1
|
Keritam O, Vincent A, Zimprich F, Cetin H. A clinical perspective on muscle specific kinase antibody positive myasthenia gravis. Front Immunol 2024; 15:1502480. [PMID: 39703505 PMCID: PMC11655327 DOI: 10.3389/fimmu.2024.1502480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The discovery of autoantibodies directed against muscle-specific kinase (MuSK) in "seronegative" myasthenia gravis (MG) patients marked a milestone in MG research. In healthy muscle, MuSK regulates a phosphorylation pathway, which is essential for the development and maintenance of acetylcholine receptor (AChR) clusters at the neuromuscular junction. Autoantibodies directed against MuSK are predominantly of the IgG4 subclass, but there is increasing evidence that IgG1-3 could also contribute to the pathology underlying MuSK-MG. MuSK-IgG4 are monovalent and block the binding site for LRP4 on MuSK, thereby inhibiting the downstream phosphorylation pathway and compromising the formation of AChR clusters. Clinically, MuSK-MG is commonly associated with the predominant involvement of bulbar, facial, shoulder and neck muscles. Cholinesterase inhibitors should be avoided in MuSK-MG due to the risk of clinical impairment and cholinergic crisis. Corticosteroids and other non-steroidal immunosuppressants are less effective with the need for higher doses and prolonged treatment. Rituximab, by contrast, has been shown to be particularly effective and is now often used early in the disease course. Its use is associated with a significant improvement in the clinical outcome of MuSK-MG patients over time. This review aims to describe the pathophysiology underlying MuSK-MG and provide a comprehensive overview of the clinical features and therapeutic options.
Collapse
Affiliation(s)
- Omar Keritam
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Feng Y, Deyanat-Yazdi G, Newburn K, Potter S, Wortinger M, Ramirez M, Truhlar SME, Yachi PP. PD-1 antibody interactions with Fc gamma receptors enable PD-1 agonism to inhibit T cell activation - therapeutic implications for autoimmunity. J Autoimmun 2024; 149:103339. [PMID: 39608214 DOI: 10.1016/j.jaut.2024.103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
PD-1 has emerged as a central inhibitory checkpoint receptor in maintaining immune homeostasis and as a target in cancer immunotherapies. However, targeting PD-1 for the treatment of autoimmune diseases has been more challenging. We recently showed in a phase 2a trial that PD-1 could be stimulated with the PD-1 agonist antibody peresolimab to treat rheumatoid arthritis. Here, we demonstrate that PD-1 antibodies can elicit agonism and inhibit T cell activation by co-localization of PD-1 with the T cell receptor via Fcγ receptor (FcγR) engagement. Three PD-1 agonist antibodies with different antigen binding domains, including the clinically validated PD-1 blocking antibody pembrolizumab, suppressed T cell activation to a similar degree; this finding suggests that a specific PD-1-binding epitope is not required for PD-1 agonism. We next explored whether antibody-mediated clustering was an important driver of inhibition of T cell activation; however, we found that a monovalent PD-1 antibody was not inferior to a conventional bivalent antibody in its ability to suppress T cell activation. Importantly, we found that affinity to PD-1 correlated positively with inhibition of T cell activation, with higher affinity antibodies exhibiting higher levels of inhibition. Using a series of human Fc mutants with altered affinities to various FcγRs, we dissected the contributions of FcγRs and found that multiple FcγRs rather than a single receptor contribute to agonist activity. Our work reveals an important role for FcγR binding in the activity of PD-1 antibodies, which has implications for optimizing both PD-1 agonist and antagonist antibodies.
Collapse
MESH Headings
- Humans
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/drug effects
- Autoimmunity
- Protein Binding
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Autoimmune Diseases/immunology
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/therapy
Collapse
Affiliation(s)
- Yiqing Feng
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| | - Gordafaried Deyanat-Yazdi
- Immunology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, CA, USA
| | - Kristin Newburn
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| | - Scott Potter
- Immunology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, CA, USA
| | - Mark Wortinger
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, USA
| | - Miriam Ramirez
- Immunology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, CA, USA
| | - Stephanie M E Truhlar
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, CA, USA
| | - Pia P Yachi
- Immunology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, CA, USA.
| |
Collapse
|
3
|
Tang XX, Shimada H, Ikegaki N. A Perspective on the CD47-SIRPA Axis in High-Risk Neuroblastoma. Curr Oncol 2024; 31:3212-3226. [PMID: 38920727 PMCID: PMC11202629 DOI: 10.3390/curroncol31060243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Neuroblastoma is a pediatric cancer with significant clinical heterogeneity. Despite extensive efforts, it is still difficult to cure children with high-risk neuroblastoma. Immunotherapy is a promising approach to treat children with this devastating disease. We have previously reported that macrophages are important effector cells in high-risk neuroblastoma. In this perspective article, we discuss the potential function of the macrophage inhibitory receptor SIRPA in the homeostasis of tumor-associated macrophages in high-risk neuroblastoma. The ligand of SIRPA is CD47, known as a "don't eat me" signal, which is highly expressed on cancer cells compared to normal cells. CD47 is expressed on both tumor and stroma cells, whereas SIRPA expression is restricted to macrophages in high-risk neuroblastoma tissues. Notably, high SIRPA expression is associated with better disease outcome. According to the current paradigm, the interaction between CD47 on tumor cells and SIRPA on macrophages leads to the inhibition of tumor phagocytosis. However, data from recent clinical trials have called into question the use of anti-CD47 antibodies for the treatment of adult and pediatric cancers. The restricted expression of SIRPA on macrophages in many tissues argues for targeting SIRPA on macrophages rather than CD47 in CD47/SIRPA blockade therapy. Based on the data available to date, we propose that disruption of the CD47-SIRPA interaction by anti-CD47 antibody would shift the macrophage polarization status from M1 to M2, which is inferred from the 1998 study by Timms et al. In contrast, the anti-SIRPA F(ab')2 lacking Fc binds to SIRPA on the macrophage, mimics the CD47-SIRPA interaction, and thus maintains M1 polarization. Anti-SIRPA F(ab')2 also prevents the binding of CD47 to SIRPA, thereby blocking the "don't eat me" signal. The addition of tumor-opsonizing and macrophage-activating antibodies is expected to enhance active tumor phagocytosis.
Collapse
Affiliation(s)
- Xao X. Tang
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Hiroyuki Shimada
- Departments of Pathology and Pediatrics, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
4
|
Lan X, Yang TTC, Wang Y, Qu B, Rong S, Song N. Characterization of 405B8H3(D-E), a newly engineered high affinity chimeric LAG-3 antibody with potent antitumor activity. FEBS Open Bio 2023. [PMID: 37302810 DOI: 10.1002/2211-5463.13648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 04/11/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Lymphocyte activation gene-3 (LAG-3) is a type I transmembrane protein with structural similarities to CD4. Overexpression of LAG-3 enables cancer cells to escape immune surveillance, while its blockade reinvigorates exhausted T cells and strengthens anti-infection immunity. Blockade of LAG-3 may have antitumor effects. Here, we generated a novel anti-LAG-3 chimeric antibody, 405B8H3(D-E), through hybridoma technology from monoclonal antibodies produced in mice. The heavy-chain variable region of the selected mouse antibody was grafted onto a human IgG4 scaffold, while a modified light-chain variable region was coupled to the human kappa light-chain constant region. 405B8H3(D-E) could effectively bind LAG-3-expressing HEK293 cells. Moreover, it could bind cynomolgus monkey (cyno) LAG-3 expressed on HEK293 cells with a higher affinity than the reference anti-LAG-3 antibody BMS-986016. Furthermore, 405B8H3(D-E) promoted interleukin-2 secretion and was able to block the interactions of LAG-3 with liver sinusoidal endothelial cell lectin and major histocompatibility complex II molecules. Finally, 405B8H3(D-E) combined with anti-mPD-1-antibody showed effective therapeutic potential in the MC38 tumor mouse model. Therefore, 405B8H3(D-E) is likely to be a promising candidate therapeutic antibody for immunotherapy.
Collapse
Affiliation(s)
- Xiaoxuan Lan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, China
- Shanghai ChemPartner Co., Ltd., China
| | | | | | - Baoyuan Qu
- Jiangsu Huaiyu Pharmaceutical Co., Ltd., China
| | - Shaofeng Rong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, China
| | | |
Collapse
|
5
|
Peptide Mimotope-Enabled Quantification of Natalizumab Arm Exchange During Multiple Sclerosis Treatment. Ther Drug Monit 2023; 45:55-60. [PMID: 36201847 DOI: 10.1097/ftd.0000000000001038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Natalizumab, a therapeutic antibody used to treat multiple sclerosis, undergoes in vivo Fab arm exchange to form a monovalent bispecific antibody. Although highly efficacious, the immunosuppressive activity of natalizumab has been associated with JC polyomavirus-driven progressive multifocal leukoencephalopathy (PML). Development of assays that can distinguish between and quantify bivalent (unexchanged) and monovalent (exchanged) forms of natalizumab in clinical samples may be useful for optimizing extended interval dosing and reducing the risk of PML. METHODS In vitro natalizumab arm exchange was conducted, along with peptide mimotope and anti-idiotype surface capture chemistry, to enable the development of enzyme-linked immunosorbent assays. RESULTS An assay using a unique peptide Veritope TM was developed, which can exclusively bind to bivalent natalizumab. In combination with enzyme-linked immunosorbent assays that quantifies total natalizumab, the assay system allows quantification of both natalizumab forms. CONCLUSIONS In this article, a novel assay for the quantification of unexchanged and exchanged natalizumab variants in clinical samples was developed. This assay will enable investigations into the clinical significance of the relationship of PK/PD with the monovalent-to-bivalent ratio, as it relates to the efficacy of the drug and risk of PML.
Collapse
|
6
|
Cain P, Huang L, Tang Y, Anguiano V, Feng Y. Impact of IgG subclass on monoclonal antibody developability. MAbs 2023; 15:2191302. [PMID: 36945111 PMCID: PMC10038059 DOI: 10.1080/19420862.2023.2191302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
IgG-based monoclonal antibody therapeutics, which are mainly IgG1, IgG2, and IgG4 subclasses or related variants, have dominated the biotherapeutics field for decades. Multiple laboratories have reported that the IgG subclasses possess different molecular characteristics that can affect their developability. For example, IgG1, the most popular IgG subclass for therapeutics, is known to have a characteristic degradation pathway related to its hinge fragility. However, there remains a paucity of studies that systematically evaluate the IgG subclasses on manufacturability and long-term stability. We thus conducted a systematic study of 12 mAbs derived from three sets of unrelated variable regions, each cloned into IgG1, an IgG1 variant with diminished effector functions, IgG2, and a stabilized IgG4 variant with further reduced FcγR interaction, to evaluate the impact of IgG subclass on manufacturability and high concentration stability in a common formulation buffer matrix. Our evaluation included Chinese hamster ovary cell productivity, host cell protein removal efficiency, N-linked glycan structure at the conserved N297 Fc position, solution appearance at high concentration, and aggregate growth, fragmentation, charge variant profile change, and post-translational modification upon thermal stress conditions or long-term storage at refrigerated temperature. Our results elucidated molecular attributes that are common to all IgG subclasses, as well as those that are unique to certain Fc domains, providing new insight into the effects of IgG subclass on antibody manufacturability and stability. These learnings can be used to enable a balanced decision on IgG subclass selection for therapeutic antibodies and aid in acceleration of their product development process.
Collapse
Affiliation(s)
- Paul Cain
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| | - Lihua Huang
- Bioproduct Research & Development, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| | - Yu Tang
- Pharmaceutical Development and Manufacturing, Syndax Pharmaceuticals, Waltham, MA, USA
| | - Victor Anguiano
- Bioproduct Research & Development, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| | - Yiqing Feng
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, IN, USA
| |
Collapse
|
7
|
Gao Y, Yang T, Liu H, Song N, Dai C, Ding Y. Development and characterization of a novel human CD137 agonistic antibody with anti-tumor activity and a good safety profile in non-human primates. FEBS Open Bio 2022; 12:2166-2178. [PMID: 36176235 PMCID: PMC9714380 DOI: 10.1002/2211-5463.13494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023] Open
Abstract
CD137 (4-1BB, TNFRSF9), an inducible T-cell costimulatory receptor, is expressed on activated T cells, activated NK cells, Treg cells, and several innate immune cells, including DCs, monocytes, neutrophils, mast cells, and eosinophils. In animal models and clinical trials, anti-CD137 agonistic monoclonal antibodies have shown anti-tumor potential, but balancing the efficacy and toxicity of anti-CD137 agonistic monoclonal antibodies is a considerable hindrance for clinical applications. Here, we describe a novel fully human CD137 agonistic antibody (PE0116) generated from immunized harbor H2L2 human transgenic mice. PE0116 is a ligand blocker, which is also the case for Utomilumab (one of the leading CD137 agonistic drugs); PE0116 partially overlaps with Urelumab's recognized epitope. In vitro, PE0116 activates NF-κB signaling, significantly promotes T-cell proliferation, and increases cytokine secretion in the presence of cross-linking. Importantly, PE0116 possesses robust anti-tumor activity in the MC38 tumor model. In vivo, PE0116 exhibits a good safety profile and has typical pharmacokinetic characteristics of an IgG antibody in preclinical studies of non-human primates. In summary, PE0116 is a promising anti-CD137 antibody with a good safety profile in preclinical studies.
Collapse
Affiliation(s)
- Yingying Gao
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Biologics DiscoveryShanghai ChemPartner Co., Ltd.China
| | - Teddy Yang
- Biologics DiscoveryShanghai ChemPartner Co., Ltd.China
| | - Hu Liu
- Biologics DiscoveryShanghai ChemPartner Co., Ltd.China
| | - Ningning Song
- Biologics DiscoveryShanghai ChemPartner Co., Ltd.China
| | - Chaohui Dai
- Biologics DiscoveryShanghai Hyamab Biotechnology Co., Ltd.China
| | - Yu Ding
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Koneczny I, Tzartos J, Mané-Damas M, Yilmaz V, Huijbers MG, Lazaridis K, Höftberger R, Tüzün E, Martinez-Martinez P, Tzartos S, Leypoldt F. IgG4 Autoantibodies in Organ-Specific Autoimmunopathies: Reviewing Class Switching, Antibody-Producing Cells, and Specific Immunotherapies. Front Immunol 2022; 13:834342. [PMID: 35401530 PMCID: PMC8986991 DOI: 10.3389/fimmu.2022.834342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Organ-specific autoimmunity is often characterized by autoantibodies targeting proteins expressed in the affected tissue. A subgroup of autoimmunopathies has recently emerged that is characterized by predominant autoantibodies of the IgG4 subclass (IgG4-autoimmune diseases; IgG4-AID). This group includes pemphigus vulgaris, thrombotic thrombocytopenic purpura, subtypes of autoimmune encephalitis, inflammatory neuropathies, myasthenia gravis and membranous nephropathy. Although the associated autoantibodies target specific antigens in different organs and thus cause diverse syndromes and diseases, they share surprising similarities in genetic predisposition, disease mechanisms, clinical course and response to therapies. IgG4-AID appear to be distinct from another group of rare immune diseases associated with IgG4, which are the IgG4-related diseases (IgG4-RLD), such as IgG4-related which have distinct clinical and serological properties and are not characterized by antigen-specific IgG4. Importantly, IgG4-AID differ significantly from diseases associated with IgG1 autoantibodies targeting the same organ. This may be due to the unique functional characteristics of IgG4 autoantibodies (e.g. anti-inflammatory and functionally monovalent) that affect how the antibodies cause disease, and the differential response to immunotherapies of the IgG4 producing B cells/plasmablasts. These clinical and pathophysiological clues give important insight in the immunopathogenesis of IgG4-AID. Understanding IgG4 immunobiology is a key step towards the development of novel, IgG4 specific treatments. In this review we therefore summarize current knowledge on IgG4 regulation, the relevance of class switching in the context of health and disease, describe the cellular mechanisms involved in IgG4 production and provide an overview of treatment responses in IgG4-AID.
Collapse
Affiliation(s)
- Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Tzartos
- Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
- 2nd Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marina Mané-Damas
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Maartje G. Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Konstantinos Lazaridis
- Department of Immunology, Laboratory of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Pilar Martinez-Martinez
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Socrates Tzartos
- Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, UKSH Kiel/Lübeck, Kiel University, Kiel, Germany
| |
Collapse
|
9
|
Tang Y, Cain P, Anguiano V, Shih JJ, Chai Q, Feng Y. Impact of IgG subclass on molecular properties of monoclonal antibodies. MAbs 2021; 13:1993768. [PMID: 34763607 PMCID: PMC8726687 DOI: 10.1080/19420862.2021.1993768] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Immunoglobulin G-based monoclonal antibodies (mAbs) have become a dominant class of biotherapeutics in recent decades. Approved antibodies are mainly of the subclasses IgG1, IgG2, and IgG4, as well as their derivatives. Over the decades, the selection of IgG subclass has frequently been based on the needs of Fc gamma receptor engagement and effector functions for the desired mechanism of action, while the effect on drug product developability has been less thoroughly characterized. One of the major reasons is the lack of systematic understanding of the impact of IgG subclass on the molecular properties. Several efforts have been made recently to compare molecular property differences among these IgG subclasses, but the conclusions from these studies are sometimes obscured by the interference from variable regions. To further establish mechanistic understandings, we conducted a systematic study by grafting three independent variable regions onto human IgG1, an IgG1 variant, IgG2, and an IgG4 variant constant domains and evaluating the impact of subclass and variable regions on their molecular properties. Structural and computational analysis revealed specific molecular features that potentially account for the differential behavior of the IgG subclasses observed experimentally. Our data indicate that IgG subclass plays a significant role on molecular properties, either through direct effects or via the interplay with the variable region, the IgG1 mAbs tend to have higher solubility than either IgG2 or IgG4 mAbs in a common pH 6 buffer matrix, and solution behavior relies heavily on the charge status of the antibody at the desirable pH.
Collapse
Affiliation(s)
- Yu Tang
- Pharmaceutical Development, Syndax Pharmaceuticals, Waltham, Massachusetts, USA
| | - Paul Cain
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, Indiana, USA
| | - Victor Anguiano
- Bioproduct Research & Development, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, Indiana, USA
| | - James J Shih
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, California, USA
| | - Qing Chai
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Biotechnology Center, San Diego, California, USA
| | - Yiqing Feng
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Technology Center North, Indianapolis, Indiana, USA
| |
Collapse
|
10
|
Chen Z, Qian Y, Song Y, Xu X, Tao L, Mussa N, Ghose S, Li ZJ. Design of next-generation therapeutic IgG4 with improved manufacturability and bioanalytical characteristics. MAbs 2021; 12:1829338. [PMID: 33044887 PMCID: PMC7577236 DOI: 10.1080/19420862.2020.1829338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Manufacturability of immunoglobulin G4 (IgG4) antibodies from the Chemistry, Manufacture, and Controls (CMC) perspective has received little attention during early drug discovery. Despite the success of protein engineering in improving antibody biophysical properties, a clear gap still exists between rational design of IgG4 candidates and their manufacturing suitability. Here, we illustrate that undesirable two-peak elution profiles in cation-exchange chromatography are attributed to the S228P mutation (in IgG4 core-hinge region) intentionally designed to prevent Fab-arm exchange. A new scaffolding platform for engineering IgG4 antibodies amenable to bioprocessing and bioanalysis is proposed by introducing an “IgG1-like” single-point mutation in the hinge or CH1 region of IgG4S228P. This work offers insight into the design, discovery, and development of innovative therapeutic antibodies that are well suited for robust biomanufacturing and quality control.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company , Devens, MA, USA
| | - Yueming Qian
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company , Devens, MA, USA
| | - Yuanli Song
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company , Devens, MA, USA
| | - Xuankuo Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company , Devens, MA, USA
| | - Li Tao
- Biophysical Characterization, Global Product Development and Supply, Bristol Myers Squibb Company , New Brunswick, NJ, USA
| | - Nesredin Mussa
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company , Devens, MA, USA
| | - Sanchayita Ghose
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company , Devens, MA, USA
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company , Devens, MA, USA
| |
Collapse
|
11
|
Javaid F, Pilotti C, Camilli C, Kallenberg D, Bahou C, Blackburn J, R Baker J, Greenwood J, Moss SE, Chudasama V. Leucine-rich alpha-2-glycoprotein 1 (LRG1) as a novel ADC target. RSC Chem Biol 2021; 2:1206-1220. [PMID: 34458833 PMCID: PMC8341842 DOI: 10.1039/d1cb00104c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Leucine-rich alpha-2-glycoprotein 1 (LRG1) is present abundantly in the microenvironment of many tumours where it contributes to vascular dysfunction, which impedes the delivery of therapeutics. In this work we demonstrate that LRG1 is predominantly a non-internalising protein. We report the development of a novel antibody-drug conjugate (ADC) comprising the anti-LRG1 hinge-stabilised IgG4 monoclonal antibody Magacizumab coupled to the anti-mitotic payload monomethyl auristatin E (MMAE) via a cleavable dipeptide linker using the site-selective disulfide rebridging dibromopyridazinedione (diBrPD) scaffold. It is demonstrated that this ADC retains binding post-modification, is stable in serum and effective in in vitro cell studies. We show that the extracellular LRG1-targeting ADC provides an increase in survival in vivo when compared against antibody alone and similar anti-tumour activity when compared against standard chemotherapy, but without undesired side-effects. LRG1 targeting through this ADC presents a novel and effective proof-of-concept en route to improving the efficacy of cancer therapeutics.
Collapse
Affiliation(s)
- Faiza Javaid
- UCL Department of Chemistry 20 Gordon Street London WC1H 0AJ UK
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - Camilla Pilotti
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - Carlotta Camilli
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - David Kallenberg
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - Calise Bahou
- UCL Department of Chemistry 20 Gordon Street London WC1H 0AJ UK
| | - Jack Blackburn
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - James R Baker
- UCL Department of Chemistry 20 Gordon Street London WC1H 0AJ UK
| | - John Greenwood
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - Stephen E Moss
- UCL Institute of Ophthalmology 11-43 Bath Street London EC1V 9EL UK
| | - Vijay Chudasama
- UCL Department of Chemistry 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
12
|
Harris KE, Lorentsen KJ, Malik-Chaudhry HK, Loughlin K, Basappa HM, Hartstein S, Ahmil G, Allen NS, Avanzino BC, Balasubramani A, Boudreau AA, Chang K, Cuturi MC, Davison LM, Ho DM, Iyer S, Rangaswamy US, Sankaran P, Schellenberger U, Buelow R, Trinklein ND. A bispecific antibody agonist of the IL-2 heterodimeric receptor preferentially promotes in vivo expansion of CD8 and NK cells. Sci Rep 2021; 11:10592. [PMID: 34011961 PMCID: PMC8134639 DOI: 10.1038/s41598-021-90096-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/06/2021] [Indexed: 11/09/2022] Open
Abstract
The use of recombinant interleukin-2 (IL-2) as a therapeutic protein has been limited by significant toxicities despite its demonstrated ability to induce durable tumor-regression in cancer patients. The adverse events and limited efficacy of IL-2 treatment are due to the preferential binding of IL-2 to cells that express the high-affinity, trimeric receptor, IL-2Rαβγ such as endothelial cells and T-regulatory cells, respectively. Here, we describe a novel bispecific heavy-chain only antibody which binds to and activates signaling through the heterodimeric IL-2Rβγ receptor complex that is expressed on resting T-cells and NK cells. By avoiding binding to IL-2Rα, this molecule circumvents the preferential T-reg activation of native IL-2, while maintaining the robust stimulatory effects on T-cells and NK-cells in vitro. In vivo studies in both mice and cynomolgus monkeys confirm the molecule's in vivo biological activity, extended pharmacodynamics due to the Fc portion of the molecule, and enhanced safety profile. Together, these results demonstrate that the bispecific antibody is a safe and effective IL-2R agonist that harnesses the benefits of the IL-2 signaling pathway as a potential anti-cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ghenima Ahmil
- Inserm, Centre de Recherche en Transplantation Et Immunologie, UMR 1064, Nantes Université, 44000, Nantes, France
| | | | | | | | | | | | - Maria-Cristina Cuturi
- Inserm, Centre de Recherche en Transplantation Et Immunologie, UMR 1064, Nantes Université, 44000, Nantes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Larson PA, Bartlett ML, Garcia K, Chitty J, Balkema-Buschmann A, Towner J, Kugelman J, Palacios G, Sanchez-Lockhart M. Genomic features of humoral immunity support tolerance model in Egyptian rousette bats. Cell Rep 2021; 35:109140. [PMID: 34010652 DOI: 10.1016/j.celrep.2021.109140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/08/2020] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
Bats asymptomatically harbor many viruses that can cause severe human diseases. The Egyptian rousette bat (ERB) is the only known reservoir for Marburgviruses and Sosuga virus, making it an exceptional animal model to study antiviral mechanisms in an asymptomatic host. With this goal in mind, we constructed and annotated the immunoglobulin heavy chain locus, finding an expansion on immunoglobulin variable genes associated with protective human antibodies to different viruses. We also annotated two functional and distinct immunoglobulin epsilon genes and four distinctive functional immunoglobulin gamma genes. We described the Fc receptor repertoire in ERBs, including features that may affect activation potential, and discovered the lack of evolutionary conserved short pentraxins. These findings reinforce the hypothesis that a differential threshold of regulation and/or absence of key immune mediators may promote tolerance and decrease inflammation in ERBs.
Collapse
Affiliation(s)
- Peter A Larson
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Maggie L Bartlett
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Karla Garcia
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph Chitty
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | | | - Jonathan Towner
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jeffrey Kugelman
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Gustavo Palacios
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
14
|
Xu Z, Gao J, Yao J, Yang T, Wang D, Dai C, Ding Y. Preclinical efficacy and toxicity studies of a highly specific chimeric anti-CD47 antibody. FEBS Open Bio 2021; 11:813-825. [PMID: 33449453 PMCID: PMC7931223 DOI: 10.1002/2211-5463.13084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/19/2020] [Accepted: 01/12/2021] [Indexed: 01/20/2023] Open
Abstract
Cluster of differentiation 47 (CD47) is a widely expressed self-protection transmembrane protein that functions as a critical negative regulator to induce macrophage-mediated phagocytosis. Overexpression of CD47 enables cancer cells to escape immune surveillance and destruction by phagocytes both in solid tumours and leukaemia. The usefulness of anti-CD47 antibody has been demonstrated in multiple immunotherapies associated with macrophages. However, antigen sinks and toxicity induced by inadvertent binding to normal cells restrict its clinical applications. Here, a novel anti-human CD47 antibody, 4D10, was generated, and its variable regions were grafted onto a human IgG4 scaffold. Compared with the anti-CD47 antibody Hu5F9, the resulting chimeric antibody (c4D10) has consistently demonstrated good tolerance in in vitro and in vivo toxicity studies. Additionally, c4D10 showed effective therapeutic potential through inducing the eradication of human cancer cells. Thus, c4D10 is a promising candidate therapeutic antibody with higher efficacy and reduced side effects compared to earlier antibodies, and its use may reduce the dose-limiting toxicity of CD47 antagonists for immunotherapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- CD47 Antigen/immunology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- HEK293 Cells
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Mice
- Up-Regulation/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zhiqiang Xu
- School of Life SciencesFudan UniversityShanghaiChina
- Biologics DiscoveryShanghai ChemPartner Co., LtdShanghaiChina
| | - Jing Gao
- Biologics DiscoveryShanghai ChemPartner Co., LtdShanghaiChina
| | - Jingyun Yao
- Biologics DiscoveryShanghai ChemPartner Co., LtdShanghaiChina
| | - Teddy Yang
- Biologics DiscoveryShanghai ChemPartner Co., LtdShanghaiChina
| | - Dongxu Wang
- Biologics DiscoveryShanghai Hyamab Biotechnology Co., LtdShanghaiChina
| | - Chaohui Dai
- Biologics DiscoveryShanghai Hyamab Biotechnology Co., LtdShanghaiChina
| | - Yu Ding
- School of Life SciencesFudan UniversityShanghaiChina
| |
Collapse
|
15
|
Prade E, Zeck A, Stiefel F, Unsoeld A, Mentrup D, Arango Gutierrez E, Gorr IH. Cysteine in cell culture media induces acidic IgG1 species by disrupting the disulfide bond network. Biotechnol Bioeng 2020; 118:1091-1104. [PMID: 33200817 PMCID: PMC7986432 DOI: 10.1002/bit.27628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 01/16/2023]
Abstract
A high degree of charge heterogeneity is an unfavorable phenomenon commonly observed for therapeutic monoclonal antibodies (mAbs). Removal of these impurities during manufacturing often comes at the cost of impaired step yields. A wide spectrum of posttranslational and chemical modifications is known to modify mAb charge. However, a deeper understanding of underlying mechanisms triggering charged species would be beneficial for the control of mAb charge variants during bioprocessing. In this study, a comprehensive analytical investigation was carried out to define the root causes and mechanisms inducing acidic variants of an immunoglobulin G1‐derived mAb. Characterization of differently charged species by liquid chromatography–mass spectrometry revealed the reduction of disulfide bonds in acidic variants, which is followed by cysteinylation and glutathionylation of cysteines. Importantly, biophysical stability and integrity of the mAb are not affected. By in vitro incubation of the mAb with the reducing agent cysteine, disulfide bond degradation was directly linked to an increase of numerous acidic species. Modifying the concentrations of cysteine during the fermentation of various mAbs illustrated that redox potential is a critical aspect to consider during bioprocess development with respect to charge variant control.
Collapse
Affiliation(s)
- Elke Prade
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Anne Zeck
- Pharma and Biotech, NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Fabian Stiefel
- Late Stage USP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Andreas Unsoeld
- Late Stage USP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David Mentrup
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Erik Arango Gutierrez
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ingo H Gorr
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
16
|
Liu R, Oldham RJ, Teal E, Beers SA, Cragg MS. Fc-Engineering for Modulated Effector Functions-Improving Antibodies for Cancer Treatment. Antibodies (Basel) 2020; 9:E64. [PMID: 33212886 PMCID: PMC7709126 DOI: 10.3390/antib9040064] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
The majority of monoclonal antibody (mAb) therapeutics possess the ability to engage innate immune effectors through interactions mediated by their fragment crystallizable (Fc) domain. By delivering Fc-Fc gamma receptor (FcγR) and Fc-C1q interactions, mAb are able to link exquisite specificity to powerful cellular and complement-mediated effector functions. Fc interactions can also facilitate enhanced target clustering to evoke potent receptor signaling. These observations have driven decades-long research to delineate the properties within the Fc that elicit these various activities, identifying key amino acid residues and elucidating the important role of glycosylation. They have also fostered a growing interest in Fc-engineering whereby this knowledge is exploited to modulate Fc effector function to suit specific mechanisms of action and therapeutic purposes. In this review, we document the insight that has been generated through the study of the Fc domain; revealing the underpinning structure-function relationships and how the Fc has been engineered to produce an increasing number of antibodies that are appearing in the clinic with augmented abilities to treat cancer.
Collapse
Affiliation(s)
- Rena Liu
- GlaxoSmithKline Research and Development, Stevenage SG1 2NY, UK;
| | - Robert J. Oldham
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| | - Emma Teal
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| | - Stephen A. Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK; (R.J.O.); (E.T.); (M.S.C.)
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO171BJ, UK
| |
Collapse
|
17
|
Koneczny I. Update on IgG4-mediated autoimmune diseases: New insights and new family members. Autoimmun Rev 2020; 19:102646. [PMID: 32801046 DOI: 10.1016/j.autrev.2020.102646] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/08/2020] [Indexed: 12/23/2022]
Abstract
Antibodies of IgG4 subclass are exceptional players of the immune system, as they are considered to be immunologically inert and functionally monovalent, and as such may be part of classical tolerance mechanisms. IgG4 antibodies are found in a range of different diseases, including IgG4-related diseases, allergy, cancer, rheumatoid arthritis, helminth infection and IgG4 autoimmune diseases, where they may be pathogenic or protective. IgG4 autoimmune diseases are an emerging new group of diseases that are characterized by pathogenic, antigen-specific autoantibodies of IgG4 subclass, such as MuSK myasthenia gravis, pemphigus vulgaris and thrombotic thrombocytopenic purpura. The list of IgG4 autoantigens is rapidly growing and to date contains 29 candidate antigens. Interestingly, IgG4 autoimmune diseases are restricted to four distinct organs: 1) the central and peripheral nervous system, 2) the kidney, 3) the skin and mucous membranes and 4) the vascular system and soluble antigens in the blood circulation. The pathogenicity of IgG4 can be validated using our classification system, and is usually excerted by functional blocking of protein-protein interaction.
Collapse
Affiliation(s)
- Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Chen Y, Pei Y, Luo J, Huang Z, Yu J, Meng X. Looking for the Optimal PD-1/PD-L1 Inhibitor in Cancer Treatment: A Comparison in Basic Structure, Function, and Clinical Practice. Front Immunol 2020; 11:1088. [PMID: 32547566 PMCID: PMC7274131 DOI: 10.3389/fimmu.2020.01088] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
Programmed cell death protein-1/ligand 1 (PD-1/L1) targeted immune checkpoint inhibitors have become the focus of tumor treatment due to their promising efficacy. Currently, several PD-1/PD-L1 inhibitors have been approved for clinical practice with several more in clinical trials. Notably, based on available trial data, the selection of different PD-1/PD-L1 inhibitors in the therapeutic application and the corresponding efficacy varies. Widespread attention then is increasingly raised to the clinical comparability of different PD-1/PD-L1 inhibitors. The comparison of the inhibitors could not only help clinicians make in-depth understanding of them, but also further facilitate the selection of the optimal inhibitor for patients in treatment as well as for future clinical research and the development of new related drugs. As we all know, molecular structure could determine molecular function, which further affects their application. Therefore, in this review, we aim to comprehensively compare the structural basis, molecular biological functions, and clinical practice of different PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Yu Chen
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanqing Pei
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingyu Luo
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinming Yu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiangjiao Meng
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
19
|
Fichtner ML, Jiang R, Bourke A, Nowak RJ, O'Connor KC. Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology. Front Immunol 2020; 11:776. [PMID: 32547535 PMCID: PMC7274207 DOI: 10.3389/fimmu.2020.00776] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is a prototypical autoantibody mediated disease. The autoantibodies in MG target structures within the neuromuscular junction (NMJ), thus affecting neuromuscular transmission. The major disease subtypes of autoimmune MG are defined by their antigenic target. The most common target of pathogenic autoantibodies in MG is the nicotinic acetylcholine receptor (AChR), followed by muscle-specific kinase (MuSK) and lipoprotein receptor-related protein 4 (LRP4). MG patients present with similar symptoms independent of the underlying subtype of disease, while the immunopathology is remarkably distinct. Here we highlight these distinct immune mechanisms that describe both the B cell- and autoantibody-mediated pathogenesis by comparing AChR and MuSK MG subtypes. In our discussion of the AChR subtype, we focus on the role of long-lived plasma cells in the production of pathogenic autoantibodies, the IgG1 subclass mediated pathology, and contributions of complement. The similarities underlying the immunopathology of AChR MG and neuromyelitis optica (NMO) are highlighted. In contrast, MuSK MG is caused by autoantibody production by short-lived plasmablasts. MuSK MG autoantibodies are mainly of the IgG4 subclass which can undergo Fab-arm exchange (FAE), a process unique to this subclass. In FAE IgG4, molecules can dissociate into two halves and recombine with other half IgG4 molecules resulting in bispecific antibodies. Similarities between MuSK MG and other IgG4-mediated autoimmune diseases, including pemphigus vulgaris (PV) and chronic inflammatory demyelinating polyneuropathy (CIDP), are highlighted. Finally, the immunological distinctions are emphasized through presentation of biological therapeutics that provide clinical benefit depending on the MG disease subtype.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Ruoyi Jiang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Aoibh Bourke
- Trinity Hall, University of Cambridge, Cambridge, United Kingdom
| | - Richard J Nowak
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Kevin C O'Connor
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
20
|
Swope N, Chung WK, Cao M, Motabar D, Liu D, Ahuja S, Handlogten M. Impact of enzymatic reduction on bivalent bispecific antibody fragmentation and loss of product purity upon reoxidation. Biotechnol Bioeng 2020; 117:1063-1071. [PMID: 31930476 PMCID: PMC10947566 DOI: 10.1002/bit.27264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 11/11/2022]
Abstract
Antibody disulfide bond (DSB) reduction during manufacturing processes is a widely observed phenomenon attributed to host cell reductases present in harvest cell culture fluid. Enzyme-induced antibody reduction leads to product fragments and aggregates that increase the impurity burden on the purification process. The impact of reduction on bivalent bispecific antibodies (BisAbs), which are increasingly entering the clinic, has yet to be investigated. We focused on the reduction and reoxidation properties of a homologous library of bivalent BisAb formats that possess additional single-chain Fv (scFv) fragments with engineered DSBs. Despite all BisAbs having similar susceptibilities to enzymatic reduction, fragmentation pathways were dependent on the scFv-fusion site. Reduced molecules were allowed to reoxidize with and without low pH viral inactivation treatment. Both reoxidation studies demonstrated that multiple, complex BisAb species formed as a result of DSB mispairing. Furthermore, aggregate levels increased for all molecules when no low pH treatment was applied. Combined, our results show that complex DSB mispairing occurs during downstream processes while aggregate formation is dependent on sample treatment. These results are applicable to other novel monoclonal antibody-like formats containing engineered DSBs, thus highlighting the need to prevent reduction of novel protein therapeutics to avoid diminished product quality during manufacturing.
Collapse
Affiliation(s)
- Nicole Swope
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Wai Keen Chung
- Purification Process Sciences, AstraZeneca, Gaithersburg, MD, USA
| | - Mingyan Cao
- Analytical Sciences, AstraZeneca, Gaithersburg, USA
| | - Dana Motabar
- Purification Process Sciences, AstraZeneca, Gaithersburg, MD, USA
| | - Dengfeng Liu
- Analytical Sciences, AstraZeneca, Gaithersburg, USA
| | - Sanjeev Ahuja
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, MD, USA
| | - Michael Handlogten
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
21
|
Horx P, Geyer A. Comparing the Hinge-Type Mobility of Natural and Designed Intermolecular Bi-disulfide Domains. Front Chem 2020; 8:25. [PMID: 32047741 PMCID: PMC6997481 DOI: 10.3389/fchem.2020.00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/09/2020] [Indexed: 01/10/2023] Open
Abstract
A pair of intermolecular disulfide bonds connecting two protein domains restricts their relative mobility in a systematic way. The bi-disulfide hinge cannot rotate like a single intermolecular disulfide bond yet is less restrained than three or more intermolecular disulfides which restrict the relative motion to a minimum. The intermediate mobility of bi-disulfide linked domains is characterized by their dominating opening and closing modes comparable to the mechanics of a door hinge on the macroscopic scale. Here we compare the central hinge region of Immunoglobulin G1 (IgG1) which is highly conserved among different species, with a recently designed hinge-type motif CHWECRGCRLVC from our lab, that was successfully used for the dimerization of the IgG1/κ-ab CL4 monocolonal antibody (mab). The minimal length of these synthetic hinges comprises only 12 amino acids, rendering them ideal models for computational studies. Well-tempered metadynamics was performed to adequately describe the available conformational space defined by the different hinges. In spite of the differences in amino acid composition and ring sizes, there are characteristic similarities of designed and natural hinges like the dependent mobility of the individual strands of each hinge domain.
Collapse
Affiliation(s)
- Philip Horx
- Faculty of Organic Chemistry, Philipps-University, Marburg, Germany
| | - Armin Geyer
- Faculty of Organic Chemistry, Philipps-University, Marburg, Germany
| |
Collapse
|
22
|
Deveuve Q, Gouilleux-Gruart V, Thibault G, Lajoie L. [The hinge region of therapeutic antibodies: major importance of a short sequence]. Med Sci (Paris) 2020; 35:1098-1105. [PMID: 31903923 DOI: 10.1051/medsci/2019218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hinge region is a short sequence of the heavy chains (H) of antibodies linking the Fab (Fragment antigen binding) region to the Fc (Fragment crystallisable) region. The functional properties of the four IgG subclasses partly result from the sequence differences of their hinge regions as some amino acids of the lower hinge region are located within or in the close vicinity of the C1q and FcγR binding sites on the IgG H chains. In addition, the hinge is susceptible to proteolytic cleavage by many proteases present in tumor and/or inflammatory microenvironment capable of affecting functional responses. Thus, an optimal format of the hinge region remains a major challenge for the development of new therapeutic antibodies.
Collapse
Affiliation(s)
- Quentin Deveuve
- Université de Tours, EA7501 GICC (Groupe Innovation et Ciblage Cellulaire), équipe FRAME (Fc Récepteurs, Anticorps et MicroEnvironnement), 37032 Tours, France
| | - Valérie Gouilleux-Gruart
- Université de Tours, EA7501 GICC (Groupe Innovation et Ciblage Cellulaire), équipe FRAME (Fc Récepteurs, Anticorps et MicroEnvironnement), 37032 Tours, France - Service d'immunologie, CHRU de Tours, 37044 Tours, France
| | - Gilles Thibault
- Université de Tours, EA7501 GICC (Groupe Innovation et Ciblage Cellulaire), équipe FRAME (Fc Récepteurs, Anticorps et MicroEnvironnement), 37032 Tours, France - Service d'immunologie, CHRU de Tours, 37044 Tours, France
| | - Laurie Lajoie
- Université de Tours, EA7501 GICC (Groupe Innovation et Ciblage Cellulaire), équipe FRAME (Fc Récepteurs, Anticorps et MicroEnvironnement), 37032 Tours, France
| |
Collapse
|
23
|
Garzón-Ospina D, Buitrago SP. Igh locus structure and evolution in Platyrrhines: new insights from a genomic perspective. Immunogenetics 2019; 72:165-179. [PMID: 31838542 DOI: 10.1007/s00251-019-01151-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Non-human primates have been used as animal models because of their phylogenetic closeness to humans. However, the genetic differences between humans and non-human primates must be considered to select the appropriate animal models. Recently, New World monkeys (Platyrrhines) have generated a higher interest in biomedical research, especially in assessing vaccine safety and immunogenicity. Given the continued and renewed interest in Platyrrhines as biomedical models, it is a necessary to have a better and more complete understanding of their immune system and its implications for research. Immunoglobulins (Ig) are the main proteins that mediate humoral immunity. These proteins have evolved as part of an adaptive immune response system derived from ancient vertebrates. There are at least four Ig classes in Prosimians, whereas five have been reported in Catarrhines. Information on the structure and evolution of the loci containing immunoglobulin heavy chain constant genes (Igh) in Platyrrhines, however, is limited. Here, Igh loci were characterized in 10 Platyrrhines using the available whole genome sequences. Human and Macaca Igh loci were also assessed to compare them with their Platyrrhines counterparts. Differences in Igh locus structure were observed between Platyrrhines and Catarrhines. Noteworthy changes occur in the γ gene, which encodes a key Ig involved in organism defense that would favor protection after vaccination. The remarkable differences between the immunoglobulin proteins of Platyrrhines and Catarrhines warrant a cautionary message to biomedical researchers.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Pgame - Population Genetics And Molecular Evolution, Fundación Scient, Carrera 16-3 # 35-41, Tunja, Boyacá, Colombia.
| | - Sindy P Buitrago
- Pgame - Population Genetics And Molecular Evolution, Fundación Scient, Carrera 16-3 # 35-41, Tunja, Boyacá, Colombia.
| |
Collapse
|
24
|
Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids 2019; 51:1409-1431. [DOI: 10.1007/s00726-019-02787-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
AbstractPeptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceutics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisticated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization (aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and function.
Collapse
|
25
|
Trinklein ND, Pham D, Schellenberger U, Buelow B, Boudreau A, Choudhry P, Clarke SC, Dang K, Harris KE, Iyer S, Jorgensen B, Pratap PP, Rangaswamy US, Ugamraj HS, Vafa O, Wiita AP, van Schooten W, Buelow R, Force Aldred S. Efficient tumor killing and minimal cytokine release with novel T-cell agonist bispecific antibodies. MAbs 2019; 11:639-652. [PMID: 30698484 PMCID: PMC6601548 DOI: 10.1080/19420862.2019.1574521] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
T-cell-recruiting bispecific antibodies (T-BsAbs) have shown potent tumor killing activity in humans, but cytokine release-related toxicities have affected their clinical utility. The use of novel anti-CD3 binding domains with more favorable properties could aid in the creation of T-BsAbs with improved therapeutic windows. Using a sequence-based discovery platform, we identified new anti-CD3 antibodies from humanized rats that bind to multiple epitopes and elicit varying levels of T-cell activation. In T-BsAb format, 12 different anti-CD3 arms induce equivalent levels of tumor cell lysis by primary T-cells, but potency varies by a thousand-fold. Our lead CD3-targeting arm stimulates very low levels of cytokine release, but drives robust tumor antigen-specific killing in vitro and in a mouse xenograft model. This new CD3-targeting antibody underpins a next-generation T-BsAb platform in which potent cytotoxicity is uncoupled from high levels of cytokine release, which may lead to a wider therapeutic window in the clinic.
Collapse
Affiliation(s)
| | - Duy Pham
- a Teneobio, Inc ., Menlo Park , CA , USA
| | | | - Ben Buelow
- a Teneobio, Inc ., Menlo Park , CA , USA
| | | | - Priya Choudhry
- b Department of Laboratory Medicine , University of California , San Francisco , CA , USA
| | | | - Kevin Dang
- a Teneobio, Inc ., Menlo Park , CA , USA
| | | | | | | | | | | | | | - Omid Vafa
- a Teneobio, Inc ., Menlo Park , CA , USA
| | - Arun P Wiita
- b Department of Laboratory Medicine , University of California , San Francisco , CA , USA
| | | | | | | |
Collapse
|
26
|
Beck A, Liu H. Macro- and Micro-Heterogeneity of Natural and Recombinant IgG Antibodies. Antibodies (Basel) 2019; 8:antib8010018. [PMID: 31544824 PMCID: PMC6640695 DOI: 10.3390/antib8010018] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/19/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Recombinant monoclonal antibodies (mAbs) intended for therapeutic usage are required to be thoroughly characterized, which has promoted an extensive effort towards the understanding of the structures and heterogeneity of this major class of molecules. Batch consistency and comparability are highly relevant to the successful pharmaceutical development of mAbs and related products. Small structural modifications that contribute to molecule variants (or proteoforms) differing in size, charge or hydrophobicity have been identified. These modifications may impact (or not) the stability, pharmacokinetics, and efficacy of mAbs. The presence of the same type of modifications as found in endogenous immunoglobulin G (IgG) can substantially lower the safety risks of mAbs. The knowledge of modifications is also critical to the ranking of critical quality attributes (CQAs) of the drug and define the Quality Target Product Profile (QTPP). This review provides a summary of the current understanding of post-translational and physico-chemical modifications identified in recombinant mAbs and endogenous IgGs at physiological conditions.
Collapse
Affiliation(s)
- Alain Beck
- Biologics CMC and developability, IRPF, Center d'immunologie Pierre Fabre, St Julien-en-Genevois CEDEX, 74160 Saint-Julien en Genevois, France.
| | - Hongcheng Liu
- Anokion, 50 Hampshire Street, Suite 402, Cambridge, MA 02139, USA.
| |
Collapse
|
27
|
Liu-Shin LPY, Fung A, Malhotra A, Ratnaswamy G. Evidence of disulfide bond scrambling during production of an antibody-drug conjugate. MAbs 2018; 10:1190-1199. [PMID: 30339473 DOI: 10.1080/19420862.2018.1521128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Antibody-drug conjugates (ADCs) that are formed using thiol-maleimide chemistry are commonly produced by reactions that occur at or above neutral pHs. Alkaline environments can promote disulfide bond scrambling, and may result in the reconfiguration of interchain disulfide bonds in IgG antibodies, particularly in the IgG2 and IgG4 subclasses. IgG2-A and IgG2-B antibodies generated under basic conditions yielded ADCs with comparable average drug-to-antibody ratios and conjugate distributions. In contrast, the antibody disulfide configuration affected the distribution of ADCs generated under acidic conditions. The similarities of the ADCs derived from alkaline reactions were attributed to the scrambling of interchain disulfide bonds during the partial reduction step, where conversion of the IgG2-A isoform to the IgG2-B isoform was favored.
Collapse
Affiliation(s)
- Lily Pei-Yao Liu-Shin
- a Analytical and Formulation Development , Agensys, Inc., an affiliate of Astellas, Inc , Santa Monica , CA , USA.,b Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Adam Fung
- a Analytical and Formulation Development , Agensys, Inc., an affiliate of Astellas, Inc , Santa Monica , CA , USA
| | - Arun Malhotra
- b Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Gayathri Ratnaswamy
- a Analytical and Formulation Development , Agensys, Inc., an affiliate of Astellas, Inc , Santa Monica , CA , USA
| |
Collapse
|
28
|
Resemann A, Liu-Shin L, Tremintin G, Malhotra A, Fung A, Wang F, Ratnaswamy G, Suckau D. Rapid, automated characterization of disulfide bond scrambling and IgG2 isoform determination. MAbs 2018; 10:1200-1213. [PMID: 30277844 PMCID: PMC6284591 DOI: 10.1080/19420862.2018.1512328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human antibodies of the IgG2 subclass exhibit complex inter-chain disulfide bonding patterns that result in three structures, namely A, A/B, and B. In therapeutic applications, the distribution of disulfide isoforms is a critical product quality attribute because each configuration affects higher order structure, stability, isoelectric point, and antigen binding. The current standard for quantification of IgG2 disulfide isoform distribution is based on chromatographic or electrophoretic techniques that require additional characterization using mass spectrometry (MS)-based methods to confirm disulfide linkages. Detailed characterization of the IgG2 disulfide linkages often involve MS/MS approaches that include electrospray ionization or electron-transfer dissociation, and method optimization is often cumbersome due to the large size and heterogeneity of the disulfide-bonded peptides. As reported here, we developed a rapid LC-MALDI-TOF/TOF workflow that can both identify the IgG2 disulfide linkages and provide a semi-quantitative assessment of the distribution of the disulfide isoforms. We established signature disulfide-bonded IgG2 hinge peptides that correspond to the A, A/B, and B disulfide isoforms and can be applied to the fast classification of IgG2 isoforms in heterogeneous mixtures.
Collapse
Affiliation(s)
- Anja Resemann
- a BioPharma Solutions R&D , BALS, Bruker Daltonik , Bremen , Germany
| | - Lily Liu-Shin
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA.,c Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | | | - Arun Malhotra
- c Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Adam Fung
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA
| | - Fang Wang
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA
| | - Gayathri Ratnaswamy
- b Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas , Santa Monica , CA , USA
| | - Detlev Suckau
- a BioPharma Solutions R&D , BALS, Bruker Daltonik , Bremen , Germany
| |
Collapse
|
29
|
Datta-Mannan A, Choi H, Stokell D, Tang J, Murphy A, Wrobleski A, Feng Y. The Properties of Cysteine-Conjugated Antibody-Drug Conjugates Are Impacted by the IgG Subclass. AAPS JOURNAL 2018; 20:103. [DOI: 10.1208/s12248-018-0263-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/06/2018] [Indexed: 01/11/2023]
|
30
|
You J, Shi Y, Zhu W, Wu Z, Xiong J. Characterization of disulfide linkages at the hinge region of IgG antibodies by HPLC mass spectrometry. Biomed Chromatogr 2018; 32:e4371. [PMID: 30121965 DOI: 10.1002/bmc.4371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 11/10/2022]
Abstract
There are two types of disulfide linkages in IgG antibodies at the hinge region: intra- and inter-disulfide linkages. Characterization of intra-disulfide linked isomer will provide important information on the stability of the antibodies and better understanding of the mechanism of Fab-arm exchange. In this report, HPLC coupled with high-resolution mass spectrometry was applied for characterization of disulfide linkages in IgG antibodies at the hinge region. We were able to accurately identify both inter- and intra-disulfide linked peptides and correctly quantify intra-disulfide isomers. It is the first study to quantify intra-disulfide isomers in IgG antibodies with a mass spectrometry approach. It will help to achieve efficient generation of bispecific antibodies with Fab-arm exchange.
Collapse
Affiliation(s)
- Jia You
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Ying Shi
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| | - Wenli Zhu
- Chengdu MediMass Technology CO., LTD, P.R China
| | - Zhigang Wu
- Chengdu MediMass Technology CO., LTD, P.R China
| | - Jingyuan Xiong
- West China School of Public Health and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Ambrogelly A, Gozo S, Katiyar A, Dellatore S, Kune Y, Bhat R, Sun J, Li N, Wang D, Nowak C, Neill A, Ponniah G, King C, Mason B, Beck A, Liu H. Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs 2018; 10:513-538. [PMID: 29513619 PMCID: PMC5973765 DOI: 10.1080/19420862.2018.1438797] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 10/17/2022] Open
Abstract
Process changes are inevitable in the life cycle of recombinant monoclonal antibody therapeutics. Products made using pre- and post-change processes are required to be comparable as demonstrated by comparability studies to qualify for continuous development and commercial supply. Establishment of comparability is a systematic process of gathering and evaluating data based on scientific understanding and clinical experience of the relationship between product quality attributes and their impact on safety and efficacy. This review summarizes the current understanding of various modifications of recombinant monoclonal antibodies. It further outlines the critical steps in designing and executing successful comparability studies to support process changes at different stages of a product's lifecycle.
Collapse
Affiliation(s)
- Alexandre Ambrogelly
- Biologics Analytical Operations, Pharmaceutical & Biologics Development, Gilead Sciences, Ocean Ranch Blvd, Oceanside, CA
| | - Stephen Gozo
- Analytical Research & Development-Biologics, Celgene Corporation, Morris Avenue, Summit, NJ
| | - Amit Katiyar
- Analytical Development, Bristol-Myers Squibb, Pennington Rocky Road, Pennington, NJ
| | - Shara Dellatore
- Biologics & Vaccines Bioanalytics, MRL, Merck & Co., Inc., Galloping Hill Road, Kenilworth, NJ USA
| | - Yune Kune
- Fortress Biologicals, Sawyer Road, Suite, Waltham, MA
| | - Ram Bhat
- Millennium Research laboratories, New Boston Street, Woburn, MA
| | - Joanne Sun
- Product Development, Innovent Biologics, Dongping Street, Suzhou Industrial Park, China
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Old Saw Mill River Road, Tarrytown, NY
| | - Dongdong Wang
- Analytical Department, BioAnalytix, Inc., Memorial Drive, Cambridge, MA
| | - Christine Nowak
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Alyssa Neill
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | | | - Cory King
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Bruce Mason
- Pre-formulation, Alexion Pharmaceuticals, College Street, New Haven, CT
| | - Alain Beck
- Analytical Chemistry, NBEs, Center d'Immunologie Pierre Fabre, St Julien-en-Genevois Cedex, France
| | - Hongcheng Liu
- Product Characterization, Alexion Pharmaceuticals, College Street, New Haven, CT
| |
Collapse
|
32
|
Abstract
Disulfide linkage is critical to protein folding and structural stability. The location of disulfide linkages for antibodies is routinely discovered by comparing the chromatograms of the reduced and non-reduced peptide mapping with location identification confirmed by collision-induced dissociation (CID) mass spectrometry (MS)/MS. However, CID product spectra of disulfide-linked peptides can be difficult to interpret, and provide limited information on the backbone region within the disulfide loop. Here, we applied an electron-transfer dissociation (ETD)/CID combined fragmentation method that identifies the disulfide linkage without intensive LC comparison, and yet maps the disulfide location accurately. The native protein samples were digested using trypsin for proteolysis. The method uses RapiGest SF Surfactant and obviates the need for reduction/alkylation and extensive sample manipulation. An aliquot of the digest was loaded onto a C4 analytical column. Peptides were gradient-eluted and analyzed using a Thermo Scientific LTQ Orbitrap Elite mass spectrometer for the ETD-triggered CID MS3 experiment. Survey MS scans were followed by data-dependent scans consisting of ETD MS2 scans on the most intense ion in the survey scan, followed by 5 MS3 CID scans on the 5 most intense ions in the ETD MS2 scan. We were able to identify the disulfide-mediated structural variants A and A/B forms and their corresponding disulfide linkages in an immunoglobulin G2 monoclonal antibody with λ light chain (IgG2λ), where the location of cysteine linkages were unambiguously determined.
Collapse
Affiliation(s)
- Xiaoyan Guan
- a Process Development, Amgen Inc. , Thousand Oaks , CA , United States
| | - Le Zhang
- a Process Development, Amgen Inc. , Thousand Oaks , CA , United States
| | - Jette Wypych
- a Process Development, Amgen Inc. , Thousand Oaks , CA , United States
| |
Collapse
|
33
|
Liu-Shin L, Fung A, Malhotra A, Ratnaswamy G. Influence of disulfide bond isoforms on drug conjugation sites in cysteine-linked IgG2 antibody-drug conjugates. MAbs 2018; 10:583-595. [PMID: 29436897 PMCID: PMC5973704 DOI: 10.1080/19420862.2018.1440165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cysteine-linked antibody-drug conjugates (ADCs) produced from IgG2 monoclonal antibodies (mAbs) are more heterogeneous than ADCs generated from IgG1 mAbs, as IgG2 ADCs are composed of a wider distribution of molecules, typically containing 0 – 12 drug-linkers per antibody. The three disulfide isoforms (A, A/B, and B) of IgG2 antibodies confer differences in solvent accessibilities of the interchain disulfides and contribute to the structural heterogeneity of cysteine-linked ADCs. ADCs derived from either IgG2-A or IgG2-B mAbs were compared to better understand the role of disulfide isoforms on attachment sites and distribution of conjugated species. Our characterization of these ADCs demonstrated that the disulfide configuration affects the kinetics of disulfide bond reduction, but has minimal effect on the primary sites of reduction. The IgG2-A mAbs yielded ADCs with higher drug-to-antibody ratios (DARs) due to the easier reduction of its interchain disulfides. However, hinge-region cysteines were the primary conjugation sites for both IgG2-A and IgG2-B mAbs.
Collapse
Affiliation(s)
- Lily Liu-Shin
- a Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas, Inc. , Santa Monica , CA.,b Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL
| | - Adam Fung
- a Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas, Inc. , Santa Monica , CA
| | - Arun Malhotra
- b Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL
| | - Gayathri Ratnaswamy
- a Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas, Inc. , Santa Monica , CA
| |
Collapse
|
34
|
Abstract
IgG4 autoimmune diseases are characterized by the presence of antigen-specific autoantibodies of the IgG4 subclass and contain well-characterized diseases such as muscle-specific kinase myasthenia gravis, pemphigus, and thrombotic thrombocytopenic purpura. In recent years, several new diseases were identified, and by now 14 antigens targeted by IgG4 autoantibodies have been described. The IgG4 subclass is considered immunologically inert and functionally monovalent due to structural differences compared to other IgG subclasses. IgG4 usually arises after chronic exposure to antigen and competes with other antibody species, thus "blocking" their pathogenic effector mechanisms. Accordingly, in the context of IgG4 autoimmunity, the pathogenicity of IgG4 is associated with blocking of enzymatic activity or protein-protein interactions of the target antigen. Pathogenicity of IgG4 autoantibodies has not yet been systematically analyzed in IgG4 autoimmune diseases. Here, we establish a modified classification system based on Witebsky's postulates to determine IgG4 pathogenicity in IgG4 autoimmune diseases, review characteristics and pathogenic mechanisms of IgG4 in these disorders, and also investigate the contribution of other antibody entities to pathophysiology by additional mechanisms. As a result, three classes of IgG4 autoimmune diseases emerge: class I where IgG4 pathogenicity is validated by the use of subclass-specific autoantibodies in animal models and/or in vitro models of pathogenicity; class II where IgG4 pathogenicity is highly suspected but lack validation by the use of subclass specific antibodies in in vitro models of pathogenicity or animal models; and class III with insufficient data or a pathogenic mechanism associated with multivalent antigen binding. Five out of the 14 IgG4 antigens were validated as class I, five as class II, and four as class III. Antibodies of other IgG subclasses or immunoglobulin classes were present in several diseases and could contribute additional pathogenic mechanisms.
Collapse
Affiliation(s)
- Inga Koneczny
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Human myeloma IgG4 reveals relatively rigid asymmetric Y-like structure with different conformational stability of C H 2 domains. Mol Immunol 2017; 92:199-210. [DOI: 10.1016/j.molimm.2017.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022]
|
36
|
Piche-Nicholas NM, Avery LB, King AC, Kavosi M, Wang M, O'Hara DM, Tchistiakova L, Katragadda M. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. MAbs 2017; 10:81-94. [PMID: 28991504 PMCID: PMC5800364 DOI: 10.1080/19420862.2017.1389355] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A large body of data exists demonstrating that neonatal Fc receptor (FcRn) binding of an IgG via its Fc CH2-CH3 interface trends with the pharmacokinetics (PK) of IgG. We have observed that PK of IgG molecules vary widely, even when they share identical Fc domains. This led us to hypothesize that domains distal from the Fc could contribute to FcRn binding and affect PK. In this study, we explored the role of these IgG domains in altering the affinity between IgG and FcRn. Using a surface plasmon resonance-based assay developed to examine the steady-state binding affinity (KD) of IgG molecules to FcRn, we dissected the contributions of IgG domains in modulating the affinity between FcRn and IgG. Through analysis of a broad collection of therapeutic antibodies containing more than 50 unique IgG molecules, we demonstrated that variable domains, and in particular complementarity-determining regions (CDRs), significantly alter binding affinity to FcRn in vitro. Furthermore, a panel of IgG molecules differing only by 1–5 mutations in CDRs altered binding affinity to FcRn in vitro, by up to 79-fold, and the affinity values correlated with calculated isoelectric point values of both variable domains and CDR-L3. In addition, tighter affinity values trend with faster in vivo clearance of a set of IgG molecules differing only by 1–3 mutations in human FcRn transgenic mice. Understanding the role of CDRs in modulation of IgG affinity to FcRn in vitro and their effect on PK of IgG may have far-reaching implications in the optimization of IgG therapeutics.
Collapse
Affiliation(s)
| | | | - Amy C King
- a BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - Mania Kavosi
- b BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | - Mengmeng Wang
- b BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | | | | | | |
Collapse
|
37
|
Beyer B, Schuster M, Jungbauer A, Lingg N. Microheterogeneity of Recombinant Antibodies: Analytics and Functional Impact. Biotechnol J 2017; 13. [PMID: 28862393 DOI: 10.1002/biot.201700476] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/08/2017] [Indexed: 02/04/2023]
Abstract
Antibodies are typical examples of biopharmaceuticals which are composed of numerous, almost infinite numbers of potential molecular entities called variants or isoforms, which constitute the microheterogeneity of these molecules. These variants are generated during biosynthesis by so-called posttranslational modification, during purification or upon storage. The variants differ in biological properties such as pharmacodynamic properties, for example, Antibody Dependent Cellular Cytotoxicity, complement activation, and pharmacokinetic properties, for example, serum half-life and safety. Recent progress in analytical technologies such as various modes of liquid chromatography and mass spectrometry has helped to elucidate the structure of a lot of these variants and their biological properties. In this review the most important modifications (glycosylation, terminal modifications, amino acid side chain modifications, glycation, disulfide bond variants and aggregation) are reviewed and an attempt is made to give an overview on the biological properties, for which the reports are often contradictory. Even though there is a deep understanding of cellular and molecular mechanism of antibody modification and their consequences, the clinical proof of the effects observed in vitro and in vivo is still not fully rendered. For some modifications such as core-fucosylation of the N-glycan and aggregation the effects are clear and should be monitored, but with others such as C-terminal lysine clipping the reports are contradictory. As a consequence it seems too early to tell if any modification can be safely ignored.
Collapse
Affiliation(s)
- Beate Beyer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | | | - Alois Jungbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Nico Lingg
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
38
|
Hinge-deleted IgG4 blocker therapy for acetylcholine receptor myasthenia gravis in rhesus monkeys. Sci Rep 2017; 7:992. [PMID: 28428630 PMCID: PMC5430546 DOI: 10.1038/s41598-017-01019-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/28/2017] [Indexed: 11/08/2022] Open
Abstract
Autoantibodies against ion channels are the cause of numerous neurologic autoimmune disorders. Frequently, such pathogenic autoantibodies have a restricted epitope-specificity. In such cases, competing antibody formats devoid of pathogenic effector functions (blocker antibodies) have the potential to treat disease by displacing autoantibodies from their target. Here, we have used a model of the neuromuscular autoimmune disease myasthenia gravis in rhesus monkeys (Macaca mulatta) to test the therapeutic potential of a new blocker antibody: MG was induced by passive transfer of pathogenic acetylcholine receptor-specific monoclonal antibody IgG1-637. The effect of the blocker antibody (IgG4Δhinge-637, the hinge-deleted IgG4 version of IgG1-637) was assessed using decrement measurements and single-fiber electromyography. Three daily doses of 1.7 mg/kg IgG1-637 (cumulative dose 5 mg/kg) induced impairment of neuromuscular transmission, as demonstrated by significantly increased jitter, synaptic transmission failures (blockings) and a decrease in the amplitude of the compound muscle action potentials during repeated stimulations (decrement), without showing overt symptoms of muscle weakness. Treatment with three daily doses of 10 mg/kg IgG4Δhinge-637 significantly reduced the IgG1-637-induced increase in jitter, blockings and decrement. Together, these results represent proof-of principle data for therapy of acetylcholine receptor-myasthenia gravis with a monovalent antibody format that blocks binding of pathogenic autoantibodies.
Collapse
|
39
|
Moritz B, Stracke JO. Assessment of disulfide and hinge modifications in monoclonal antibodies. Electrophoresis 2017; 38:769-785. [PMID: 27982442 PMCID: PMC5413849 DOI: 10.1002/elps.201600425] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/25/2016] [Accepted: 12/04/2016] [Indexed: 01/06/2023]
Abstract
During the last years there was a substantial increase in the use of antibodies and related proteins as therapeutics. The emphasis of the pharmaceutical industry is on IgG1, IgG2, and IgG4 antibodies, which are therefore in the focus of this article. In order to ensure appropriate quality control of such biopharmaceuticals, deep understanding of their chemical degradation pathways and the resulting impact on potency, pharmacokinetics, and safety is required. Criticality of modifications may be specific for individual antibodies and has to be assessed for each molecule. However, some modifications of conserved structure elements occur in all or at least most IgGs. In these cases, criticality assessment may be applicable to related molecules or molecule formats. The relatively low dissociation energy of disulfide bonds and the high flexibility of the hinge region frequently lead to modifications and cleavages. Therefore, the hinge region and disulfide bonds require specific consideration during quality assessment of mAbs. In this review, available literature knowledge on underlying chemical reaction pathways of modifications, analytical methods for quantification and criticality are discussed. The hinge region is prone to cleavage and is involved in pathways that lead to thioether bond formation, cysteine racemization, and iso‐Asp (Asp, aspartic acid) formation. Disulfide or sulfhydryl groups were found to be prone to reductive cleavage, trisulfide formation, cysteinylation, glutathionylation, disulfide bridging to further light chains, and disulfide scrambling. With regard to potency, disulfide cleavage, hinge cleavage, disulfide bridging to further light chains, and cysteinylation were found to influence antigen binding and fragment crystallizable (Fc) effector functionalities. Renal clearance of small fragments may be faster, whereas clearance of larger fragments appears to depend on their neonatal Fc receptor (FcRn) functionality, which in turn may be impeded by disulfide bond cleavage. Certain modifications such as disulfide induced aggregation and heterodimers from different antibodies are generally regarded critical with respect to safety. However, the detection of some modifications in endogenous antibodies isolated from human blood and the possibility of in vivo repair mechanisms may reduce some safety concerns.
Collapse
|
40
|
Molecular engineering of a therapeutic antibody for Blo t 5-induced allergic asthma. J Allergy Clin Immunol 2016; 139:1705-1708.e6. [PMID: 27923562 DOI: 10.1016/j.jaci.2016.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/05/2016] [Accepted: 10/10/2016] [Indexed: 11/22/2022]
|
41
|
Lakbub JC, Clark DF, Shah IS, Zhu Z, Go EP, Tolbert TJ, Desaire H. Disulfide Bond Characterization of Endogenous IgG3 Monoclonal Antibodies Using LC-MS: An Investigation of IgG3 Disulfide-mediated Isoforms. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2016; 8:6046-6055. [PMID: 28989532 PMCID: PMC5629967 DOI: 10.1039/c6ay01248e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The use of monoclonal antibodies (mAbs) for the manufacture of innovator and biosimilar biotherapeutics has increased tremendously in recent years. From a structural perspective, mAbs have high disulfide bond content, and the correct disulfide connectivity is required for proper folding and to maintain their biological activity. Therefore, disulfide linkage mapping is an important component of mAB characterization for ensuring drug safety and efficacy. The native disulfide linkage patterns of all four subclasses of IgG antibodies have been well established since the late 1960s. Among these IgG subtypes, disulfide mediated isoforms have been identified for IgG2 and IgG4, and to a lesser extent in IgG1, which is the most studied IgG subclass. However, no studies have been carried out so far to investigate whether different IgG3 isoforms exist due to alternative disulfide connectivity. In an effort to investigate the presence of disulfide-mediated isoforms in IgG3, we employed a bottom-up mass spectrometry approach to accurately determine the disulfide bond linkages in endogenous human IgG3 monoclonal antibody and our results show that no such alternative disulfide bonds exist. While many antibody-based drugs are developed around IgG1, IgG3 represents a new, and in some cases, more desirable drug candidate. Our data represent the first demonstration that alternative disulfide bond arrangements are not present in endogenous IgG3; and therefore, they should not be present in recombinant forms used as antibody-based therapeutics.
Collapse
Affiliation(s)
- Jude C. Lakbub
- Department of Chemistry, University of Kansas, Lawrence, KS, 66047
| | - Daniel F. Clark
- Department of Chemistry, University of Kansas, Lawrence, KS, 66047
| | - Ishan S. Shah
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047
| | - Zhikai Zhu
- Department of Chemistry, University of Kansas, Lawrence, KS, 66047
| | - Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, KS, 66047
| | - Thomas J. Tolbert
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, KS, 66047
| |
Collapse
|
42
|
Abstract
IgG4, the least represented human IgG subclass in serum, is an intriguing antibody with unique biological properties, such as the ability to undergo Fab-arm exchange and limit immune complex formation. The lack of effector functions, such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity, is desirable for therapeutic purposes. IgG4 plays a protective role in allergy by acting as a blocking antibody, and inhibiting mast cell degranulation, but a deleterious role in malignant melanoma, by impeding IgG1-mediated anti-tumor immunity. These findings highlight the importance of understanding the interaction between IgG4 and Fcγ receptors. Despite a wealth of structural information for the IgG1 subclass, including complexes with Fcγ receptors, and structures for intact antibodies, high-resolution crystal structures were not reported for IgG4-Fc until recently. Here, we highlight some of the biological properties of human IgG4, and review the recent crystal structures of IgG4-Fc. We discuss the unexpected conformations adopted by functionally important Cγ2 domain loops, and speculate about potential implications for the interaction between IgG4 and FcγRs.
Collapse
Affiliation(s)
- Anna M Davies
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Brian J Sutton
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| |
Collapse
|
43
|
Kita A, Ponniah G, Nowak C, Liu H. Characterization of Cysteinylation and Trisulfide Bonds in a Recombinant Monoclonal Antibody. Anal Chem 2016; 88:5430-7. [DOI: 10.1021/acs.analchem.6b00822] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Adriana Kita
- Product Characterization, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Gomathinayagam Ponniah
- Product Characterization, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Christine Nowak
- Product Characterization, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| | - Hongcheng Liu
- Product Characterization, Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410, United States
| |
Collapse
|
44
|
Liu L, Lu J, Allan BW, Tang Y, Tetreault J, Chow CK, Barmettler B, Nelson J, Bina H, Huang L, Wroblewski VJ, Kikly K. Generation and characterization of ixekizumab, a humanized monoclonal antibody that neutralizes interleukin-17A. J Inflamm Res 2016; 9:39-50. [PMID: 27143947 PMCID: PMC4846058 DOI: 10.2147/jir.s100940] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interleukin (IL)-17A exists as a homodimer (A/A) or as a heterodimer (A/F) with IL-17F. IL-17A is expressed by a subset of T-cells, called Th17 cells, at inflammatory sites. Most cell types can respond to the local production of IL-17A because of the near ubiquitous expression of IL-17A receptors, IL-17RA and IL-17RC. IL-17A stimulates the release of cytokines and chemokines designed to recruit and activate both neutrophils and memory T-cells to the site of injury or inflammation and maintain a proinflammatory state. IL-17A-producing pathogenic T-cells contribute to the pathogenesis of autoimmune diseases, including psoriasis, psoriatic arthritis, rheumatoid arthritis, and ankylosing spondylitis. This study describes the generation and characterization of ixekizumab, a humanized IgG4 variant IL-17A-neutralizing antibody. Ixekizumab binds human and cynomolgus monkey IL-17A with high affinity and binds rabbit IL-17A weakly but does not bind to rodent IL-17A or other IL-17 family members. Ixekizumab effectively inhibits the interaction between IL-17A and its receptor in binding assays and potently blocks IL-17A-induced GRO or KC secretion in cell-based assays. In an in vivo mouse pharmcodynamic model, ixekizumab blocks human IL-17A-induced mouse KC secretion. These data provide a comprehensive preclinical characterization of ixekizumab, for which the efficacy and safety have been demonstrated in human clinical trials in psoriasis and psoriatic arthritis.
Collapse
Affiliation(s)
- Ling Liu
- Biotechnology Discovery Research, Indianapolis, IN, USA
| | - Jirong Lu
- Biotechnology Discovery Research, Indianapolis, IN, USA
| | - Barrett W Allan
- Applied Molecular Evolution, Lilly Biotechnology Center, San Diego, CA, USA
| | - Ying Tang
- Applied Molecular Evolution, Lilly Biotechnology Center, San Diego, CA, USA
| | | | - Chi-Kin Chow
- Biotechnology Discovery Research, Indianapolis, IN, USA
| | - Barbra Barmettler
- Applied Molecular Evolution, Lilly Biotechnology Center, San Diego, CA, USA
| | - James Nelson
- Applied Molecular Evolution, Lilly Biotechnology Center, San Diego, CA, USA
| | - Holly Bina
- Biotechnology Discovery Research, Indianapolis, IN, USA
| | - Lihua Huang
- Bioproduct Research and Development, Indianapolis, IN, USA
| | - Victor J Wroblewski
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
45
|
Yang X, Wang F, Zhang Y, Wang L, Antonenko S, Zhang S, Zhang YW, Tabrizifard M, Ermakov G, Wiswell D, Beaumont M, Liu L, Richardson D, Shameem M, Ambrogelly A. Comprehensive Analysis of the Therapeutic IgG4 Antibody Pembrolizumab: Hinge Modification Blocks Half Molecule Exchange In Vitro and In Vivo. J Pharm Sci 2015; 104:4002-4014. [DOI: 10.1002/jps.24620] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/15/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022]
|
46
|
Sarkar A, Pitchumoni CS. The protean manifestations of IgG4-RD in gastrointestinal disorders. Dis Mon 2015; 61:493-515. [DOI: 10.1016/j.disamonth.2015.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Liu J, Wang L, Zhao F, Tseng S, Narayanan C, Shura L, Willingham S, Howard M, Prohaska S, Volkmer J, Chao M, Weissman IL, Majeti R. Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential. PLoS One 2015; 10:e0137345. [PMID: 26390038 PMCID: PMC4577081 DOI: 10.1371/journal.pone.0137345] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/14/2015] [Indexed: 12/25/2022] Open
Abstract
CD47 is a widely expressed cell surface protein that functions as a regulator of phagocytosis mediated by cells of the innate immune system, such as macrophages and dendritic cells. CD47 serves as the ligand for a receptor on these innate immune cells, SIRP-alpha, which in turn delivers an inhibitory signal for phagocytosis. We previously found increased expression of CD47 on primary human acute myeloid leukemia (AML) stem cells, and demonstrated that blocking monoclonal antibodies directed against CD47 enabled the phagocytosis and elimination of AML, non-Hodgkin’s lymphoma (NHL), and many solid tumors in xenograft models. Here, we report the development of a humanized anti-CD47 antibody with potent efficacy and favorable toxicokinetic properties as a candidate therapeutic. A novel monoclonal anti-human CD47 antibody, 5F9, was generated, and antibody humanization was carried out by grafting its complementarity determining regions (CDRs) onto a human IgG4 format. The resulting humanized 5F9 antibody (Hu5F9-G4) bound monomeric human CD47 with an 8 nM affinity. Hu5F9-G4 induced potent macrophage-mediated phagocytosis of primary human AML cells in vitro and completely eradicated human AML in vivo, leading to long-term disease-free survival of patient-derived xenografts. Moreover, Hu5F9-G4 synergized with rituximab to eliminate NHL engraftment and cure xenografted mice. Finally, toxicokinetic studies in non-human primates showed that Hu5F9-G4 could be safely administered intravenously at doses able to achieve potentially therapeutic serum levels. Thus, Hu5F9-G4 is actively being developed for and has been entered into clinical trials in patients with AML and solid tumors (ClinicalTrials.gov identifier: NCT02216409).
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibody Affinity
- Antineoplastic Agents/immunology
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/therapeutic use
- CD47 Antigen/immunology
- Female
- Haplorhini
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Macaca fascicularis
- Mice
- Mice, Inbred BALB C
- Phagocytosis/drug effects
- Rituximab/therapeutic use
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jie Liu
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lijuan Wang
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Feifei Zhao
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Serena Tseng
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cyndhavi Narayanan
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lei Shura
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stephen Willingham
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Maureen Howard
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan Prohaska
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jens Volkmer
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mark Chao
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (ILW); (RM)
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (ILW); (RM)
| |
Collapse
|
48
|
Yang X, Zhang Y, Wang F, Wang L(J, Richardson D, Shameem M, Ambrogelly A. Analysis and purification of IgG4 bispecific antibodies by a mixed-mode chromatography. Anal Biochem 2015; 484:173-9. [DOI: 10.1016/j.ab.2015.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/22/2015] [Accepted: 06/08/2015] [Indexed: 12/24/2022]
|
49
|
Affiliation(s)
- Kanae Kubo
- Department of Allergy and Rheumatology; The University of Tokyo Hospital; Tokyo Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology; The University of Tokyo Hospital; Tokyo Japan
| |
Collapse
|
50
|
Silva JP, Vetterlein O, Jose J, Peters S, Kirby H. The S228P mutation prevents in vivo and in vitro IgG4 Fab-arm exchange as demonstrated using a combination of novel quantitative immunoassays and physiological matrix preparation. J Biol Chem 2015; 290:5462-9. [PMID: 25568323 DOI: 10.1074/jbc.m114.600973] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunoglobulin G isotype 4 (IgG4) antibodies (Abs) are potential candidates for immunotherapy when reduced effector functions are desirable. IgG4 Abs are dynamic molecules able to undergo a process known as Fab arm exchange (FAE). This results in functionally monovalent, bispecific antibodies (bsAbs) with unknown specificity and hence, potentially, reduced therapeutic efficacy. IgG4 FAE is suggested to be an important biological mechanism that provides the basis for the anti-inflammatory activity attributed to IgG4 Abs. To date, the mechanism of FAE is not entirely understood and studies measuring FAE in ex vivo matrices have been hampered by the presence and abundance of endogenous IgG4 wild-type (WT) Abs. Using representative humanized WT IgG4 monoclonal Abs, namely, anti-IL-6 and anti-TNF, and a core-hinge stabilized serine 228 to proline (S228P) anti-IL-6 IgG4 mutant, it is demonstrated for the first time how anti-IgG4 affinity chromatography can be used to prepare physiologically relevant matrices for assessing and quantifying FAE. A novel method for quantifying FAE using a single MSD immunoassay is also reported and confirms previous findings that, dependent on the redox conditions, the S228P mutation can prevent IgG4 FAE to undetectable levels both in vitro and in vivo. Together, the findings and novel methodologies will allow researchers to monitor and quantify FAE of their own IgG4 molecules in physiologically relevant matrices.
Collapse
Affiliation(s)
- John-Paul Silva
- From the Department of Bioanalytical Sciences, Non-Clinical Development and
| | - Olivia Vetterlein
- From the Department of Bioanalytical Sciences, Non-Clinical Development and
| | - Joby Jose
- From the Department of Bioanalytical Sciences, Non-Clinical Development and
| | - Shirley Peters
- the Department of Antibody Technology and Biology, UCB Pharma, Slough, SL1 3WE United Kingdom
| | - Hishani Kirby
- From the Department of Bioanalytical Sciences, Non-Clinical Development and
| |
Collapse
|