1
|
Bandyopadhyay S, Gurjar D, Saha B, Bodhale N. Decoding the contextual duality of CD40 functions. Hum Immunol 2023; 84:590-599. [PMID: 37596136 DOI: 10.1016/j.humimm.2023.08.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Previously, we established that as a function of its mode of interaction with its ligand or cellular conditions such as membrane lipids, preexisting signaling intermediates activation status, a transmembrane receptor, as represented here with CD40, can induce counteractive cellular responses. Using CD40-binding peptides, recombinant mutated CD40-ligands, and an agonistic antibody, we have established the functional duality of CD40. CD40 builds up two constitutionally different signalosomes on lipid raft and non-raft membrane domains initiating two different signaling pathways. Although this initial signaling may be modified by the pre-existing signaling conditions downstream and may be subjected to feed-forward or negative signaling effects, the initial CD40-CD40L interaction plays a crucial role in the functional outcome of CD40. Herein, we have reviewed the influence of interaction between the CD40-CD40L evoking the functional duality of CD40 contingent upon different physiological states of the cells.
Collapse
Affiliation(s)
| | - Dhiraj Gurjar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| |
Collapse
|
2
|
Maurya SK, Mishra R. Molecular docking studies of natural immunomodulators indicate their interactions with the CD40L of CD40/CD40L pathway and CSF1R kinase domain of microglia. J Mol Model 2022; 28:101. [PMID: 35325302 DOI: 10.1007/s00894-022-05084-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
Natural products have proved beneficial in reducing neuroinflammation in neurological diseases. Their impacts have also been associated with the activities of microglia, responsible for brain-specific immunity. Recent studies have shown the involvement of the number of microglia-specific proteins in the regulation of brain-specific immunity. However, molecular targets of natural products and their mechanism of interaction with microglia-specific proteins are elusive. Since the genetic signature of microglia offers many potential targets for drug discovery, molecular docking followed by molecular dynamics (MD) simulations of cluster of differentiation 40 ligand (CD40L) and colony-stimulating factor 1 receptor (CSF1R) kinase domain protein with some known neuro-immunomodulators (Curcumin, Cannabidiol, Ginsenoside Rg1, Resveratrol, and Sulforaphane) has been evaluated. Curcumin and cannabidiol were observed likely to modulate CD40L and expression of cytokines and entry of inflammatory cells. Resveratrol and cannabidiol may affect the CSF1R kinase domain and activation of microglia. Our finding suggests that curcumin, cannabidiol, and resveratrol may serve specific drug ligands in regulating microglia-mediated brain immunity.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Department of Zoology, Ramjas College, University of Delhi, 110007, Delhi, India.,Department of Zoology, School of Sciences, Cluster University of Jammu, 180001, Jammu, India.,Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, 221005, Varanasi, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
3
|
Anka Idrissi D, Senhaji N, Aouiss A, Khalki L, Tijani Y, Zaid N, Marhoume FZ, Naya A, Oudghiri M, Kabine M, Zaid Y. IL-1 and CD40/CD40L platelet complex: elements of induction of Crohn's disease and new therapeutic targets. Arch Pharm Res 2021; 44:117-132. [PMID: 33394309 DOI: 10.1007/s12272-020-01296-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are chronic and multifactorial diseases that affect the intestinal tract, both characterized by recurrent inflammation of the intestinal mucosa, resulting in abdominal pain, diarrhea, vomiting and, rectal bleeding. Inflammatory bowel diseases (IBD) regroup these two disorders. The exact pathological mechanism of IBD remains ambiguous and poorly known. In genetically predisposed patients, defects in intestinal mucosal barrier are due to an uncontrolled inflammatory response to normal flora. In addition to the genetic predisposition, these defects could be triggered by environmental factors or by a specific lifestyle which is widely accepted as etiological hypothesis. The involvement of the CD40/CD40L platelet complex in the development of IBD has been overwhelmingly demonstrated. CD40L is climacteric in cell signalling in innate and adaptive immunity, the CD40L expression on the platelet cell surface gives them an immunological competence. The IL-1, a major inflammation mediator could be involved in different ways in the development of IBD. Here, we provide a comprehensive review regarding the role of platelet CD40/CD40L in the pathophysiological effect of IL-1 in the development of Crohn's disease (CD). This review could potentially help future approaches aiming to target these two pathways for therapeutic purposes and elucidate the immunological mechanisms driving gut inflammation.
Collapse
Affiliation(s)
- Doha Anka Idrissi
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Nezha Senhaji
- Laboratory of Genetic and Molecular Pathology, Faculty of Medicine, Hassan II University, Casablanca, Morocco
| | - Asmae Aouiss
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Loubna Khalki
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Youssef Tijani
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Nabil Zaid
- Faculty of Sciences, Department of Biology, Mohammed V University, Rabat, Morocco
| | - Fatima Zahra Marhoume
- Faculty of Sciences and Technology, Laboratory of Biochemistry and Neuroscience, Integrative and Computational Neuroscience Team, Hassan First University, Settat, Morocco
| | - Abdallah Naya
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Mounia Oudghiri
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Mostafa Kabine
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Younes Zaid
- Faculty of Sciences, Department of Biology, Mohammed V University, Rabat, Morocco. .,Research Center of Abulcasis, University of Health Sciences, Rabat, Morocco.
| |
Collapse
|
4
|
Tang T, Cheng X, Truong B, Sun L, Yang X, Wang H. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther 2020; 219:107709. [PMID: 33091428 DOI: 10.1016/j.pharmthera.2020.107709] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
The CD40 receptor and its ligand CD40L is one of the most critical molecular pairs of the stimulatory immune checkpoints. Both CD40 and CD40L have a membrane form and a soluble form generated by proteolytic cleavage or alternative splicing. CD40 and CD40L are widely expressed in various types of cells, among which B cells and myeloid cells constitutively express high levels of CD40, and T cells and platelets express high levels of CD40L upon activation. CD40L self-assembles into functional trimers which induce CD40 trimerization and downstream signaling. The canonical CD40/CD40L signaling is mediated by recruitment of TRAFs and NF-κB activation, which is supplemented by signal pathways such as PI3K/AKT, MAPKs and JAK3/STATs. CD40/CD40L immune checkpoint leads to activation of both innate and adaptive immune cells via two-way signaling. CD40/CD40L interaction also participates in regulating thrombosis, tissue inflammation, hematopoiesis and tumor cell fate. Because of its essential role in immune activation, CD40/CD40L interaction has been regarded as an attractive immunotherapy target. In recent years, significant advance has been made in CD40/CD40L-targeted therapy. Various types of agents, including agonistic/antagonistic monoclonal antibodies, cellular vaccines, adenoviral vectors and protein antagonist, have been developed and evaluated in early-stage clinical trials for treating malignancies, autoimmune diseases and allograft rejection. In general, these agents have demonstrated favorable safety and some of them show promising clinical efficacy. The mechanisms of benefits include immune cell activation and tumor cell lysis/apoptosis in malignancies, or immune cell inactivation in autoimmune diseases and allograft rejection. This review provides a comprehensive overview of the structure, processing, cellular expression pattern, signaling and effector function of CD40/CD40L checkpoint molecules. In addition, we summarize the progress, targeted diseases and outcomes of current ongoing and completed clinical trials of CD40/CD40L-targeted therapy.
Collapse
Affiliation(s)
- TingTing Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Billy Truong
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - LiZhe Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Cardiovascular Medicine, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - XiaoFeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.
| |
Collapse
|
5
|
Mechanistic basis of co-stimulatory CD40-CD40L ligation mediated regulation of immune responses in cancer and autoimmune disorders. Immunobiology 2019; 225:151899. [PMID: 31899051 DOI: 10.1016/j.imbio.2019.151899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/08/2023]
Abstract
Generation of an accurate humoral and a cell mediated adaptive immune responsesare dictated by binding of an antigen to a T- and a B-cell receptor, respectively (first signal) followed by ligation of costimulatory molecules (second signal). CD40, a costimulatory receptor molecule, expressed mainly on antigen presenting cells, some non-immune cells and tumors, binds to CD40 ligand molecule expressed transiently on T-cells and non-immune cells under inflammatory conditions. In the past decade, the CD40-CD40L interaction has emerged as an immune-potentiating system that governs and regulates host immune response against various diseases and pathogens, failing of which results in detrimental patho-physiologies including cancer and autoimmune disorders. CD40-CD40L transduces immune signals intracellularly via TRAF-dependent and independent mechanisms and further downstream by different MAPK pathways and transcription factors such as NF-κB, p38 etc. While CD40 signaling pathway through its cognate interaction between B and T cells promotes activation and proliferation of B-cells, Ig class switching, and generation of B cell memory; however, CD40-CD40L interaction involving other APCs and non-immune cells relay distinct cell signaling resulting in production of a variety of cytokines/chemokines and cell adhesion molecules ultimately conferring host defense against pathogen. In cancer and autoimmune disorders, CD40-CD40L interaction is also responsible for aberrant expression of many disease specific markers, class I/II MHC molecules and other co-stimulatory molecules such as B7 and CD28 in cell- and disease-specific manner. In the present review, the current state of understanding about the CD40-CD40L mediated regulation of immune and non-immune cells is presented. The current paradigm is to target CD40 using agonist anti-CD40 mAbs alone or in synergistic combination with chemotherapy in order to harness or confer anti-tumor and anti-inflammatory immunity.
Collapse
|
6
|
Monitoring T cell-dendritic cell interactions in vivo by intercellular enzymatic labelling. Nature 2018; 553:496-500. [PMID: 29342141 DOI: 10.1038/nature25442] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/08/2017] [Indexed: 12/23/2022]
Abstract
Interactions between different cell types are essential for multiple biological processes, including immunity, embryonic development and neuronal signalling. Although the dynamics of cell-cell interactions can be monitored in vivo by intravital microscopy, this approach does not provide any information on the receptors and ligands involved or enable the isolation of interacting cells for downstream analysis. Here we describe a complementary approach that uses bacterial sortase A-mediated cell labelling across synapses of immune cells to identify receptor-ligand interactions between cells in living mice, by generating a signal that can subsequently be detected ex vivo by flow cytometry. We call this approach for the labelling of 'kiss-and-run' interactions between immune cells 'Labelling Immune Partnerships by SorTagging Intercellular Contacts' (LIPSTIC). Using LIPSTIC, we show that interactions between dendritic cells and CD4+ T cells during T-cell priming in vivo occur in two distinct modalities: an early, cognate stage, during which CD40-CD40L interactions occur specifically between T cells and antigen-loaded dendritic cells; and a later, non-cognate stage during which these interactions no longer require prior engagement of the T-cell receptor. Therefore, LIPSTIC enables the direct measurement of dynamic cell-cell interactions both in vitro and in vivo. Given its flexibility for use with different receptor-ligand pairs and a range of detectable labels, we expect that this approach will be of use to any field of biology requiring quantification of intercellular communication.
Collapse
|
7
|
Bojadzic D, Buchwald P. Toward Small-Molecule Inhibition of Protein-Protein Interactions: General Aspects and Recent Progress in Targeting Costimulatory and Coinhibitory (Immune Checkpoint) Interactions. Curr Top Med Chem 2018; 18:674-699. [PMID: 29848279 PMCID: PMC6067980 DOI: 10.2174/1568026618666180531092503] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Protein-Protein Interactions (PPIs) that are part of the costimulatory and coinhibitory (immune checkpoint) signaling are critical for adequate T cell response and are important therapeutic targets for immunomodulation. Biologics targeting them have already achieved considerable clinical success in the treatment of autoimmune diseases or transplant recipients (e.g., abatacept, belatacept, and belimumab) as well as cancer (e.g., ipilimumab, nivolumab, pembrolizumab, atezolizumab, durvalumab, and avelumab). In view of such progress, there have been only relatively limited efforts toward developing small-molecule PPI inhibitors (SMPPIIs) targeting these cosignaling interactions, possibly because they, as all other PPIs, are difficult to target by small molecules and were not considered druggable. Nevertheless, substantial progress has been achieved during the last decade. SMPPIIs proving the feasibility of such approaches have been identified through various strategies for a number of cosignaling interactions including CD40-CD40L, OX40-OX40L, BAFFR-BAFF, CD80-CD28, and PD-1-PD-L1s. Here, after an overview of the general aspects and challenges of SMPPII-focused drug discovery, we review them briefly together with relevant structural, immune-signaling, physicochemical, and medicinal chemistry aspects. While so far only a few of these SMPPIIs have shown activity in animal models (DRI-C21045 for CD40-D40L, KR33426 for BAFFR-BAFF) or reached clinical development (RhuDex for CD80-CD28, CA-170 for PD-1-PD-L1), there is proof-of-principle evidence for the feasibility of such approaches in immunomodulation. They can result in products that are easier to develop/ manufacture and are less likely to be immunogenic or encounter postmarket safety events than corresponding biologics, and, contrary to them, can even become orally bioavailable.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
8
|
Świontek M, Kamiński ZJ, Kolesińska B, Seebach D. Visible-Light Microscopic Discovery of Up to 150 μm Long Helical Amyloid Fibrils Built of the Dodecapeptide H-(Val-Ala-Leu) 4 -OH and of Decapeptides Derived from Insulin. Chem Biodivers 2016; 13:1111-1117. [PMID: 27459320 DOI: 10.1002/cbdv.201600167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/20/2016] [Indexed: 12/24/2022]
Abstract
In the formation of amyloid fibrils from small peptides, the appearance of superhelices of (P)- or (M)-helicity has been observed for the first time; high concentrations of the peptides and extended periods of incubation at physiological pH appear to be important for this phenomenon. In view of the general importance of peptide and protein aggregation, we give a brief overview with selected examples for demonstration.
Collapse
Affiliation(s)
- Monika Świontek
- Institute of Organic Chemistry, Technical University of Łodz, Zeromskiego 116, PL-90-924, Łodz
| | - Zbigniew J Kamiński
- Institute of Organic Chemistry, Technical University of Łodz, Zeromskiego 116, PL-90-924, Łodz
| | - Beata Kolesińska
- Institute of Organic Chemistry, Technical University of Łodz, Zeromskiego 116, PL-90-924, Łodz.
| | - Dieter Seebach
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093, Zürich.
| |
Collapse
|
9
|
Yamniuk AP, Suri A, Krystek SR, Tamura J, Ramamurthy V, Kuhn R, Carroll K, Fleener C, Ryseck R, Cheng L, An Y, Drew P, Grant S, Suchard SJ, Nadler SG, Bryson JW, Sheriff S. Functional Antagonism of Human CD40 Achieved by Targeting a Unique Species-Specific Epitope. J Mol Biol 2016; 428:2860-79. [PMID: 27216500 DOI: 10.1016/j.jmb.2016.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/07/2016] [Accepted: 05/14/2016] [Indexed: 12/20/2022]
Abstract
Current clinical anti-CD40 biologic agents include both antagonist molecules for the treatment of autoimmune diseases and agonist molecules for immuno-oncology, yet the relationship between CD40 epitope and these opposing biological outcomes is not well defined. This report describes the identification of potent antagonist domain antibodies (dAbs) that bind to a novel human CD40-specific epitope that is divergent in the CD40 of nonhuman primates. A similarly selected anti-cynomolgus CD40 dAb recognizing the homologous epitope is also a potent antagonist. Mutagenesis, biochemical, and X-ray crystallography studies demonstrate that the epitope is distinct from that of CD40 agonists. Both the human-specific and cynomolgus-specific molecules remain pure antagonists even when formatted as bivalent Fc-fusion proteins, making this an attractive therapeutic format for targeting hCD40 in autoimmune indications.
Collapse
Affiliation(s)
- Aaron P Yamniuk
- Department of Molecular Discovery Technologies, Bristol-Myers Squibb, Princeton, NJ 08543, USA.
| | - Anish Suri
- Department of Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Stanley R Krystek
- Department of Molecular Discovery Technologies, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - James Tamura
- Department of Molecular Discovery Technologies, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | | | - Robert Kuhn
- Department of Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Karen Carroll
- Department of Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Catherine Fleener
- Department of Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Rolf Ryseck
- Department of Molecular Discovery Technologies, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Lin Cheng
- Department of Molecular Discovery Technologies, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Yongmi An
- Department of Molecular Discovery Technologies, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Philip Drew
- Domantis, 315 Cambridge Science Park, Cambridge CB4 0WG, UK
| | - Steven Grant
- Domantis, 315 Cambridge Science Park, Cambridge CB4 0WG, UK
| | - Suzanne J Suchard
- Department of Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Steven G Nadler
- Department of Discovery Biology, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - James W Bryson
- Department of Molecular Discovery Technologies, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Steven Sheriff
- Department of Molecular Discovery Technologies, Bristol-Myers Squibb, Princeton, NJ 08543, USA.
| |
Collapse
|
10
|
Li R, Redmond AK, Wang T, Bird S, Dooley H, Secombes CJ. Characterisation of the TNF superfamily members CD40L and BAFF in the small-spotted catshark (Scyliorhinus canicula). FISH & SHELLFISH IMMUNOLOGY 2015; 47:381-389. [PMID: 26386192 DOI: 10.1016/j.fsi.2015.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
The tumour necrosis factor superfamily (TNFSF) members CD40L and BAFF play critical roles in mammalian B cell survival, proliferation and maturation, however little is known about these key cytokines in the oldest jawed vertebrates, the cartilaginous fishes. Here we report the cloning of CD40L and BAFF orthologues (designated ScCD40L and ScBAFF) in the small-spotted catshark (Scyliorhinus canicula). As predicted both proteins are type II membrane-bound proteins with a TNF homology domain in their extracellular region and both are highly expressed in shark immune tissues. ScCD40L transcript levels correlate with those of TCRα and transcription of both genes is modulated in peripheral blood leukocytes following in vitro stimulation. Although a putative CD40L orthologue was identified in the elephant shark genome the work herein is the first molecular characterisation and transcriptional analysis of CD40L in a cartilaginous fish. ScBAFF was also cloned and its transcription characterised in an attempt to resolve the discrepancies observed between spiny dogfish BAFF and bamboo shark BAFF in previously published studies.
Collapse
Affiliation(s)
- Ronggai Li
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Anthony K Redmond
- Centre for Genome-Enabled Biology & Medicine (CGEBM), University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Steve Bird
- Department of Biological Sciences, School of Science and Engineering, University of Waikato, New Zealand
| | - Helen Dooley
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre (SFIRC), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| |
Collapse
|
11
|
Chen J, Zurawski G, Zurawski S, Wang Z, Akagawa K, Oh S, Hideki U, Fay J, Banchereau J, Song W, Palucka AK. A novel vaccine for mantle cell lymphoma based on targeting cyclin D1 to dendritic cells via CD40. J Hematol Oncol 2015; 8:35. [PMID: 25888530 PMCID: PMC4424584 DOI: 10.1186/s13045-015-0131-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/24/2015] [Indexed: 11/20/2022] Open
Abstract
Background Mantle cell lymphoma (MCL) is a distinct clinical pathologic subtype of B cell non-Hodgkin’s lymphoma often associated with poor prognosis. New therapeutic approaches based on boosting anti-tumor immunity are needed. MCL is associated with overexpression of cyclin D1 thus rendering this molecule an interesting target for immunotherapy. Methods We show here a novel strategy for the development of recombinant vaccines carrying cyclin D1 cancer antigens that can be targeted to dendritic cells (DCs) via CD40. Results Healthy individuals and MCL patients have a broad repertoire of cyclin D1-specific CD4+ and CD8+ T cells. Cyclin D1-specific T cells secrete IFN-γ. DCs loaded with whole tumor cells or with selected peptides can elicit cyclin D1-specific CD8+ T cells that kill MCL tumor cells. We developed a recombinant vaccine based on targeting cyclin D1 antigen to human DCs via an anti-CD40 mAb. Targeting monocyte-derived human DCs in vitro with anti-CD40-cyclin D1 fusion protein expanded a broad repertoire of cyclin D1-specific CD4+ and CD8+ T cells. Conclusions This study demonstrated that cyclin D1 represents a good target for immunotherapy and targeting cyclin D1 to DCs provides a new strategy for mantle cell lymphoma vaccine. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0131-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingtao Chen
- Institute of Translational Medicine, the First Hospital, Jilin University, Changchun, 130031, China. .,Baylor Institute for Immunology Research and Sammons Cancer Center, Dallas, TX, 75204, USA.
| | - Gerard Zurawski
- Baylor Institute for Immunology Research and Sammons Cancer Center, Dallas, TX, 75204, USA.
| | - Sandy Zurawski
- Baylor Institute for Immunology Research and Sammons Cancer Center, Dallas, TX, 75204, USA.
| | - Zhiqing Wang
- Baylor Institute for Immunology Research and Sammons Cancer Center, Dallas, TX, 75204, USA.
| | - Keiko Akagawa
- Baylor Institute for Immunology Research and Sammons Cancer Center, Dallas, TX, 75204, USA.
| | - Sangkon Oh
- Baylor Institute for Immunology Research and Sammons Cancer Center, Dallas, TX, 75204, USA.
| | - Ueno Hideki
- Baylor Institute for Immunology Research and Sammons Cancer Center, Dallas, TX, 75204, USA.
| | - Joseph Fay
- Baylor Institute for Immunology Research and Sammons Cancer Center, Dallas, TX, 75204, USA.
| | - Jacques Banchereau
- Baylor Institute for Immunology Research and Sammons Cancer Center, Dallas, TX, 75204, USA. .,The Present address: The Jackson Laboratory for Genomics Medicine, Farmington, CT, USA.
| | - Wenru Song
- Baylor Institute for Immunology Research and Sammons Cancer Center, Dallas, TX, 75204, USA. .,The Present address: AstraZeneca Pharmaceuticals LP, Gaithersburg, MD, USA.
| | - A Karolina Palucka
- Baylor Institute for Immunology Research and Sammons Cancer Center, Dallas, TX, 75204, USA. .,The Present address: The Jackson Laboratory for Genomics Medicine, Farmington, CT, USA.
| |
Collapse
|
12
|
Song Y, Buchwald P. TNF superfamily protein-protein interactions: feasibility of small- molecule modulation. Curr Drug Targets 2015; 16:393-408. [PMID: 25706111 PMCID: PMC4408546 DOI: 10.2174/1389450116666150223115628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
The tumor necrosis factor (TNF) superfamily (TNFSF) contains about thirty structurally related receptors (TNFSFRs) and about twenty protein ligands that bind to one or more of these receptors. Almost all of these cell surface protein-protein interactions (PPIs) represent high-value therapeutic targets for inflammatory or immune modulation in autoimmune diseases, transplant recipients, or cancers, and there are several biologics including antibodies and fusion proteins targeting them that are in various phases of clinical development. Small-molecule inhibitors or activators could represent possible alternatives if the difficulties related to the targeting of protein-protein interactions by small molecules can be addressed. Compounds proving the feasibility of such approaches have been identified through different drug discovery approaches for a number of these TNFSFR-TNFSF type PPIs including CD40-CD40L, BAFFR-BAFF, TRAIL-DR5, and OX40-OX40L. Corresponding structural, signaling, and medicinal chemistry aspects are briefly reviewed here. While none of these small-molecule modulators identified so far seems promising enough to be pursued for clinical development, they provide proof-of-principle evidence that these interactions are susceptible to small-molecule modulation and can serve as starting points toward the identification of more potent and selective candidates.
Collapse
Affiliation(s)
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, 1450 NW 10 Ave (R-134), Miami, FL 33136, USA.
| |
Collapse
|
13
|
Hirbod-Mobarakeh A, Aghamohammadi A, Rezaei N. Immunoglobulin class switch recombination deficiency type 1 or CD40 ligand deficiency: from bedside to bench and back again. Expert Rev Clin Immunol 2013; 10:91-105. [PMID: 24308834 DOI: 10.1586/1744666x.2014.864554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The immunoglobulin class switch recombination deficiency or hyper-IgM syndrome is characterized by normal or elevated serum IgM and low serum levels of other immunoglobulins. Since the first reported patient with hyper-IgM, more than 200 patients with this phenotype resulted from CD40 ligand deficiency have been reported. However, in addition to this common finding, they presented with different manifestations like opportunistic infections, autoimmunity and malignancies each of them are worth a detailed look. In this review, we will focus on different underlying mechanisms of these presentations to review what we have learned from our patients. In the end, we will discuss different treatment options available for these patients using this knowledge.
Collapse
Affiliation(s)
- Armin Hirbod-Mobarakeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
14
|
Khan S, Alonso L, Roduit C, Bandyopadhyay S, Singh S, Saha S, Tacchini-Cottier F, Roy S, Dietler G, Kasas S, Das P, Krishnasastry M, Saha B. Differential peptide binding to CD40 evokes counteractive responses. Hum Immunol 2012. [DOI: 10.1016/j.humimm.2012.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Choutko A, van Gunsteren WF, Hünenberger PH. Preferential Affinity of the Components of Liquid Mixtures at a Rigid Non-Polar Surface: Enthalpic and Entropic Driving Forces. Chemphyschem 2011; 12:3214-23. [DOI: 10.1002/cphc.201100541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Indexed: 01/01/2023]
|
16
|
CD154: an immunoinflammatory mediator in systemic lupus erythematosus and rheumatoid arthritis. Clin Dev Immunol 2011; 2012:490148. [PMID: 22110533 PMCID: PMC3202102 DOI: 10.1155/2012/490148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/17/2011] [Indexed: 01/17/2023]
Abstract
Systemic lupus erythematosus and rheumatoid arthritis are two major chronic inflammatory autoimmune diseases with significant prevalence rates among the population. Although the etiology of these diseases remains unresolved, several evidences support the key role of CD154/CD40 interactions in initiating and/or propagating these diseases. The discovery of new receptors (αIIbβ3, α5β1, and αMβ2) for CD154 has expanded our understanding about the precise role of this critical immune mediator in the physiopathology of chronic inflammatory autoimmune diseases in general, and in systemic lupus erythematosus and rheumatoid arthritis in particular. This paper presents an overview of the interaction of CD154 with its various receptors and outlines its role in the pathogenesis of systemic lupus erythematosus and rheumatoid arthritis. Moreover, the potential usefulness of various CD154-interfering agents in the treatment and prevention of these diseases is also discussed.
Collapse
|
17
|
Silvian LF, Friedman JE, Strauch K, Cachero TG, Day ES, Qian F, Cunningham B, Fung A, Sun L, Shipps GW, Su L, Zheng Z, Kumaravel G, Whitty A. Small molecule inhibition of the TNF family cytokine CD40 ligand through a subunit fracture mechanism. ACS Chem Biol 2011; 6:636-47. [PMID: 21417339 PMCID: PMC3415792 DOI: 10.1021/cb2000346] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BIO8898 is one of several synthetic organic molecules that have recently been reported to inhibit receptor binding and function of the constitutively trimeric tumor necrosis factor (TNF) family cytokine CD40 ligand (CD40L, aka CD154). Small molecule inhibitors of protein-protein interfaces are relatively rare, and their discovery is often very challenging. Therefore, to understand how BIO8898 achieves this feat, we characterized its mechanism of action using biochemical assays and X-ray crystallography. BIO8898 inhibited soluble CD40L binding to CD40-Ig with a potency of IC(50) = 25 μM and inhibited CD40L-dependent apoptosis in a cellular assay. A co-crystal structure of BIO8898 with CD40L revealed that one inhibitor molecule binds per protein trimer. Surprisingly, the compound binds not at the surface of the protein but by intercalating deeply between two subunits of the homotrimeric cytokine, disrupting a constitutive protein-protein interface and breaking the protein's 3-fold symmetry. The compound forms several hydrogen bonds with the protein, within an otherwise hydrophobic binding pocket. In addition to the translational splitting of the trimer, binding of BIO8898 was accompanied by additional local and longer-range conformational perturbations of the protein, both in the core and in a surface loop. Binding of BIO8898 is reversible, and the resulting complex is stable and does not lead to detectable dissociation of the protein trimer. Our results suggest that a set of core aromatic residues that are conserved across a subset of TNF family cytokines might represent a generic hot-spot for the induced-fit binding of trimer-disrupting small molecules.
Collapse
Affiliation(s)
- Laura F. Silvian
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
,To whom correspondence should be addressed: ,
| | - Jessica E. Friedman
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Kathy Strauch
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Teresa G. Cachero
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Eric S. Day
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Fang Qian
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Brian Cunningham
- Sunesis Pharmaceuticals, Incorporated, 341 Oyster Point Boulevard, South San Francisco, CA 94080.
| | - Amy Fung
- Sunesis Pharmaceuticals, Incorporated, 341 Oyster Point Boulevard, South San Francisco, CA 94080.
| | - Lihong Sun
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Gerald W. Shipps
- Neogenesis Pharmaceuticals Inc., 840 Memorial Dr., Cambridge, MA 02139
| | - Lihe Su
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Zhongli Zheng
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | | | - Adrian Whitty
- Boston University, Department of Chemistry, Metcalf Center for Science and Engineering, 590 Commonwealth Ave, Boston, MA 02215.
,To whom correspondence should be addressed: ,
| |
Collapse
|
18
|
An HJ, Kim YJ, Song DH, Park BS, Kim HM, Lee JD, Paik SG, Lee JO, Lee H. Crystallographic and mutational analysis of the CD40-CD154 complex and its implications for receptor activation. J Biol Chem 2011; 286:11226-35. [PMID: 21285457 DOI: 10.1074/jbc.m110.208215] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CD40 is a tumor necrosis factor receptor (TNFR) family protein that plays an important role in B cell development. CD154/CD40L is the physiological ligand of CD40. We have determined the crystal structure of the CD40-CD154 complex at 3.5 Å resolution. The binding site of CD40 is located in a crevice formed between two CD154 subunits. Charge complementarity plays a critical role in the CD40-CD154 interaction. Some of the missense mutations found in hereditary hyper-IgM syndrome can be mapped to the CD40-CD154 interface. The CD40 interaction area of one of the CD154 subunits is twice as large as that of the other subunit forming the binding crevice. This is because cysteine-rich domain 3 (CRD3) of CD40 has a disulfide bridge in an unusual position that alters the direction of the ladder-like structure of CD40. The Ser(132) loop of CD154 is not involved in CD40 binding but its substitution significantly reduces p38- and ERK-dependent signaling by CD40, whereas JNK-dependent signaling is not affected. These findings suggest that ligand-induced di- or trimerization is necessary but not sufficient for complete activation of CD40.
Collapse
Affiliation(s)
- Hyun-Jung An
- Department of Biology, College of Bioscience & Biotechnology, Chungnam National University, Daejon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hermanrud CE, Lucas CL, Sykes M, Huang CA, Wang Z. Expression and purification of soluble murine CD40L monomers and polymers in yeast Pichia pastoris. Protein Expr Purif 2010; 76:115-20. [PMID: 21074618 DOI: 10.1016/j.pep.2010.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/04/2010] [Accepted: 11/04/2010] [Indexed: 11/17/2022]
Abstract
The anti-murine CD40L monoclonal antibody MR1 has been widely used in immunology research to block the CD40-CD40L interaction for induction of transplantation tolerance and to abrogate autoimmune diseases. The availability of recombinant CD40L with high binding capacity for MR1 would provide a valuable immunologic research tool. In this study, we constructed the single chain murine soluble CD40L monomer, dimer, trimer and successfully expressed them in yeast Pichia pastoris under the control of the alcohol oxidase promoter. The secreted single chain murine soluble CD40L monomers, dimers, and trimers were initially enriched through histidine tag capture by Ni-Sepharose 6 fast flow resin and further purified on a cation exchange resin. Purity reached more than 95% for the monomer and dimer forms and more than 90% for the trimer. Protein yield following purification was 16 mg/L for the monomer and dimer, and 8 mg/L for the trimer. ELISA analysis demonstrated that the CD40L dimers and trimers correctly folded in conformations exposing the MR1 antigenic determinant.
Collapse
Affiliation(s)
- Christina E Hermanrud
- Transplantation Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
CD40/CD40 ligand (CD40L) cross-talk plays a key role in B-cell terminal maturation in the germinal centers. Genetic defects affecting CD40 cause a rare form of hyper-immunoglobulin M (IgM) syndrome, a disorder characterized by low or absent serum IgG and IgA, associated with recurrent infections. We previously reported on a few patients with homozygous CD40 mutations resulting in lack or severe reduction of CD40 cell surface expression. Here we characterize the 3 CD40 mutants due to missense mutations or small in-frame deletions, and show that the mutated proteins are synthesized but retained in the endoplasmic reticulum (ER), likely due to protein misfolding. Interestingly, the intracellular behavior and fate differ significantly among the mutants: progressive accumulation of the P2 mutant causes endoplasmic reticulum stress and the activation of an unfolded protein response; the mutant P4 is rather efficiently disposed by the ER-associated degradation pathway, while the P5 mutant partially negotiates transport to the plasma membrane, and is competent for CD40L binding. Interestingly, this latter mutant activates downstream signaling elements when overexpressed in transfected cells. These results give new important insights into the molecular pathogenesis of HIGM disease, and suggest that CD40 deficiency can also be regarded as an ER-storage disease.
Collapse
|
21
|
Margolles-Clark E, Kenyon NS, Ricordi C, Buchwald P. Effective and specific inhibition of the CD40-CD154 costimulatory interaction by a naphthalenesulphonic acid derivative. Chem Biol Drug Des 2010; 76:305-13. [PMID: 20636329 DOI: 10.1111/j.1747-0285.2010.01014.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Costimulatory interactions are important regulators of T-cell activation and, hence, promising therapeutic targets in autoimmune diseases as well as in transplant recipients. Following our recent identification of the first small-molecule inhibitors of the CD40-CD154 costimulatory protein-protein interaction (J Mol Med 87, 2009, 1133), we continued our search within the chemical space of organic dyes, and we now report the identification of the naphthalenesulphonic acid derivative mordant brown 1 as a more active, more effective, and more specific inhibitor. Flow cytometry experiments confirmed its ability to concentration-dependently inhibit the CD154(CD40L)-induced cellular responses in human THP-1 cells at concentrations well below cytotoxic levels. Binding experiments showed that it not only inhibits the CD40-CD154 interaction with sub-micromolar activity, but it also has considerably more than 100-fold selectivity toward this interaction even when compared to other members of the tumor necrosis factor superfamily pairs such as TNF-R1-TNF-α, BAFF-R(CD268)-BAFF(CD257/BLys), OX40(CD134)-OX40L(CD252), RANK(CD265)-RANKL(CD254/TRANCE), or 4-1BB(CD137)-4-1BBL. There is now sufficient structure-activity relationship information to serve as the basis of a drug discovery initiative targeting this important costimulatory interaction.
Collapse
Affiliation(s)
- Emilio Margolles-Clark
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | | | |
Collapse
|
22
|
Xu H, Zhao G, Huang X, Ding Z, Wang J, Wang X, Cheng Y, Kang Y, Wang B. CD40-expressing plasmid induces anti-CD40 antibody and enhances immune responses to DNA vaccination. J Gene Med 2010; 12:97-106. [PMID: 19950201 DOI: 10.1002/jgm.1412] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Various approaches have been used to improve the efficacy of DNA vaccination, including the incorporation of molecular adjuvants. Because the CD40 ligand-CD40 interaction plays a major role in initiating immune responses, we sought to develop a molecular adjuvant targeting this interaction. METHODS AND RESULTS We immunized mice with a foot-and-mouth disease virus DNA vaccine, pcD-VP1, together with a CD40-expressing plasmid, pcD-CD40. We found that pcD-CD40 induced anti-CD40 antibodies, which temporally correlated with the augmented production of anti-VP1 antibody. pcD-CD40 similarly augmented the humoral response of another DNA vaccine that targets hepatitis B virus, and passive transfer of anti-CD40 antisera also showed a similar effect. Furthermore, the pcD-CD40-elicited anti-CD40 antibodies were able to activate the CD40 signal pathway in antigen-presenting cells in vitro, which led to the maturation of dendritic cells (DCs) and DC-mediated T cell activation. Thus, pcD-CD40 augments DNA vaccination by inducing anti-CD40 antibodies, which in turn promotes T cell activation. CONCLUSIONS This is the first reported 'proadjuvant' that augments DNA vaccination indirectly by eliciting agonistic antibodies.
Collapse
Affiliation(s)
- Hanqian Xu
- State Key Laboratories for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Buchwald P, Margolles-Clark E, Kenyon NS, Ricordi C. Organic dyes as small molecule protein-protein interaction inhibitors for the CD40-CD154 costimulatory interaction. J Mol Recognit 2010; 23:65-73. [PMID: 19621420 DOI: 10.1002/jmr.969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is becoming increasingly clear that small molecules can often act as effective protein-protein interaction (PPI) inhibitors, an area of increasing interest for its many possible therapeutic applications. We have identified several organic dyes and related small molecules that (i) concentration-dependently inhibit the important CD40-CD154 costimulatory interaction with activities in the low micromolar (microM) range, (ii) show selectivity toward this particular PPI, (iii) seem to bind on the surface of CD154, and (iv) concentration-dependently inhibit the CD154-induced B cell proliferation. They were identified through an iterative activity screening/structural similarity search procedure starting with suramin as lead, and the best smaller compounds, the main focus of the present work, achieved an almost 3-fold increase in ligand efficiency (DeltaG(0)/nonhydrogen atom = 0.8 kJ/N(nHa)) approaching the average of known promising small-molecule PPI inhibitors (approximately 1.0 kJ/N(nHa)). Since CD154 is a member of the tumor necrosis factor (TNF) superfamily of cell surface interaction molecules, inhibitory activities on the TNF-R1-TNF-alpha interactions were also determined to test for specificity, and the compounds selected here all showed more than 30-fold selectivity toward the CD40-CD154 interaction. Because of their easy availability in various structural scaffolds and because of their good protein-binding ability, often explored for tissue-specific staining and other purposes, such organic dyes can provide a valuable addition to the chemical space searched to identify small molecule PPI inhibitors in general.
Collapse
Affiliation(s)
- Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA.
| | | | | | | |
Collapse
|
24
|
Tang YC, Thoman M, Linton PJ, Deisseroth A. Use of CD40L immunoconjugates to overcome the defective immune response to vaccines for infections and cancer in the aged. Cancer Immunol Immunother 2009; 58:1949-57. [PMID: 19444444 PMCID: PMC11030823 DOI: 10.1007/s00262-009-0718-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
Abstract
Multiple investigators have reported the presence of defects in the immune response of the elderly [Castle In: Clin Infect Dis 31:578, 2000; Ortqvist et al. In: Eur Respir J 30:414-422, 2007; Saurwein-Teissl et al. In: J Immunol 168:5893, 2002; Haynes et al. In: Proc Natl Acad Sci USA 100:15053-15058, 2003]. These defects reduce the magnitude of the immune response to infection and to vaccination. In individuals greater than 55 years of age, the probability of developing a fully protective neutralizing antibody response to the yearly multivalent particle inactivated influenza vaccine is less than 20% [Jefferson et al. In: Lancet 264:1165-1174, 2005; Goodwin et al. In: Vaccine 24:1159-1169, 2006; Jackson et al. In: Lancet 372:398-405, 2008; Simonsen and Taylor In: Lancet 7:658-666, 2007]. The defects in the aged immune system that are responsible for this limited response to vaccination in the older age groups include functional defects of the antigen presenting cells, functional defects in CD4 helper CD4 T cells and monocytes, and an altered microenvironment [Eaton et al. In: J Exp Med 200:1613-1622, 2004; Dong et al. In: J Gen Virol 84:1623-1628, 2003; Deng et al. In: Immunology 172:3437-3446, 2004; Cella et al. In: J Exp Med 184:747-752, 1996]. Starting at puberty, the involution of the thymus and the consequent reduction of the export of naïve T cells specific to neo-antigens leads to the reduction of the ratio of antigen naïve to memory cells as chronological age advances [Prelog In: Autoimmun Rev 5:136-139, 2006; McElhaney et al. In: J Immunology 176:6333-6339, 2006]. Changes in glycosylation of T cells and target antigens acquired during the aging process and the antibodies to these new glycopeptides and glycoproteins may also contribute to a reduction in the functioning of the adaptive immune response [Ishii et al. In: J Clin Neurosci 14:110-115, 2007; Shirai et al. In: Clin Exp Immunol 12:455-464, 1972; Adkins and Riley In: Mech Ageing Dev 103:147-164, 1998; Ben-Yehuda and Weksler In: Cancer Investigation 10:525-531, 1992]. One of the more interesting examples of the functional defects in the cells of the adaptive immune response is a reduced level of expression in the surface cytoadhesion and activation receptor molecules on CD4 helper T cells undergoing activation during vaccination. Upon infection or vaccination, CD40L is typically increased on the surface of CD4 helper T cells during activation, and this increased expression is absolutely essential to the CD40L promotion of expansion of antigen-specific B cells and CD 8 effector T cells in response to infection or vaccination [Singh et al. In: Protein Sci 7:1124-1135, 1998; Grewal and Flavell In: Immunol Res 16: 59-70, 1997; Kornbluth In: J Hematother Stem Cell Res 11:787-801, 2002; Garcia de Vinuesa et al. In: Eur J Immunol 29:3216-3224, 1999]. In aged human beings and mice, the reduced levels of expression of CD40 ligand (CD40L) in activated CD4 helper T cells is dramatically reduced [Eaton et al. In: J Exp Med 200:1613-1622, 2004; Dong et al. In: J Gen Virol 84:1623-1628, 2003]. To circumvent the reduction in CD40L expression and the subsequent reduction in immune response in the elderly, we have developed a chimeric vaccine comprised of the CD40L linked to the target antigen, in a replication incompetent adenoviral vector and in booster protein. This review will discuss the implementation the potential use of this approach for the vaccination of the older populations for cancer and infection.
Collapse
Affiliation(s)
- Yu Cheng Tang
- Sidney Kimmel Cancer Center, San Diego, CA 92121 USA
| | | | | | - Albert Deisseroth
- Sidney Kimmel Cancer Center, San Diego, CA 92121 USA
- Present Address: USFDA, Office of Oncology Drug Products, 10903 New Hampshire Avenue, Bldg. 22, Room 6378, Silver Spring, MD 20993 USA
| |
Collapse
|
25
|
Chatzigeorgiou A, Lyberi M, Chatzilymperis G, Nezos A, Kamper E. CD40/CD40L signaling and its implication in health and disease. Biofactors 2009; 35:474-83. [PMID: 19904719 DOI: 10.1002/biof.62] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CD40, a transmembrane receptor of the tumor necrosis factor gene superfamily is expressed on a variety of cells, such as monocytes, B-cells, antigen presenting cells, endothelial, smooth muscle cells, and fibroblasts. The interaction between CD40 and CD40 ligand (CD40L) enhances the expression of cytokines, chemokines, matrix metalloproteinases, growth factors, and adhesion molecules, mainly through the stimulation of nuclear factor kappa B. The aim of this review is to summarize the molecular and cellular characteristics of CD40 and CD40L, the mechanisms that regulate their expression, the cellular responses they stimulate and finally their implication in the pathophysiology of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Antonios Chatzigeorgiou
- Department of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
26
|
Qi CJ, Zheng L, Ma HB, Fei M, Qian KQ, Shen BR, Wu CP, Vihinen M, Zhang XG. A novel mutation in CD40 and its functional characterization. Hum Mutat 2009; 30:985-94. [DOI: 10.1002/humu.20967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Joshi MC, Sharma A, Kant S, Birah A, Gupta GP, Khan SR, Bhatnagar R, Banerjee N. An insecticidal GroEL protein with chitin binding activity from Xenorhabdus nematophila. J Biol Chem 2008; 283:28287-96. [PMID: 18667427 DOI: 10.1074/jbc.m804416200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Xenorhabdus nematophila secretes insecticidal proteins to kill its larval prey. We have isolated an approximately 58-kDa GroEL homolog, secreted in the culture medium through outer membrane vesicles. The protein was orally insecticidal to the major crop pest Helicoverpa armigera with an LC50 of approximately 3.6 microg/g diet. For optimal insecticidal activity all three domains of the protein, apical, intermediate, and equatorial, were necessary. The apical domain alone was able to bind to the larval gut membranes and manifest low level insecticidal activity. At equimolar concentrations, the apical domain contained approximately one-third and the apical-intermediate domain approximately one-half bioactivity of that of the full-length protein. Interaction of the protein with the larval gut membrane was specifically inhibited by N-acetylglucosamine and chito-oligosaccharides. Treatment of the larval gut membranes with chitinase abolished protein binding. Based on the three-dimensional structural model, mutational analysis demonstrated that surface-exposed residues Thr-347 and Ser-356 in the apical domain were crucial for both binding to the gut epithelium and insecticidal activity. Double mutant T347A,S356A was 80% less toxic (p < 0.001) than the wild type protein. The GroEL homolog showed alpha-chitin binding activity with Kd approximately 0.64 microm and Bmax approximately 4.68 micromol/g chitin. The variation in chitin binding activity of the mutant proteins was in good agreement with membrane binding characteristics and insecticidal activity. The less toxic double mutant XnGroEL showed an approximately 8-fold increase of Kd in chitin binding assay. Our results demonstrate that X. nematophila secretes an insecticidal GroEL protein with chitin binding activity.
Collapse
Affiliation(s)
- Mohan Chandra Joshi
- International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Trouche N, Wieckowski S, Sun W, Chaloin O, Hoebeke J, Fournel S, Guichard G. Small Multivalent Architectures Mimicking Homotrimers of the TNF Superfamily Member CD40L: Delineating the Relationship between Structure and Effector Function. J Am Chem Soc 2007; 129:13480-92. [DOI: 10.1021/ja073169m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nathalie Trouche
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| | - Sébastien Wieckowski
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| | - Weimin Sun
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| | - Olivier Chaloin
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| | - Johan Hoebeke
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| | - Sylvie Fournel
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| | - Gilles Guichard
- Contribution from the CNRS, Institut de Biologie Moléculaire et Cellulaire, laboratoire d'Immunologie et Chimie Thérapeutiques, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
29
|
Affiliation(s)
- Susan E Gibson
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AY, UK.
| | | |
Collapse
|
30
|
Thusberg J, Vihinen M. The structural basis of hyper IgM deficiency – CD40L mutations. Protein Eng Des Sel 2007; 20:133-41. [PMID: 17307885 DOI: 10.1093/protein/gzm004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
X-linked hyper-IgM syndrome (XHIGM) is a primary immunodeficiency characterised by an inability to produce immunoglobulins of the IgG, IgA and IgE isotypes. It is caused by mutations of CD40 ligand (CD40L, CD154), expressed on T-lymphocytes. The interaction of CD40L on T-cells and its receptor CD40 on B-cells is essential for lymphocyte signalling leading to immunoglobulin class switching and B-cell maturation. To understand the structural basis for XHIGM, we utilised bioinformatics methods to analyse all the known CD40L missense mutations at both the sequence and structural level. Our results demonstrate that the 35 different missense mutations have diverse effects on CD40L structure and function, affecting structural disorder and aggregation tendencies, stability maintaining contacts and electrostatic properties. Several mutations also affect residues essential in receptor binding and trimerisation. Experimental study of effects of mutations is laborious and time-consuming and at the structural level often almost impossible. By contrast, precise and useful information about effects of mutations on protein structure and function can readily be obtained by theoretical methods. In this study, all the XHIGM causing missense mutations could be explained in terms of CD40L structure and function. Thus, the molecular basis of the syndrome could be elucidated.
Collapse
Affiliation(s)
- J Thusberg
- Institute of Medical Technology, FI-33014, University of Tampere, Finland
| | | |
Collapse
|
31
|
|
32
|
Aoki K, Saito H, Itzstein C, Ishiguro M, Shibata T, Blanque R, Mian AH, Takahashi M, Suzuki Y, Yoshimatsu M, Yamaguchi A, Deprez P, Mollat P, Murali R, Ohya K, Horne WC, Baron R. A TNF receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss. J Clin Invest 2006; 116:1525-34. [PMID: 16680194 PMCID: PMC1448165 DOI: 10.1172/jci22513] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 03/07/2006] [Indexed: 11/17/2022] Open
Abstract
Activating receptor activator of NF-kappaB (RANK) and TNF receptor (TNFR) promote osteoclast differentiation. A critical ligand contact site on the TNFR is partly conserved in RANK. Surface plasmon resonance studies showed that a peptide (WP9QY) that mimics this TNFR contact site and inhibits TNF-alpha-induced activity bound to RANK ligand (RANKL). Changing a single residue predicted to play an important role in the interaction reduced the binding significantly. WP9QY, but not the altered control peptide, inhibited the RANKL-induced activation of RANK-dependent signaling in RAW 264.7 cells but had no effect on M-CSF-induced activation of some of the same signaling events. WP9QY but not the control peptide also prevented RANKL-induced bone resorption and osteoclastogenesis, even when TNFRs were absent or blocked. In vivo, where both RANKL and TNF-alpha promote osteoclastogenesis, osteoclast activity, and bone loss, WP9QY prevented the increased osteoclastogenesis and bone loss induced in mice by ovariectomy or low dietary calcium, in the latter case in both wild-type and TNFR double-knockout mice. These results suggest that a peptide that mimics a TNFR ligand contact site blocks bone resorption by interfering with recruitment and activation of osteoclasts by both RANKL and TNF.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Bone Resorption
- Calcium, Dietary
- Carrier Proteins/chemistry
- Carrier Proteins/metabolism
- Cell Line
- Cells, Cultured
- Female
- Glycoproteins/chemistry
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Lumbar Vertebrae/anatomy & histology
- Lumbar Vertebrae/pathology
- Male
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Molecular
- Molecular Sequence Data
- Osteoclasts/cytology
- Osteoclasts/physiology
- Osteoprotegerin
- Ovariectomy
- Peptides/chemistry
- Peptides/genetics
- Peptides/metabolism
- Protein Conformation
- RANK Ligand
- Receptor Activator of Nuclear Factor-kappa B
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Sequence Alignment
- Signal Transduction/physiology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hiroaki Saito
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cecile Itzstein
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Masaji Ishiguro
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tatsuya Shibata
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Roland Blanque
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Anower Hussain Mian
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mariko Takahashi
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yoshifumi Suzuki
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Masako Yoshimatsu
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Akira Yamaguchi
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Pierre Deprez
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Patrick Mollat
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ramachandran Murali
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Keiichi Ohya
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - William C. Horne
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Roland Baron
- Departments of Cell Biology and Orthopaedics, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Suntory Institute for Bioorganic Research, Osaka, Japan.
Department of Pharmacology, Tsurumi University, School of Dental Medicine, Yokohama, Japan.
ProStrakan Pharmaceuticals, Paris, France.
Section of Periodontology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Developmental and Reconstructive Medicine, Orthodontics, Nagasaki University, Nagasaki, Japan.
Department of Oral Restitution, Section of Oral Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
He XH, Xu LH, Liu Y. Enhancement of binding activity of soluble human CD40 to CD40 ligand through incorporation of an isoleucine zipper motif. Acta Pharmacol Sin 2006; 27:333-8. [PMID: 16490170 DOI: 10.1111/j.1745-7254.2006.00285.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM To investigate the effect of incorporation of an isoleucine zipper (IZ) motif into CD40 on binding activity of CD40 for the CD40 ligand (CD40L). METHODS Prokaryotic expression vectors for 2 soluble CD40 derivatives, shCD40His and shCD40IZ containing an IZ domain, were constructed and expressed in Escherichia coli. The recombinant proteins were purified to homogeneity after refolding from inclusion bodies. Their molecular weights in solution of shCD40His and shCD40IZ were compared by size-exclusion chromatography, and their binding activity for CD40L on Jurkat T cells was determined by flow cytometry. RESULTS shCD40His and shCD40IZ were generated. Both of them possessed significant binding activity for the cognate ligand CD40L expressed on the cell surface. shCD40IZ had much higher binding activity to its ligand (CD40L) than did shCD40His. Furthermore, size-exclusion chromatography demonstrated that shCD40IZ existed in high molecular mass forms that were most likely to be trimers in solution. CONCLUSION Incorporation of an IZ motif into CD40 enhances its binding activity for CD40L through trimerization of the CD40 derivative.
Collapse
Affiliation(s)
- Xian-hui He
- Key Laboratory of Ministry of Education for Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China.
| | | | | |
Collapse
|
34
|
Bianco A, Fournel S, Wieckowski S, Hoebeke J, Guichard G. Solid-phase synthesis of CD40L mimetics. Org Biomol Chem 2006; 4:1461-3. [PMID: 16604209 DOI: 10.1039/b601528j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C3-symmetric molecule has been previously shown to mimic CD40 ligand (CD40L) homotrimers and to display effector functions. This molecule consists of a cyclic hexapeptide core containing the repetition of the D-Ala-L-Lys motif. The side chains of the lysine residues have been modified by appending the CD40L-derived sequence 143Lys-Gly-Tyr-Tyr146 via a 6-aminohexanoic acid residue as a spacer. The present report describes a general solid-phase synthesis approach to and related trimeric architectures. In addition, their CD40 binding properties as well as their effector functions have been evaluated.
Collapse
Affiliation(s)
- Alberto Bianco
- Institut de Biologie Moléculaire et Cellulaire, UPR 9021 CNRS, Immunologie et Chimie Thérapeutiques, 15 Rue René Descartes, 67084 Strasbourg, France.
| | | | | | | | | |
Collapse
|
35
|
Fournel S, Wieckowski S, Sun W, Trouche N, Dumortier H, Bianco A, Chaloin O, Habib M, Peter JC, Schneider P, Vray B, Toes RE, Offringa R, Melief CJM, Hoebeke J, Guichard G. C3-symmetric peptide scaffolds are functional mimetics of trimeric CD40L. Nat Chem Biol 2005; 1:377-82. [PMID: 16370373 DOI: 10.1038/nchembio746] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interaction between CD40, a member of the tumor necrosis factor receptor (TNFR) superfamily, and its ligand CD40L, a 39-kDa glycoprotein, is essential for the development of humoral and cellular immune responses. Selective blockade or activation of this pathway provides the ground for the development of new treatments against immunologically based diseases and malignancies. Like other members of the TNF superfamily, CD40L monomers self-assemble around a threefold symmetry axis to form noncovalent homotrimers that can each bind three receptor molecules. Here, we report on the structure-based design of small synthetic molecules with C3 symmetry that can mimic CD40L homotrimers. These molecules interact with CD40, compete with the binding of CD40L to CD40, and reproduce, to a certain extent, the functional properties of the much larger homotrimeric soluble CD40L. Architectures based on rigid C3-symmetric cores may thus represent a general approach to mimicking homotrimers of the TNF superfamily.
Collapse
Affiliation(s)
- Sylvie Fournel
- UPR 9021 CNRS, Immunologie et Chimie Thérapeutiques, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, F-67084 Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Avery S, Rothwell L, Degen WDJ, Schijns VEJC, Young J, Kaufman J, Kaiser P. Characterization of the first nonmammalian T2 cytokine gene cluster: the cluster contains functional single-copy genes for IL-3, IL-4, IL-13, and GM-CSF, a gene for IL-5 that appears to be a pseudogene, and a gene encoding another cytokinelike transcript, KK34. J Interferon Cytokine Res 2005; 24:600-10. [PMID: 15626157 DOI: 10.1089/jir.2004.24.600] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A genomics approach based on the conservation of synteny was used to develop a bacterial artificial chromosome (BAC) contig across the chicken T2 cytokine gene cluster. Sequencing of representative BACs showed that the chicken genome encodes genes for the homologs of mammalian interleukin-3 (IL-3), IL-4, IL-5, IL-13, and granulocyte-macrophage colony-stimulating factor (GM-CSF). These sequences represent the first T2 cytokines found outside of mammals, and their location demonstrates that the T2 cluster is ancient (at least 300 million years old). Four of these genes (IL-3, IL-4, IL-13, and GM-CSF) are expressed at the mRNA level and can be expressed as recombinant protein. In contrast to the other four genes, the chicken IL-5 (ChIL-5) gene we sequenced lacks a recognizable promoter and regulatory sequences in the predicted 3'-untranslated region (3'-UTR). Further, there is no evidence for its expression at the mRNA level. We, therefore, hypothesize that it is a pseudogene. Genomic analysis revealed that a recently characterized cytokinelike transcript, KK34, not identified in our initial analysis of the BAC sequence, is also encoded in this cluster. This gene may represent a duplication of an ancestral IL-5 gene and may encode the functional homolog of IL-5 in the chicken.
Collapse
Affiliation(s)
- Stuart Avery
- Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Tregaskes CA, Glansbeek HL, Gill AC, Hunt LG, Burnside J, Young JR. Conservation of biological properties of the CD40 ligand, CD154 in a non-mammalian vertebrate. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:361-374. [PMID: 15859239 DOI: 10.1016/j.dci.2004.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Signals delivered by the CD40 ligand, CD154, have crucial roles in immune responses in mammals, being required for development of germinal centres, maturation of T-dependent antibody responses, and generation of B-cell memory. To determine whether these functions were conserved in a non-mammalian species, a putative chicken CD 154 cDNA was used to make an oligomeric fusion protein, and to raise monoclonal antibodies. The antibodies detected surface expression on activated T-cells. The fusion protein detected expression of a receptor on B-cells, thrombocytes and macrophages. Biological effects of the fusion protein included induction of NO synthesis in a macrophage cell line, enhancement of splenic B-cell survival, and induction of apoptosis in a bursal lymphoma cell line. These observations demonstrated substantial functional equivalence with mammalian CD 154 and thus provided evidence for the early evolutionary emergence of the set of functions associated with this molecule, and its central role in the vertebrate immune system.
Collapse
Affiliation(s)
- Clive A Tregaskes
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
| | | | | | | | | | | |
Collapse
|
38
|
López-Granados E, Cambronero R, Ferreira A, Fontán G, García-Rodríguez MC. Three novel mutations reflect the variety of defects causing phenotypically diverse X-linked hyper-IgM syndrome. Clin Exp Immunol 2003; 133:123-31. [PMID: 12823286 PMCID: PMC1808739 DOI: 10.1046/j.1365-2249.2003.02184.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
X-linked hyper-IgM syndrome (HIGM1) (MIM musical sharp 308230), is a severe primary immunodeficiency caused by mutations in the gene coding for CD40 ligand (CD40L or CD154), a member of the tumour necrosis factor (TNF) superfamily. The interaction of this protein with its ligand, CD40, mediates crucial processes in the immune response. The variety of defects that have been described in HIGM1 patients range from a complete lack of CD40L protein expression to missense mutations that interfere with its interaction with CD40L. In this study we describe three families - a total of seven HIGM1 patients and carriers, presenting a spectrum of severity in clinical evolution. In two of these families, patient DNA samples were available for genetic studies. In the third, carrier detection was performed on female family members. The results of immunological studies - the different patterns of CD40L expression and binding capacity as measured by flow cytometry - and molecular diagnosis are presented. Three novel mutations were identified: an intron mutation that partially interferes with the splicing process (intron 3, position + 5 G/T); a missense mutation (Ser222 Phe) located in the molecular region which interacts with the receptor and which abrogates binding capacity; and a 14 base pair deletion leading to a frameshift and a premature truncated mutation (del I 171 X 195). An attempt to correlate protein expression and function of the CD40L mutants with clinical disease evolution is described.
Collapse
|
39
|
Malmborg Hager AC, Ellmark P, Borrebaeck CAK, Furebring C. Affinity and epitope profiling of mouse anti-CD40 monoclonal antibodies. Scand J Immunol 2003; 57:517-24. [PMID: 12791089 DOI: 10.1046/j.1365-3083.2003.01271.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CD40-CD40L interaction plays a critical role in both humoral and cellular immune responses and interfering antibodies have been suggested as an effective approach for the treatment of lymphomas and autoimmune diseases. In this study we have profiled a panel of mouse antihuman CD40 monoclonal antibodies (MoAbs), regarding their CD40 binding affinity and epitope-specificity relative to the CD40L binding in relation to their cellular activating potential. Despite a rather similar domain-recognition profile, the MoAbs blocked the CD40L binding to a varying degree, with MoAb 5C3 being the poorest inhibitor. There was no correlation between affinity and cellular activation potential. In contrast, a correlation between the ability to block CD40L-binding and activation potential could be seen. We believe that this analysis of several mouse anti-CD40 antibodies can be used to develop strategies for producing new human anti-CD40 antibodies that can more effectively induce or block B-cell proliferation.
Collapse
|
40
|
Ellmark P, Furebring C, Borrebaeck CAK. Pre-assembly of the extracellular domains of CD40 is not necessary for rescue of mouse B cells from anti-immunoglobulin M-induced apoptosis. Immunology 2003; 108:452-7. [PMID: 12667206 PMCID: PMC1782917 DOI: 10.1046/j.1365-2567.2003.01622.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CD40 is a tumour necrosis factor receptor (TNFR) family member of central importance for the adaptive immune system. To elucidate the functional role of the different extracellular domains of CD40, we have created a set of truncated CD40 molecules where domains, or parts of domains, have been removed. These CD40 proteins, which contain a peptide tag in the N-terminal end, have been expressed in a murine B-cell line, WEHI 231. It was found that ligation of these engineered CD40 proteins via the peptide tag, was sufficient to rescue as well as to promote proliferation of apoptotic WEHI 231 cells, even when all the extracellular domains of CD40 were absent. Our results suggest that pre association of CD40 in the cell membrane plays no critical role for the CD40 signalling pathway. Furthermore, our data imply that conformational changes initiated in the extracellular domains of CD40 are not essential for signal transduction.
Collapse
Affiliation(s)
- Peter Ellmark
- Department of Immunotechnology, Lund University Lund, Sweden
| | | | | |
Collapse
|
41
|
Ellmark P, Ottosson C, Borrebaeck CAK, Malmborg Hager AC, Furebring C. Modulation of the CD40-CD40 ligand interaction using human anti-CD40 single-chain antibody fragments obtained from the n-CoDeR phage display library. Immunology 2002; 106:456-63. [PMID: 12153507 PMCID: PMC1782749 DOI: 10.1046/j.1365-2567.2002.01473.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD40 plays a central regulatory role in the immune system and antibodies able to modulate CD40 signalling may consequently have a potential in immunotherapy, in particular for treatment of lymphomas and autoimmune disease like multiple sclerosis. As a first step to achieve this goal, we describe the selection and characterization of a novel set of fully human anti-CD40 antibody fragments (scFv) from a phage display library (n-CoDeR). In order to determine their biological potential, these antibody fragments have been analysed for their ability to promote B-cell activation, rescue from apoptosis and to block the CD40-CD40 ligand (CD40L) interaction. The selected cohort of human scFv could be subcategorized, each expressing a distinct functional signature. Thus scFv were generated that induced B-cell proliferation, rescued B cells from apoptosis and blocked the CD40-CD40L interaction to different extents. In particular, one of the scFv clones (F33) had the ability to abrogate completely this interaction. The epitope recognition patterns as well as individual rate constants were also determined and the affinity was shown to vary from low to high nanomolar range. In conclusion, this panel of human anti-CD40 scFv fragments displays a number of distinct properties, which may constitute a valuable source when evaluating candidates for in vivo trials.
Collapse
Affiliation(s)
- Peter Ellmark
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
42
|
Karpusas M, Cachero TG, Qian F, Boriack-Sjodin A, Mullen C, Strauch K, Hsu YM, Kalled SL. Crystal structure of extracellular human BAFF, a TNF family member that stimulates B lymphocytes. J Mol Biol 2002; 315:1145-54. [PMID: 11827482 DOI: 10.1006/jmbi.2001.5296] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
B cell activating factor (BAFF), a ligand belonging to the tumor necrosis factor (TNF) family, plays a critical role in regulating survival and activation of peripheral B cell populations and has been associated with autoimmune disease. BAFF is known to interact with three receptors, BCMA, TACI and BAFF-R, that have distant similarities with other receptors of the TNF family. We have determined the crystal structure of the TNF-homologous domain of BAFF at 2.8 A resolution. The structure reveals significant differences when compared to other TNF family members, including an unusually long D-E loop that participates in the formation of a deep, concave and negatively charged region in the putative receptor binding site. The BAFF structure was further used to generate a homology model of APRIL, a closely related TNF family ligand that also binds to BCMA and TACI, but not BAFF-R. Analysis of the putative receptor binding sites of BAFF and APRIL suggests that differences in the D-E loop structure and electrostatic surface potentials may be important for determining binding specificities for BCMA, TACI and BAFF-R.
Collapse
|
43
|
Zhu X, Chung I, O'Gorman MR, Scholl PR. Coexpression of Normal and Mutated CD40 Ligand with Deletion of a Putative RNA Lariat Branchpoint Sequence in X-Linked Hyper-IgM Syndrome. Clin Immunol 2001; 99:334-9. [PMID: 11358428 DOI: 10.1006/clim.2001.5022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a novel CD40 ligand (CD40L) splicing mutation in a patient with X-linked hyper-IgM syndrome (X-HIM) associated with alternate splicing of exon 3, resulting in the expression of both full-length and exon-3-skipped CD40L mRNA. The mutation is an 8-bp deletion 25 bp upstream of the intron 2/exon 3 junction which overlaps a putative RNA branchpoint, suggesting that it may impair RNA lariat formation. The exon-3-skipped CD40L transcript encodes a truncated protein (CD40LDeltaE3) encompassing the cytoplasmic, transmembrane, and extracellular stalk domains, but lacking the CD40L receptor binding domain. CD40LDeltaE3 protein expression was readily detectable in transfected Cos cells by immunofluorescence. In cells cotransfected with CD40LDeltaE3 and wild-type CD40L, expression of CD40LDeltaE3 did not inhibit the expression of wild-type CD40L monomers, but strongly inhibited staining by the conformationally sensitive anti-CD40L mAb 5c8, suggesting that CD40LDeltaE3 acts in a dominant negative manner to inhibit the assembly of functional CD40L trimers. This mechanism may contribute to the pathophysiology of CD40L deficiency in X-HIM patients with leaky splice site mutations.
Collapse
Affiliation(s)
- X Zhu
- Disease Pathogenesis Program, Children's Memorial Institute for Education and Research, Chicago, Illinois 60614, USA
| | | | | | | |
Collapse
|
44
|
Karpusas M, Lucci J, Ferrant J, Benjamin C, Taylor FR, Strauch K, Garber E, Hsu YM. Structure of CD40 ligand in complex with the Fab fragment of a neutralizing humanized antibody. Structure 2001; 9:321-9. [PMID: 11525169 DOI: 10.1016/s0969-2126(01)00590-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND CD40 ligand (CD40L or CD154), a member of the tumor necrosis factor (TNF) family, plays a critical role in both humoral and cellular immune responses and has been implicated in biological pathways involving epithelial cells, fibroblasts, and platelets. Such a pathway is T cell-mediated B cell activation, a process that occurs through the interaction of CD40L with CD40 receptor expressed on B cells. It results in various B cell responses, including immunoglobulin isotype switching and B cell differentiation and proliferation. These responses can be inhibited by the monoclonal antibody 5c8, which binds with high affinity to CD40L. RESULTS To understand the structural basis of the inhibition, we determined the crystal structure of the complex of the extracellular domain of CD40L and the Fab fragment of humanized 5c8 antibody. The structure shows that the complex has the shape of a three-bladed propeller with three Fab fragments bound symmetrically to a CD40L homotrimer. To further study the nature of the antibody-antigen interface, we assessed the ability of 23 site-directed mutants of CD40L to bind to 5c8 and CD40 and analyzed the results in the context of the crystal structure. Finally, we observed via confocal microscopy that 5c8 binding to CD40L on the cell surface results in the formation of patches of clustered complexes. CONCLUSIONS The structure reveals that 5c8 neutralizes CD40L function by sterically blocking CD40 binding. The antigenic epitope is localized in a region of the surface that is likely to be structurally perturbed as a result of genetic mutations that cause hyper-IgM syndrome. The symmetric trimeric arrangement of the Fab fragments in the complex results in a geometry that facilitates the formation of large clusters of complexes on the cell surface.
Collapse
Affiliation(s)
- M Karpusas
- Biogen, Inc, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Grammer AC, Lipsky PE. CD40-mediated regulation of immune responses by TRAF-dependent and TRAF-independent signaling mechanisms. Adv Immunol 2001; 76:61-178. [PMID: 11079098 DOI: 10.1016/s0065-2776(01)76019-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- A C Grammer
- Intramural Research Program of National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
46
|
Abstract
Tumour Necrosis Factor alpha (TNF alpha), is an inflammatory cytokine produced by macrophages/monocytes during acute inflammation and is responsible for a diverse range of signalling events within cells, leading to necrosis or apoptosis. The protein is also important for resistance to infection and cancers. TNF alpha exerts many of its effects by binding, as a trimer, to either a 55 kDa cell membrane receptor termed TNFR-1 or a 75 kDa cell membrane receptor termed TNFR-2. Both these receptors belong to the so-called TNF receptor superfamily. The superfamily includes FAS, CD40, CD27, and RANK. The defining trait of these receptors is an extra cellular domain comprised of two to six repeats of cysteine rich motifs. Additionally, a number of structurally related "decoy receptors" exist that act to sequester TNF molecules, thereby rescuing cells from apoptosis. The crystal structures of TNF alpha, TNF beta, the extracellular domain of TNFR-1 (denoted sTNFR-1), and the TNF beta sTNFR-1 complex have been defined by crystallography. This article will review the structure/function relationships of the TNF alpha and the TNF receptor superfamily. It will also discuss insights as to how structural features play a role in the pleiotropic effects of TNF alpha.
Collapse
Affiliation(s)
- H T Idriss
- Centre for Biomolecular Sciences, The University, St. Andrews, Fife KY16 9ST, Scotland, United Kingdom
| | | |
Collapse
|
47
|
Abstract
CD40 ligand, a type II transmembrane protein recently renamed CD154, was originally considered restricted to activated T lymphocytes, functioning as a mediator of T cell-dependent B cell activation, proliferation, and differentiation. However, the spectrum of CD154 expression and function has broadened considerably during recent years, establishing new roles as a central mediator of immunity and inflammation for this member of the tumor necrosis factor (TNF) gene superfamily. The emerging picture indicates that ligation of the receptor CD40 via CD154, most potently in its trimeric form, functions in two ways. CD154 modulates physiologic processes, such as T cell-mediated effector functions and general immune responses required for appropriate host defense, but also triggers the expression of pro-inflammatory mediators, such as cytokines, adhesion molecules, and matrix degrading activities, all of which are associated with the pathogenesis of chronic inflammatory diseases, e.g., autoimmune disorders, arthritis, atherosclerosis, and cancer. Accordingly, CD40/CD154 interactions have advanced as a potential therapeutic target for these diseases, whereby two opposing strategies, interruption as well as enhancement of CD40 signaling, are explored for beneficial outcomes.
Collapse
Affiliation(s)
- U Schönbeck
- Cardiovascular Medicine, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, 221 Longwood Ave, Boston, MA 02115, USA
| | | | | |
Collapse
|
48
|
Hogenhout SA, van der Wilk F, Verbeek M, Goldbach RW, van den Heuvel JF. Identifying the determinants in the equatorial domain of Buchnera GroEL implicated in binding Potato leafroll virus. J Virol 2000; 74:4541-8. [PMID: 10775590 PMCID: PMC111974 DOI: 10.1128/jvi.74.10.4541-4548.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Luteoviruses avoid degradation in the hemolymph of their aphid vector by interacting with a GroEL homolog from the aphid's primary endosymbiotic bacterium (Buchnera sp.). Mutational analysis of GroEL from the primary endosymbiont of Myzus persicae (MpB GroEL) revealed that the amino acids mediating binding of Potato leafroll virus (PLRV; Luteoviridae) are located within residues 9 to 19 and 427 to 457 of the N-terminal and C-terminal regions, respectively, of the discontinuous equatorial domain. Virus overlay assays with a series of overlapping synthetic decameric peptides and their derivatives demonstrated that R13, K15, L17, and R18 of the N-terminal region and R441 and R445 of the C-terminal region of the equatorial domain of GroEL are critical for PLRV binding. Replacement of R441 and R445 by alanine in full-length MpB GroEL and in MpB GroEL deletion mutants reduced but did not abolish PLRV binding. Alanine substitution of either R13 or K15 eliminated the PLRV-binding capacity of the other and those of L17 and R18. In the predicted tertiary structure of GroEL, the determinants mediating virus binding are juxtaposed in the equatorial plain.
Collapse
Affiliation(s)
- S A Hogenhout
- Plant Research International, 6700 AA Wageningen, 6709 PD Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
|
50
|
Barnhart B, Ford GS, Bhushan A, Song C, Covey LR. A polymorphic CD40 ligand (CD154) molecule mediates CD40-dependent signalling but interferes with the ability of soluble CD40 to functionally block CD154:CD40 interactions. Immunology 2000; 99:54-61. [PMID: 10651941 PMCID: PMC2327125 DOI: 10.1046/j.1365-2567.2000.00943.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the characterization of a naturally occurring polymorphism in CD40 ligand (CD40L, CD154) expressed by activated T cells from a young female patient. This polymorphism encodes a nonconservative Gly --> Arg substitution in amino acid 219 in the extracellular, CD40 binding domain of the molecule. Studies carried out with 293 epithelial cells ectopically expressing the polymorphic protein (CD154/G219R) revealed reduced levels of binding to different anti-CD154 monoclonal antibodies (mAb) and CD40-immunoglobulin (CD40-Ig). However, recognition of the polymorphic and wild-type CD154 molecules by a polyclonal antiserum was comparable, suggesting that the polymorphism affects the ability of the protein to interact with CD40 but does not significantly alter its surface expression. To determine if reduced cross-linking of CD40 mediated decreased functional effects, three CD40-dependent properties were measured. We found that pathways leading to the induction of surface CD23, CD80, and Igamma transcription were activated in response to CD154/G219R signalling. However, the decrease in affinity for CD40 by the mutated CD154 affected the ability of CD40-Ig to efficiently interfere with the binding and effectively block induced CD80 expression. In contrast, we found that the 5c8 mAb, which recognized the polymorphic molecule to a similar extent as wild-type CD154, effectively blocked the interaction between CD154/G219R and CD40 as measured by CD80 expression. These findings suggest that naturally occurring polymorphisms in the CD154 molecule may affect the ability of CD40-mediated functions to be blocked by soluble CD40 or anti-CD154 mAb in the therapeutic treatment of disease and graft rejection.
Collapse
Affiliation(s)
- B Barnhart
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|