1
|
Madhu S, Han JH, Jeong CW, Choi J. Sensitive electrochemical sensing platform based on Au nanoflower-integrated carbon fiber for detecting interleukin-6 in human serum. Anal Chim Acta 2022; 1238:340644. [DOI: 10.1016/j.aca.2022.340644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
|
2
|
Chiodelli P, Coltrini D, Turati M, Cerasuolo M, Maccarinelli F, Rezzola S, Grillo E, Giacomini A, Taranto S, Mussi S, Ligresti A, Presta M, Ronca R. FGFR blockade by pemigatinib treats naïve and castration resistant prostate cancer. Cancer Lett 2022; 526:217-224. [PMID: 34861311 DOI: 10.1016/j.canlet.2021.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 11/02/2022]
Abstract
Prostate cancer (PCa) is a leading cause of cancer mortality in the male population commonly treated with androgen deprivation therapy (ADT) and relapsing as aggressive and androgen-independent castration-resistant prostate cancer (CRPC). In PCa the FGF/FGFR family of growth factors and receptors represents a relevant mediator of cancer growth, tumor-stroma interaction, and a driver of resistance and relapse to ADT. In the present work, we validate the therapeutic efficacy the FDA-approved FGFR inhibitor pemigatinib, in an integrated platform consisting of human and murine PCa cells, and the transgenic multistage TRAMP model of PCa that recapitulates both androgen-dependent and CRPC settings. Our results show for the first time that pemigatinib causes intracellular stress and cell death in PCa cells and prevents tumor growth in vivo and in the multistage model. In addition, the combination of pemigatinib with enzalutamide resulted in long-lasting tumor inhibition and prevention of CRPC relapse in TRAMP mice. These data are confirmed by the implementation of a stochastic mathematical model and in silico simulation. Pemigatinib represents a promising FDA-approved FGFR inhibitor for the treatment of PCa and CRPC alone and in combination with enzalutamide.
Collapse
Affiliation(s)
- Paola Chiodelli
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Daniela Coltrini
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Marta Turati
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Marianna Cerasuolo
- University of Portsmouth, School of Mathematics and Physics, Hampshire, PO1 3HF, UK
| | - Federica Maccarinelli
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Sara Rezzola
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Elisabetta Grillo
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Arianna Giacomini
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Sara Taranto
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Silvia Mussi
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Marco Presta
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Roberto Ronca
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy.
| |
Collapse
|
3
|
Khayer N, Jalessi M, Jahanbakhshi A, Tabib Khooei A, Mirzaie M. Nkx3-1 and Fech genes might be switch genes involved in pituitary non-functioning adenoma invasiveness. Sci Rep 2021; 11:20943. [PMID: 34686726 PMCID: PMC8536755 DOI: 10.1038/s41598-021-00431-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Non-functioning pituitary adenomas (NFPAs) are typical pituitary macroadenomas in adults associated with increased mortality and morbidity. Although pituitary adenomas are commonly considered slow-growing benign brain tumors, numerous of them possess an invasive nature. Such tumors destroy sella turcica and invade the adjacent tissues such as the cavernous sinus and sphenoid sinus. In these cases, the most critical obstacle for complete surgical removal is the high risk of damaging adjacent vital structures. Therefore, the development of novel therapeutic strategies for either early diagnosis through biomarkers or medical therapies to reduce the recurrence rate of NFPAs is imperative. Identification of gene interactions has paved the way for decoding complex molecular mechanisms, including disease-related pathways, and identifying the most momentous genes involved in a specific disease. Currently, our knowledge of the invasion of the pituitary adenoma at the molecular level is not sufficient. The current study aimed to identify critical biomarkers and biological pathways associated with invasiveness in the NFPAs using a three-way interaction model for the first time. In the current study, the Liquid association method was applied to capture the statistically significant triplets involved in NFPAs invasiveness. Subsequently, Random Forest analysis was applied to select the most important switch genes. Finally, gene set enrichment (GSE) and gene regulatory network (GRN) analyses were applied to trace the biological relevance of the statistically significant triplets. The results of this study suggest that "mRNA processing" and "spindle organization" biological processes are important in NFAPs invasiveness. Specifically, our results suggest Nkx3-1 and Fech as two switch genes in NFAPs invasiveness that may be potential biomarkers or target genes in this pathology.
Collapse
Affiliation(s)
- Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Jalessi
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran.
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Amin Jahanbakhshi
- Skull Base Research Center, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran, Iran
- Neurology Department, Hazrat Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabib Khooei
- Neurology Department, Hazrat Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Angiogenesis Inhibition in Prostate Cancer: An Update. Cancers (Basel) 2020; 12:cancers12092382. [PMID: 32842503 PMCID: PMC7564110 DOI: 10.3390/cancers12092382] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa), like all other solid tumors, relies on angiogenesis for growth, progression, and the dissemination of tumor cells to other parts of the body. Despite data from in vitro and in vivo preclinical studies, as well as human specimen studies indicating the crucial role played by angiogenesis in PCa, angiogenesis inhibition in clinical settings has not shown significant benefits to patients, thus challenging the inclusion and usefulness of antiangiogenic agents for the treatment of PCa. However, one of the apparent reasons why these antiangiogenic agents failed to meet expectations in PCa can be due to the choice of the antiangiogenic agents, because the majority of these drugs target vascular endothelial growth factor-A (VEGFA) and its receptors. The other relevant causes might be inappropriate drug combinations, the duration of treatment, and the method of endpoint determination. In this review, we will first discuss the role of angiogenesis in PCa growth and progression. We will then summarize the different angiogenic growth factors that influence PCa growth dynamics and review the outcomes of clinical trials conducted with antiangiogenic agents in PCa patients and, finally, critically assess the current status and fate of antiangiogenic therapy in this disease.
Collapse
|
5
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
6
|
Antiangiogenic therapy with Nintedanib affects hypoxia, angiogenesis and apoptosis in the ventral prostate of TRAMP animals. Cell Tissue Res 2019; 379:407-420. [DOI: 10.1007/s00441-019-03091-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/07/2019] [Indexed: 12/15/2022]
|
7
|
Ultrasound guided bilateral rectus sheath block and serum TNF-α and IL-6 after radical prostatectomy: A randomized double blinded study. EGYPTIAN JOURNAL OF ANAESTHESIA 2019. [DOI: 10.1016/j.egja.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Mateus PAM, Kido LA, Silva RS, Cagnon VHA, Montico F. Association of anti-inflammatory and antiangiogenic therapies negatively influences prostate cancer progression in TRAMP mice. Prostate 2019; 79:515-535. [PMID: 30585351 DOI: 10.1002/pros.23758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chronic inflammation has been implicated in cancer etiology and angiogenesis is stimulated in this disease. In prostate, the crosstalk between malignant epithelial cells and their microenvironment is an essential step of tumorigenesis during which glandular stroma undergo changes designated as reactive stroma. Thus, the aim herewith was to evaluate the effects of associating anti-inflammatory and antiangiogenic therapies on cancer progression, correlating them with steroid hormone receptor (AR and ERα), reactive stroma (vimentin, αSMA, and TGF-β), and cell proliferation (PCNA) markers expression in the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model. METHODS TRAMP mice (12-week old) were divided into the groups: Control (TRCON): received the vehicles used for drug dilution; Celecoxib (TRCEL): received oral doses of the anti-inflammatory drug celecoxib (15 mg/kg) twice daily; Nintedanib (TRNTB): received oral doses of the antiangiogenic drug nintedanib (10 mg/kg) daily; Nintedanib+Celecoxib (TRNTCEL): received the combination of drugs. After 6 weeks, mice were euthanized and ventral prostate samples were harvested for morphological, immunohistochemical, and Western blotting analyses. RESULTS While celecoxib led to fibromuscular hypertrophy attenuation, nintedanib significantly reduced the incidence of well-differentiated adenocarcinoma (WDAC) foci in relation to controls, both when administered per se or in association to celecoxib. Furthermore, drug combination was associated with unique effects, including lower incidence of HGPIN lesions; lower AR stromal distribution; changes in ERα localization from epithelial nuclei to stroma as well as significant decrease of TGF-β levels and associated angiogenesis. In parallel, all treatments applied resulted in reduced inflammatory marker and vimentin (VIM) expression. CONCLUSIONS Celecoxib plus nintedanib is an effective antitumor combination against prostate cancer progression in TRAMP mice, showing remarkable efficacy in relation to isolated therapies. Importantly, this efficacy might be due to drug association effect on driving AR and mainly ERα distribution in the prostatic tissue towards benign patterns. In addition, celecoxib and nintedanib impaired the development of a stromal reaction by reducing the recruitment of reactive stroma cells and maintaining a normal smooth muscle cell-rich prostate stroma in TRAMP mice. Collectively, these findings pointed to the beneficial effects of combining anti-inflammatory and antiangiogenic strategies to prevent or delay prostatic tumorigenesis.
Collapse
Affiliation(s)
- Pedro Augusto Marischka Mateus
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Larissa Akemi Kido
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rafael Sauce Silva
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabio Montico
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- School of Medicine, University of Western São Paulo (UNOESTE), Jaú, São Paulo, Brazil
| |
Collapse
|
9
|
Cereda V, Formica V, Roselli M. Issues and promises of bevacizumab in prostate cancer treatment. Expert Opin Biol Ther 2018; 18:707-717. [PMID: 29781343 DOI: 10.1080/14712598.2018.1479737] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION There is general agreement that increased angiogenesis is an important factor in determining prostate cancer development and prognosis. Vascular Endothelial Growth Factor (VEGF) is thought to play a primary role in the molecular events that lead to prostate cancer progression, from androgen-dependency to castration-resistance until dissemination to the skeleton. Bevacizumab is a recombinant anti-VEGF monoclonal antibody that has exhibited clinical activity in different cancer types. Areas covered: In this review we summarize the data of clinical trials, investigating the effects of bevacizumab in prostate cancer patients. Until now, the drug has demonstrated anti-tumoral activity although with no improvements in overall survival (OS) and a wide range of alarming side effects in metastatic castration-resistant prostate cancer (mCRPC). Recently, promising results were achieved, using bevacizumab in combination with androgen deprivation therapy (ADT) in patients with recurrent prostate cancer after definitive local therapy. Expert opinion: The suboptimal efficacy of bevacizumab may relate to molecular events triggered during disease progression, such as redundancy of angiogenic factors or the interfering influence of androgens on angiogenic pathways. Further studies, using bevacizumab in combination with ADT and/or inhibitors of other key pathways on the subset of patients with low burden, hormone sensitive prostate cancer, need to be conducted.
Collapse
Affiliation(s)
- Vittore Cereda
- a Department of Systems Medicine, Medical Oncology Unit , University of Rome Tor Vergata, Tor Vergata Clinical Center , Rome , Italy
| | - Vincenzo Formica
- a Department of Systems Medicine, Medical Oncology Unit , University of Rome Tor Vergata, Tor Vergata Clinical Center , Rome , Italy
| | - Mario Roselli
- a Department of Systems Medicine, Medical Oncology Unit , University of Rome Tor Vergata, Tor Vergata Clinical Center , Rome , Italy
| |
Collapse
|
10
|
Kido LA, Montico F, Sauce R, Macedo AB, Minatel E, Costa DBV, Carvalho JED, Pilli RA, Cagnon VHA. Anti-inflammatory therapies in TRAMP mice: delay in PCa progression. Endocr Relat Cancer 2016; 23:235-50. [PMID: 26772819 DOI: 10.1530/erc-15-0540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 01/08/2023]
Abstract
The aim of this study was to characterize the structural and molecular biology as well as evaluate the immediate and late responses of prostatic cancer in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model after treatment with goniothalamin (GTN) and celecoxib. The treated mice received GTN (150 mg/kg, gavage) or celecoxib (10 mg/kg, gavage) from 8 to 12 weeks of age. They were killed at different ages: the immediate-response groups at 12 weeks and the late-response groups at 22 weeks. The ventral prostate was collected for light microscopy, immunohistochemistry, western blotting, TUNEL, and ELISA. Morphological analyses indicated that GTN treatment delayed the progression of prostatic adenocarcinoma, leading to a significant decrease of prostatic lesion frequency in both experimental period responses to this treatment, mainly high-grade prostatic intraepithelial neoplasia and well-differentiated adenocarcinoma. Also, the celecoxib treatment showed a particular decrease in the proliferative processes (PCNA) in both the experimental periods. Despite celecoxib diminishing the COX2 and IGFR1 levels, GTN presented higher action spectrum considering the decrease of a greater molecular number involved in the proliferative and inflammatory processes in prostatic cancer. Goniothalamin attenuated the pro-inflammatory response in TRAMP prostatic microenvironment, delaying prostate cancer (PCa) progression. Celecoxib treatment was efficient in the regulation of COX2 in the TRAMP mice, mainly in the advanced disease grade. Finally, we concluded that inflammatory process control in early grades of PCa was crucial for the downregulation of the signaling pathways involved in the proliferative processes in advanced cancer grades.
Collapse
Affiliation(s)
- Larissa Akemi Kido
- Department of Structural and Functional BiologyStructural and Cellular Biology Postgraduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabio Montico
- Department of Structural and Functional BiologyStructural and Cellular Biology Postgraduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rafael Sauce
- Department of Structural and Functional BiologyStructural and Cellular Biology Postgraduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline Barbosa Macedo
- Department of Structural and Functional BiologyStructural and Cellular Biology Postgraduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Elaine Minatel
- Department of Structural and Functional BiologyStructural and Cellular Biology Postgraduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Débora Barbosa Vendramini Costa
- Chemical, Biological and Agricultural Pluridisciplinary Research CenterCPQBA, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil Department of Organic ChemistryInstitute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Ernesto de Carvalho
- Chemical, Biological and Agricultural Pluridisciplinary Research CenterCPQBA, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil Faculty of Pharmaceutical SciencesUniversity of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ronaldo Aloise Pilli
- Department of Organic ChemistryInstitute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valeria Helena Alves Cagnon
- Department of Structural and Functional BiologyStructural and Cellular Biology Postgraduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
11
|
Ronca R, Giacomini A, Rusnati M, Presta M. The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. Expert Opin Ther Targets 2015; 19:1361-77. [PMID: 26125971 DOI: 10.1517/14728222.2015.1062475] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) are endowed with a potent pro-angiogenic activity. Activation of the FGF/FGF receptor (FGFR) system occurs in a variety of human tumors. This may lead to neovascularization, supporting tumor progression and metastatic dissemination. Thus, a compelling biologic rationale exists for the development of anti-FGF/FGFR agents for the inhibition of tumor angiogenesis in cancer therapy. AREAS COVERED A comprehensive search on PubMed was performed to identify studies on the role of the FGF/FGFR system in angiogenesis. Endothelial FGFR signaling, the pro-angiogenic function of canonical FGFs, and their role in human tumors are described. In addition, experimental approaches aimed at the identification and characterization of nonselective and selective FGF/FGFR inhibitors and their evaluation in clinical trials are summarized. EXPERT OPINION Different approaches can be envisaged to inhibit the FGF/FGFR system, a target for the development of 'two-compartment' anti-angiogenic/anti-tumor agents, including FGFR selective and nonselective small-molecule tyrosine kinase inhibitors, anti-FGFR antibodies, and FGF ligand traps. Further studies are required to define the correlation between tumor vascularization and activation of the FGF/FGFR system and for the identification of cancer patients more likely to benefit from anti-FGF/FGFR treatments. In addition, advantages and disadvantages about the use of selective versus non-selective FGF inhibitors remain to be elucidated.
Collapse
Affiliation(s)
- Roberto Ronca
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Arianna Giacomini
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Rusnati
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Presta
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| |
Collapse
|
12
|
Montico F, Kido LA, Hetzl AC, Cagnon VHA. Prostatic angiogenic responses in late life: antiangiogenic therapy influences and relation with the glandular microenvironment in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Prostate 2015; 75:484-99. [PMID: 25521760 DOI: 10.1002/pros.22934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/23/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Aging is considered one of the main predisposing factors for the development of prostate malignancies. Angiogenesis is fundamental for tumor growth and its inhibition represents a promising therapeutic approach in cancer treatment. Thus, we sought to determine angiogenic responses and the effects of antiangiogenic therapy in the mouse prostate during late life, comparing these findings with the prostatic microenvironment in the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model. METHODS Male mice (52 week-old FVB) were submitted to treatments with SU5416 (6 mg/kg; i.p.) and/or TNP-470 (15 mg/kg; s.c.). Finasteride was administered (20 mg/kg; s.c.), alone or in association to both inhibitors. The dorsolateral prostate was collected for VEGF, HIF-1α, FGF-2 and endostatin immunohistochemical and Western Blotting analyses and for microvessel density (MVD) count. RESULTS Senescence led to increased MVD and VEGF, HIF-1α and FGF-2 protein levels in the prostatic microenvironment, similarly to what was observed in TRAMP mice prostate. The angiogenic process was impaired in all the treated groups, demonstrating significantly decreased MVD. Antiangiogenic and/or finasteride treatments resulted in decreased VEGF and HIF-1α levels, especially following TNP-470 administration, either alone or associated to SU5416. The combination of these agents resulted in increased endostatin levels, regardless of the presence of finasteride. CONCLUSIONS Prostatic angiogenesis stimulation during senescence favored the development of neoplastic lesions, considering the pro-angiogenic microenvironment as a common aspect also observed during cancer progression in TRAMP mice. The combined antiangiogenic therapy was more efficient, leading to enhanced imbalance towards angiogenic inhibition in the organ. Finally, finasteride administration might secondarily upregulate the expression of pro-angiogenic factors, pointing to the harmful effects of this therapy.
Collapse
Affiliation(s)
- Fabio Montico
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | | | | | | |
Collapse
|
13
|
Stagg BC, Uehara H, Lambert N, Rai R, Gupta I, Radmall B, Bates T, Ambati BK. Morpholino-Mediated Isoform Modulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) Reduces Colon Cancer Xenograft Growth. Cancers (Basel) 2014; 6:2330-42. [PMID: 25534570 PMCID: PMC4276969 DOI: 10.3390/cancers6042330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/12/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis plays a key role in tumor growth. Vascular endothelial growth factor (VEGF) is a pro-angiogenic that is involved in tumor angiogenesis. When VEGF binds to membrane-bound vascular endothelial growth factor receptor 2 (mVEGFR2), it promotes angiogenesis. Through alternative polyadenylation, VEGFR2 is also expressed in a soluble form (sVEGFR2). sVEGFR2 sequesters VEGF and is therefore anti-angiogenic. The aim of this study was to show that treatment with a previously developed and reported antisense morpholino oligomer that shifts expression from mVEGFR2 to sVEGFR2 would lead to reduced tumor vascularization and growth in a murine colon cancer xenograft model. Xenografts were generated by implanting human HCT-116 colon cancer cells into the flanks of NMRI nu/nu mice. Treatment with the therapeutic morpholino reduced both tumor growth and tumor vascularization. Because the HCT-116 cells used for the experiments did not express VEGFR2 and because the treatment morpholino targeted mouse rather than human VEGFR2, it is likely that treatment morpholino was acting on the mouse endothelial cells rather than directly on the tumor cells.
Collapse
Affiliation(s)
- Brian C Stagg
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Hironori Uehara
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Nathan Lambert
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Ruju Rai
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Isha Gupta
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Bryce Radmall
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Taylor Bates
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Balamurali K Ambati
- John A Moran Eye Center, University of Utah, Salt Lake City, UT, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
14
|
Zhang J, Wang L, Zhang Y, Li L, Tang S, Xing C, Kim SH, Jiang C, Lü J. Chemopreventive effect of Korean Angelica root extract on TRAMP carcinogenesis and integrative "omic" profiling of affected neuroendocrine carcinomas. Mol Carcinog 2014; 54:1567-83. [PMID: 25307620 DOI: 10.1002/mc.22230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/06/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022]
Abstract
Angelica gigas Nakai (AGN) root ethanol extract exerts anti-cancer activity in several allograft and xenograft models. Here we examined its chemopreventive efficacy through gavage administration against primary carcinogenesis in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Male C57BL/6 TRAMP mice and wild type littermates were given a daily gavage (5 mg/mouse, Monday-Friday) of AGN or vehicle, beginning at 8 wk of age (WOA). All mice were terminated at 24 WOA, unless earlier euthanasia was necessitated by large tumors. Whereas AGN-treated TRAMP mice decreased dorsolateral prostate lesion growth by 30% (P = 0.009), they developed fewer and smaller neuroendocrine-carcinomas (NE-Ca) (0.12 g/mouse) than vehicle-treated counterparts (0.81 g/mouse, P = 0.037). We analyzed the proteome and transcriptome of banked NE-Ca to gain molecular insights. Angiogenesis-antibody array detected a substantial reduction in AGN-treated NE-Ca of basic fibroblast growth factor (FGF2), an angiogenesis stimulator. iTRAQ proteomics plus data mining suggested changes of genes upstream and downstream of FGF2 functionally consistent with AGN inhibiting FGF2/FGFR1 signaling at different levels of the transduction cascade. Moreover, AGN upregulated mRNA of genes related to immune responses, restored expression of many tumor suppressor genes, and prostate function and muscle differentiation genes. On the other hand, AGN down-regulated mRNA of genes related to neuron signaling, oncofetal antigens, inflammation, and mast cells, Wnt signaling, embryonic morphogenesis, biosynthesis, cell adhesion, motility, invasion, and angiogenesis. These changes suggest not only multiple cancer cell targeting actions of AGN but also impact on the tumor microenvironments such as angiogenesis, inflammation, and immune surveillance.
Collapse
Affiliation(s)
- Jinhui Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Lei Wang
- Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yong Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Li Li
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Suni Tang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center and Institute, College of Oriental Medicine, Kyunghee University, Seoul, Republic of Korea
| | - Cheng Jiang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Junxuan Lü
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| |
Collapse
|
15
|
Cereda V, Formica V, Massimiani G, Tosetto L, Roselli M. Targeting metastatic castration-resistant prostate cancer: mechanisms of progression and novel early therapeutic approaches. Expert Opin Investig Drugs 2014; 23:469-87. [PMID: 24490883 DOI: 10.1517/13543784.2014.885950] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Advances in clinical research have led to official approval of several new treatments for metastatic prostate cancer in the last three years: sipuleucel-T, cabazitaxel, abiraterone acetate, radium-223 and enzalutamide. Although these agents have all been shown to improve overall survival in randomized Phase III trials, metastatic castration-resistant prostate cancer (mCRPC) remains incurable. AREAS COVERED First, the review summarizes the current literature on the biology of mCRPC. The emerging data are increasing our understanding of the mechanisms that underlie the pathogenesis of castrate resistance and where future treatment might be headed. In the second part of the review, the authors assess the future directions in disease therapy. Indeed, novel selected therapeutic approaches, including novel agents and combinatorial therapies, are showing promising early results. EXPERT OPINION Targeting different molecular pathways in combination with immunotherapy can be a promising direction in metastatic castration prostate cancer treatment. However, several challenges still exist including elucidating the optimal use and sequencing of these new agents. There are also challenges in both the design and the interpretation of the results from clinical trials.
Collapse
Affiliation(s)
- Vittore Cereda
- University of Rome 'Tor Vergata', Tor Vergata Clinical Center, Department of Systems Medicine, Medical Oncology , V.le Oxford 81, 00133, Rome , Italy +390 620 908 190 ; +390 620 904 576 ;
| | | | | | | | | |
Collapse
|
16
|
Fennessy FM, McKay RR, Beard CJ, Taplin ME, Tempany CM. Dynamic contrast-enhanced magnetic resonance imaging in prostate cancer clinical trials: potential roles and possible pitfalls. Transl Oncol 2014; 7:120-9. [PMID: 24772215 PMCID: PMC3998683 DOI: 10.1593/tlo.13922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 12/21/2022] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) evaluates the tissue microvasculature and may have a role in assessing and predicting therapeutic response in prostate cancer (PCa). In this review, we review principles of DCE-MRI and present the potential quantitative information that can be obtained. We discuss how it may be used as a biomarker for treatment with antiangiogenic and antivascular agents and potentially identify patients with PCa who may benefit from this form of therapy. Likewise, DCE-MRI may play a role in assessing response to combined androgen deprivation therapy and radiation therapy and theoretically could be a prognostic biomarker in evaluating second-generation hormone therapies. We also address the challenges of using DCE-MRI in PCa clinical trials and discuss the difficulties with standardization of this methodology to allow for biomarker validation, with particular reference to PCa.
Collapse
Affiliation(s)
- Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Boston, MA ; Department of Radiology, Dana-Farber Cancer Institute, Boston, MA
| | - Rana R McKay
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Clair J Beard
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Clare M Tempany
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
17
|
Hetzl AC, Montico F, Lorencini RM, Kido LA, Cândido EM, Cagnon VHA. Prostatic microenvironment in senescence: fibroblastic growth factors × hormonal imbalance. Histochem Cell Biol 2013; 141:531-42. [DOI: 10.1007/s00418-013-1173-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2013] [Indexed: 01/08/2023]
|
18
|
Mukherji D, Temraz S, Wehbe D, Shamseddine A. Angiogenesis and anti-angiogenic therapy in prostate cancer. Crit Rev Oncol Hematol 2013; 87:122-31. [PMID: 23375349 DOI: 10.1016/j.critrevonc.2013.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/21/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022] Open
Abstract
Inhibition of angiogenic pathways has proven an effective strategy for the treatment of several common solid tumors however its role in the management of prostate cancer is yet to be defined. Advances in clinical research have resulted in five new treatments for metastatic prostate cancer in the last two years. The immunotherapy sipuleucel-T, the cytotoxic cabazitaxel, the androgen biosynthesis inhibitor abiraterone acetate, the radioisotope radium-223 and the antiandrogen enzalutamide have all been shown to improve overall survival in randomized phase III studies treatment paradigms are changing rapidly. Angiogenesis is known to play a central role in the progression of advanced prostate cancer however established antiangiogenic therapies including bevacizumab and sunitinib have failed to improve survival in randomized trials to date. Novel treatment combinations and novel agents such as cabozantinib are showing promising early results and it is hoped that further well-designed studies will validate the strong biological hypothesis for the benefit of antiangiogenic therapy to improve outcomes for patients with prostate cancer.
Collapse
Affiliation(s)
- Deborah Mukherji
- Department of Hematology/Oncology, American University of Beirut Medical Center, PO Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon.
| | | | | | | |
Collapse
|
19
|
Li D, Chiu H, Gupta V, Chan DW. Validation of a multiplex immunoassay for serum angiogenic factors as biomarkers for aggressive prostate cancer. Clin Chim Acta 2012; 413:1506-11. [PMID: 22722017 DOI: 10.1016/j.cca.2012.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/01/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Assays used for discovery of biomarkers should be robust and high-throughput, capable of analyzing a sufficiently large number of samples over a sufficiently long period of time with good precision. METHODS We evaluated the analytical performance of the Bio-Plex Pro™ Human Cancer Biomarker Panel 1, a 16-plex multiplex immunoassay, in serum for composite profiling of angiogenic factors. Because prostate cancer progression and metastasis are pathological events closely linked to angiogenesis, serum angiogenic factors are ideal candidates as prognostic biomarkers. RESULTS Our 5-day evaluation indicated that all 16 assays in the panel had good reproducibility (total precisions over 5 independent plates in 5 days of <20%), adequate sensitivity (LOQs of majority of the assays less than 100 pg/ml), and wide dynamic ranges (linearity of majority of the assays spanning across 3 logs in concentrations). CONCLUSIONS Applying the panel to sera from prostate cancer patients with Gleason scores of 6, 7, 8-10, tumor stages that correlated with clinical outcome, we identified that the levels of sTIE-2, a soluble form of the transmembrane tyrosine kinase receptor for angiopoietins, were increased in patients with Gleason score of 8-10. Future studies are necessary to determine whether sTIE-2 could be used as a prognostic biomarker for identifying aggressive prostate cancer.
Collapse
Affiliation(s)
- Danni Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
20
|
Wang L, Zhang J, Zhang Y, Nkhata K, Quealy E, Liao JD, Cleary MP, Lü J. Lobe-specific lineages of carcinogenesis in the transgenic adenocarcinoma of mouse prostate and their responses to chemopreventive selenium. Prostate 2011; 71:1429-40. [PMID: 21360561 DOI: 10.1002/pros.21360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 01/19/2011] [Indexed: 11/09/2022]
Abstract
BACKGROUND The transgenic adenocarcinoma of mouse prostate (TRAMP) model is by far the most practical transgenic model for preclinical prostate cancer chemoprevention studies. It is critical to characterize the prostate lobe-specificity of lesion lineages to consolidate the advantages of this model and minimize its limitations for chemoprevention studies. METHODS We dissected dorsolateral (DLP), ventral (VP), and anterior prostate (AP) lobes, and macroscopic tumors from 90 male C57BL/6J TRAMP mice at 22-24 weeks of age (WOA) and analyzed lesions by histological, biochemical and proteomic approaches. To determine whether methylseleninic acid (MSeA) led to a deletion of initiated cells, we gave oral MSeA to TRAMP mice from 5 to 23 WOA or from 5 to 15 WOA and analyzed lesions at 23 WOA. RESULTS All tumors (n = 18) were T-antigen(+), synaptophysin (SYP)(+), androgen-receptor(-), and E-cadherin(-) poorly differentiated neuroendocrine carcinomas (NE-Ca). They were traceable most frequently to VP (66.7%) and rarely to DLP (11.1%) and AP (5.6%) with an estimated life-time incidence of 1 out of 3 mice. In DLP, epithelial lesions ranged from mild-to-severe atypical hyperplasia, with T-antigen(+), SYP(-), androgen-receptor(+), and E-cadherin(+). Proteomic profiling revealed many molecular differences between VP and DLP. In MSeA experiment, 6 out of 19 (31.5%) mice developed NE-Ca in the control group, only 2 in each MSeA group of 17-18 mice (11.1-11.8%) bore a detectable NE-Ca. CONCLUSION The C57BL/6J TRAMP mouse represents at least two lineages of prostate carcinogenesis. Chemoprevention studies should incorporate this knowledge for efficacy assessment and molecular target validations.
Collapse
Affiliation(s)
- Lei Wang
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tuomela J, Grönroos TJ, Valta MP, Sandholm J, Schrey A, Seppänen J, Marjamäki P, Forsback S, Kinnunen I, Solin O, Minn H, Härkönen PL. Fast growth associated with aberrant vasculature and hypoxia in fibroblast growth factor 8b (FGF8b) over-expressing PC-3 prostate tumour xenografts. BMC Cancer 2010; 10:596. [PMID: 21034500 PMCID: PMC2984431 DOI: 10.1186/1471-2407-10-596] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 10/30/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Prostate tumours are commonly poorly oxygenated which is associated with tumour progression and development of resistance to chemotherapeutic drugs and radiotherapy. Fibroblast growth factor 8b (FGF8b) is a mitogenic and angiogenic factor, which is expressed at an increased level in human prostate tumours and is associated with a poor prognosis. We studied the effect of FGF8b on tumour oxygenation and growth parameters in xenografts in comparison with vascular endothelial growth factor (VEGF)-expressing xenografts, representing another fast growing and angiogenic tumour model. METHODS Subcutaneous tumours of PC-3 cells transfected with FGF8b, VEGF or empty (mock) vectors were produced and studied for vascularity, cell proliferation, glucose metabolism and oxygenation. Tumours were evaluated by immunohistochemistry (IHC), flow cytometry, use of radiolabelled markers of energy metabolism ([18F]FDG) and hypoxia ([18F]EF5), and intratumoral polarographic measurements of pO2. RESULTS Both FGF8b and VEGF tumours grew rapidly in nude mice and showed highly vascularised morphology. Perfusion studies, pO2 measurements, [18F]EF5 and [18F]FDG uptake as well as IHC staining for glucose transport protein (GLUT1) and hypoxia inducible factor (HIF) 1 showed that VEGF xenografts were well-perfused and oxygenised, as expected, whereas FGF8b tumours were as hypoxic as mock tumours. These results suggest that FGF8b-induced tumour capillaries are defective. Nevertheless, the growth rate of hypoxic FGF8b tumours was highly increased, as that of well-oxygenised VEGF tumours, when compared with hypoxic mock tumour controls. CONCLUSION FGF8b is able to induce fast growth in strongly hypoxic tumour microenvironment whereas VEGF-stimulated growth advantage is associated with improved perfusion and oxygenation of prostate tumour xenografts.
Collapse
Affiliation(s)
- Johanna Tuomela
- Institute of Biomedicine, Department of Cell Biology and Anatomy, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Valta MP, Tuomela J, Vuorikoski H, Loponen N, Väänänen RM, Pettersson K, Väänänen HK, Härkönen PL. FGF-8b induces growth and rich vascularization in an orthotopic PC-3 model of prostate cancer. J Cell Biochem 2009; 107:769-84. [PMID: 19415685 DOI: 10.1002/jcb.22175] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factor 8 (FGF-8) is expressed at an increased level in a high proportion of prostate cancers and it is associated with a poor prognosis of the disease. Our aim was to study the effects of FGF-8b on proliferation of PC-3 prostate cancer cells and growth of PC-3 tumors, and to identify FGF-8b-associated molecular targets. Expression of ectopic FGF-8b in PC-3 cells caused a 1.5-fold increase in cell proliferation in vitro and a four- to fivefold increase in the size of subcutaneous and orthotopic prostate tumors in nude mice. Tumors expressing FGF-8b showed a characteristic morphology with a very rich network of capillaries. This was associated with increased spread of the cancer cells to the lungs as measured by RT-qPCR of FGF-8b mRNA. Microarray analyses revealed significantly altered, up- and downregulated, genes in PC-3 cell cultures (169 genes) and in orthotopic PC-3 tumors (61 genes). IPA network analysis of the upregulated genes showed the strongest association with development, cell proliferation (CRIP1, SHC1), angiogenesis (CCL2, DDAH2), bone metastasis (SPP1), cell-to-cell signaling and energy production, and the downregulated genes associated with differentiation (DKK-1, VDR) and cell death (CYCS). The changes in gene expression were confirmed by RT-qPCR. In conclusion, our results demonstrate that FGF-8b increases the growth and angiogenesis of orthotopic prostate tumors. The associated gene expression signature suggests potential mediators for FGF-8b actions on prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- Maija P Valta
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Persano L, Moserle L, Esposito G, Bronte V, Barbieri V, Iafrate M, Gardiman MP, Larghero P, Pfeffer U, Naschberger E, Stürzl M, Indraccolo S, Amadori A. Interferon-alpha counteracts the angiogenic switch and reduces tumor cell proliferation in a spontaneous model of prostatic cancer. Carcinogenesis 2009; 30:851-60. [PMID: 19237608 DOI: 10.1093/carcin/bgp052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interferon (IFN)-alpha is a cytokine with marked therapeutic activity in transplantable tumor models, that is in part due to angiogenesis inhibition. Aim of this study was to investigate the effects of IFN-alpha during the early phases of tumor development in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. To provide sustained IFN-alpha production, TRAMP mice were injected intraperitoneally with lentiviral vectors. IFN-alpha administration resulted in rapid and protracted upregulation of IFN-alpha-regulated genes associated with antiangiogenic and antiproliferative functions in the prostate of TRAMP mice, including guanylate-binding protein 1 (GBP-1), IFI204 and CXCL10-11. These transcriptional changes were accompanied by effects on the tumor vasculature, including significant reduction of intraductal microvessel density and increased pericyte coverage, and marked reduction of tumor cell proliferation, without induction of tumor necrosis. Intriguingly, GBP-1 and myxovirus resistance A, two IFN-regulated proteins, were found expressed in approximately 40% of human prostate cancer samples analyzed, suggesting expression of endogenous IFN-alpha. Overall, these findings demonstrate that IFN-alpha is able to counteract the angiogenic switch and impairs tumor cell proliferation in preinvasive lesions. Since the angiogenic switch also marks progression of human prostatic cancer, these results highlight the potential of angiogenesis inhibitors for the development of chemoprevention strategies in high-risk individuals.
Collapse
Affiliation(s)
- Luca Persano
- Oncology Section, Department of Oncology and Surgical Sciences, University of Padova, Padova I-35128, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Fibroblast growth factor receptors (FGFRs) comprise a subfamily of receptor tyrosine kinases (RTKs) that are master regulators of a broad spectrum of cellular and developmental processes, including apoptosis, proliferation, migration and angiogenesis. Due to their broad impact, FGFRs and other RTKs are highly regulated and normally only basally active. Deregulation of FGFR signaling by activating mutations or ligand/receptor overexpression could allow these receptors to become constitutively active, leading to cancer development, including both hematopoietic and solid tumors, such as breast, bladder and prostate carcinomas. In this review, we focus on potential modes of FGFR-mediated tumorigenesis, in particular, the role of FGFR1 during prostate cancer progression.
Collapse
Affiliation(s)
- Victor D Acevedo
- Program in Cell and Molecular Biology, Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
25
|
Abstract
Advances in science and technology have allowed us to manipulate the mouse genome and analyse the effect of specific genetic alterations on the development of prostate cancer in vivo. We can now analyse the molecular basis of initiation, invasion and progression to metastatic disease. The current mouse models utilise knockout, knock-in or conditional regulation of expression using Cre-loxP technology. Genes that have been targeted include homeobox genes, tumour suppressors and oncogenes, growth factors (and their receptors), steroid hormones and cell-cycle regulators, as well as pro- and anti-apoptotic proteins. Bigenic models indicate that that two 'hits' are required for progression from intra-epithelial neoplasia (PIN) to invasion carcinoma, and two to five hits are needed for metastasis. Here, we discuss the numerous models that mimic various aspects of the disease process, such as PIN, locally invasive adenocarcinoma and metastatic disease. Currently the PB-Cre4 x PTEN(loxP/loxP) mouse is the only model that spans the entire continuum from initiation to local invasion and metastasis. Such mouse models increase our understanding of the disease process and provide targets for novel therapeutic approaches. Hopefully, the transgenic models will become inducible and ultimately allow both temporal and spatial gene inactivation. Compound mutational models will also develop further, with double and triple knock-in or knockout systems adding to our knowledge of the interaction between different signalling cascades.
Collapse
|
26
|
Origin of androgen-insensitive poorly differentiated tumors in the transgenic adenocarcinoma of mouse prostate model. Neoplasia 2007; 9:938-50. [PMID: 18030362 DOI: 10.1593/neo.07562] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 09/13/2007] [Accepted: 09/17/2007] [Indexed: 11/18/2022] Open
Abstract
Following castration, the transgenic adenocarcinoma of mouse prostate (TRAMP) model demonstrates rapid development of SV40-Tag-driven poorly differentiated tumors that express neuroendocrine cell markers. The cell population dynamics within the prostates of castrated TRAMP mice were characterized by analyzing the incorporation of 5-bromodeoxyuridine (BrdUrd) and the expression of SV40-Tag, synaptophysin, and androgen receptor (AR). Fourteen days postcastration, the remaining epithelial cells and adenocarcinoma cells were nonproliferative and lacked detectable SV40-Tag or synaptophysin expression. In contrast, morphologically distinct intraglandular foci were identified which expressed SV40-Tag, synaptophysin, and Ki67, but that lacked AR expression. These proliferative SV40-Tag and synaptophysin-expressing intraglandular foci were associated with the rare BrdUrd-retaining cells. These foci expanded rapidly in the postcastration prostate environment, in contrast to the AR- and SV40-Tag-expressing adenocarcinoma cells that lost SV40-Tag expression and underwent apoptosis after castration. Intraglandular foci of synaptophysin-expressing cells were also observed in the prostates of intact TRAMP mice at a comparable frequency; however, they did not progress to rapidly expanding tumors until much later in the life of the mice. This suggests that the foci of neuroendocrine-like cells that express SV40-Tag and synaptophysin, but lack AR, arise independent of androgen-deprivation and represent the source of the poorly differentiated tumors that are the lethal phenotype in the TRAMP model.
Collapse
|
27
|
Memarzadeh S, Xin L, Mulholland DJ, Mansukhani A, Wu H, Teitell MA, Witte ON. Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. Cancer Cell 2007; 12:572-85. [PMID: 18068633 PMCID: PMC2931420 DOI: 10.1016/j.ccr.2007.11.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 07/16/2007] [Accepted: 11/01/2007] [Indexed: 02/07/2023]
Abstract
Enhanced mesenchymal expression of FGF10 led to the formation of multifocal PIN or prostate cancer. Inhibition of epithelial FGFR1 signaling using DN FGFR1 led to reversal of the cancer phenotype. A subset of the FGF10-induced carcinoma was serially transplantable. Paracrine FGF10 led to an increase in epithelial androgen receptor and synergized with cell-autonomous activated AKT. Our observations indicate that stromal FGF10 expression may facilitate the multifocal histology observed in prostate adenocarcinoma and suggest the FGF10/FGFR1 axis as a potential therapeutic target in treating hormone-sensitive or refractory prostate cancer. We also show that transient exposure to a paracrine growth factor may be sufficient for the initiation of oncogenic transformation.
Collapse
Affiliation(s)
- Sanaz Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
BACKGROUND The transgenic adenocarcinoma of mouse prostate (TRAMP) model has been extensively characterized at the histological and molecular levels, and has been shown to mimic significant features of human prostate cancer. However, the status of Nkx3.1 expression in the TRAMP model has not been elucidated. METHODS Immunohistochemical analyses were performed using dorsal, lateral, and ventral prostate (VP) lobes from ages 6 to 30 weeks. Quantitative RT-PCR analyses were performed to determine relative mRNA expression. RESULTS Heterogeneous loss of Nkx3.1 was observed in hyperplastic lesions of the ventral, dorsal, and lateral lobes. At 6 weeks of age, the ventral lobe displayed profound loss of Nkx3.1. Diminished Nkx3.1 protein was observed in well- to moderately-differentiated cancer lesions of all lobes. Poorly differentiated (PD) tumors stained negatively for Nkx3.1. Quantitative RT-PCR analyses revealed the presence of Nkx3.1 mRNA in each lobe at all ages, albeit reduced to variable levels. CONCLUSIONS These data suggest that disease progression in the TRAMP model may be driven by loss of function of Nkx3.1, in addition to p53 and Rb. Lobe-specific disease progression in the TRAMP model correlates with the reduction of Nkx3.1 protein. Regulation of Nkx3.1 expression during tumorigenesis appears to occur by post-transcriptional and post-translational mechanisms.
Collapse
Affiliation(s)
- Carlise R Bethel
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | | |
Collapse
|
29
|
Yang F, Strand DW, Rowley DR. Fibroblast growth factor-2 mediates transforming growth factor-beta action in prostate cancer reactive stroma. Oncogene 2007; 27:450-9. [PMID: 17637743 DOI: 10.1038/sj.onc.1210663] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is overexpressed at sites of wound repair and in most adenocarcinomas including prostate cancer. In stromal tissues, TGF-beta regulates cell proliferation, phenotype and matrix synthesis. To address mechanisms of TGF-beta action in cancer-associated reactive stroma, we developed prostate stromal cells null for TGF-beta receptor II (TbetaRII) or engineered to express a dominant-negative Smad3 to attenuate TGF-beta signaling. The differential reactive stroma (DRS) xenograft model was used to evaluate altered stromal TGF-beta signaling on LNCaP tumor progression. LNCaP xenograft tumors constructed with TbetaRII null or dominant-negative Smad3 stromal cells exhibited a significant reduction in mass and microvessel density relative to controls. Additionally, decreased cellular fibroblast growth factor-2 (FGF-2) immunostaining was associated with attenuated TGF-beta signaling in stroma. In vitro, TGF-beta stimulated stromal FGF-2 expression and release. However, stromal cells with attenuated TGF-beta signaling were refractory to TGF-beta-stimulated FGF-2 expression and release. Re-expression of FGF-2 in these stromal cells in DRS xenografts resulted in restored tumor mass and microvessel density. In summary, these data show that TGF-beta signaling in reactive stroma is angiogenic and tumor promoting and that this effect is mediated in part through a TbetaRII/Smad3-dependent upregulation of FGF-2 expression and release.
Collapse
Affiliation(s)
- F Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
30
|
Winter SF, Acevedo VD, Gangula RD, Freeman KW, Spencer DM, Greenberg NM. Conditional activation of FGFR1 in the prostate epithelium induces angiogenesis with concomitant differential regulation of Ang-1 and Ang-2. Oncogene 2007; 26:4897-907. [PMID: 17297442 DOI: 10.1038/sj.onc.1210288] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of fibroblast growth factor receptor (FGFR)-1 correlates with angiogenesis and is associated with prostate cancer (CaP) progression. To more precisely define the molecular mechanisms whereby FGFR1 causes angiogenesis in the prostate we exploited a transgenic mouse model, JOCK-1, in which activation of a conditional FGFR1 allele in the prostate epithelium caused rapid angiogenesis and progressive hyperplasia. By labeling the vasculature in vivo and applying a novel method to measure the vasculature in three dimensions, we were able to observe a significant increase in vascular volume 1 week after FGFR1 activation. Although vessel volume and branching both continued to increase throughout a 6-week period of FGFR1 activation, importantly, we discovered that continued activation of FGFR1 was not required to maintain the new vasculature. Exploring the molecular mediators of the angiogenic phenotype, we observed consistent upregulation of HIF-1alpha, vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang-2), whereas expression of Ang-1 was lost. Further analysis revealed that loss of Ang-1 expression occurred in the basal epithelium, whereas the increase in Ang-2 expression occurred in the luminal epithelium. Reporter assays confirmed that the Ang-2 promoter was regulated by FGFR1 signaling and a small molecule inhibitor of FGFR activity, PD173074, could abrogate this response. These findings establish a method to follow spontaneous angiogenesis in a conditional autochthonous system, implicate the angiopoietins as downstream effectors of FGFR1 activation in vivo, and suggest that therapies targeting FGFR1 could be used to inhibit neovascularization during initiation and progression of CaP.
Collapse
Affiliation(s)
- S F Winter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
31
|
Hatziapostolou M, Polytarchou C, Katsoris P, Courty J, Papadimitriou E. Heparin affin regulatory peptide/pleiotrophin mediates fibroblast growth factor 2 stimulatory effects on human prostate cancer cells. J Biol Chem 2006; 281:32217-26. [PMID: 16940294 DOI: 10.1074/jbc.m607104200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) is a pleiotropic growth factor that has been implicated in prostate cancer formation and progression. In the present study we found that exogenous FGF2 significantly increased human prostate cancer LNCaP cell proliferation and migration. Heparin affin regulatory peptide (HARP) or pleiotrophin seems to be an important mediator of FGF2 stimulatory effects, since the latter had no effect on stably transfected LNCaP cells that did not express HARP. Moreover, FGF2, through FGF receptors (FGFRs), significantly induced HARP expression and secretion by LNCaP cells and increased luciferase activity of a reporter gene vector carrying the full-length promoter of HARP gene. Using a combination of Western blot analyses, as well as genetic and pharmacological inhibitors, we found that activation of FGFR by FGF2 in LNCaP cells leads to NAD(P)H oxidase-dependent hydrogen peroxide production, phosphorylation of ERK1/2 and p38, activation of AP-1, increased expression and secretion of HARP, and, finally, increased cell proliferation and migration. These results establish the role and the mode of activity of FGF2 in LNCaP cells and support an interventional role of HARP in FGF2 effects, providing new insights on the interplay among growth factor pathways within prostate cancer cells.
Collapse
Affiliation(s)
- Maria Hatziapostolou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR 26504 Patras, Greece
| | | | | | | | | |
Collapse
|
32
|
Ozawa MG, Yao VJ, Chanthery YH, Troncoso P, Uemura A, Varner AS, Kasman IM, Pasqualini R, Arap W, McDonald DM. Angiogenesis with pericyte abnormalities in a transgenic model of prostate carcinoma. Cancer 2006; 104:2104-15. [PMID: 16208706 DOI: 10.1002/cncr.21436] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Previous studies of the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model vasculature suggest that, as tumors develop, vessels invade the glandular epithelium. However, changes in the vasculature are difficult to study in conventional thin tissue sections. The authors used a new approach to characterize morphologic and architectural changes of blood vessels and pericytes during tumor development in TRAMP mice. METHODS Eighty-micron cryostat sections of normal prostate and three histopathologic stages of TRAMP tumor sections, classified by epithelial cell E-cadherin immunoreactivity, were immunostained with vascular endothelial cell and pericyte receptor antibodies and evaluated by confocal microscopy. RESULTS In the normal mouse prostate, capillaries were most abundant in the fibromuscular tunica between the epithelium and smooth muscle of the ductules. In the prostatic intraepithelial neoplasia (PIN) stage, vessels accompanied epithelial cell protrusions into the ductule lumen but remained in the connective tissue at the basal side of the epithelium. Well differentiated tissues had extensive angiogenesis with five times the normal mean vascularity outside ductules. Vessels were of variable diameter, were associated with an increased number of pericytes, and some had endothelial sprouts. Angiogenic blood vessels from poorly differentiated adenocarcinomas were tortuous, variable in caliber, and lacked the normal hierarchy. Pericytes on these vessels had an abnormal phenotype manifested by alpha-smooth muscle actin expression and loose association with endothelial cells. Angiogenesis and loss of vascular hierarchy were also found in human prostate carcinoma. CONCLUSIONS Vascular abnormalities, which begin at the PIN stage and intensify in well differentiated and poorly differentiated tumors, may be useful readouts for early detection and treatment assessment in prostate carcinoma.
Collapse
Affiliation(s)
- Michael G Ozawa
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143-0130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Huss WJ, Gray DR, Greenberg NM, Mohler JL, Smith GJ. Breast cancer resistance protein-mediated efflux of androgen in putative benign and malignant prostate stem cells. Cancer Res 2005; 65:6640-50. [PMID: 16061644 DOI: 10.1158/0008-5472.can-04-2548] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignantly transformed stem cells represent a potential common nidus for the primary cancer and the recurrent cancer that arises after treatment failure. Putative prostate stem cells and prostate tumor stem cells in benign and malignant human prostate tissue, in primary human prostate xenografts, and in the transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse model of prostate cancer, are defined by expression of breast cancer resistance protein (BCRP), a marker of pluripotent hematopoietic, muscle, and neural stem cells, and by an absence of androgen receptor (AR) protein. Inhibition of BCRP-mediated efflux of dihydrotestosterone by novobiocin or fumitremorgin C in a rat prostate progenitor cell line that expresses BCRP and AR mRNAs, but minimal AR protein, results in stabilization and nuclear translocation of AR protein, providing a mechanism for lack of AR protein in BCRP-expressing stem cells. In both benign and malignant human prostate tissue, the rare epithelial cells that express BCRP and lack AR protein are localized in the basal cell compartment, survive androgen deprivation, and maintain proliferative potential in the hypoxic, androgen-deprived prostate. Putative prostate tumor stem cells that express BCRP but not AR protein in TRAMP are the source of a BCRP-negative and AR-negative, Foxa2- and SV40Tag-expressing, transit amplifying compartment that progresses to the poorly differentiated carcinomas that arise rapidly after castration. Therefore, BCRP expression isolates prostate stem/tumor stem cells from the prostate tissue microenvironment through constitutive efflux of androgen, protecting the putative tumor stem cells from androgen deprivation, hypoxia, or adjuvant chemotherapy, and providing the nidus for recurrent prostate cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/metabolism
- Androgens/deficiency
- Androgens/metabolism
- Animals
- Cell Line
- Cell Nucleus/metabolism
- Humans
- Indoles/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Novobiocin/pharmacology
- Prostate/metabolism
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Protein Processing, Post-Translational
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Receptors, Androgen/biosynthesis
- Receptors, Androgen/deficiency
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Wendy J Huss
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7525, USA
| | | | | | | | | |
Collapse
|
34
|
Kaushal V, Mukunyadzi P, Dennis RA, Siegel ER, Johnson DE, Kohli M. Stage-Specific Characterization of the Vascular Endothelial Growth Factor Axis in Prostate Cancer: Expression of Lymphangiogenic Markers Is Associated with Advanced-Stage Disease. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.584.11.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: The vascular endothelial growth factor (VEGF) family plays a critical role in tumor angiogenesis and lymphangiogenesis. We characterized, at the mRNA and protein levels, the expression of VEGF-A and VEGF-D and their cognate receptors, VEGFR-1, VEGFR-2, and VEGFR-3 in early- and advanced-stage prostate cancer specimens.
Experimental Design: The levels of VEGF-A and VEGF-D mRNA in early- and advanced-stage specimens were compared using an angiogenic gene array and were confirmed by quantitative real-time PCR. Receptor protein levels and activation status were determined by immunoblotting. Spatial expression of the proteins was evaluated using immunohistochemistry with fresh and archival tissues from benign prostatic hypertrophy specimens, early-stage prostate specimens, and advanced-stage metastatic specimens. Circulating plasma levels of these growth factors were measured using ELISAs.
Results: We observed that expression patterns of VEGF isotypes corresponded to the prostate cancer stage: high expression of angiogenic growth factor VEGF-A was observed in early-stage prostate specimens, whereas high expression of lymphangiogenic growth factor VEGF-D was associated with advanced-stage metastatic disease. All VEGF receptors were present at variable levels in all specimens, but their activation states varied in a stage-specific manner. VEGFR-1 and, to a limited extent, VEGFR-2 were activated in early-stage specimens, whereas VEGFR-2 and VEGFR-3 were activated in advanced-stage specimens.
Conclusions: Our results suggest that lymphangiogenic markers, such as VEGF-D and VEGFR-2 and VEGFR-3, may be better than angiogenic markers as targets of therapeutic intervention in advanced-stage prostate disease.
Collapse
Affiliation(s)
| | | | | | - Eric R. Siegel
- 4Biostatistics, University of Arkansas for Medical Sciences and Departments of
| | | | - Manish Kohli
- 1Internal Medicine, Departments of
- 6Hematology/Oncology, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
35
|
Trojan L, Thomas D, Knoll T, Grobholz R, Alken P, Michel MS. Expression of pro-angiogenic growth factors VEGF, EGF and bFGF and their topographical relation to neovascularisation in prostate cancer. ACTA ACUST UNITED AC 2004; 32:97-103. [PMID: 15250102 DOI: 10.1007/s00240-003-0383-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of the study was to quantify the expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) in prostate cancer and adjacent non-tumorous tissue in a standardized experimental set-up and to evaluate the paracrine effects of three endothelial stimuli on neovascularisation. Immunohistochemical staining of prostate cancer (PCa) specimens for VEGF, bFGF, EGF and the endothelial marker CD31 was performed (n=56). Sections were analyzed for growth factor-positive cancer/epithelial cells as well as staining intensity in (I) malignant and (II) non-tumorous tissue. Within PCa the topographic relationship (TR) of maximum microvessel density (MWD) and maximum expression of each growth factor was assessed. The number of VEGF- and EGF-positive cells in PCa was significantly enhanced compared with non-tumorous tissue (p<0.0001), whereas there was no difference in staining intensity. In contrast, the staining intensity of bFGF sections revealed a stronger expression in non-tumorous tissue compared with PCa (p<0.0001). In benign glands, VEGF, EGF and bFGF expression is chiefly restricted to basal cells. VEGF and EGF displayed a close TR in 65 and 57% of cases, respectively, whereas bFGF revealed a close TR in only 43% of PCa specimens. The results outline the relationship of the investigated growth factors and angiogenesis in PCa, which is strongest for VEGF and EGF. The relevance of VEGF and EGF is underlined by the increased number of positive cancer cells. Although previously reported to be a pro-angiogenic growth hormone, bFGF appears to play an assimilably minor role in the angiogenesis of PCa.
Collapse
Affiliation(s)
- Lutz Trojan
- Department of Urology, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Huss WJ, Lai L, Barrios RJ, Hirschi KK, Greenberg NM. Retinoic acid slows progression and promotes apoptosis of spontaneous prostate cancer. Prostate 2004; 61:142-52. [PMID: 15305337 DOI: 10.1002/pros.20097] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND All-trans retinoic acid (ATRA) promotes terminal differentiation in epithelial cells and anti-angiogenesis and thus, may have beneficial effects in an intervention therapy for prostate cancer. METHODS We used the autochthonous spontaneous transgenic adenocarcinoma of the mouse prostate (TRAMP) model system to test the ability of ATRA to prevent initiation and progression of prostate cancer in a pre-clinical setting. RESULTS Initial studies demonstrated that exposure of TRAMP-derived C2N prostate tumor cells to ATRA in vitro decreased total viable cell numbers with a concomitant decrease in the fraction of cells in S phase. When TRAMP mice were treated in vivo with ATRA for either 6 or 8 weeks at low, medium, or high dose, mice on average presented with lower grade and more differentiated tumors. However, ATRA therapy conferred no significant protection on incidence of tumors or frequency of metastasis at any dose. Nevertheless, we were able to observe a significant decrease in the expression of synaptophysin, a marker of neuroendocrine differentiation, in tumors of mice receiving the highest dose of ATRA. As well, expression of the cell cycle inhibitor p21 was found to be elevated only in well-differentiated tumors of mice, treated with ATRA while expression of p27, was found to be elevated only in the poorly differentiated tumors. CONCLUSIONS Collectively, our in vitro and in vivo data demonstrates that ATRA was able to slow prostate tumor cell proliferation, induce apoptosis, and block the emergence of the neuroendocrine phenotype. Furthermore, our study suggests the differential regulation of p21 and p27 as a molecular mechanism whereby ATRA intervention therapy can inhibit the natural history of spontaneous prostate cancer.
Collapse
Affiliation(s)
- Wendy J Huss
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
37
|
Michalaki V, Syrigos K, Charles P, Waxman J. Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer 2004; 90:2312-6. [PMID: 15150588 PMCID: PMC2409519 DOI: 10.1038/sj.bjc.6601814] [Citation(s) in RCA: 288] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are important multifunctional cytokines involved in tumour growth and metastasis. In this study, we have measured serial levels of serum IL-6 and TNF-α in prostate cancer patients. A total of 80 patients with carcinoma of the prostate and 38 controls were studied. Three patient groups, with small bulk localised, large volume localised and metastatic prostate cancer, were assessed. Serum IL-6 and TNF-α levels were measured and correlated with clinicopathological variables and patient survival. Serial changes in these cytokines were also assessed and related to disease progression in 40 patients with recurrent prostate cancer. Serum IL-6 levels in patients with metastatic disease (9.3±7.8 pg ml−1) were higher than those in patients with localised disease (1.3±0.8 pg ml−1, P<0.001). Significantly elevated levels of TNF-α were found in metastatic disease (6.3±3.6 pg ml−1) compared with localised disease (1.1±0.5 pg ml−1, P<0.001). The levels of both cytokines were directly correlated with the extent of the disease. Serial analysis in 40 patients with recurrent tumours showed that both cytokines became elevated at the point of prostate-specific antigen progression. In conclusion, these results suggest that IL-6 and TNF-α correlate with the extent of disease in patients with prostate cancer and may be monitored in conjunction with other disease markers.
Collapse
Affiliation(s)
- V Michalaki
- Department of Cancer Medicine, Faculty of Medicine, Imperial College of Science, Technology & Medicine, Hammersmith Campus Du Cane Road, London W12 ONN, UK
| | - K Syrigos
- Third Department of Medicine, University of Athens, 40 Kifisias and Arkadias, 115 25 Athens, Greece
| | - P Charles
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College of Science, Technology & Medicine, London, UK
| | - J Waxman
- Department of Cancer Medicine, Faculty of Medicine, Imperial College of Science, Technology & Medicine, Hammersmith Campus Du Cane Road, London W12 ONN, UK
- Department of Cancer Medicine, Faculty of Medicine, Imperial College of Science, Technology & Medicine, Hammersmith Campus Du Cane Road, London W12 ONN, UK. E-mail:
| |
Collapse
|
38
|
Rousseau B, Larrieu-Lahargue F, Javerzat S, Guilhem-Ducléon F, Beermann F, Bikfalvi A. The tyrp1-Tag/tyrp1-FGFR1-DN Bigenic Mouse. Cancer Res 2004; 64:2490-5. [PMID: 15059903 DOI: 10.1158/0008-5472.can-03-3623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We describe herein a new transgenic mouse tumor model in which fibroblast growth factor (FGF) receptor activity is selectively inhibited. Tyrp1-Tag mice that develop early vascularized tumors of the retinal pigment epithelium were crossed with tyrp1-FGFR1-DN mice that express dominant-negative FGF receptors in the retinal pigment epithelium to generate bigenic mice. Initial angiogenesis-independent tumor growth progressed equally in tyrp1-Tag and bigenic mice with no significant differences in the number of dividing and apoptotic cells within the tumor. By contrast, at a later stage when tyrp1-Tag tumors rapidly expanded to fill the entire eye posterior chamber and migrate along the optic nerve toward the chiasma, bigenic tumors remained small and were poorly vascularized. Secondary tumors of small size developed in only 20% of bigenic mice by 1 month. Immunohistochemical analysis of secondary tumors from bigenic mice showed a reduction of angiogenesis and an increase in apoptosis in tumor cells. Tumor cells from bigenic mice expressed high levels of truncated FGF receptors and did not induce endothelial tube formation in vitro. All in all, this indicates that the tyrp1-Tag mouse may be a useful model to study selective tumor inhibition and the effect of antitumor therapy that targets a specific growth factor pathway. FGF receptors are required at the onset of tumor invasion and angiogenesis in ocular tumors and are good therapeutic targets in this model. The bigenic mouse may also constitute a useful model to answer more fundamental questions of cancer biology such as the mechanism of tumor escape.
Collapse
MESH Headings
- Animals
- Brain Neoplasms/blood supply
- Brain Neoplasms/genetics
- Brain Neoplasms/pathology
- Cattle
- Cell Division/genetics
- Cell Division/physiology
- Cell Line, Tumor
- Coculture Techniques
- Endothelium, Vascular/cytology
- Female
- Male
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Neoplasm Invasiveness
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Oxidoreductases
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/biosynthesis
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
- Retinal Neoplasms/blood supply
- Retinal Neoplasms/genetics
- Retinal Neoplasms/pathology
Collapse
Affiliation(s)
- Benot Rousseau
- Molecular Angiogenesis Laboratory, Institut National de la Santé et de la Recherche Médicale, Université de Bordeaux, Talence, France
| | | | | | | | | | | |
Collapse
|
39
|
Bostwick DG, Burke HB, Djakiew D, Euling S, Ho SM, Landolph J, Morrison H, Sonawane B, Shifflett T, Waters DJ, Timms B. Human prostate cancer risk factors. Cancer 2004; 101:2371-490. [PMID: 15495199 DOI: 10.1002/cncr.20408] [Citation(s) in RCA: 398] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostate cancer has the highest prevalence of any nonskin cancer in the human body, with similar likelihood of neoplastic foci found within the prostates of men around the world regardless of diet, occupation, lifestyle, or other factors. Essentially all men with circulating androgens will develop microscopic prostate cancer if they live long enough. This review is a contemporary and comprehensive, literature-based analysis of the putative risk factors for human prostate cancer, and the results were presented at a multidisciplinary consensus conference held in Crystal City, Virginia, in the fall of 2002. The objectives were to evaluate known environmental factors and mechanisms of prostatic carcinogenesis and to identify existing data gaps and future research needs. The review is divided into four sections, including 1) epidemiology (endogenous factors [family history, hormones, race, aging and oxidative stress] and exogenous factors [diet, environmental agents, occupation and other factors, including lifestyle factors]); 2) animal and cell culture models for prediction of human risk (rodent models, transgenic models, mouse reconstitution models, severe combined immunodeficiency syndrome mouse models, canine models, xenograft models, and cell culture models); 3) biomarkers in prostate cancer, most of which have been tested only as predictive factors for patient outcome after treatment rather than as risk factors; and 4) genotoxic and nongenotoxic mechanisms of carcinogenesis. The authors conclude that most of the data regarding risk relies, of necessity, on epidemiologic studies, but animal and cell culture models offer promise in confirming some important findings. The current understanding of biomarkers of disease and risk factors is limited. An understanding of the risk factors for prostate cancer has practical importance for public health research and policy, genetic and nutritional education and chemoprevention, and prevention strategies.
Collapse
|
40
|
Evangelou AI, Winter SF, Huss WJ, Bok RA, Greenberg NM. Steroid hormones, polypeptide growth factors, hormone refractory prostate cancer, and the neuroendocrine phenotype. J Cell Biochem 2004; 91:671-83. [PMID: 14991759 DOI: 10.1002/jcb.10771] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The growth, development, and differentiation of the prostate gland is largely dependent on the action of androgens and peptide growth factors that act differentially at the level of the mesenchymal and epithelial compartments. It is our premise that to understand the emergence of metastatic and hormone refractory prostate cancer we need to investigate: (1) how androgen action at the level of the mesenchyme induces the production of peptide growth factors that in turn can facilitate the growth and development of the epithelial compartment; (2) how androgen action at the level of the epithelium induces and maintains cellular differentiation, function, and replicative senescence; and (3) how transformation of the prostate gland can corrupt androgen and growth factor signaling homeostasis. To this end, we focus our discussion on how deregulation of the growth factor signaling axis can cooperate with deregulation of the androgen signaling axis to facilitate transformation, metastasis, and the emergence of the hormone refractory and neuroendocrine phenotypes associated with progressive androgen-independent prostate cancer. Finally, we suggest a working hypothesis to explain why hormone ablation therapy works to control early disease but fails to control, and may even facilitate, advanced prostate cancer.
Collapse
Affiliation(s)
- Andreas I Evangelou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|