1
|
Genetic tools for the redirection of the central carbon flow towards the production of lactate in the human gut bacterium Phocaeicola (Bacteroides) vulgatus. Appl Microbiol Biotechnol 2022; 106:1211-1225. [PMID: 35080666 PMCID: PMC8816746 DOI: 10.1007/s00253-022-11777-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/26/2022]
Abstract
Species of the genera Bacteroides and Phocaeicola play an important role in the human colon. The organisms contribute to the degradation of complex heteropolysaccharides to small chain fatty acids, which are in part utilized by the human body. Furthermore, these organisms are involved in the synthesis of vitamins and other bioactive compounds. Of special interest is Phocaeicola vulgatus, originally classified as a Bacteroides species, due to its abundance in the human intestinal tract and its ability to degrade many plant-derived heteropolysaccharides. We analyzed different tools for the genetic modification of this microorganism, with respect to homologous gene expression of the ldh gene encoding a D-lactate dehydrogenase (LDH). Therefore, the ldh gene was cloned into the integration vector pMM656 and the shuttle vector pG106 for homologous gene expression in P. vulgatus. We determined the ldh copy number, transcript abundance, and the enzyme activity of the wild type and the mutants. The strain containing the shuttle vector showed an approx. 1500-fold increase in the ldh transcript concentration and an enhanced LDH activity that was about 200-fold higher compared to the parental strain. Overall, the proportion of lactate in the general catabolic carbon flow increased from 2.9% (wild type) to 28.5% in the LDH-overproducing mutant. This approach is a proof of concept, verifying the genetic accessibility of P. vulgatus and could form the basis for targeted genetic optimization. KEY POINTS: • A lactate dehydrogenase was overexpressed in Phocaeicola (Bacteroides) vulgatus. • The ldh transcript abundance and the LDH activity increased sharply in the mutant. • The proportion of lactate in the catabolic carbon flow increased to about 30%.
Collapse
|
2
|
Stogios PJ, Savchenko A. Molecular mechanisms of vancomycin resistance. Protein Sci 2020; 29:654-669. [PMID: 31899563 DOI: 10.1002/pro.3819] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Abstract
Vancomycin and related glycopeptides are drugs of last resort for the treatment of severe infections caused by Gram-positive bacteria such as Enterococcus species, Staphylococcus aureus, and Clostridium difficile. Vancomycin was long considered immune to resistance due to its bactericidal activity based on binding to the bacterial cell envelope rather than to a protein target as is the case for most antibiotics. However, two types of complex resistance mechanisms, each comprised of a multi-enzyme pathway, emerged and are now widely disseminated in pathogenic species, thus threatening the clinical efficiency of vancomycin. Vancomycin forms an intricate network of hydrogen bonds with the d-Ala-d-Ala region of Lipid II, interfering with the peptidoglycan layer maturation process. Resistance to vancomycin involves degradation of this natural precursor and its replacement with d-Ala-d-lac or d-Ala-d-Ser alternatives to which vancomycin has low affinity. Through extensive research over 30 years after the initial discovery of vancomycin resistance, remarkable progress has been made in molecular understanding of the enzymatic cascades responsible. Progress has been driven by structural studies of the key components of the resistance mechanisms which provided important molecular understanding such as, for example, the ability of this cascade to discriminate between vancomycin sensitive and resistant peptidoglycan precursors. Important structural insights have been also made into the molecular evolution of vancomycin resistance enzymes. Altogether this molecular data can accelerate inhibitor discovery and optimization efforts to reverse vancomycin resistance. Here, we overview our current understanding of this complex resistance mechanism with a focus on the structural and molecular aspects.
Collapse
Affiliation(s)
- Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.,Center for Structural Genomics of Infectious Diseases (CSGID)
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.,Center for Structural Genomics of Infectious Diseases (CSGID).,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Matelska D, Shabalin IG, Jabłońska J, Domagalski MJ, Kutner J, Ginalski K, Minor W. Classification, substrate specificity and structural features of D-2-hydroxyacid dehydrogenases: 2HADH knowledgebase. BMC Evol Biol 2018; 18:199. [PMID: 30577795 PMCID: PMC6303947 DOI: 10.1186/s12862-018-1309-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The family of D-isomer specific 2-hydroxyacid dehydrogenases (2HADHs) contains a wide range of oxidoreductases with various metabolic roles as well as biotechnological applications. Despite a vast amount of biochemical and structural data for various representatives of the family, the long and complex evolution and broad sequence diversity hinder functional annotations for uncharacterized members. RESULTS We report an in-depth phylogenetic analysis, followed by mapping of available biochemical and structural data on the reconstructed phylogenetic tree. The analysis suggests that some subfamilies comprising enzymes with similar yet broad substrate specificity profiles diverged early in the evolution of 2HADHs. Based on the phylogenetic tree, we present a revised classification of the family that comprises 22 subfamilies, including 13 new subfamilies not studied biochemically. We summarize characteristics of the nine biochemically studied subfamilies by aggregating all available sequence, biochemical, and structural data, providing comprehensive descriptions of the active site, cofactor-binding residues, and potential roles of specific structural regions in substrate recognition. In addition, we concisely present our analysis as an online 2HADH enzymes knowledgebase. CONCLUSIONS The knowledgebase enables navigation over the 2HADHs classification, search through collected data, and functional predictions of uncharacterized 2HADHs. Future characterization of the new subfamilies may result in discoveries of enzymes with novel metabolic roles and with properties beneficial for biotechnological applications.
Collapse
Affiliation(s)
- Dorota Matelska
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA.,Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Ivan G Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, 22908, USA
| | - Jagoda Jabłońska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Marcin J Domagalski
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, 22908, USA
| | - Jan Kutner
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA.,Laboratory for Structural and Biochemical Research, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland.
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA. .,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, 22908, USA. .,Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
4
|
Kutner J, Shabalin IG, Matelska D, Handing KB, Gasiorowska O, Sroka P, Gorna MW, Ginalski K, Wozniak K, Minor W. Structural, Biochemical, and Evolutionary Characterizations of Glyoxylate/Hydroxypyruvate Reductases Show Their Division into Two Distinct Subfamilies. Biochemistry 2018; 57:963-977. [PMID: 29309127 PMCID: PMC6469932 DOI: 10.1021/acs.biochem.7b01137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The d-2-hydroxyacid dehydrogenase (2HADH) family illustrates a complex evolutionary history with multiple lateral gene transfers and gene duplications and losses. As a result, the exact functional annotation of individual members can be extrapolated to a very limited extent. Here, we revise the previous simplified view on the classification of the 2HADH family; specifically, we show that the previously delineated glyoxylate/hydroxypyruvate reductase (GHPR) subfamily consists of two evolutionary separated GHRA and GHRB subfamilies. We compare two representatives of these subfamilies from Sinorhizobium meliloti (SmGhrA and SmGhrB), employing a combination of biochemical, structural, and bioinformatics approaches. Our kinetic results show that both enzymes reduce several 2-ketocarboxylic acids with overlapping, but not equivalent, substrate preferences. SmGhrA and SmGhrB show highest activity with glyoxylate and hydroxypyruvate, respectively; in addition, only SmGhrB reduces 2-keto-d-gluconate, and only SmGhrA reduces pyruvate (with low efficiency). We present nine crystal structures of both enzymes in apo forms and in complexes with cofactors and substrates/substrate analogues. In particular, we determined a crystal structure of SmGhrB with 2-keto-d-gluconate, which is the biggest substrate cocrystallized with a 2HADH member. The structures reveal significant differences between SmGhrA and SmGhrB, both in the overall structure and within the substrate-binding pocket, offering insight into the molecular basis for the observed substrate preferences and subfamily differences. In addition, we provide an overview of all GHRA and GHRB structures complexed with a ligand in the active site.
Collapse
Affiliation(s)
- Jan Kutner
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States,Laboratory for Structural and Biochemical Research, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, 101 Zwirki i Wigury, 02-089 Warsaw, Poland
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Dorota Matelska
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States,Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 93 Zwirki i Wigury, 02-089 Warsaw, Poland
| | - Katarzyna B. Handing
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Olga Gasiorowska
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Piotr Sroka
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Maria W. Gorna
- Laboratory for Structural and Biochemical Research, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, 101 Zwirki i Wigury, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 93 Zwirki i Wigury, 02-089 Warsaw, Poland,Corresponding Authors: (K.G.)., (K.W.)., . Phone: (434) 243-6865. Fax: (434) 243-2981 (W.M.)
| | - Krzysztof Wozniak
- Laboratory for Structural and Biochemical Research, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, 101 Zwirki i Wigury, 02-089 Warsaw, Poland,Corresponding Authors: (K.G.)., (K.W.)., . Phone: (434) 243-6865. Fax: (434) 243-2981 (W.M.)
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States,Department of Chemistry, University of Warsaw, 1 Ludwika Pasteura, 02-093 Warsaw, Poland,Corresponding Authors: (K.G.)., (K.W.)., . Phone: (434) 243-6865. Fax: (434) 243-2981 (W.M.)
| |
Collapse
|
5
|
Chirality Matters: Synthesis and Consumption of the d-Enantiomer of Lactic Acid by Synechocystis sp. Strain PCC6803. Appl Environ Microbiol 2015; 82:1295-1304. [PMID: 26682849 DOI: 10.1128/aem.03379-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
Both enantiomers of lactic acid, l-lactic acid and d-lactic acid, can be produced in a sustainable way by a photosynthetic microbial cell factory and thus from CO2, sunlight, and water. Several properties of polylactic acid (a polyester of polymerized lactic acid) depend on the controlled blend of these two enantiomers. Recently, cyanobacterium Synechocystis sp. strain PCC6803 was genetically modified to allow formation of either of these two enantiomers. This report elaborates on the d-lactic acid production achieved by the introduction of a d-specific lactate dehydrogenase from the lactic acid bacterium Leuconostoc mesenteroides into Synechocystis. A typical batch culture of this recombinant strain initially shows lactic acid production, followed by a phase of lactic acid consumption, until production "outcompetes" consumption at later growth stages. We show that Synechocystis is able to use d-lactic acid, but not l-lactic acid, as a carbon source for growth. Deletion of the organism's putative d-lactate dehydrogenase (encoded by slr1556), however, does not eliminate this ability with respect to d-lactic acid consumption. In contrast, d-lactic acid consumption does depend on the presence of glycolate dehydrogenase GlcD1 (encoded by sll0404). Accordingly, this report highlights the need to match a product of interest of a cyanobacterial cell factory with the metabolic network present in the host used for its synthesis and emphasizes the need to understand the physiology of the production host in detail.
Collapse
|
6
|
Santos CR, Polo CC, Costa MCMF, Nascimento AFZ, Meza AN, Cota J, Hoffmam ZB, Honorato RV, Oliveira PSL, Goldman GH, Gilbert HJ, Prade RA, Ruller R, Squina FM, Wong DWS, Murakami MT. Mechanistic strategies for catalysis adopted by evolutionary distinct family 43 arabinanases. J Biol Chem 2014; 289:7362-73. [PMID: 24469445 DOI: 10.1074/jbc.m113.537167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked L-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg(203)-Ala(230) loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation.
Collapse
|
7
|
Bell MR, Engleka MJ, Malik A, Strickler JE. To fuse or not to fuse: what is your purpose? Protein Sci 2013; 22:1466-77. [PMID: 24038604 DOI: 10.1002/pro.2356] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 01/13/2023]
Abstract
Since the dawn of time, or at least the dawn of recombinant DNA technology (which for many of today's scientists is the same thing), investigators have been cloning and expressing heterologous proteins in a variety of different cells for a variety of different reasons. These range from cell biological studies looking at protein-protein interactions, post-translational modifications, and regulation, to laboratory-scale production in support of biochemical, biophysical, and structural studies, to large scale production of potential biotherapeutics. In parallel, fusion-tag technology has grown-up to facilitate microscale purification (pull-downs), protein visualization (epitope tags), enhanced expression and solubility (protein partners, e.g., GST, MBP, TRX, and SUMO), and generic purification (e.g., His-tags, streptag, and FLAG™-tag). Frequently, these latter two goals are combined in a single fusion partner. In this review, we examine the most commonly used fusion methodologies from the perspective of the ultimate use of the tagged protein. That is, what are the most commonly used fusion partners for pull-downs, for structural studies, for production of active proteins, or for large-scale purification? What are the advantages and limitations of each? This review is not meant to be exhaustive and the approach undoubtedly reflects the experiences and interests of the authors. For the sake of brevity, we have largely ignored epitope tags although they receive wide use in cell biology for immunopreciptation.
Collapse
Affiliation(s)
- Mark R Bell
- LifeSensors, Inc., Malvern, Pennsylvania, 19083
| | | | | | | |
Collapse
|
8
|
Moon AF, Mueller GA, Zhong X, Pedersen LC. A synergistic approach to protein crystallization: combination of a fixed-arm carrier with surface entropy reduction. Protein Sci 2010; 19:901-13. [PMID: 20196072 DOI: 10.1002/pro.368] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein crystallographers are often confronted with recalcitrant proteins not readily crystallizable, or which crystallize in problematic forms. A variety of techniques have been used to surmount such obstacles: crystallization using carrier proteins or antibody complexes, chemical modification, surface entropy reduction, proteolytic digestion, and additive screening. Here we present a synergistic approach for successful crystallization of proteins that do not form diffraction quality crystals using conventional methods. This approach combines favorable aspects of carrier-driven crystallization with surface entropy reduction. We have generated a series of maltose binding protein (MBP) fusion constructs containing different surface mutations designed to reduce surface entropy and encourage crystal lattice formation. The MBP advantageously increases protein expression and solubility, and provides a streamlined purification protocol. Using this technique, we have successfully solved the structures of three unrelated proteins that were previously unattainable. This crystallization technique represents a valuable rescue strategy for protein structure solution when conventional methods fail.
Collapse
Affiliation(s)
- Andrea F Moon
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
9
|
Corsini L, Hothorn M, Scheffzek K, Sattler M, Stier G. Thioredoxin as a fusion tag for carrier-driven crystallization. Protein Sci 2008; 17:2070-9. [PMID: 18780816 DOI: 10.1110/ps.037564.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Structural investigations are frequently hindered by difficulties in obtaining diffracting crystals of the target protein. Here, we report the crystallization and structure solution of the U2AF homology motif (UHM) domain of splicing factor Puf60 fused to Escherichia coli thioredoxin A. Both modules make extensive crystallographic contacts, contributing to a well-defined crystal lattice with clear electron density for both the thioredoxin and the Puf60-UHM module. We compare two short linker sequences between the two fusion domains, GSAM and GSPPM, for which only the GSAM-linked fusion protein yielded diffracting crystals. While specific interdomain contacts are not observed for both fusion proteins, NMR relaxation data in solution indicate reduced interdomain mobility between the Trx and Puf60-UHM modules. The GSPPM-linked fusion protein is significantly more flexible, albeit both linker sequences have the same number of degrees of torsional freedom. Our analysis provides a rationale for the crystallization of the GSAM-linked fusion protein and indicates that in this case, a four-residue linker between thioredoxin A and the fused target may represent the maximal length for crystallization purposes. Our data provide an experimental basis for the rational design of linker sequences in carrier-driven crystallization and identify thioredoxin A as a powerful fusion partner that can aid crystallization of difficult targets.
Collapse
Affiliation(s)
- Lorenzo Corsini
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
10
|
Nauli S, Farr S, Lee YJ, Kim HY, Faham S, Bowie JU. Polymer-driven crystallization. Protein Sci 2007; 16:2542-51. [PMID: 17962407 PMCID: PMC2211692 DOI: 10.1110/ps.073074207] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
Obtaining well-diffracting crystals of macromolecules remains a significant barrier to structure determination. Here we propose and test a new approach to crystallization, in which the crystallization target is fused to a polymerizing protein module, so that polymer formation drives crystallization of the target. We test the approach using a polymerization module called 2TEL, which consists of two tandem sterile alpha motif (SAM) domains from the protein translocation Ets leukemia (TEL). The 2TEL module is engineered to polymerize as the pH is lowered, which allows the subtle modulation of polymerization needed for crystal formation. We show that the 2TEL module can drive the crystallization of 11 soluble proteins, including three that resisted prior crystallization attempts. In addition, the 2TEL module crystallizes in the presence of various detergents, suggesting that it might facilitate membrane protein crystallization. The crystal structures of two fusion proteins show that the TELSAM polymer is responsible for the majority of contacts in the crystal lattice. The results suggest that biological polymers could be designed as crystallization modules.
Collapse
Affiliation(s)
- Sehat Nauli
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles 90095-1570, USA
| | | | | | | | | | | |
Collapse
|
11
|
Xiong C, O'Keefe BR, Botos I, Wlodawer A, McMahon JB. Overexpression and purification of scytovirin, a potent, novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Protein Expr Purif 2005; 46:233-9. [PMID: 16289703 DOI: 10.1016/j.pep.2005.09.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 09/12/2005] [Accepted: 09/17/2005] [Indexed: 11/18/2022]
Abstract
Scytovirin (SVN) is a novel anti-human immunodeficiency virus (HIV) protein isolated from aqueous extracts of the cultured cyanobacterium Scytonema varium. The protein consists of a single 95-amino acid chain with significant internal sequence duplication and 10 cysteines forming five intrachain disulfide bonds. A synthetic gene that encodes scytovirin was constructed, and expressed in Escherichia coli, with thioredoxin (TRX) fused to its N-terminus (TRX-SVN). Most of the expressed protein was in soluble form, which was purified by a polyhistidine tag affinity purification step. SVN was then cleaved from TRX with enterokinase and separated from the TRX partner by C18 reversed-phase HPLC. This production method has proven superior to earlier synthetic attempts and recombinant procedures using a standard expression system. The current system resulted in yields of 5-10mg/L of purified SVN for structural studies and for preclinical development of SVN as a topical microbicide for HIV prophylaxis.
Collapse
Affiliation(s)
- Changyun Xiong
- Molecular Targets Development Program, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA
| | | | | | | | | |
Collapse
|
12
|
Smyth DR, Mrozkiewicz MK, McGrath WJ, Listwan P, Kobe B. Crystal structures of fusion proteins with large-affinity tags. Protein Sci 2003; 12:1313-22. [PMID: 12824478 PMCID: PMC2323919 DOI: 10.1110/ps.0243403] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The fusion of a protein of interest to a large-affinity tag, such as the maltose-binding protein (MBP), thioredoxin (TRX), or glutathione-S-transferase (GST), can be advantageous in terms of increased expression, enhanced solubility, protection from proteolysis, improved folding, and protein purification via affinity chromatography. Unfortunately, crystal growth is hindered by the conformational heterogeneity induced by the fusion tag, requiring that the tag is removed by a potentially problematic cleavage step. The first three crystal structures of fusion proteins with large-affinity tags have been reported recently. All three structures used a novel strategy to rigidly fuse the protein of interest to MBP via a short three- to five-amino acid spacer. This strategy has the potential to aid structure determination of proteins that present particular experimental challenges and are not conducive to more conventional crystallization strategies (e.g., membrane proteins). Structural genomics initiatives may also benefit from this approach as a way to crystallize problematic proteins of significant interest.
Collapse
Affiliation(s)
- Douglas R. Smyth
- Department of Biochemistry and Molecular Biology, Institute for Molecular Bioscience, and Special Research Centre for Functional and Applied Genomics and
| | - Marek K. Mrozkiewicz
- Department of Biochemistry and Molecular Biology, Institute for Molecular Bioscience, and Special Research Centre for Functional and Applied Genomics and
| | - William J. McGrath
- Department of Biochemistry and Molecular Biology, Institute for Molecular Bioscience, and Special Research Centre for Functional and Applied Genomics and
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Pawel Listwan
- Department of Biochemistry and Molecular Biology, Institute for Molecular Bioscience, and Special Research Centre for Functional and Applied Genomics and
- Cooperative Research Centre for Chronic Inflammatory Disease, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Bostjan Kobe
- Department of Biochemistry and Molecular Biology, Institute for Molecular Bioscience, and Special Research Centre for Functional and Applied Genomics and
- Cooperative Research Centre for Chronic Inflammatory Disease, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
13
|
Abstract
Glycopeptide antibiotics are integral components of the current antibiotic arsenal that is under strong pressures as a result of the emergence of a variety of resistance mechanisms over the past 15 years. Resistance has manifested itself largely through the expression of genes that encode proteins that reprogram cell wall biosynthesis and thus evade the action of the antibiotic in the enterococci, though recently new mechanisms have appeared that afford resistance and tolerance in the more virulent staphylococci and streptococci. Overcoming glycopeptide resistance will require innovative approaches to generate new antibiotics or otherwise to inhibit the action of resistance elements in various bacteria. The chemical complexity of the glycopeptides, the challenges of discovering and successfully exploiting new targets, and the growing number of distinct resistance types all increase the difficulty of the current problem we face as a result of the emergence of glycopeptide resistance.
Collapse
Affiliation(s)
- Jeff Pootoolal
- Antimicrobial Research Centre, Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
14
|
Tamura Y, Ohkubo A, Iwai S, Wada Y, Shinoda T, Arai K, Mineki S, Iida M, Taguchi H. Two forms of NAD-dependent D-mandelate dehydrogenase in Enterococcus faecalis IAM 10071. Appl Environ Microbiol 2002; 68:947-51. [PMID: 11823242 PMCID: PMC126676 DOI: 10.1128/aem.68.2.947-951.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two forms of NAD-dependent D-mandelate dehydrogenase (D-ManDHs) were purified from Enterococcus faecalis IAM 10071. While these two enzymes consistently exhibited high activity toward large 2-ketoacid substrates that were branched at the C3 or C4 position, they gave distinctly different K(m) and V(max) values for these substrates and had distinct molecular weights by gel electrophoresis and gel filtration.
Collapse
Affiliation(s)
- Yusuke Tamura
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|