1
|
Uo T, Ojo KK, Sprenger CC, Epilepsia KS, Perera BGK, Damodarasamy M, Sun S, Kim S, Hogan HH, Hulverson MA, Choi R, Whitman GR, Barrett LK, Michaels SA, Xu LH, Sun VL, Arnold SLM, Pang HJ, Nguyen MM, Vigil ALBG, Kamat V, Sullivan LB, Sweet IR, Vidadala R, Maly DJ, Van Voorhis WC, Plymate SR. A Compound that Inhibits Glycolysis in Prostate Cancer Controls Growth of Advanced Prostate Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.01.547355. [PMID: 37461469 PMCID: PMC10350011 DOI: 10.1101/2023.07.01.547355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Purpose Metastatic castration-resistant prostate cancer remains incurable regardless of recent therapeutic advances. Prostate cancer tumors display highly glycolytic phenotypes as the cancer progresses. Non-specific inhibitors of glycolysis have not been utilized successfully for chemotherapy, because of their penchant to cause systemic toxicity. This study reports the preclinical activity, safety, and pharmacokinetics of a novel small molecule preclinical candidate, BKIDC-1553, with antiglycolytic activity. Experimental design We tested a large battery of prostate cancer cell lines for inhibition of cell proliferation, in vitro. Cell cycle, metabolic and enzymatic assays were used to demonstrate their mechanism of action. A human PDX model implanted in mice and a human organoid were studied for sensitivity to our BKIDC preclinical candidate. A battery of pharmacokinetic experiments, absorption, distribution, metabolism, and excretion experiments, and in vitro and in vivo toxicology experiments were carried out to assess readiness for clinical trials. Results We demonstrate a new class of small molecule inhibitors where antiglycolytic activity in prostate cancer cell lines is mediated through inhibition of hexokinase 2. These compounds display selective growth inhibition across multiple prostate cancer models. We describe a lead BKIDC-1553 that demonstrates promising activity in a preclinical xenograft model of advanced prostate cancer, equivalent to that of enzalutamide. BKIDC-1553 demonstrates safety and pharmacologic properties consistent with a compound that can be taken into human studies with expectations of a good safety margin and predicted dosing for efficacy. Conclusion This work supports testing BKIDC-1553 and its derivatives in clinical trials for patients with advanced prostate cancer.
Collapse
|
2
|
Wang L, Hou Y, Yuan H, Chen H. The role of tryptophan in Chlamydia trachomatis persistence. Front Cell Infect Microbiol 2022; 12:931653. [PMID: 35982780 PMCID: PMC9378776 DOI: 10.3389/fcimb.2022.931653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
Chlamydia trachomatis (C. trachomatis) is the most common etiological agent of bacterial sexually transmitted infections (STIs) and a worldwide public health issue. The natural course with C. trachomatis infection varies widely between individuals. Some infections clear spontaneously, others can last for several months or some individuals can become reinfected, leading to severe pathological damage. Importantly, the underlying mechanisms of C. trachomatis infection are not fully understood. C. trachomatis has the ability to adapt to immune response and persist within host epithelial cells. Indoleamine-2,3-dioxygenase (IDO) induced by interferon-gamma (IFN-γ) degrades the intracellular tryptophan pool, to which C. trachomatis can respond by converting to a non-replicating but viable state. C. trachomatis expresses and encodes for the tryptophan synthase (TS) genes (trpA and trpB) and tryptophan repressor gene (trpR). Multiple genes interact to regulate tryptophan synthesis from exogenous indole, and persistent C. trachomatis can recover its infectivity by converting indole into tryptophan. In this review, we discuss the characteristics of chlamydial infections, biosynthesis and regulation of tryptophan, the relationship between tryptophan and C. trachomatis, and finally, the links between the tryptophan/IFN-γ axis and C. trachomatis persistence.
Collapse
Affiliation(s)
- Li Wang
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - YingLan Hou
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - HongXia Yuan
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - Hongliang Chen
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
- *Correspondence: Hongliang Chen,
| |
Collapse
|
3
|
Zhang L, Liu M, Bao L, Boström KI, Yao Y, Li J, Gu S, Ji C. Novel Structures of Type 1 Glyceraldehyde-3-phosphate Dehydrogenase from Escherichia coli Provide New Insights into the Mechanism of Generation of 1,3-Bisphosphoglyceric Acid. Biomolecules 2021; 11:1565. [PMID: 34827563 PMCID: PMC8615399 DOI: 10.3390/biom11111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a highly conserved enzyme involved in the ubiquitous process of glycolysis and presents a loop (residues 208-215 of Escherichia coli GAPDH) in two alternative conformations (I and II). It is uncertain what triggers this loop rearrangement, as well as which is the precise site from which phosphate attacks the thioacyl intermediate precursor of 1,3-bisphosphoglycerate (BPG). To clarify these uncertainties, we determined the crystal structures of complexes of wild-type GAPDH (WT) with NAD and phosphate or G3P, and of essentially inactive GAPDH mutants (C150S, H177A), trapping crystal structures for the thioacyl intermediate or for ternary complexes with NAD and either phosphate, BPG, or G3P. Analysis of these structures reported here lead us to propose that phosphate is located in the "new Pi site" attacks the thioester bond of the thioacyl intermediate to generate 1,3-bisphosphoglyceric acid (BPG). In the structure of the thioacyl intermediate, the mobile loop is in conformation II in subunits O, P, and R, while both conformations coexist in subunit Q. Moreover, only the Q subunit hosts bound NADH. In the R subunit, only the pyrophosphate part of NADH is well defined, and NADH is totally absent from the O and P subunits. Thus, the change in loop conformation appears to occur after NADH is produced, before NADH is released. In addition, two new D-glyceraldehyde-3-phosphate (G3P) binding forms are observed in WT.NAD.G3P and C150A+H177A.NAD.G3P. In summary, this paper improves our understanding of the GAPDH catalytic mechanism, particularly regarding BPG formation.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Meiruo Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Luyao Bao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA; (K.I.B.); (Y.Y.)
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA; (K.I.B.); (Y.Y.)
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Chaoneng Ji
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| |
Collapse
|
4
|
Ayna A, Moody PC. Crystal structures of a dual coenzyme specific glyceraldehyde-3-phosphate dehydrogenase from the enteric pathogen Campylobacter jejuni. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Lin EY, Adamson PC, Klausner JD. Epidemiology, Treatments, and Vaccine Development for Antimicrobial-Resistant Neisseria gonorrhoeae: Current Strategies and Future Directions. Drugs 2021; 81:1153-1169. [PMID: 34097283 PMCID: PMC8182353 DOI: 10.1007/s40265-021-01530-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Neisseria gonorrhoeae is the second most common bacterial sexually transmitted infection in the world after Chlamydia trachomatis. The pathogen has developed resistance to every antibiotic currently approved for treatment, and multidrug-resistant strains have been identified globally. The current treatment recommended by the World Health Organization is ceftriaxone and azithromycin dual therapy. However, resistance to azithromycin and ceftriaxone are increasing and treatment failures have been reported. As a result, there is a critical need to develop novel strategies for mitigating the spread of antimicrobial-resistant N. gonorrhoeae through improved diagnosis and treatment of resistant infections. Strategies that are currently being pursued include developing molecular assays to predict resistance, utilizing higher doses of ceftriaxone, repurposing older antibiotics, and developing newer agents. In addition, efforts to discover a vaccine for N. gonorrhoeae have been reignited in recent years with the cross-protectivity provided by the N. meningitidis vaccine, with several new strategies and targets. Despite the significant progress that has been made, there is still much work ahead to combat antimicrobial-resistant N. gonorrhoeae globally.
Collapse
Affiliation(s)
- Eric Y Lin
- David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Paul C Adamson
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave. CHS 52-215, Los Angeles, CA 90095 USA
| | - Jeffrey D. Klausner
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA USA
| |
Collapse
|
6
|
Purification and Characterization of (2R,3R)-2,3-Butanediol Dehydrogenase of the Human Pathogen Neisseria gonorrhoeae FA1090 Produced in Escherichia coli. Mol Biotechnol 2021; 63:491-501. [PMID: 33763825 DOI: 10.1007/s12033-021-00308-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
2,3-Butanediol dehydrogenase (BDH), also known as acetoin/diacetyl reductase, is a pivotal enzyme for the formation of 2,3-butanediol (2,3-BD), a chiral compound with potential roles in the virulence of certain pathogens. Here, a NAD(H)-dependent (2R,3R)-BDH from Neisseria gonorrhoeae FA1090 (NgBDH), the causative agent of gonorrhoea, was functionally characterized. Sequence analysis indicated that it belongs to zinc-containing medium-chain dehydrogenase/reductase family. The recombinant NgBDH migrated as a single band with a size of around 45 kDa on SDS-PAGE and could be confirmed by Western blotting and mass spectrometry. For the oxidation of either (2R,3R)-2,3-BD or meso-2,3-BD, the enzyme exhibited a broad pH optimum between pH 9.5 to 11.5. For the reduction of (3R/3S)-acetoin, the pH optimum was around 6.5. The enzyme could catalyze the stereospecific oxidation of (2R,3R)-2,3-BD (Km = 0.16 mM, kcat/Km = 673 s-1 · mM-1) and meso-BD (Km = 0.72 mM, kcat/Km = 165 s-1 · mM-1). Moreover, it could also reduce (3R/3S)-acetoin with a Km of 0.14 mM and a kcat/Km of 885 s-1 · mM-1. The results presented here contribute to understand the 2,3-BD metabolism in N. gonorrhoeae and pave the way for studying the influence of 2,3-BD metabolism on the virulence of this pathogen in the future.
Collapse
|
7
|
Boreiko S, Silva M, Iulek J. Structure determination and analyses of the GAPDH from the parasite Schistosoma mansoni, the first one from a platyhelminth. Biochimie 2021; 184:18-25. [PMID: 33524435 DOI: 10.1016/j.biochi.2021.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
The enzyme Glyceraldehyde-3-Phosphate Dehydrogenase from Schistosoma mansoni (SmGAPDH) is characterized as a therapeutical target for schistosomiasis. In this context, we report here the experimental structure, structural analyses and comparisons of SmGAPDH, the first one from a Platyhelminth. The enzyme was expressed, purified and assayed for crystallization, what allowed the obtainment of crystals of sufficient quality to collect X-ray diffraction data up to 2.51 Å resolution. SmGAPDH is the only GAPDH to present the sequence NNR (its residues 114-116) which leads to (especially R116) a hydrogen bond network that possibly reflects on the flexibility of residues to interact with the adenine part of NAD+, speculated to be important for differential drug design.
Collapse
Affiliation(s)
- Sheila Boreiko
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa - PR, 84030-900, Brazil
| | - Marcio Silva
- Department of Education, Federal Technological University of Paraná, Ponta Grossa - PR, 84016-210, Brazil
| | - Jorge Iulek
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa - PR, 84030-900, Brazil.
| |
Collapse
|
8
|
Schormann N, Campos J, Motamed R, Hayden KL, Gould JR, Green TJ, Senkovich O, Banerjee S, Ulett GC, Chattopadhyay D. Chlamydia trachomatis glyceraldehyde 3-phosphate dehydrogenase: Enzyme kinetics, high-resolution crystal structure, and plasminogen binding. Protein Sci 2020; 29:2446-2458. [PMID: 33058314 DOI: 10.1002/pro.3975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is an evolutionarily conserved essential enzyme in the glycolytic pathway. GAPDH is also involved in a wide spectrum of non-catalytic cellular 'moonlighting' functions. Bacterial surface-associated GAPDHs engage in many host interactions that aid in colonization, pathogenesis, and virulence. We have structurally and functionally characterized the recombinant GAPDH of the obligate intracellular bacteria Chlamydia trachomatis, the leading cause of sexually transmitted bacterial and ocular infections. Contrary to earlier speculations, recent data confirm the presence of glucose-catabolizing enzymes including GAPDH in both stages of the biphasic life cycle of the bacterium. The high-resolution crystal structure described here provides a close-up view of the enzyme's active site and surface topology and reveals two chemically modified cysteine residues. Moreover, we show for the first time that purified C. trachomatis GAPDH binds to human plasminogen and plasmin. Based on the versatility of GAPDH's functions, data presented here emphasize the need for investigating the Chlamydiae GAPDH's involvement in biological functions beyond energy metabolism.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan Campos
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Rachael Motamed
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Katherine L Hayden
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Joseph R Gould
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olga Senkovich
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, Arizona, USA
| | - Surajit Banerjee
- Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne, Illinois, USA
| | - Glen C Ulett
- School of Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands, Australia
| | | |
Collapse
|
9
|
Barrett KF, Dranow DM, Phan IQ, Michaels SA, Shaheen S, Navaluna ED, Craig JK, Tillery LM, Choi R, Edwards TE, Conrady DG, Abendroth J, Horanyi PS, Lorimer DD, Van Voorhis WC, Zhang Z, Barrett LK, Subramanian S, Staker B, Fan E, Myler PJ, Soge OO, Hybiske K, Ojo KK. Structures of glyceraldehyde 3-phosphate dehydrogenase in Neisseria gonorrhoeae and Chlamydia trachomatis. Protein Sci 2020; 29:768-778. [PMID: 31930578 DOI: 10.1002/pro.3824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
Neisseria gonorrhoeae (Ng) and Chlamydia trachomatis (Ct) are the most commonly reported sexually transmitted bacteria worldwide and usually present as co-infections. Increasing resistance of Ng to currently recommended dual therapy of azithromycin and ceftriaxone presents therapeutic challenges for syndromic management of Ng-Ct co-infections. Development of a safe, effective, and inexpensive dual therapy for Ng-Ct co-infections is an effective strategy for the global control and prevention of these two most prevalent bacterial sexually transmitted infections. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a validated drug target with two approved drugs for indications other than antibacterials. Nonetheless, any new drugs targeting GAPDH in Ng and Ct must be specific inhibitors of bacterial GAPDH that do not inhibit human GAPDH, and structural information of Ng and Ct GAPDH will aid in finding such selective inhibitors. Here, we report the X-ray crystal structures of Ng and Ct GAPDH. Analysis of the structures demonstrates significant differences in amino acid residues in the active sites of human GAPDH from those of the two bacterial enzymes suggesting design of compounds to selectively inhibit Ng and Ct is possible. We also describe an efficient in vitro assay of recombinant GAPDH enzyme activity amenable to high-throughput drug screening to aid in identifying inhibitory compounds and begin to address selectivity.
Collapse
Affiliation(s)
- Kayleigh F Barrett
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - David M Dranow
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bainbridge Island, Washington
| | - Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Seattle Children's Research Institute, Seattle, Washington
| | - Samantha A Michaels
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington
| | - Shareef Shaheen
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington
| | - Edelmar D Navaluna
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington
| | - Justin K Craig
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Logan M Tillery
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington
| | - Ryan Choi
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bainbridge Island, Washington
| | - Deborah G Conrady
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bedford, Massachusetts
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bainbridge Island, Washington
| | - Peter S Horanyi
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bedford, Massachusetts
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,UCB Pharma, Bainbridge Island, Washington
| | - Wesley C Van Voorhis
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington
| | - Zhongsheng Zhang
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Lynn K Barrett
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington.,Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington
| | - Sandhya Subramanian
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Seattle Children's Research Institute, Seattle, Washington
| | - Bart Staker
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Seattle Children's Research Institute, Seattle, Washington
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, Washington.,Seattle Children's Research Institute, Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington.,Department of Biomedical Informatics & Medical Education
| | - Olusegun O Soge
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington
| | - Kevin Hybiske
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington.,Department of Global Health, University of Washington, Seattle, Washington
| | - Kayode K Ojo
- Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, Washington
| |
Collapse
|