1
|
Ayna A, Moody PCE. Activity of fructose-1,6-bisphosphatase from Campylobacter jejuni. Biochem Cell Biol 2020; 98:518-524. [PMID: 32125881 DOI: 10.1139/bcb-2020-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The glycolytic pathway of the enteric pathogen Campylobacter jejuni is incomplete; the absence of phosphofructokinase means that the suppression of futile cycling at this point in the glycolytic-gluconeogenic pathway might not be required, and therefore the mechanism for controlling pathway flux is likely to be quite different or absent. In this study, the characteristics of fructose-1,6-bisphosphatase (FBPase) of C. jejuni are described and the regulation of this enzyme is compared with the equivalent enzymes from organisms capable of glycolysis. The enzyme is insensitive to AMP inhibition, unlike other type I FBPases. Campylobacter jejuni FBPase also shows limited sensitivity to other glycolytic and gluconeogenic intermediates. The allosteric cooperative control of the enzyme's activity found in type I FBPases appears to have been lost.
Collapse
Affiliation(s)
- Adnan Ayna
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000 Bingol, Turkey
| | - Peter C E Moody
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
2
|
Ruf A, Tetaz T, Schott B, Joseph C, Rudolph MG. Quadruple space-group ambiguity owing to rotational and translational noncrystallographic symmetry in human liver fructose-1,6-bisphosphatase. Acta Crystallogr D Struct Biol 2016; 72:1212-1224. [PMID: 27841754 PMCID: PMC5108348 DOI: 10.1107/s2059798316016715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/18/2016] [Indexed: 11/17/2022] Open
Abstract
Fructose-1,6-bisphosphatase (FBPase) is a key regulator of gluconeogenesis and a potential drug target for type 2 diabetes. FBPase is a homotetramer of 222 symmetry with a major and a minor dimer interface. The dimers connected via the minor interface can rotate with respect to each other, leading to the inactive T-state and active R-state conformations of FBPase. Here, the first crystal structure of human liver FBPase in the R-state conformation is presented, determined at a resolution of 2.2 Å in a tetragonal setting that exhibits an unusual arrangement of noncrystallographic symmetry (NCS) elements. Self-Patterson function analysis and various intensity statistics revealed the presence of pseudo-translation and the absence of twinning. The space group is P41212, but structure determination was also possible in space groups P43212, P4122 and P4322. All solutions have the same arrangement of three C2-symmetric dimers spaced by 1/3 along an NCS axis parallel to the c axis located at (1/4, 1/4, z), which is therefore invisible in a self-rotation function analysis. The solutions in the four space groups are related to one another and emulate a body-centred lattice. If all NCS elements were crystallographic, the space group would be I4122 with a c axis three times shorter and a single FBPase subunit in the asymmetric unit. I4122 is a minimal, non-isomorphic supergroup of the four primitive tetragonal space groups, explaining the space-group ambiguity for this crystal.
Collapse
Affiliation(s)
- Armin Ruf
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Tim Tetaz
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Brigitte Schott
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Catherine Joseph
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Markus G. Rudolph
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| |
Collapse
|
3
|
Tayyem RF, Zalloum HM, Elmaghrabi MR, Yousef AM, Mubarak MS. Ligand-based designing, in silico screening, and biological evaluation of new potent fructose-1,6-bisphosphatase (FBPase) inhibitors. Eur J Med Chem 2012; 56:70-95. [DOI: 10.1016/j.ejmech.2012.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/27/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
|
4
|
Dang Q, Kasibhatla SR, Reddy KR, Jiang T, Reddy MR, Potter SC, Fujitaki JM, van Poelje PD, Huang J, Lipscomb WN, Erion MD. Discovery of Potent and Specific Fructose-1,6-Bisphosphatase Inhibitors and a Series of Orally-Bioavailable Phosphoramidase-Sensitive Prodrugs for the Treatment of Type 2 Diabetes. J Am Chem Soc 2007; 129:15491-502. [DOI: 10.1021/ja074871l] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Erion MD, Dang Q, Reddy MR, Kasibhatla SR, Huang J, Lipscomb WN, van Poelje PD. Structure-guided design of AMP mimics that inhibit fructose-1,6-bisphosphatase with high affinity and specificity. J Am Chem Soc 2007; 129:15480-90. [PMID: 18041833 DOI: 10.1021/ja074869u] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AMP binding sites are commonly used by nature for allosteric regulation of enzymes controlling the production and metabolism of carbohydrates and lipids. Since many of these enzymes represent potential drug targets for metabolic diseases, efforts were initiated to discover AMP mimics that bind to AMP-binding sites with high affinity and high enzyme specificity. Herein we report the structure-guided design of potent fructose 1,6-bisphosphatase (FBPase) inhibitors that interact with the AMP binding site on FBPase despite their structural dissimilarity to AMP. Molecular modeling, free-energy perturbation calculations, X-ray crystallography, and enzyme kinetic data guided our redesign of AMP, which began by replacing the 5'-phosphate with a phosphonic acid attached to C8 of the adenine base via a 3-atom spacer. Additional binding affinity was gained by replacing the ribose with an alkyl group that formed van der Waals interactions with a hydrophobic region within the AMP binding site and by replacing the purine nitrogens N1 and N3 with carbons to minimize desolvation energy expenditures. The resulting benzimidazole phosphonic acid, 16, inhibited human FBPase (IC50 = 90 nM) 11-fold more potently than AMP and exhibited high specificity for the AMP binding site on FBPase. 16 also inhibited FBPase in primary rat hepatocytes and correspondingly resulted in concentration-dependent inhibition of the gluconeogenesis pathway. Accordingly, these results suggest that the AMP site of FBPase may represent a potential drug target for reducing the excessive glucose produced by the gluconeogenesis pathway in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Mark D Erion
- Department of Medicinal Chemistry, Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Mutyala R, Reddy RN, Sumakanth M, Reddanna P, Reddy MR. Calculation of relative binding affinities of fructose 1,6-bisphosphatase mutants with adenosine monophosphate using free energy perturbation method. J Comput Chem 2007; 28:932-7. [PMID: 17253638 DOI: 10.1002/jcc.20617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The free energy perturbation (FEP) methodology is the most accurate means of estimating relative binding affinities between inhibitors and protein variants. In this article, the importance of hydrophobic and hydrophilic residues to the binding of adenosine monophosphate (AMP) to the fructose 1,6-bisphosphatase (FBPase), a target enzyme for type-II diabetes, was examined by FEP method. Five mutations were made to the FBPase enzyme with AMP inhibitor bound: 113Tyr --> 113Phe, 31Thr --> 31Ala, 31Thr --> 31Ser, 177Met --> 177Ala, and 30Leu --> 30Phe. These mutations test the strength of hydrogen bonds and van der Waals interactions between the ligand and enzyme. The calculated relative free energies indicated that: 113Tyr and 31Thr play an important role, each via two hydrogen bonds affecting the binding affinity of inhibitor AMP to FBPase, and any changes in these hydrogen bonds due to mutations on the protein will have significant effect on the binding affinity of AMP to FBPase, consistent to experimental results. Also, the free energy calculations clearly show that the hydrophilic interactions are more important than the hydrophobic interactions of the binding pocket of FBPase.
Collapse
|
7
|
Dougherty MJ, Boyd JM, Downs DM. Inhibition of fructose-1,6-bisphosphatase by aminoimidazole carboxamide ribotide prevents growth of Salmonella enterica purH mutants on glycerol. J Biol Chem 2006; 281:33892-9. [PMID: 16987812 DOI: 10.1074/jbc.m604429200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme fructose-1,6-bisphosphatase (FBP) is key regulatory point in gluconeogenesis. Mutants of Salmonella enterica lacking purH accumulate 5-amino-4-imidazole carboxamide ribotide (AICAR) and are unable to utilize glycerol as sole carbon and energy sources. The work described here demonstrates this lack of growth is due to inhibition of FBP by AICAR. Mutant alleles of fbp that restore growth on glycerol encode proteins resistant to inhibition by AICAR and the allosteric regulator AMP. This is the first report of biochemical characterization of substitutions causing AMP resistance in a bacterial FBP. Inhibition of FBP activity by AICAR occurs at physiologically relevant concentrations and may represent a form of regulation of gluconeogenic flux in Salmonella enterica.
Collapse
Affiliation(s)
- Michael J Dougherty
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
8
|
Dzugaj A. Localization and regulation of muscle fructose-1,6-bisphosphatase, the key enzyme of glyconeogenesis. ACTA ACUST UNITED AC 2006; 46:51-71. [PMID: 16857246 DOI: 10.1016/j.advenzreg.2006.01.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Andrzej Dzugaj
- Department of Animal Physiology, Wroclaw University, Wroclaw, Poland
| |
Collapse
|
9
|
Rakus D, Tillmann H, Wysocki R, Ulaszewski S, Eschrich K, Dzugaj A. Different sensitivities of mutants and chimeric forms of human muscle and liver fructose-1,6-bisphosphatases towards AMP. Biol Chem 2003; 384:51-8. [PMID: 12674499 DOI: 10.1515/bc.2003.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AMP is an allosteric inhibitor of human muscle and liver fructose-1,6-bisphosphatase (FBPase). Despite strong similarity of the nucleotide binding domains, the muscle enzyme is inhibited by AMP approximately 35 times stronger than liver FBPase: I0.5 for muscle and for liver FBPase are 0.14 microM and 4.8 microM, respectively. Chimeric human muscle (L50M288) and chimeric human liver enzymes (M50L288), in which the N-terminal residues (1-50) were derived from the human liver and human muscle FBPases, respectively, were inhibited by AMP 2-3 times stronger than the wild-type liver enzyme. An amino acid exchange within the N-terminal region of the muscle enzyme towards liver FBPase (Lys20-->Glu) resulted in 13-fold increased I0.5 values compared to the wild-type muscle enzyme. However, the opposite exchanges in the liver enzyme (Glu20-->Lys and double mutation Glu19-->Asp/Glu20-->Lys) did not change the sensitivity for AMP inhibition of the liver mutant (I0.5 value of 4.9 microM). The decrease of sensitivity for AMP of the muscle mutant Lys20-->Glu, as well as the lack of changes in the inhibition by AMP of liver mutants Glu20-->Lys and Glu19-->Asp/Glu20-->Lys, suggest a different mechanism of AMP binding to the muscle and liver enzyme.
Collapse
Affiliation(s)
- Dariusz Rakus
- Department of Animal Physiology, Zoological Institute, Wroclaw University, Cybulskiego 30, 50-205 Wroclaw, Poland
| | | | | | | | | | | |
Collapse
|
10
|
Wright SW, Carlo AA, Carty MD, Danley DE, Hageman DL, Karam GA, Levy CB, Mansour MN, Mathiowetz AM, McClure LD, Nestor NB, McPherson RK, Pandit J, Pustilnik LR, Schulte GK, Soeller WC, Treadway JL, Wang IK, Bauer PH. Anilinoquinazoline inhibitors of fructose 1,6-bisphosphatase bind at a novel allosteric site: synthesis, in vitro characterization, and X-ray crystallography. J Med Chem 2002; 45:3865-77. [PMID: 12190310 DOI: 10.1021/jm010496a] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis and in vitro structure-activity relationships (SAR) of a novel series of anilinoquinazolines as allosteric inhibitors of fructose-1,6-bisphosphatase (F16Bpase) are reported. The compounds have a different SAR as inhibitors of F16Bpase than anilinoquinazolines previously reported. Selective inhibition of F16Bpase can be attained through the addition of appropriate polar functional groups at the quinazoline 2-position, thus separating the F16Bpase inhibitory activity from the epidermal growth factor receptor tyrosine kinase inhibitory activity previously observed with similar structures. The compounds have been found to bind at a symmetry-repeated novel allosteric site at the subunit interface of the enzyme. Inhibition is brought about by binding to a loop comprised of residues 52-72, preventing the necessary participation of these residues in the assembly of the catalytic site. Mutagenesis studies have identified the key amino acid residues in the loop that are required for inhibitor recognition and binding.
Collapse
Affiliation(s)
- Stephen W Wright
- Pfizer Central Research, Eastern Point Road, Groton, Connecticut 06340, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nelson SW, Honzatko RB, Fromm HJ. Hybrid tetramers of porcine liver fructose-1,6-bisphosphatase reveal multiple pathways of allosteric inhibition. J Biol Chem 2002; 277:15539-45. [PMID: 11854289 DOI: 10.1074/jbc.m112304200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fructose-1,6-bisphosphatase is a square planar tetramer of identical subunits, which exhibits cooperative allosteric inhibition of catalysis by AMP. Protocols for in vitro subunit exchange provide three of five possible hybrid tetramers of fructose-1,6-bisphosphatase in high purity. The two hybrid types with different subunits in the top and bottom halves of the tetramer co-purify. Hybrid tetramers, formed from subunits unable to bind AMP and subunits with wild-type properties, differ from the wild-type enzyme only in regard to their properties of AMP inhibition. Hybrid tetramers exhibit cooperative, potent, and complete (100%) AMP inhibition if at least one functional AMP binding site exists in the top and bottom halves of the tetramer. Furthermore, titrations of hybrid tetramers with AMP, monitored by a tryptophan reporter group, reveal cooperativity and fluorescence changes consistent with an R- to T-state transition, provided that again at least one functional AMP site exists in the top and bottom halves of the tetramer. In contrast, hybrid tetramers, which have functional AMP binding sites in only one half (top/bottom), exhibit an R- to T-state transition and complete AMP inhibition, but without cooperativity. Evidently, two pathways of allosteric inhibition of fructose-1,6-bisphosphatase are possible, only one of which is cooperative.
Collapse
Affiliation(s)
- Scott W Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
12
|
Reddy MR, Erion MD. Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach. J Am Chem Soc 2001; 123:6246-52. [PMID: 11427047 DOI: 10.1021/ja0103288] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An iterative, computer-assisted, drug design strategy that combines molecular design, molecular mechanics, molecular dynamics (MD), and free energy perturbation (FEP) calculations with compound synthesis, biochemical testing of inhibitors, and crystallographic structure determination of protein-inhibitor complexes was successfully used to predict the rank order of a series of nucleoside monophosphate analogues as fructose 1,6-bisphosphatase (FBPase) inhibitors. The X-ray structure of FBPase complexed with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate (ZMP) provided structural information used for subsequent analogue design and free energy calculations. The FEP protocol was validated by calculating the free energy differences for the mutation of ZMP (1) to AMP (2). The calculated results showed a net gain of 1.7 kcal/mol, which agreed with the experimental result of 1.3 kcal/mol. FEP calculations were performed for 18 other AMP analogues. Inhibition constants were determined for over half of these analogues, usually after completion of the calculation, and were consistent with the predictions. Solvation free energy differences between AMP and various AMP analogues proved to be an important factor in binding free energies, suggesting that increased desolvation costs associated with the addition of polar groups to an inhibitor must be overcome by stronger ligand-protein interactions if the structural modification is to enhance inhibitor potency. The results indicate that FEP calculations predict relative binding affinities with high accuracy and provide valuable insight into the factors that influence inhibitor binding and therefore should greatly aid efforts to optimize initial lead compounds and reduce the time required for the discovery of new drug candidates.
Collapse
Affiliation(s)
- M R Reddy
- Metabasis Therapeutics, Inc., 9390 Towne Centre Drive, San Diego, CA 92121, USA.
| | | |
Collapse
|
13
|
Wright SW, Hageman DL, McClure LD, Carlo AA, Treadway JL, Mathiowetz AM, Withka JM, Bauer PH. Allosteric inhibition of fructose-1,6-bisphosphatase by anilinoquinazolines. Bioorg Med Chem Lett 2001; 11:17-21. [PMID: 11140724 DOI: 10.1016/s0960-894x(00)00586-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anilinoquinazolines currently of interest as inhibitors of tyrosine kinases have been found to be allosteric inhibitors of the enzyme fructose 1,6-bisphosphatase. These represent a new approach to inhibition of F16BPase and serve as leads for further drug design. Enzyme inhibition is achieved by binding at an unidentified allosteric site.
Collapse
Affiliation(s)
- S W Wright
- Pfizer Central Research, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Nelson SW, Choe JY, Honzatko RB, Fromm HJ. Mutations in the hinge of a dynamic loop broadly influence functional properties of fructose-1,6-bisphosphatase. J Biol Chem 2000; 275:29986-92. [PMID: 10896931 DOI: 10.1074/jbc.m000473200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loop 52-72 of porcine fructose-1,6-bisphosphatase may play a central role in the mechanism of catalysis and allosteric inhibition by AMP. The loop pivots between different conformational states about a hinge located at residues 50 and 51. The insertion of proline separately at positions 50 and 51 reduces k(cat) by up to 3-fold, with no effect on the K(m) for fructose 1,6-bisphosphate. The K(a) for Mg(2+) in the Lys(50) --> Pro mutant increases approximately 15-fold, whereas that for the Ala(51) --> Pro mutant is unchanged. Although these mutants retain wild-type binding affinity for AMP and the fluorescent AMP analog 2'(3')-O-(trinitrophenyl)adenosine 5'-monophosphate, the K(i) for AMP increases 8000- and 280-fold in the position 50 and 51 mutants, respectively. In fact, the mutation Lys(50) --> Pro changes the mechanism of AMP inhibition with respect to Mg(2+) from competitive to noncompetitive and abolishes K(+) activation. The K(i) for fructose 2,6-bisphosphate increases approximately 20- and 30-fold in the Lys(50) --> Pro and Ala(51) --> Pro mutants, respectively. Fluorescence from a tryptophan introduced by the mutation of Tyr(57) suggests an altered conformational state for Loop 52-72 due to the proline at position 50. Evidently, the Pro(50) mutant binds AMP with high affinity at the allosteric site, but the mechanism of allosteric regulation of catalysis has been disabled.
Collapse
Affiliation(s)
- S W Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
15
|
Zhang FW, Zhao FK, Xu GJ. Molecular cloning, expression and purification of muscle fructose-1,6-bisphosphatase from Zaocys dhumnades: the role of the N-terminal sequence in AMP activation at alkaline pH. Biol Chem 2000; 381:561-6. [PMID: 10987362 DOI: 10.1515/bc.2000.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An open reading frame (ORF) of snake muscle fructose-1,6-bisphosphatase (Fru-1,6-P2ase) was obtained by the RT-PCR method with degenerate primers, followed by RACE-PCR. The cDNA of Fru-1,6-P2ase, encoding 340 amino acids, is highly homologous to that of mammalian species, especially human muscle, with a few exceptions. Kinetic parameters of the purified recombinant enzyme, including inhibition behavior by AMP, were identical to that of the tissue form. Replacement of the N-terminal sequence of this enzyme by the corresponding region of rat liver Fru-1,6-P2ase shows that the activity was fully retained in the chimeric enzyme. The inhibition constant (Ki) of AMP at pH 7.5, however, increases sharply from 0.85 microM (wild-type) to 1.2 mM (chimeric enzyme). AMP binding is mainly located in the N-terminal region, and the allosteric inhibition was shown not to be merely determined by the backbone of this region. The fact that the chimeric enzyme could be activated at alkaline pH by AMP indicated that the AMP activation requires the global structure beyond the area.
Collapse
Affiliation(s)
- F W Zhang
- Shanghai Institute of Biochemistry, Academia Sinica, China
| | | | | |
Collapse
|
16
|
Erion MD, van Poelje PD, Reddy MR. Computer-Assisted Scanning of Ligand Interactions: Analysis of the Fructose 1,6-Bisphosphatase−AMP Complex Using Free Energy Calculations. J Am Chem Soc 2000. [DOI: 10.1021/ja000651v] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark D. Erion
- Metabasis Therapeutics, Inc., 9390 Towne Centre Drive San Diego, California 92121
| | - Paul D. van Poelje
- Metabasis Therapeutics, Inc., 9390 Towne Centre Drive San Diego, California 92121
| | - M. Rami Reddy
- Metabasis Therapeutics, Inc., 9390 Towne Centre Drive San Diego, California 92121
| |
Collapse
|
17
|
Westergaard N, Brand CL, Lewinsky RH, Andersen HS, Carr RD, Burchell A, Lundgren K. Peroxyvanadium compounds inhibit glucose-6-phosphatase activity and glucagon-stimulated hepatic glucose output in the rat in vivo. Arch Biochem Biophys 1999; 366:55-60. [PMID: 10334863 DOI: 10.1006/abbi.1999.1181] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present investigation was undertaken to characterize the direct inhibitory action of the peroxyvanadium compounds oxodiperoxo(1, 10-phenanthroline) vanadate(V) (bpV(phen)) and oxodiperoxo(pyridine-2-carboxylate) vanadate(V) (bpV(pic)) on pig microsomal glucose-6-phosphatase (G-6-Pase) activity and on glucagon stimulated hyperglycemia in vivo. Both bpV(phen) and bpV(pic) were found to be potent competitive inhibitors of G-6-Pase with Ki values of 0.96 and 0.42 microM (intact microsomes) and 0.50 and 0.21 microM (detergent-disrupted microsomes). The corresponding values for ortho-vanadate were 20.3 and 20.0 microM. Administration of bpV(phen) to postprandial rats did not affect the basal glucose level although a modest and dose-dependent increase in plasma lactate levels was seen. Injection of glucagon raised the plasma glucose level from 5.5 mM to about 7.5 mM in control animals and this increase could be prevented dose-dependently by bpV(phen). The inhibition of the glucagon-mediated blood glucose increase was accompanied by a dose-dependent increase in plasma lactate levels from 2 mM to about 11 mM. In conclusion, the finding that vanadate and bpV compounds are potent inhibitors of G-6-Pase suggests that the blood-glucose-lowering effect of these compounds which is seen in diabetic animals may be partly explained by a direct effect on this enzyme rather than, as presently thought, being the result of inhibition of phosphoprotein tyrosine phosphatases and thereby insulin receptor dephosphorylation.
Collapse
Affiliation(s)
- N Westergaard
- Department of Diabetes Biochemistry and Metabolism, Department of Medicinal Chemistry Research, Novo Nordisk A/S, Novo Nordisk Park, Mâlov, DK-2760, Denmark.
| | | | | | | | | | | | | |
Collapse
|
18
|
|