, as well as metabolic diseases such as type 2 diabetes. These effects can be either indirect (e.g., through a crowding effect) or direct, depending on the NP composition, size, shape and surface chemistry. However, efforts to design anti-amyloid NPs for biomedical applications have been largely hindered by insufficient understanding of the complex processes, even though proof-of-concept experiments have been conducted. Therefore, exploring the general mechanisms of NP-meditated protein aggregation marks an emerging field in bio-nano research and a new stage of handling nanotechnology that not only aids in elucidating the origin of nanotoxicity, but also provides a foundation for engineering de novo anti-amyloid nanomedicines. In this review, we summarize research on NP-mediated protein amyloid aggregation, with the goal of contributing to sustained nanotechnology and safe nanomedicine against amyloid diseases.
Collapse
Affiliation(s)
- Bo Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| |
Collapse
|
18
|
Stewart KL, Hughes E, Yates EA, Middleton DA, Radford SE. Molecular Origins of the Compatibility between Glycosaminoglycans and Aβ40 Amyloid Fibrils. J Mol Biol 2017; 429:2449-2462. [PMID: 28697887 PMCID: PMC5548265 DOI: 10.1016/j.jmb.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/25/2022]
Abstract
The Aβ peptide forms extracellular plaques associated with Alzheimer's disease. In addition to protein fibrils, amyloid plaques also contain non-proteinaceous components, including glycosaminoglycans (GAGs). We have shown previously that the GAG low-molecular-weight heparin (LMWH) binds to Aβ40 fibrils with a three-fold-symmetric (3Q) morphology with higher affinity than Aβ40 fibrils in alternative structures, Aβ42 fibrils, or amyloid fibrils formed from other sequences. Solid-state NMR analysis of the GAG-3Q fibril complex revealed an interaction site at the corners of the 3Q fibril structure, but the origin of the binding specificity remained obscure. Here, using a library of short heparin polysaccharides modified at specific sites, we show that the N-sulfate or 6-O-sulfate of glucosamine, but not the 2-O-sulfate of iduronate within heparin is required for 3Q binding, indicating selectivity in the interactions of the GAG with the fibril that extends beyond general electrostatic complementarity. By creating 3Q fibrils containing point substitutions in the amino acid sequence, we also show that charged residues at the fibril three-fold apices provide the majority of the binding free energy, while charged residues elsewhere are less critical for binding. The results indicate, therefore, that LMWH binding to 3Q fibrils requires a precise molecular complementarity of the sulfate moieties on the GAG and charged residues displayed on the fibril surface. Differences in GAG binding to fibrils with distinct sequence and/or structure may thus contribute to the diverse etiology and progression of amyloid diseases.
Collapse
Affiliation(s)
- Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Eleri Hughes
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, UK
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - David A Middleton
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
19
|
Abstract
Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer's disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration.
Collapse
Affiliation(s)
- Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|