1
|
Hwang W, Austin SL, Blondel A, Boittier ED, Boresch S, Buck M, Buckner J, Caflisch A, Chang HT, Cheng X, Choi YK, Chu JW, Crowley MF, Cui Q, Damjanovic A, Deng Y, Devereux M, Ding X, Feig MF, Gao J, Glowacki DR, Gonzales JE, Hamaneh MB, Harder ED, Hayes RL, Huang J, Huang Y, Hudson PS, Im W, Islam SM, Jiang W, Jones MR, Käser S, Kearns FL, Kern NR, Klauda JB, Lazaridis T, Lee J, Lemkul JA, Liu X, Luo Y, MacKerell AD, Major DT, Meuwly M, Nam K, Nilsson L, Ovchinnikov V, Paci E, Park S, Pastor RW, Pittman AR, Post CB, Prasad S, Pu J, Qi Y, Rathinavelan T, Roe DR, Roux B, Rowley CN, Shen J, Simmonett AC, Sodt AJ, Töpfer K, Upadhyay M, van der Vaart A, Vazquez-Salazar LI, Venable RM, Warrensford LC, Woodcock HL, Wu Y, Brooks CL, Brooks BR, Karplus M. CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed. J Phys Chem B 2024; 128:9976-10042. [PMID: 39303207 PMCID: PMC11492285 DOI: 10.1021/acs.jpcb.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Since its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published. They include the following: new faster simulation engines, accessible user interfaces for convenient workflows, and a vast array of simulation and analysis methods that encompass quantum mechanical, atomistic, and coarse-grained levels, as well as extensive coverage of force fields. In addition to providing the current snapshot of the CHARMM development, this review may serve as a starting point for exploring relevant theories and computational methods for tackling contemporary and emerging problems in biomolecular systems. CHARMM is freely available for academic and nonprofit research at https://academiccharmm.org/program.
Collapse
Affiliation(s)
- Wonmuk Hwang
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
- Department
of Physics and Astronomy, Texas A&M
University, College Station, Texas 77843, United States
- Center for
AI and Natural Sciences, Korea Institute
for Advanced Study, Seoul 02455, Republic
of Korea
| | - Steven L. Austin
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Arnaud Blondel
- Institut
Pasteur, Université Paris Cité, CNRS UMR3825, Structural
Bioinformatics Unit, 28 rue du Dr. Roux F-75015 Paris, France
| | - Eric D. Boittier
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Stefan Boresch
- Faculty of
Chemistry, Department of Computational Biological Chemistry, University of Vienna, Wahringerstrasse 17, 1090 Vienna, Austria
| | - Matthias Buck
- Department
of Physiology and Biophysics, Case Western
Reserve University, School of Medicine, Cleveland, Ohio 44106, United States
| | - Joshua Buckner
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | - Hao-Ting Chang
- Institute
of Bioinformatics and Systems Biology, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, ROC
| | - Xi Cheng
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yeol Kyo Choi
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jhih-Wei Chu
- Institute
of Bioinformatics and Systems Biology, Department of Biological Science
and Technology, Institute of Molecular Medicine and Bioengineering,
and Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung
University, Hsinchu 30010, Taiwan,
ROC
| | - Michael F. Crowley
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Qiang Cui
- Department
of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department
of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Ana Damjanovic
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Physics and Astronomy, Johns Hopkins
University, Baltimore, Maryland 21218, United States
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuqing Deng
- Shanghai
R&D Center, DP Technology, Ltd., Shanghai 201210, China
| | - Mike Devereux
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Xinqiang Ding
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Michael F. Feig
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Jiali Gao
- School
of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518055, China
- Department
of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David R. Glowacki
- CiTIUS
Centro Singular de Investigación en Tecnoloxías Intelixentes
da USC, 15705 Santiago de Compostela, Spain
| | - James E. Gonzales
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Mehdi Bagerhi Hamaneh
- Department
of Physiology and Biophysics, Case Western
Reserve University, School of Medicine, Cleveland, Ohio 44106, United States
| | | | - Ryan L. Hayes
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
| | - Jing Huang
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Yandong Huang
- College
of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Phillip S. Hudson
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Medicine
Design, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Wonpil Im
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Shahidul M. Islam
- Department
of Chemistry, Delaware State University, Dover, Delaware 19901, United States
| | - Wei Jiang
- Computational
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael R. Jones
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Silvan Käser
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Fiona L. Kearns
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Nathan R. Kern
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jeffery B. Klauda
- Department
of Chemical and Biomolecular Engineering, Institute for Physical Science
and Technology, Biophysics Program, University
of Maryland, College Park, Maryland 20742, United States
| | - Themis Lazaridis
- Department
of Chemistry, City College of New York, New York, New York 10031, United States
| | - Jinhyuk Lee
- Disease
Target Structure Research Center, Korea
Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department
of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Justin A. Lemkul
- Department
of Biochemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Xiaorong Liu
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yun Luo
- Department
of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, United States
| | - Alexander D. MacKerell
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Markus Meuwly
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lennart Nilsson
- Karolinska
Institutet, Department of Biosciences and
Nutrition, SE-14183 Huddinge, Sweden
| | - Victor Ovchinnikov
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
| | - Emanuele Paci
- Dipartimento
di Fisica e Astronomia, Universitá
di Bologna, Bologna 40127, Italy
| | - Soohyung Park
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Richard W. Pastor
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Amanda R. Pittman
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Carol Beth Post
- Borch Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Samarjeet Prasad
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jingzhi Pu
- Department
of Chemistry and Chemical Biology, Indiana
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yifei Qi
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| | | | - Daniel R. Roe
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Benoit Roux
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | | | - Jana Shen
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Andrew C. Simmonett
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander J. Sodt
- Eunice
Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kai Töpfer
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Meenu Upadhyay
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Arjan van der Vaart
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | | | - Richard M. Venable
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Luke C. Warrensford
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - H. Lee Woodcock
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yujin Wu
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bernard R. Brooks
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Martin Karplus
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
- Laboratoire
de Chimie Biophysique, ISIS, Université
de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
2
|
Qian R, Xue J, Xu Y, Huang J. Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery. J Chem Inf Model 2024; 64:7214-7237. [PMID: 39360948 DOI: 10.1021/acs.jcim.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Computational methods constitute efficient strategies for screening and optimizing potential drug molecules. A critical factor in this process is the binding affinity between candidate molecules and targets, quantified as binding free energy. Among various estimation methods, alchemical transformation methods stand out for their theoretical rigor. Despite challenges in force field accuracy and sampling efficiency, advancements in algorithms, software, and hardware have increased the application of free energy perturbation (FEP) calculations in the pharmaceutical industry. Here, we review the practical applications of FEP in drug discovery projects since 2018, covering both ligand-centric and residue-centric transformations. We show that relative binding free energy calculations have steadily achieved chemical accuracy in real-world applications. In addition, we discuss alternative physics-based simulation methods and the incorporation of deep learning into free energy calculations.
Collapse
Affiliation(s)
- Runtong Qian
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Xue
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - You Xu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
3
|
Hayes RL, Cervantes LF, Abad Santos JC, Samadi A, Vilseck JZ, Brooks CL. How to Sample Dozens of Substitutions per Site with λ Dynamics. J Chem Theory Comput 2024; 20:6098-6110. [PMID: 38976796 PMCID: PMC11270746 DOI: 10.1021/acs.jctc.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Alchemical free energy methods are useful in computer-aided drug design and computational protein design because they provide rigorous statistical mechanics-based estimates of free energy differences from molecular dynamics simulations. λ dynamics is a free energy method with the ability to characterize combinatorial chemical spaces spanning thousands of related systems within a single simulation, which gives it a distinct advantage over other alchemical free energy methods that are mostly limited to pairwise comparisons. Recently developed methods have improved the scalability of λ dynamics to perturbations at many sites; however, the size of chemical space that can be explored at each individual site has previously been limited to fewer than ten substituents. As the number of substituents increases, the volume of alchemical space corresponding to nonphysical alchemical intermediates grows exponentially relative to the size corresponding to the physical states of interest. Beyond nine substituents, λ dynamics simulations become lost in an alchemical morass of intermediate states. In this work, we introduce new biasing potentials that circumvent excessive sampling of intermediate states by favoring sampling of physical end points relative to alchemical intermediates. Additionally, we present a more scalable adaptive landscape flattening algorithm for these larger alchemical spaces. Finally, we show that this potential enables more efficient sampling in both protein and drug design test systems with up to 24 substituents per site, enabling, for the first time, simultaneous simulation of all 20 amino acids.
Collapse
Affiliation(s)
- Ryan L. Hayes
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California Irvine, Irvine, California 92697, United States
| | - Luis F. Cervantes
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Justin Cruz Abad Santos
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Amirmasoud Samadi
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Jonah Z. Vilseck
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
- Center
for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Charles L. Brooks
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics
Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Barron MP, Vilseck JZ. A λ-Dynamics Investigation of Insulin Wakayama and Other A3 Variant Binding Affinities to the Insulin Receptor. J Chem Inf Model 2024; 64:5657-5670. [PMID: 38963805 PMCID: PMC11268370 DOI: 10.1021/acs.jcim.4c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Insulin Wakayama is a clinical insulin variant where a conserved valine at the third residue on insulin's A chain (ValA3) is replaced with a leucine (LeuA3), weakening insulin receptor (IR) binding by 140-500-fold. This severe impact on binding from a subtle modification has posed an intriguing problem for decades. Although experimental investigations of natural and unnatural A3 mutations have highlighted the sensitivity of insulin-IR binding at this site, atomistic explanations of these binding trends have remained elusive. We investigate this problem computationally using λ-dynamics free energy calculations to model structural changes in response to perturbations of the ValA3 side chain and to calculate associated relative changes in binding free energy (ΔΔGbind). The Wakayama LeuA3 mutation and seven other A3 substitutions were studied in this work. The calculated ΔΔGbind results showed high agreement compared to experimental binding potencies with a Pearson correlation of 0.88 and a mean unsigned error of 0.68 kcal/mol. Extensive structural analyses of λ-dynamics trajectories revealed that critical interactions were disrupted between insulin and the insulin receptor as a result of the A3 mutations. This investigation also quantifies the effect that adding an A3 Cδ atom or losing an A3 Cγ atom has on insulin's binding affinity to the IR. Thus, λ-dynamics was able to successfully model the effects of mutations to insulin's A3 side chain on its protein-protein interactions with the IR and shed new light on a decades-old mystery: the exquisite sensitivity of hormone-receptor binding to a subtle modification of an invariant insulin residue.
Collapse
Affiliation(s)
- Monica P Barron
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
5
|
Moqadam M, Gartan P, Talandashti R, Chiapparino A, Titeca K, Gavin AC, Reuter N. A Membrane-Assisted Mechanism for the Release of Ceramide from the CERT START Domain. J Phys Chem B 2024; 128:6338-6351. [PMID: 38903016 PMCID: PMC11228987 DOI: 10.1021/acs.jpcb.4c02398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Ceramide transfer protein CERT is the mediator of nonvesicular transfer of ceramide from the ER to Golgi. In CERT, START is the domain responsible for the binding and transport of ceramide. A wealth of structural data has revealed a helix-grip fold surrounding a large hydrophobic cavity holding the ceramide. Yet, little is known about the mechanisms by which START releases the ceramide through the polar region and into the packed environment of cellular membranes. As such events do not lend themselves easily to experimental investigations, we used multiple unbiased microsecond-long molecular simulations. We propose a membrane-assisted mechanism in which the membrane acts as an allosteric effector initiating the release of ceramide and where the passage of the ceramide acyl chains is facilitated by the intercalation of a single phosphatidylcholine lipid in the cavity, practically greasing the ceramide way out. We verify using free energy calculation and experimental lipidomics data that CERT forms stable complexes with phosphatidylcholine lipids, in addition to ceramide, thus providing validation for the proposed mechanism.
Collapse
Affiliation(s)
- Mahmoud Moqadam
- Department
of Chemistry, University of Bergen, Bergen 5020, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| | - Parveen Gartan
- Department
of Chemistry, University of Bergen, Bergen 5020, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| | - Reza Talandashti
- Department
of Chemistry, University of Bergen, Bergen 5020, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| | - Antonella Chiapparino
- European
Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, Heidelberg D-69117, Germany
| | - Kevin Titeca
- European
Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, Heidelberg D-69117, Germany
- Department
of Cell Physiology and Metabolism, University
of Geneva, CMU Rue Michel-Servet 1, Genève 4 1211, Switzerland
| | - Anne-Claude Gavin
- Department
of Cell Physiology and Metabolism, University
of Geneva, CMU Rue Michel-Servet 1, Genève 4 1211, Switzerland
| | - Nathalie Reuter
- Department
of Chemistry, University of Bergen, Bergen 5020, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| |
Collapse
|
6
|
Barron MP, Vilseck JZ. A λ-dynamics investigation of insulin Wakayama and other A3 variant binding affinities to the insulin receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585233. [PMID: 38559010 PMCID: PMC10979964 DOI: 10.1101/2024.03.15.585233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Insulin Wakayama is a clinical insulin variant where a conserved valine at the third residue on insulin's A chain (ValA3) is replaced with a leucine (LeuA3), impairing insulin receptor (IR) binding by 140-500 fold. This severe impact on binding from such a subtle modification has posed an intriguing problem for decades. Although experimental investigations of natural and unnatural A3 mutations have highlighted the sensitivity of insulin-IR binding to minor changes at this site, an atomistic explanation of these binding trends has remained elusive. We investigate this problem computationally using λ-dynamics free energy calculations to model structural changes in response to perturbations of the ValA3 side chain and to calculate associated relative changes in binding free energy (ΔΔGbind). The Wakayama LeuA3 mutation and seven other A3 substitutions were studied in this work. The calculated ΔΔGbind results showed high agreement compared to experimental binding potencies with a Pearson correlation of 0.88 and a mean unsigned error of 0.68 kcal/mol. Extensive structural analyses of λ-dynamics trajectories revealed that critical interactions were disrupted between insulin and the insulin receptor as a result of the A3 mutations. This investigation also quantifies the effect that adding an A3 Cδ atom or losing an A3 Cγ atom has on insulin's binding affinity to the IR. Thus, λ-dynamics was able to successfully model the effects of subtle modifications to insulin's A3 side chain on its protein-protein interactions with the IR and shed new light on a decades-old mystery: the exquisite sensitivity of hormone-receptor binding to a subtle modification of an invariant insulin residue.
Collapse
Affiliation(s)
- Monica P. Barron
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Jonah Z. Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
7
|
Liu X, Brooks Iii CL. Enhanced Sampling of Buried Charges in Free Energy Calculations Using Replica Exchange with Charge Tempering. J Chem Theory Comput 2024; 20:1051-1061. [PMID: 38232295 PMCID: PMC11275198 DOI: 10.1021/acs.jctc.3c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Buried ionizable groups in proteins often play important structural and functional roles. However, it is generally challenging to study the detailed molecular mechanisms solely based on experimental measurements. Free energy calculations using atomistic simulations, on the other hand, complement experimental studies and can provide high temporal and spatial resolution information that can lead to mechanistic insights. Nevertheless, it is also well recognized that sufficient sampling of such atomistic simulations can be challenging, considering that structural changes related to the buried charges may be very slow. In the present study, we describe a simple but effective enhanced sampling technique called replica exchange with charge tempering (REChgT) with a novel free energy method, multisite λ dynamics (MSλD), to study two systems containing buried charges, pKa prediction of a small molecule, orotate, in complex with the dihydroorotate dehydrogenase, and relative stability of a Glu-Lys pair buried in the hydrophobic core of two variants of Staphylococcal nuclease. Compared to the original MSλD simulations, the usage of REChgT dramatically increases sampling in both conformational and alchemical spaces, which directly translates into a significant reduction of wall time to converge the free energy calculations. This study highlights the importance of sufficient sampling toward developing improved free energy methods.
Collapse
Affiliation(s)
- Xiaorong Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L Brooks Iii
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Angelo M, Zhang W, Vilseck JZ, Aoki ST. In silico λ-dynamics predicts protein binding specificities to modified RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577511. [PMID: 38328125 PMCID: PMC10849657 DOI: 10.1101/2024.01.26.577511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
RNA modifications shape gene expression through a smorgasbord of chemical changes to canonical RNA bases. Although numbering in the hundreds, only a few RNA modifications are well characterized, in part due to the absence of methods to identify modification sites. Antibodies remain a common tool to identify modified RNA and infer modification sites through straightforward applications. However, specificity issues can result in off-target binding and confound conclusions. This work utilizes in silico λ-dynamics to efficiently estimate binding free energy differences of modification-targeting antibodies between a variety of naturally occurring RNA modifications. Crystal structures of inosine and N6-methyladenosine (m6A) targeting antibodies bound to their modified ribonucleosides were determined and served as structural starting points. λ-Dynamics was utilized to predict RNA modifications that permit or inhibit binding to these antibodies. In vitro RNA-antibody binding assays supported the accuracy of these in silico results. High agreement between experimental and computed binding propensities demonstrated that λ-dynamics can serve as a predictive screen for antibody specificity against libraries of RNA modifications. More importantly, this strategy is an innovative way to elucidate how hundreds of known RNA modifications interact with biological molecules without the limitations imposed by in vitro or in vivo methodologies.
Collapse
Affiliation(s)
- Murphy Angelo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Jonah Z. Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott T. Aoki
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Hayes RL, Nixon CF, Marqusee S, Brooks CL. Selection pressures on evolution of ribonuclease H explored with rigorous free-energy-based design. Proc Natl Acad Sci U S A 2024; 121:e2312029121. [PMID: 38194446 PMCID: PMC10801872 DOI: 10.1073/pnas.2312029121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024] Open
Abstract
Understanding natural protein evolution and designing novel proteins are motivating interest in development of high-throughput methods to explore large sequence spaces. In this work, we demonstrate the application of multisite λ dynamics (MSλD), a rigorous free energy simulation method, and chemical denaturation experiments to quantify evolutionary selection pressure from sequence-stability relationships and to address questions of design. This study examines a mesophilic phylogenetic clade of ribonuclease H (RNase H), furthering its extensive characterization in earlier studies, focusing on E. coli RNase H (ecRNH) and a more stable consensus sequence (AncCcons) differing at 15 positions. The stabilities of 32,768 chimeras between these two sequences were computed using the MSλD framework. The most stable and least stable chimeras were predicted and tested along with several other sequences, revealing a designed chimera with approximately the same stability increase as AncCcons, but requiring only half the mutations. Comparing the computed stabilities with experiment for 12 sequences reveals a Pearson correlation of 0.86 and root mean squared error of 1.18 kcal/mol, an unprecedented level of accuracy well beyond less rigorous computational design methods. We then quantified selection pressure using a simple evolutionary model in which sequences are selected according to the Boltzmann factor of their stability. Selection temperatures from 110 to 168 K are estimated in three ways by comparing experimental and computational results to evolutionary models. These estimates indicate selection pressure is high, which has implications for evolutionary dynamics and for the accuracy required for design, and suggests accurate high-throughput computational methods like MSλD may enable more effective protein design.
Collapse
Affiliation(s)
- Ryan L. Hayes
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA92697
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Charlotte F. Nixon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
10
|
Robo MT, Hayes RL, Ding X, Pulawski B, Vilseck JZ. Fast free energy estimates from λ-dynamics with bias-updated Gibbs sampling. Nat Commun 2023; 14:8515. [PMID: 38129400 PMCID: PMC10740020 DOI: 10.1038/s41467-023-44208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Relative binding free energy calculations have become an integral computational tool for lead optimization in structure-based drug design. Classical alchemical methods, including free energy perturbation or thermodynamic integration, compute relative free energy differences by transforming one molecule into another. However, these methods have high operational costs due to the need to perform many pairwise perturbations independently. To reduce costs and accelerate molecular design workflows, we present a method called λ-dynamics with bias-updated Gibbs sampling. This method uses dynamic biases to continuously sample between multiple ligand analogues collectively within a single simulation. We show that many relative binding free energies can be determined quickly with this approach without compromising accuracy. For five benchmark systems, agreement to experiment is high, with root mean square errors near or below 1.0 kcal mol-1. Free energy results are consistent with other computational approaches and within statistical noise of both methods (0.4 kcal mol-1 or less). Notably, large efficiency gains over thermodynamic integration of 18-66-fold for small perturbations and 100-200-fold for whole aromatic ring substitutions are observed. The rapid determination of relative binding free energies will enable larger chemical spaces to be more readily explored and structure-based drug design to be accelerated.
Collapse
Affiliation(s)
- Michael T Robo
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Biosciences Research Institute, 1210 Waterway Blvd Ste. 2000, Indianapolis, IN, 46202, USA
| | - Ryan L Hayes
- Chemical and Biomolecular Engineering, University of California, Irvine, California, 92617, USA
- Pharmaceutical Sciences, University of California, Irvine, CA, 92617, USA
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Tufts University, Medford, MA, 02144, USA
| | - Brian Pulawski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
Opuu V, Nigro G, Lazennec‐Schurdevin C, Mechulam Y, Schmitt E, Simonson T. Redesigning methionyl-tRNA synthetase for β-methionine activity with adaptive landscape flattening and experiments. Protein Sci 2023; 32:e4738. [PMID: 37518893 PMCID: PMC10451022 DOI: 10.1002/pro.4738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Amino acids (AAs) with a noncanonical backbone would be a valuable tool for protein engineering, enabling new structural motifs and building blocks. To incorporate them into an expanded genetic code, the first, key step is to obtain an appropriate aminoacyl-tRNA synthetase. Currently, directed evolution is not available to optimize AAs with noncanonical backbones, since an appropriate selective pressure has not been discovered. Computational protein design (CPD) is an alternative. We used a new CPD method to redesign MetRS and increase its activity towards β-Met, which has an extra backbone methylene. The new method considered a few active site positions for design and used a Monte Carlo exploration of the corresponding sequence space. During the exploration, a bias energy was adaptively learned, such that the free energy landscape of the apo enzyme was flattened. Enzyme variants could then be sampled, in the presence of the ligand and the bias energy, according to their β-Met binding affinities. Eighteen predicted variants were chosen for experimental testing; 10 exhibited detectable activity for β-Met adenylation. Top predicted hits were characterized experimentally in detail. Dissociation constants, catalytic rates, and Michaelis constants for both α-Met and β-Met were measured. The best mutant retained a preference for α-Met over β-Met; however, the preference was reduced, compared to the wildtype, by a factor of 29. For this mutant, high resolution crystal structures were obtained in complex with both α-Met and β-Met, indicating that the predicted, active conformation of β-Met in the active site was retained.
Collapse
Affiliation(s)
- Vaitea Opuu
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole PolytechniqueInstitut Polytechnique de ParisPalaiseauFrance
| | - Giuliano Nigro
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole PolytechniqueInstitut Polytechnique de ParisPalaiseauFrance
| | - Christine Lazennec‐Schurdevin
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole PolytechniqueInstitut Polytechnique de ParisPalaiseauFrance
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole PolytechniqueInstitut Polytechnique de ParisPalaiseauFrance
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole PolytechniqueInstitut Polytechnique de ParisPalaiseauFrance
| | - Thomas Simonson
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole PolytechniqueInstitut Polytechnique de ParisPalaiseauFrance
| |
Collapse
|
12
|
Hanquier JN, Sanders K, Berryhill CA, Sahoo FK, Hudmon A, Vilseck JZ, Cornett EM. Identification of non-histone substrates of the lysine methyltransferase PRDM9. J Biol Chem 2023; 299:104651. [PMID: 36972790 PMCID: PMC10164904 DOI: 10.1016/j.jbc.2023.104651] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Lysine methylation is a dynamic, post-translational mark that regulates the function of histone and non-histone proteins. Many of the enzymes that mediate lysine methylation, known as lysine methyltransferases (KMTs), were originally identified to modify histone proteins but have also been discovered to methylate non-histone proteins. In this work, we investigate the substrate selectivity of the lysine methyltransferase PRDM9 to identify both potential histone and non-histone substrates. Though normally expressed in germ cells, PRDM9 is significantly upregulated across many cancer types. The methyltransferase activity of PRDM9 is essential for double-strand break formation during meiotic recombination. PRDM9 has been reported to methylate histone H3 at lysine residues 4 and 36; however, PRDM9 KMT activity had not previously been evaluated on non-histone proteins. Using lysine-oriented peptide (K-OPL) libraries to screen potential substrates of PRDM9, we determined that PRDM9 preferentially methylates peptide sequences not found in any histone protein. We confirmed PRDM9 selectivity through in vitro KMT reactions using peptides with substitutions at critical positions. A multisite λ-dynamics computational analysis provided a structural rationale for the observed PRDM9 selectivity. The substrate selectivity profile was then used to identify putative non-histone substrates, which were tested by peptide spot array, and a subset were further validated at the protein level by in vitro KMT assays on recombinant proteins. Finally, one of the non-histone substrates, CTNNBL1, was found to be methylated by PRDM9 in cells.
Collapse
Affiliation(s)
- Jocelyne N Hanquier
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Kenidi Sanders
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Christine A Berryhill
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Firoj K Sahoo
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Evan M Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A.
| |
Collapse
|
13
|
Liu X, Tsang PK, Soellner MB, Brooks CL. QSAR via Multisite λ-Dynamics in the Orphaned TSSK1B Kinase. Protein Sci 2023; 32:e4623. [PMID: 36906820 PMCID: PMC10031809 DOI: 10.1002/pro.4623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/18/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Multisite λ-dynamics (MSλD) is a novel method for the calculation of relative free energies of binding for ligands to their targeted receptors. It can be readily used to examine a large number of molecules with multiple functional groups at multiple sites around a common core. This makes MSλD a powerful tool in structure-based drug design. In the present study, MSλD is applied to calculate the relative binding free energies of 1296 inhibitors to the testis specific serine kinase 1B (TSSK1B), a validated target for male contraception. For this system, MSλD requires significantly fewer computational resources compared to traditional free energy methods like free energy perturbation or thermodynamic integration. From MSλD simulations, we examined whether modifications of a ligand at two different sites are coupled or not. Based on our calculations, we established a quantitative structure-activity relationship (QSAR) for this set of molecules and identified a site in the ligand where further modification, such as adding more polar groups, may lead to increased binding affinity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaorong Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Pui Ki Tsang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Matthew B Soellner
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
14
|
Opuu V, Simonson T. Enzyme redesign and genetic code expansion. Protein Eng Des Sel 2023; 36:gzad017. [PMID: 37879093 DOI: 10.1093/protein/gzad017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Enzyme design is an important application of computational protein design (CPD). It can benefit enormously from the additional chemistries provided by noncanonical amino acids (ncAAs). These can be incorporated into an 'expanded' genetic code, and introduced in vivo into target proteins. The key step for genetic code expansion is to engineer an aminoacyl-transfer RNA (tRNA) synthetase (aaRS) and an associated tRNA that handles the ncAA. Experimental directed evolution has been successfully used to engineer aaRSs and incorporate over 200 ncAAs into expanded codes. But directed evolution has severe limits, and is not yet applicable to noncanonical AA backbones. CPD can help address several of its limitations, and has begun to be applied to this problem. We review efforts to redesign aaRSs, studies that designed new proteins and functionalities with the help of ncAAs, and some of the method developments that have been used, such as adaptive landscape flattening Monte Carlo, which allows an enzyme to be redesigned with substrate or transition state binding as the design target.
Collapse
Affiliation(s)
- Vaitea Opuu
- Institut Chimie Biologie Innovation (CNRS UMR8231), Ecole Supérieure de Physique et Chimie de Paris (ESPCI), 75005 Paris, France
| | - Thomas Simonson
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
15
|
Talluri S. Engineering and Design of Programmable Genome Editors. J Phys Chem B 2022; 126:5140-5150. [PMID: 35819243 DOI: 10.1021/acs.jpcb.2c03761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Programmable genome editors are enzymes that can be targeted to a specific location in the genome for making site-specific alterations or deletions. The engineering, design, and development of sequence-specific editors has resulted in a dramatic increase in the precision of editing for nucleotide sequences. These editors can target specific locations in a genome, in vivo. The genome editors are being deployed for the development of genetically modified organisms for agriculture and industry, and for gene therapy of inherited human genetic disorders, cancer, and immunotherapy. Experimental and computational studies of structure, binding, activity, dynamics, and folding, reviewed here, have provided valuable insights that have the potential for increasing the functional efficiency of these gene/genome editors. Biochemical and biophysical studies of the specificities of natural and engineered genome editors reveal that increased binding affinity can be detrimental because of the increase of off-target effects and that the engineering and design of genome editors with higher specificity may require modulation and control of the conformational dynamics.
Collapse
Affiliation(s)
- Sekhar Talluri
- Department of Biotechnology, GITAM, Visakhapatnam, India 530045
| |
Collapse
|
16
|
Hayes RL, Vilseck JZ, Brooks CL. Addressing Intersite Coupling Unlocks Large Combinatorial Chemical Spaces for Alchemical Free Energy Methods. J Chem Theory Comput 2022; 18:2114-2123. [PMID: 35255214 PMCID: PMC9700482 DOI: 10.1021/acs.jctc.1c00948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alchemical free energy methods are playing a growing role in molecular design, both for computer-aided drug design of small molecules and for computational protein design. Multisite λ dynamics (MSλD) is a uniquely scalable alchemical free energy method that enables more efficient exploration of combinatorial alchemical spaces encountered in molecular design, but simulations have typically been limited to a few hundred ligands or sequences. Here, we focus on coupling between sites to enable scaling to larger alchemical spaces. We first discuss updates to the biasing potentials that facilitate MSλD sampling to include coupling terms and show that this can provide more thorough sampling of alchemical states. We then harness coupling between sites by developing a new free energy estimator based on the Potts models underlying direct coupling analysis, a method for predicting contacts from sequence coevolution, and find it yields more accurate free energies than previous estimators. The sampling requirements of the Potts model estimator scale with the square of the number of sites, a substantial improvement over the exponential scaling of the standard estimator. This opens up exploration of much larger alchemical spaces with MSλD for molecular design.
Collapse
Affiliation(s)
- Ryan L Hayes
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Wu Z, Biggin PC. Correction Schemes for Absolute Binding Free Energies Involving Lipid Bilayers. J Chem Theory Comput 2022; 18:2657-2672. [PMID: 35315270 PMCID: PMC9082507 DOI: 10.1021/acs.jctc.1c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Absolute
binding free-energy (ABFE) calculations are playing an
increasing role in drug design, especially as they can be performed
on a range of disparate compounds and direct comparisons between them
can be made. It is, however, especially important to ensure that they
are as accurate as possible, as unlike relative binding free-energy
(RBFE) calculations, one does not benefit as much from a cancellation
of errors during the calculations. In most modern implementations
of ABFE calculations, a particle mesh Ewald scheme is typically used
to treat the electrostatic contribution to the free energy. A central
requirement of such schemes is that the box preserves neutrality throughout
the calculation. There are many ways to deal with this problem that
have been discussed over the years ranging from a neutralizing plasma
with a post hoc correction term through to a simple co-alchemical
ion within the same box. The post hoc correction approach is the most
widespread. However, the vast majority of these studies have been
applied to a soluble protein in a homogeneous solvent (water or salt
solution). In this work, we explore which of the more common approaches
would be the most suitable for a simulation box with a lipid bilayer
within it. We further develop the idea of the so-called Rocklin correction
for lipid-bilayer systems and show how such a correction could work.
However, we also show that it will be difficult to make this generalizable
in a practical way and thus we conclude that the use of a “co-alchemical
ion” is the most useful approach for simulations involving
lipid membrane systems.
Collapse
Affiliation(s)
- Zhiyi Wu
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, U.K
| | - Philip C Biggin
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
18
|
Hayes RL, Buckner J, Brooks CL. BLaDE: A Basic Lambda Dynamics Engine for GPU-Accelerated Molecular Dynamics Free Energy Calculations. J Chem Theory Comput 2021; 17:6799-6807. [PMID: 34709046 DOI: 10.1021/acs.jctc.1c00833] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is an accelerating interest in practical applications of alchemical free energy methods to problems in protein design, constant pH simulations, and especially computer-aided drug design. In the present paper, we describe a basic lambda dynamics engine (BLaDE) that enables alchemical free energy simulations, including multisite λ dynamics (MSλD) simulations, on graphical processor units (GPUs). We find that BLaDE is 5 to 8 times faster than the current GPU implementation of MSλD-based free energy calculations in CHARMM. We also demonstrate that BLaDE running standard molecular dynamics attains a performance competitive with and sometimes exceeding that of the highly optimized OpenMM GPU code. BLaDE is available as a standalone program and through an API in CHARMM.
Collapse
Affiliation(s)
- Ryan L Hayes
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joshua Buckner
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Vilseck JZ, Ding X, Hayes RL, Brooks CL. Generalizing the Discrete Gibbs Sampler-Based λ-Dynamics Approach for Multisite Sampling of Many Ligands. J Chem Theory Comput 2021; 17:3895-3907. [PMID: 34101448 DOI: 10.1021/acs.jctc.1c00176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, the discrete λ variant of the Gibbs sampler-based λ-dynamics (d-GSλD) method is developed to enable multiple functional group perturbations to be investigated at one or more sites of substitution off a common ligand core. The theoretical framework and special considerations for constructing discrete λ states for multisite d-GSλD are presented. The precision and accuracy of the d-GSλD method is evaluated with three test cases of increasing complexity. Specifically, methyl → methyl symmetric perturbations in water, 1,4-benzene hydration free energies and protein-ligand binding affinities for an example HIV-1 reverse transcriptase inhibitor series are computed with d-GSλD. Complementary MSλD calculations were also performed to compare with d-GSλD's performance. Excellent agreement between d-GSλD and MSλD is observed, with mean unsigned errors of 0.12 and 0.22 kcal/mol for computed hydration and binding free energy test cases, respectively. Good agreement with experiment is also observed, with errors of 0.5-0.7 kcal/mol. These findings support the applicability of the d-GSλD free energy method for a variety of molecular design problems, including structure-based drug design. Finally, a discussion of d-GSλD versus MSλD approaches is presented to compare and contrast features of both methods.
Collapse
Affiliation(s)
- Jonah Z Vilseck
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Xinqiang Ding
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ryan L Hayes
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Hayes RL, Brooks CL. A strategy for proline and glycine mutations to proteins with alchemical free energy calculations. J Comput Chem 2021; 42:1088-1094. [PMID: 33844328 DOI: 10.1002/jcc.26525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/07/2022]
Abstract
Computation of the thermodynamic consequences of protein mutations holds great promise in protein biophysics and design. Alchemical free energy methods can give improved estimates of mutational free energies, and are already widely used in calculations of relative and absolute binding free energies in small molecule design problems. In principle, alchemical methods can address any amino acid mutation with an appropriate alchemical pathway, but identifying a strategy that produces such a path for proline and glycine mutations is an ongoing challenge. Most current strategies perturb only side chain atoms, while proline and glycine mutations also alter the backbone parameters and backbone ring topology. Some strategies also perturb backbone parameters and enable glycine mutations. This work presents a strategy that enables both proline and glycine mutations and comprises two key elements: a dual backbone with restraints and scaling of bonded terms, facilitating backbone parameter changes, and a soft bond in the proline ring, enabling ring topology changes in proline mutations. These elements also have utility for core hopping and macrocycle studies in computer-aided drug design. This new strategy shows slight improvements over an alternative side chain perturbation strategy for a set T4 lysozyme mutations lacking proline and glycine, and yields good agreement with experiment for a set of T4 lysozyme proline and glycine mutations not previously studied. To our knowledge this is the first report comparing alchemical predictions of proline mutations with experiment. With this strategy in hand, alchemical methods now have access to the full palette of amino acid mutations.
Collapse
Affiliation(s)
- Ryan L Hayes
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.,Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Michael E, Polydorides S, Simonson T, Archontis G. Hybrid MC/MD for protein design. J Chem Phys 2021; 153:054113. [PMID: 32770896 DOI: 10.1063/5.0013320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Computational protein design relies on simulations of a protein structure, where selected amino acids can mutate randomly, and mutations are selected to enhance a target property, such as stability. Often, the protein backbone is held fixed and its degrees of freedom are modeled implicitly to reduce the complexity of the conformational space. We present a hybrid method where short molecular dynamics (MD) segments are used to explore conformations and alternate with Monte Carlo (MC) moves that apply mutations to side chains. The backbone is fully flexible during MD. As a test, we computed side chain acid/base constants or pKa's in five proteins. This problem can be considered a special case of protein design, with protonation/deprotonation playing the role of mutations. The solvent was modeled as a dielectric continuum. Due to cost, in each protein we allowed just one side chain position to change its protonation state and the other position to change its type or mutate. The pKa's were computed with a standard method that scans a range of pH values and with a new method that uses adaptive landscape flattening (ALF) to sample all protonation states in a single simulation. The hybrid method gave notably better accuracy than standard, fixed-backbone MC. ALF decreased the computational cost a factor of 13.
Collapse
Affiliation(s)
- Eleni Michael
- Department of Physics, University of Cyprus, P.O 20537, CY678 Nicosia, Cyprus
| | - Savvas Polydorides
- Department of Physics, University of Cyprus, P.O 20537, CY678 Nicosia, Cyprus
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| | - Georgios Archontis
- Department of Physics, University of Cyprus, P.O 20537, CY678 Nicosia, Cyprus
| |
Collapse
|
22
|
Peck Justice SA, Barron MP, Qi GD, Wijeratne HRS, Victorino JF, Simpson ER, Vilseck JZ, Wijeratne AB, Mosley AL. Mutant thermal proteome profiling for characterization of missense protein variants and their associated phenotypes within the proteome. J Biol Chem 2020; 295:16219-16238. [PMID: 32878984 PMCID: PMC7705321 DOI: 10.1074/jbc.ra120.014576] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Temperature-sensitive (TS) missense mutants have been foundational for characterization of essential gene function. However, an unbiased approach for analysis of biochemical and biophysical changes in TS missense mutants within the context of their functional proteomes is lacking. We applied MS-based thermal proteome profiling (TPP) to investigate the proteome-wide effects of missense mutations in an application that we refer to as mutant thermal proteome profiling (mTPP). This study characterized global impacts of temperature sensitivity-inducing missense mutations in two different subunits of the 26S proteasome. The majority of alterations identified by RNA-Seq and global proteomics were similar between the mutants, which could suggest that a similar functional disruption is occurring in both missense variants. Results from mTPP, however, provide unique insights into the mechanisms that contribute to the TS phenotype in each mutant, revealing distinct changes that were not obtained using only steady-state transcriptome and proteome analyses. Computationally, multisite λ-dynamics simulations add clear support for mTPP experimental findings. This work shows that mTPP is a precise approach to measure changes in missense mutant-containing proteomes without the requirement for large amounts of starting material, specific antibodies against proteins of interest, and/or genetic manipulation of the biological system. Although experiments were performed under permissive conditions, mTPP provided insights into the underlying protein stability changes that cause dramatic cellular phenotypes observed at nonpermissive temperatures. Overall, mTPP provides unique mechanistic insights into missense mutation dysfunction and connection of genotype to phenotype in a rapid, nonbiased fashion.
Collapse
Affiliation(s)
- Sarah A Peck Justice
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Monica P Barron
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Guihong D Qi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - H R Sagara Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - José F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ed R Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, Indiana, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aruna B Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
23
|
Raman EP, Paul TJ, Hayes RL, Brooks CL. Automated, Accurate, and Scalable Relative Protein-Ligand Binding Free-Energy Calculations Using Lambda Dynamics. J Chem Theory Comput 2020; 16:7895-7914. [PMID: 33201701 DOI: 10.1021/acs.jctc.0c00830] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Accurate predictions of changes to protein-ligand binding affinity in response to chemical modifications are of utility in small-molecule lead optimization. Relative free-energy perturbation (FEP) approaches are one of the most widely utilized for this goal but involve significant computational cost, thus limiting their application to small sets of compounds. Lambda dynamics, also rigorously based on the principles of statistical mechanics, provides a more efficient alternative. In this paper, we describe the development of a workflow to set up, execute, and analyze multisite lambda dynamics (MSLD) calculations run on GPUs with CHARMM implemented in BIOVIA Discovery Studio and Pipeline Pilot. The workflow establishes a framework for setting up simulation systems for exploratory screening of modifications to a lead compound, enabling the calculation of relative binding affinities of combinatorial libraries. To validate the workflow, a diverse data set of congeneric ligands for seven proteins with experimental binding affinity data is examined. A protocol to automatically tailor fit biasing potentials iteratively to flatten the free-energy landscape of any MSLD system is developed, which enhances sampling and allows for efficient estimation of free-energy differences. The protocol is first validated on a large number of ligand subsets that model diverse substituents, which shows accurate and reliable performance. The scalability of the workflow is also tested to screen more than 100 ligands modeled in a single system, which also resulted in accurate predictions. With a cumulative sampling time of 150 ns or less, the method results in average unsigned errors of under 1 kcal/mol in most cases for both small and large combinatorial libraries. For the multisite systems examined, the method is estimated to be more than an order of magnitude more efficient than contemporary FEP applications. The results thus demonstrate the utility of the presented MSLD workflow to efficiently screen combinatorial libraries and explore the chemical space around a lead compound and thus are of utility in lead optimization.
Collapse
Affiliation(s)
- E Prabhu Raman
- BIOVIA, Dassault Systemes, 5005 Wateridge Vista Drive, San Diego, California 92121, United States
| | - Thomas J Paul
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ryan L Hayes
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Mignon D, Druart K, Michael E, Opuu V, Polydorides S, Villa F, Gaillard T, Panel N, Archontis G, Simonson T. Physics-Based Computational Protein Design: An Update. J Phys Chem A 2020; 124:10637-10648. [DOI: 10.1021/acs.jpca.0c07605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- David Mignon
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France
| | - Karen Druart
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France
| | - Eleni Michael
- Department of Physics, University of Cyprus, PO20537, CY1678 Nicosia, Cyprus
| | - Vaitea Opuu
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France
| | - Savvas Polydorides
- Department of Physics, University of Cyprus, PO20537, CY1678 Nicosia, Cyprus
| | - Francesco Villa
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France
| | - Thomas Gaillard
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France
| | - Nicolas Panel
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France
| | - Georgios Archontis
- Department of Physics, University of Cyprus, PO20537, CY1678 Nicosia, Cyprus
| | - Thomas Simonson
- Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
25
|
Gill M, McCully ME. Molecular dynamics simulations suggest stabilizing mutations in a de novo designed α/β protein. Protein Eng Des Sel 2019; 32:317-329. [PMID: 32086513 PMCID: PMC7052480 DOI: 10.1093/protein/gzaa005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Designing functional proteins that can withstand extreme heat is beneficial for industrial and protein therapeutic applications. Thus, elucidating the atomic-level determinants of thermostability is a major interest for rational protein design. To that end, we compared the structure and dynamics of a set of previously designed, thermostable proteins based on the activation domain of human procarboxypeptidase A2 (AYEwt). The mutations in these designed proteins were intended to increase hydrophobic core packing and inter-secondary-structure interactions. To evaluate whether these design strategies were successfully deployed, we performed all-atom, explicit-solvent molecular dynamics (MD) simulations of AYEwt and three designed variants at both 25 and 100°C. Our MD simulations agreed with the relative experimental stabilities of the designs based on their secondary structure content, Cα root-mean-square deviation/fluctuation, and buried-residue solvent accessible surface area. Using a contact analysis, we found that the designs stabilize inter-secondary structure interactions and buried hydrophobic surface area, as intended. Based on our analysis, we designed three additional variants to test the role of helix stabilization, core packing, and a Phe → Met mutation on thermostability. We performed the additional MD simulations and analysis on these variants, and these data supported our predictions.
Collapse
Affiliation(s)
- Matthew Gill
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| | - Michelle E McCully
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA
| |
Collapse
|
26
|
Vilseck JZ, Sohail N, Hayes RL, Brooks CL. Overcoming Challenging Substituent Perturbations with Multisite λ-Dynamics: A Case Study Targeting β-Secretase 1. J Phys Chem Lett 2019; 10:4875-4880. [PMID: 31386370 PMCID: PMC7015761 DOI: 10.1021/acs.jpclett.9b02004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alchemical free energy calculations have made a dramatic impact upon the field of structure-based drug design by allowing functional group modifications to be explored computationally prior to experimental synthesis and assay evaluation, thereby informing and directing synthetic strategies. In furthering the advancement of this area, a series of 21 β-secretase 1 (BACE1) inhibitors developed by Janssen Pharmaceuticals were examined to evaluate the ability to explore large substituent perturbations, some of which contain scaffold modifications, with multisite λ-dynamics (MSλD), an innovative alchemical free energy framework. Our findings indicate that MSλD is able to efficiently explore all structurally diverse ligand end-states simultaneously within a single MD simulation with a high degree of precision and with reduced computational costs compared to the widely used approach TI/MBAR. Furthermore, computational predictions were shown to be accurate to within 0.5-0.8 kcal/mol when CM1A partial atomic charges were combined with CHARMM or OPLS-AA-based force fields, demonstrating that MSλD is force field independent and a viable alternative to FEP or TI approaches for drug design.
Collapse
Affiliation(s)
- Jonah Z. Vilseck
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Noor Sohail
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Ryan L. Hayes
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Aldeghi M, Gapsys V, de Groot BL. Accurate Estimation of Ligand Binding Affinity Changes upon Protein Mutation. ACS CENTRAL SCIENCE 2018; 4:1708-1718. [PMID: 30648154 PMCID: PMC6311686 DOI: 10.1021/acscentsci.8b00717] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 05/19/2023]
Abstract
The design of proteins with novel ligand-binding functions holds great potential for application in biomedicine and biotechnology. However, our ability to engineer ligand-binding proteins is still limited, and current approaches rely primarily on experimentation. Computation could reduce the cost of the development process and would allow rigorous testing of our understanding of the principles governing molecular recognition. While computational methods have proven successful in the early stages of the discovery process, optimization approaches that can quantitatively predict ligand affinity changes upon protein mutation are still lacking. Here, we assess the ability of free energy calculations based on first-principles statistical mechanics, as well as the latest Rosetta protocols, to quantitatively predict such affinity changes on a challenging set of 134 mutations. After evaluating different protocols with computational efficiency in mind, we investigate the performance of different force fields. We show that both the free energy calculations and Rosetta are able to quantitatively predict changes in ligand binding affinity upon protein mutations, yet the best predictions are the result of combining the estimates of both methods. These closely match the experimentally determined ΔΔG values, with a root-mean-square error of 1.2 kcal/mol for the full benchmark set and of 0.8 kcal/mol for a subset of protein systems providing the most reproducible results. The currently achievable accuracy offers the prospect of being able to employ computation for the optimization of ligand-binding proteins as well as the prediction of drug resistance.
Collapse
|