1
|
Hung HC, Fan MH, Wang D, Miao CH, Su P, Liu CL. Effect of chimeric antigen receptor T cells against protease-activated receptor 1 for treating pancreatic cancer. BMC Med 2023; 21:338. [PMID: 37667257 PMCID: PMC10478223 DOI: 10.1186/s12916-023-03053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with a 5-year survival rate of 6% following a diagnosis, and novel therapeutic modalities are needed. Protease-activated receptor 1 (PAR1) is abundantly overexpressed by both tumor cells and multiple stroma cell subsets in the tumor microenvironment (TME), thereby offering a suitable immunotherapy target. METHODS A chimeric antigen receptor (CAR) strategy was applied to target PAR1 using a human anti-PAR1 scFv antibody fused to the transmembrane region with two co-stimulatory intracellular signaling domains of cluster of differentiation 28 (CD28) and CD137 (4-1BB), added to CD3ζ in tandem. RESULTS The engineered PAR1CAR-T cells eliminated PAR1 overexpression and transforming growth factor (TGF)-β-mediated PAR1-upregulated cancer cells by approximately 80% in vitro. The adoptive transfer of PAR1CAR-T cells was persistently enhanced and induced the specific regression of established MIA PaCa-2 cancer cells by > 80% in xenograft models. Accordingly, proinflammatory cytokines/chemokines increased in CAR-T-cell-treated mouse sera, whereas Ki67 expression in tumors decreased. Furthermore, the targeted elimination of PAR1-expressing tumors reduced matrix metalloproteinase 1 (MMP1) levels, suggesting that the blocking of the PAR1/MMP1 pathway constitutes a new therapeutic option for PDAC treatment. CONCLUSIONS Third-generation PAR1CAR-T cells have antitumor activity in the TME, providing innovative CAR-T-cell immunotherapy against PDAC.
Collapse
Affiliation(s)
- Hao-Chien Hung
- Department of General Surgery, Chang-Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Ming-Huei Fan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Daniel Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Pong Su
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Lehto TPK, Kovanen RM, Lintula S, Malén A, Stürenberg C, Erickson A, Pulkka OP, Stenman UH, Diamandis EP, Rannikko A, Mirtti T, Koistinen H. Prognostic impact of kallikrein-related peptidase transcript levels in prostate cancer. Int J Cancer 2023. [PMID: 37139608 DOI: 10.1002/ijc.34551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
We aimed to study mRNA levels and prognostic impact of all 15 human kallikrein-related peptidases (KLKs) and their targets, proteinase-activated receptors (PARs), in surgically treated prostate cancer (PCa). Seventy-nine patients with localized grade group 2-4 PCas represented aggressive cases, based on metastatic progression during median follow-up of 11 years. Eighty-six patients with similar baseline characteristics, but no metastasis during follow-up, were assigned as controls. Transcript counts were detected with nCounter technology. KLK12 protein expression was investigated with immunohistochemistry. The effects of KLK12 and KLK15 were studied in LNCaP cells using RNA interference. KLK3, -2, -4, -11, -15, -10 and -12 mRNA, in decreasing order, were expressed over limit of detection (LOD). The expression of KLK2, -3, -4 and -15 was decreased and KLK12 increased in aggressive cancers, compared to controls (P < .05). Low KLK2, -3 and -15 expression was associated with short metastasis-free survival (P < .05) in Kaplan-Meier analysis. PAR1 and -2 were expressed over LOD, and PAR1 expression was higher, and PAR2 lower, in aggressive cases than controls. Together, KLKs and PARs improved classification of metastatic and lethal disease over grade, pathological stage and prostate-specific antigen combined, in random forest analyses. Strong KLK12 immunohistochemical staining was associated with short metastasis-free and PCa-specific survival in Kaplan-Meier analysis (P < .05). Knock-down of KLK15 reduced colony formation of LNCaP cells grown on Matrigel basement membrane preparation. These results support the involvement of several KLKs in PCa progression, highlighting, that they may serve as prognostic PCa biomarkers.
Collapse
Affiliation(s)
- Timo-Pekka K Lehto
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Ruusu-Maaria Kovanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Susanna Lintula
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Adrian Malén
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carolin Stürenberg
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Andrew Erickson
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Olli-Pekka Pulkka
- Laboratory of Molecular Oncology, Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Antti Rannikko
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Biomedical Engineering, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
3
|
Protease-activated receptor 2 (PAR2)-targeting peptide derivatives for positron emission tomography (PET) imaging. Eur J Med Chem 2023; 246:114989. [PMID: 36527934 DOI: 10.1016/j.ejmech.2022.114989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The proteolytically-activated G protein-coupled receptor (GPCR) protease-activated receptor 2 (PAR2), is implicated in various cancers and inflammatory diseases. Synthetic ligands and in vitro imaging probes targeting this receptor have been developed with low nanomolar affinity, however, no in vivo imaging probes exist for PAR2. Here, we report the strategic design, synthesis, and biological evaluation of a series of novel 4-fluorobenzoylated PAR2-targeting peptides derived from 2f-LIGRLO-NH2 (2f-LI-) and Isox-Cha-Chg-Xaa-NH2 (Isox-) peptide families, where the 4-fluorobenzoyl moiety acts as the 19F-standard of an 18F-labeled probe for potential use in in vivo imaging. We found that several of the 4-fluorobenzoylated peptides from the 2f-LI-family exhibited PAR2 selectivity with moderate potency (EC50 = 151-252 nM), whereas several from the Isox-family exhibited PAR2 selectivity with high potency (EC50 = 13-42 nM). Our lead candidate, Isox-Cha-Chg-Ala-Arg-Dpr(4FB)-NH2 (EC50 = 13 nM), was successfully synthesized with fluorine-18 with a radiochemical yield of 37%, radiochemical purity of >98%, molar activity of 20 GBq/μmol, and an end of synthesis time of 125 min. Biodistribution studies and preliminary PET imaging of the tracer in mice showed predominantly renal clearance. This 18F-labeled tracer is the first reported PAR2 imaging agent with potential for use in vivo. Future work will explore the use of this tracer in cancer xenografts and inflammation models involving upregulation of PAR2 expression.
Collapse
|
4
|
Liu C, Jiang S, Xie H, Jia H, Li R, Zhang K, Wang N, Lin P, Yu X. Long non-coding RNA AC245100.4 contributes to prostate cancer migration via regulating PAR2 and activating p38-MAPK pathway. Med Oncol 2022; 39:94. [DOI: 10.1007/s12032-022-01689-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
|
5
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
6
|
Expression of Proteinase-activated Receptor 2 (PAR2) as a Correlate of Concern in Triple-negative Breast Cancer (TNBC). Appl Immunohistochem Mol Morphol 2022; 30:446-452. [DOI: 10.1097/pai.0000000000001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/18/2022] [Indexed: 01/18/2023]
|
7
|
Rabinovitch E, Mihara K, Sananes A, Zaretsky M, Heyne M, Shifman J, Aharoni A, Hollenberg MD, Papo N. A KLK4 proteinase substrate capture approach to antagonize PAR1. Sci Rep 2021; 11:16170. [PMID: 34373558 PMCID: PMC8352894 DOI: 10.1038/s41598-021-95666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
Proteinase-activated receptor-1 (PAR1), triggered by thrombin and other serine proteinases such as tissue kallikrein-4 (KLK4), is a key driver of inflammation, tumor invasiveness and tumor metastasis. The PAR1 transmembrane G-protein-coupled receptor therefore represents an attractive target for therapeutic inhibitors. We thus used a computational design to develop a new PAR1 antagonist, namely, a catalytically inactive human KLK4 that acts as a proteinase substrate-capture reagent, preventing receptor cleavage (and hence activation) by binding to and occluding the extracellular R41-S42 canonical PAR1 proteolytic activation site. On the basis of in silico site-saturation mutagenesis, we then generated KLK4S207A,L185D, a first-of-a-kind 'decoy' PAR1 inhibitor, by mutating the S207A and L185D residues in wild-type KLK4, which strongly binds to PAR1. KLK4S207A,L185D markedly inhibited PAR1 cleavage, and PAR1-mediated MAPK/ERK activation as well as the migration and invasiveness of melanoma cells. This 'substrate-capturing' KLK4 variant, engineered to bind to PAR1, illustrates proof of principle for the utility of a KLK4 'proteinase substrate capture' approach to regulate proteinase-mediated PAR1 signaling.
Collapse
Affiliation(s)
- Eitan Rabinovitch
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel
| | - Koishiro Mihara
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Amiram Sananes
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel
| | - Marianna Zaretsky
- Department of Life Sciences, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael Heyne
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91906, Jerusalem, Israel
| | - Julia Shifman
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91906, Jerusalem, Israel
| | - Amir Aharoni
- Department of Life Sciences, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
8
|
Chakravarthi S, Karikalan B. Molecular Biomarkers for Lung Adenocarcinoma: A Short Review. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666200724164654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is a disease with higher death rates and is responsible for around 2 million
deaths per year worldwide. Recently, several breakthroughs have been made in the field of lung
cancer that has led to a revolution in the management of lung cancer patients. Identification of
molecular markers and the implication of respective targeted therapies has been a great success in
the treatment of lung adenocarcinoma patients. Despite the fact that targeted therapy of lung adenocarcinomas
represents one of the significant milestones in the treatment of lung cancer that resulted
in increased survival rates even in advanced stages, the mortality rates of lung cancer still remain
to be significantly high. This warrants further research for gaining better insights into molecular alterations
that can lead to newer innovations in targeted drug therapy towards lung adenocarcinoma.
In this review, we briefly summarized the literature on molecular markers that are already in use.
We also consolidated newer molecular markers that are under study with the potential for being targeted
for therapies in future.
Collapse
|
9
|
Morais C, Rajandram R, Blakeney JS, Iyer A, Suen JY, Johnson DW, Gobe GC, Fairlie DP, Vesey DA. Expression of protease activated receptor-2 is reduced in renal cell carcinoma biopsies and cell lines. PLoS One 2021; 16:e0248983. [PMID: 33765016 PMCID: PMC7993771 DOI: 10.1371/journal.pone.0248983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/09/2021] [Indexed: 01/09/2023] Open
Abstract
Expression of the protease sensing receptor, protease activated receptor-2 (PAR2), is elevated in a variety of cancers and has been promoted as a potential therapeutic target. With the development of potent antagonists for this receptor, we hypothesised that they could be used to treat renal cell carcinoma (RCC). The expression of PAR2 was, therefore, examined in human RCC tissues and selected RCC cell lines. Histologically confirmed cases of RCC, together with paired non-involved kidney tissue, were used to produce a tissue microarray (TMA) and to extract total tissue RNA. Immunohistochemistry and qPCR were then used to assess PAR2 expression. In culture, RCC cell lines versus primary human kidney tubular epithelial cells (HTEC) were used to assess PAR2 expression by qPCR, immunocytochemistry and an intracellular calcium mobilization assay. The TMA revealed an 85% decrease in PAR2 expression in tumour tissue compared with normal kidney tissue. Likewise, qPCR showed a striking reduction in PAR2 mRNA in RCC compared with normal kidney. All RCC cell lines showed lower levels of PAR2 expression than HTEC. In conclusion, we found that PAR2 was reduced in RCC compared with normal kidney and is unlikely to be a target of interest in the treatment of this type of cancer.
Collapse
Affiliation(s)
- Christudas Morais
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, Australia
| | - Retnagowri Rajandram
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia
| | - Jade S. Blakeney
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Abishek Iyer
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jacky Y. Suen
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David W. Johnson
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Glenda C. Gobe
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - David P. Fairlie
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David A. Vesey
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
- * E-mail:
| |
Collapse
|
10
|
Zhao B, Wu M, Hu Z, Wang T, Yu J, Ma Y, Wang Q, Zhang Y, Chen D, Li T, Li Y, Yu M, Wang H, Mo W. A novel oncotherapy strategy: Direct thrombin inhibitors suppress progression, dissemination and spontaneous metastasis in non-small cell lung cancer. Br J Pharmacol 2021; 179:5056-5073. [PMID: 33481255 DOI: 10.1111/bph.15384] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Cancer cachexia and cancer-associated thrombosis are potentially fatal outcomes of advanced cancer. Nevertheless, thrombin expression in non-small cell lung cancer (NSCLC) primary tumour tissues and the association between prognosis of NSCLC patients remain largely unknown. EXPERIMENTAL APPROACH Clinical pathological analysis was performed to determine the relationship between thrombin and tumour progression. Effects of r-hirudin and direct thrombin inhibitor peptide (DTIP) on cancer progression were evaluated. Western blotting, immunohistochemistry, and immunofluorescence were used to explore the inhibition mechanism of r-hirudin and DTIP. The therapeutic effect of the combination of DTIP and chemotherapy was determined. KEY RESULTS Thrombin expression in NSCLC tissues was closely related to clinicopathological features and the prognosis of patients. Thrombin deficiency inhibited tumour progression. The novel thrombin inhibitors, r-hirudin and DTIP, inhibited cell invasion and metastasis in vitro. They inhibited tumour growth and metastasis in orthotopic lung cancer model, inhibited cell invasion, and prolonged survival after injection of tumour cells via the tail vein. They also inhibited angiogenesis and spontaneous metastases from subcutaneously inoculated tumours. The promotion by thrombin of invasion and metastasis was abolished in PAR-1-deficient NSCLC cells. r-hirudin and DTIP inhibited tumour progression through the thrombin-PAR-1-mediated RhoA and NF-κB signalling cascades via inhibiting MMP9 and IL6 expression. DTIP potentiated chemotherapy-induced growth and metastatic inhibition and inhibited chemotherapy-induced resistance in mice. CONCLUSIONS AND IMPLICATIONS Thrombin makes a substantial contribution, together with PAR-1, to NSCLC malignancy. The anti-coagulants, r-hirudin and DTIP, could be used in anti-tumour therapy and a combination of DTIP and chemotherapy might improve therapeutic effects.
Collapse
Affiliation(s)
- Bing Zhao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengfang Wu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhihuang Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Tianfa Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jinchao Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China
| | - Yixin Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanling Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Di Chen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianyu Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yaran Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huijie Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Wei Mo
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Zhang Y, Li S, Zhang H, Xu H. Design and Application of Receptor-Targeted Fluorescent Probes Based on Small Molecular Fluorescent Dyes. Bioconjug Chem 2021; 32:4-24. [PMID: 33412857 DOI: 10.1021/acs.bioconjchem.0c00606] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, a variety of receptor-targeted fluorescent probes have been developed and widely used to realize the visualization of certain receptors, which facilitates the early diagnosis and treatment of diseases. In this Review, we focus on the recent achievements in design, chemical structure, imaging characterization, and potential applications of receptor-targeted fluorescent probes from the past 10 years. The development and application of receptor-targeted fluorescent probes will expand our knowledge of the distribution and function of disease-related receptors, shed light on the drug discovery for clinical diseases where receptors are implicated, and feed into the diagnosis and treatment of a plethora of diseases, including tumors.
Collapse
Affiliation(s)
- Yujie Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
12
|
Abstract
As basic research into GPCR signaling and its association with disease has come into fruition, greater clarity has emerged with regards to how these receptors may be amenable to therapeutic intervention. As a diverse group of receptor proteins, which regulate a variety of intracellular signaling pathways, research in this area has been slow to yield tangible therapeutic agents for the treatment of a number of diseases including cancer. However, recently such research has gained momentum based on a series of studies that have sought to define GPCR proteins dynamics through the elucidation of their crystal structures. In this chapter, we define the approaches that have been adopted in developing better therapeutics directed against the specific parts of the receptor proteins, such as the extracellular and the intracellular domains, including the ligands and auxiliary proteins that bind them. Finally, we also briefly outline how GPCR-derived signaling transduction pathways hold great potential as additional targets.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
13
|
LeSarge JC, Thibeault P, Milne M, Ramachandran R, Luyt LG. High Affinity Fluorescent Probe for Proteinase-Activated Receptor 2 (PAR2). ACS Med Chem Lett 2019; 10:1045-1050. [PMID: 31312406 DOI: 10.1021/acsmedchemlett.9b00094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
PAR2 is a proteolytically activated G protein-coupled receptor (GPCR) that is implicated in various cancers and inflammatory diseases. Ligands with low nanomolar affinity for PAR2 have been developed, but there is a paucity of research on the development of PAR2-targeting imaging probes. Here, we report the development of seven novel PAR2-targeting compounds. Four of these compounds are highly potent and selective PAR2-targeting peptides (EC50 = 10 to 23 nM) that have a primary amine handle available for facile conjugation to various imaging components. We describe a peptide of the sequence Isox-Cha-Chg-ARK(Sulfo-Cy5)-NH2 as the most potent and highest affinity PAR2-selective fluorescent probe reported to date (EC50 = 16 nM, K D = 38 nM). This compound has a greater than 10-fold increase in potency and binding affinity for PAR2 compared to the leading previously reported probe and is conjugated to a red-shifted fluorophore, enabling in vitro and in vivo studies.
Collapse
Affiliation(s)
| | | | - Mark Milne
- London Regional Cancer Program, Lawson Health Research Institute, 800 Commissioners Road East, London, Ontario N6A 5W9, Canada
| | | | - Leonard G. Luyt
- London Regional Cancer Program, Lawson Health Research Institute, 800 Commissioners Road East, London, Ontario N6A 5W9, Canada
| |
Collapse
|
14
|
Pawar NR, Buzza MS, Antalis TM. Membrane-Anchored Serine Proteases and Protease-Activated Receptor-2-Mediated Signaling: Co-Conspirators in Cancer Progression. Cancer Res 2019; 79:301-310. [PMID: 30610085 DOI: 10.1158/0008-5472.can-18-1745] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/12/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Pericellular proteolysis provides a significant advantage to developing tumors through the ability to remodel the extracellular matrix, promote cell invasion and migration, and facilitate angiogenesis. Recent advances demonstrate that pericellular proteases can also communicate directly to cells by activation of a unique group of transmembrane G-protein-coupled receptors (GPCR) known as protease-activated receptors (PAR). In this review, we discuss the specific roles of one of four mammalian PARs, namely PAR-2, which is overexpressed in advanced stage tumors and is activated by trypsin-like serine proteases that are highly expressed or otherwise dysregulated in many cancers. We highlight recent insights into the ability of different protease agonists to bias PAR-2 signaling and the newly emerging evidence for an interplay between PAR-2 and membrane-anchored serine proteases, which may co-conspire to promote tumor progression and metastasis. Interfering with these pathways might provide unique opportunities for the development of new mechanism-based strategies for the treatment of advanced and metastatic cancers.
Collapse
Affiliation(s)
- Nisha R Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marguerite S Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Toni M Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland. .,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
15
|
Cancer of Reproductive System: Receptors and Targeting Strategies. TARGETED INTRACELLULAR DRUG DELIVERY BY RECEPTOR MEDIATED ENDOCYTOSIS 2019. [PMCID: PMC7122620 DOI: 10.1007/978-3-030-29168-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carcinogenesis in the different organs of the reproductive system, particularly, prostate, ovarian, and cervical tissues, involves aberrant expression of various physiological receptors belonging to different superfamilies. This chapter provides insights into the physiological receptors that are associated with the genesis, progression, metastasis, management, as well as the prognosis of the cancers of the male and female reproductive systems. It also highlights the structural and binding characteristics of the highly predominant receptors, namely, androgen, estrogen, progesterone, and gonadotropin-releasing hormone (GnRH) receptors, which are overexpressed in these cancers and discusses various strategies to target them.
Collapse
|
16
|
Cao D, Qu Y, Zhang X, Xu F, Zhou S, Zhang G, Dai B, Zhu Y, Shi G, Shen Y, Zhu Y, Zhang H, Ye D, Zhao J. High expression of F2RL3 correlates with aggressive features and poor survival in clear cell renal cell carcinoma. J Cancer 2018; 9:3400-3406. [PMID: 30271502 PMCID: PMC6160688 DOI: 10.7150/jca.23923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 07/25/2018] [Indexed: 11/05/2022] Open
Abstract
Background: Specific lifestyle factors including tobacco-exposure are vital etiologic factors for renal cell carcinoma (RCC), F2R Like Thrombin/Trypsin Receptor 3 (F2RL3) is associated with smoking but it is unknown whether its expression translate into poor survival of clear cell RCC (ccRCC). In the current study, the expression profiling and prognostic value of F2RL3 in Chinese patients with ccRCC were investigated. Methods: Using Quantitative PCR analysis and immunohistochemistry, the relative expression levels of F2RL3 in 367 paired ccRCC and adjacent normal tissues were calculated. Cox regression analysis was used to identify independent prognostic factors and Kaplan-Meier analysis and a log-rank test were employed to evaluate the prognostic value of F2RL3. Results: We observed that high expression of F2RL3 mRNA and protein were strongly correlated with shorten progression-free survival (PFS) of ccRCC with hazard ratios (HR; 95% confidence interval (CI)) of 2.060 (1.410-3.009) and 1.657 (1.193-2.300), respectively, as well as with poor overall survival (OS) with HRs (95%CI) of 2.826 (1.713-4.662) and 1.712 (1.140-2.569), respectively. After adjustment for confounding factors including smoking status, elevated HRs (95%CI) of 2.113 (1.445-3.089) and 1.692 (1.218-2.352) were presented for PFS, respectively, and 2.936 (1.777-4.851) and 1.811 (1.203-2.725) were present for OS, respectively. Meanwhile, increased F2RL3 mRNA and protein level were reported to significantly associate with smoking-exposure and well-known prognostic factors (higher TNM stage and ISUP grade). Conclusion: These findings suggested that F2RL3 mRNA and protein level in ccRCC is a robust predictor of poorly prognostic phenotype. Exploring the causal relevance of F2RL3 in ccRCC development further warrants in the future study.
Collapse
Affiliation(s)
- Dalong Cao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuan Zhang
- The State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics & Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Fujiang Xu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shuxian Zhou
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Guiming Zhang
- Department of Urology, The affiliated hospital of Qingdao University, Shandong, 266071, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yijun Shen
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yiping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianyuan Zhao
- The State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics & Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
17
|
Staal J, Beyaert R. Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018; 7:E122. [PMID: 30158439 PMCID: PMC6162478 DOI: 10.3390/cells7090122] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a highly prevalent form of cancer that is usually slow-developing and benign. Due to its high prevalence, it is, however, still the second most common cause of death by cancer in men in the West. The higher prevalence of prostate cancer in the West might be due to elevated inflammation from metabolic syndrome or associated comorbidities. NF-κB activation and many other signals associated with inflammation are known to contribute to prostate cancer malignancy. Inflammatory signals have also been associated with the development of castration resistance and resistance against other androgen depletion strategies, which is a major therapeutic challenge. Here, we review the role of inflammation and its link with androgen signaling in prostate cancer. We further describe the role of NF-κB in prostate cancer cell survival and proliferation, major NF-κB signaling pathways in prostate cancer, and the crosstalk between NF-κB and androgen receptor signaling. Several NF-κB-induced risk factors in prostate cancer and their potential for therapeutic targeting in the clinic are described. A better understanding of the inflammatory mechanisms that control the development of prostate cancer and resistance to androgen-deprivation therapy will eventually lead to novel treatment options for patients.
Collapse
Affiliation(s)
- Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
18
|
Bruno A, Dovizio M, Tacconelli S, Contursi A, Ballerini P, Patrignani P. Antithrombotic Agents and Cancer. Cancers (Basel) 2018; 10:cancers10080253. [PMID: 30065215 PMCID: PMC6115803 DOI: 10.3390/cancers10080253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 02/08/2023] Open
Abstract
Platelet activation is the first response to tissue damage and, if unrestrained, may promote chronic inflammation-related cancer, mainly through the release of soluble factors and vesicles that are rich in genetic materials and proteins. Platelets also sustain cancer cell invasion and metastasis formation by fostering the development of the epithelial-mesenchymal transition phenotype, cancer cell survival in the bloodstream and arrest/extravasation at the endothelium. Furthermore, platelets contribute to tumor escape from immune elimination. These findings provide the rationale for the use of antithrombotic agents in the prevention of cancer development and the reduction of metastatic spread and mortality. Among them, low-dose aspirin has been extensively evaluated in both preclinical and clinical studies. The lines of evidence have been considered appropriate to recommend the use of low-dose aspirin for primary prevention of cardiovascular disease and colorectal cancer by the USA. Preventive Services Task Force. However, two questions are still open: (i) the efficacy of aspirin as an anticancer agent shared by other antiplatelet agents, such as clopidogrel; (ii) the beneficial effect of aspirin improved at higher doses or by the co-administration of clopidogrel. This review discusses the latest updates regarding the mechanisms by which platelets promote cancer and the efficacy of antiplatelet agents.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Melania Dovizio
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Annalisa Contursi
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Patrizia Ballerini
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, 66100 Chieti, Italy.
| |
Collapse
|
19
|
Ebrahimi S, Rahmani F, Behnam-Rassouli R, Hoseinkhani F, Parizadeh MR, Keramati MR, Khazaie M, Avan A, Hassanian SM. Proinflammatory signaling functions of thrombin in cancer. J Cell Physiol 2017; 232:2323-2329. [PMID: 28004386 DOI: 10.1002/jcp.25753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Thrombin-induced activation of protease-activated receptors (PARs) represents a link between inflammation and cancer. Proinflammatory signaling functions of thrombin are associated with several inflammatory diseases including neurodegenerative, cardiovascular, and of special interest in this review cancer. Thrombin-induced inflammatory responses up-regulates expression of cytokines, adhesion molecules, angiogenic factors, and matrix-degrading proteases that facilitate tumor cells proliferation, angiogenesis, invasion, and metastasis. This review summarizes the current knowledge about the mechanisms of thrombin-mediated proinflammatory responses in cancer pathology for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fatemeh Hoseinkhani
- Department of Medical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Parizadeh
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keramati
- Cancer Molecular Pathology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaie
- Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Lin C, Majoor CJ, Roelofs JJTH, de Kruif MD, Horlings HM, Borensztajn K, Spek CA. Potential importance of protease activated receptor (PAR)-1 expression in the tumor stroma of non-small-cell lung cancer. BMC Cancer 2017; 17:113. [PMID: 28173772 PMCID: PMC5297223 DOI: 10.1186/s12885-017-3081-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/23/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Protease activated receptor (PAR)-1 expression is increased in a variety of tumor cells. In preclinical models, tumor cell PAR-1 appeared to be involved in the regulation of lung tumor growth and metastasis; however the role of PAR-1 in the lung tumor microenvironment, which is emerging as a key compartment in driving cancer progression, remained to be explored. METHODS In the present study, PAR-1 gene expression was determined in lung tissue from patients with non-small-cell lung cancer (NSCLC) using a combination of publicly available RNA microarray datasets and in house-made tissue microarrays including tumor biopsies of 94 patients with NSCLC (40 cases of adenocarcinoma, 42 cases of squamous cell carcinoma and 12 cases of other type of NSCLC at different stages). RESULTS PAR-1 gene expression strongly correlated with tumor stromal markers (i.e. macrophage, endothelial cells and (myo) fibroblast markers) but not with epithelial cell markers. Immunohistochemical analysis confirmed the presence of PAR-1 in the tumor stroma and showed that PAR-1 expression was significantly upregulated in malignant tissue compared with normal lung tissue. The overexpression of PAR-1 in tumor stroma of NSCLC appeared to be independent from tumor type, tumor stage, histopathological differentiation status, disease progression and patient survival. CONCLUSION Overall, our data provide evidence that PAR-1 in NSCLC is mainly expressed on cells that constitute the pulmonary tumor microenvironment, including vascular endothelial cells, macrophages and stromal fibroblasts.
Collapse
Affiliation(s)
- Cong Lin
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands.
| | - Christof J Majoor
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Martijn D de Kruif
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands.,Department of Pulmonology, Zuyderland Hospital, Henri Dunantstraat 5, 6419 PC, Heerlen, The Netherlands
| | - Hugo M Horlings
- Department of Pathology, The Antonie van Leeuwenhoek hospital, Amsterdam, 1066 CX, The Netherlands
| | - Keren Borensztajn
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands.,Inserm UMR1152, Medical School Xavier Bichat, 16 rue Henri Huchard, 75018, Paris, France.,Département Hospitalo-universtaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| |
Collapse
|
21
|
Inaba H, Tagashira M, Kanda T, Murakami Y, Amano A, Matsumoto-Nakano M. Apple- and Hop-Polyphenols Inhibit Porphyromonas gingivalis-Mediated Precursor of Matrix Metalloproteinase-9 Activation and Invasion of Oral Squamous Cell Carcinoma Cells. J Periodontol 2016; 87:1103-11. [PMID: 27177287 DOI: 10.1902/jop.2016.160047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recent epidemiologic studies have revealed a significant association between periodontitis and oral squamous cell carcinoma (OSCC). Furthermore, periodontitis is markedly associated with orodigestive cancer mortality, whereas Porphyromonas gingivalis (Pg) infection has been identified as a specific and potentially independent microbial factor related to increased risk of orodigestive cancer death. The authors previously reported that Pg induced the precursor form of matrix metalloproteinase-9 (proMMP-9) production via proteinase-activated receptor (PAR)-related pathways, after which proMMP-9 was activated by gingipains to enhance cellular invasion of SAS cells. In the present study, effects of selected polyphenols as inhibitors of cellular invasion caused by Pg gingipains in SAS cells are examined. METHODS OSCC cells were infected with Pg strains including gingipain mutants. To evaluate effects of inhibitors: 1) apple polyphenol (AP); 2) hop bract polyphenol (HBP); 3) high-molecular-weight fractions of HBP (HMW-HBP); 4) low-molecular-weight fractions of HBP (LMW-HBP); 5) epigallocatechin gallate (EGCg); 6) KYT-1 (Arg-gingipain inhibitor); and KYT-36 (Lys-gingipain inhibitor) in combination are used. PAR2 and PAR4 mRNA expressions are examined using real-time reverse transcription polymerase chain reaction, and signaling pathways are evaluated by western blotting analysis. RESULTS KYT-1/KYT-36, AP, HBP, and HMW-HBP significantly inhibited PAR2 and PAR4 mRNA expressions, proMMP-9 activation, and cellular invasion. Furthermore, AP, HBP, and HMW-HBP reduced activation of heat shock protein 27 and Ets1 and nuclear translocation of nuclear factor-kappa B, whereas EGCg and LMW-HBP did not. CONCLUSION These results suggest that AP, HBP, HMW-HBP are potent inhibitors of proMMP-9 activation and cellular invasion mediated with Pg in OSCC cells.
Collapse
Affiliation(s)
- Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Motoyuki Tagashira
- Research and Development-Production Headquarters, Asahi Breweries Limited, Ibaraki, Japan
| | - Tomomasa Kanda
- Research and Development-Production Headquarters, Asahi Breweries Limited, Ibaraki, Japan
| | - Yukitaka Murakami
- Department of Oral Microbiology, Asahi University School of Dentistry, Hozumi, Gifu, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
22
|
Yang L, Ma Y, Han W, Li W, Cui L, Zhao X, Tian Y, Zhou Z, Wang W, Wang H. Proteinase-activated receptor 2 promotes cancer cell migration through RNA methylation-mediated repression of miR-125b. J Biol Chem 2015; 290:26627-37. [PMID: 26354435 DOI: 10.1074/jbc.m115.667717] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Indexed: 01/08/2023] Open
Abstract
Proteinase activated-receptor 2 (PAR2) participates in cancer metastasis promoted by serine proteinases. The current study aimed to test the molecular mechanism by which PAR2 promotes cancer cell migration. In different cancer cells, activation of PAR2 by activating peptide (PAR2-AP) dramatically increased cell migration, whereas knock down of PAR2 inhibited cellular motility. The PAR2 activation also repressed miR-125b expression while miR-125b mimic successfully blocked PAR2-induced cell migration. Moreover, Grb associated-binding protein 2 (Gab2) was identified as a novel target gene of miR-125b and it mediated PAR2-induced cell migration. The correlation of PAR2 with miR-125b and Gab2 was further supported by the findings obtained from human colorectal carcinoma specimens. Remarkably, knock down of NOP2/Sun domain family, member 2 (NSun2), a RNA methyltransferase, blocked the reduction in miR-125b induced by PAR2. Furthermore, PAR2 activation increased the level of N(6)-methyladenosine (m(6)A)-containing pre-miR-125b in NSun2-dependent manner. Taken together, our results demonstrated that miR-125b mediates PAR2-induced cancer cell migration by targeting Gab2 and that NSun2-dependent RNA methylation contributes to the down-regulation of miR-125b by PAR2 signaling. These findings suggest a novel epigenetic mechanism by which microenvironment regulates cancer cell migration by altering miRNA expression.
Collapse
Affiliation(s)
- Lan Yang
- From the State Key Laboratory of Molecular Oncology
| | - Yiming Ma
- From the State Key Laboratory of Molecular Oncology
| | - Wenxiao Han
- From the State Key Laboratory of Molecular Oncology
| | - Weiwei Li
- From the State Key Laboratory of Molecular Oncology
| | - Liang Cui
- Department of Abdominal Surgical Oncology, and
| | - Xinhua Zhao
- From the State Key Laboratory of Molecular Oncology
| | - Yantao Tian
- Department of Abdominal Surgical Oncology, and
| | - Zhixiang Zhou
- Department of Gastrointestinal Surgical Oncology, Cancer Institute/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 100021 Beijing, PR China and
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 100191 Beijing, PR China
| | - Hongying Wang
- From the State Key Laboratory of Molecular Oncology,
| |
Collapse
|
23
|
Sun Z, Cao B, Wu J. Protease-activated receptor 2 enhances renal cell carcinoma cell invasion and migration via PI3K/AKT signaling pathway. Exp Mol Pathol 2015; 98:382-9. [DOI: 10.1016/j.yexmp.2015.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/22/2023]
|
24
|
Zhang Y, Schöttker B, Ordóñez-Mena J, Holleczek B, Yang R, Burwinkel B, Butterbach K, Brenner H. F2RL3 methylation, lung cancer incidence and mortality. Int J Cancer 2015; 137:1739-48. [PMID: 25821117 DOI: 10.1002/ijc.29537] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 12/30/2022]
Abstract
Smoking accounts for a large share of lung cancer. F2RL3 methylation was recently identified as a biomarker closely reflecting both current and past smoking exposure. We aimed to assess the associations of F2RL3 methylation with lung cancer incidence and mortality. In a large population-based cohort study, F2RL3 methylation was measured in baseline blood samples of 4,987 participants by MassARRAY. Associations of F2RL3 methylation and smoking with lung cancer incidence/mortality during a median follow-up of 10.9 years were assessed by Cox regression, controlling for potential confounders. The ability of F2RL3 methylation to predict lung cancer was examined by Harrell's C statistics. Hypomethylation at F2RL3 was strongly associated with both lung cancer incidence and mortality, with age- and sex-adjusted hazard ratios (HR; 95% CI) of 9.99 (5.61-17.79) and 16.86 (8.53-33.34), respectively, for participants whose methylation intensity were ≤0.54 compared with whose methylation intensity were ≥0.75. Strongly elevated HRs of 2.88 (1.42-5.84) and 5.17 (2.28-11.70) persisted even after controlling for multiple covariates including smoking status and pack-years. With fully adjusted HRs of 9.92 (2.88-34.12) and 16.48 (4.10-66.15), the associations between methylation and the two outcomes were particularly strong among participants≥65 years. Combination of F2RL3 methylation and pack-years predicted lung cancer incidence with high accuracy (optimism-corrected Harrell's C statistics = 0.86 for participants≥65 years). These findings suggested that F2RL3 methylation is a very strong predictor of lung cancer risk and mortality, particularly at older age. The potential implications of F2RL3 methylation for early detection, risk stratification and prevention of lung cancer warrant further exploration.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - José Ordóñez-Mena
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | | | - Rongxi Yang
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Germany
| | - Barbara Burwinkel
- Division of Molecular Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Germany
| | - Katja Butterbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
25
|
Increased expression of protease-activated receptor 4 and Trefoil factor 2 in human colorectal cancer. PLoS One 2015; 10:e0122678. [PMID: 25876034 PMCID: PMC4395443 DOI: 10.1371/journal.pone.0122678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/24/2015] [Indexed: 01/24/2023] Open
Abstract
Protease-activated receptor 4 (PAR4), a member of G-protein coupled receptors family, was recently reported to exhibit decreased expression in gastric cancer and esophageal squamous cancer, yet increased expression during the progression of prostate cancer. Trefoil factor 2 (TFF2), a small peptide constitutively expressed in the gastric mucosa, plays a protective role in restitution of gastric mucosa. Altered TFF2 expression was also related to the development of gastrointestinal cancer. TFF2 has been verified to promote cell migration via PAR4, but the roles of PAR4 and TFF2 in the progress of colorectal cancer are still unknown. In this study, the expression level of PAR4 and TFF2 in colorectal cancer tissues was measured using real-time PCR (n = 38), western blotting (n=38) and tissue microarrays (n = 66). The mRNA and protein expression levels of PAR4 and TFF2 were remarkably increased in colorectal cancer compared with matched noncancerous tissues, especially in positive lymph node and poorly differentiated cancers. The colorectal carcinoma cell LoVo showed an increased response to TFF2 as assessed by cell invasion upon PAR4 expression. However, after intervention of PAR4 expression, PAR4 positive colorectal carcinoma cell HT-29 was less responsive to TFF2 in cell invasion. Genomic bisulfite sequencing showed the hypomethylation of PAR4 promoter in colorectal cancer tissues and the hypermethylation in the normal mucosa that suggested the low methylation of promoter was correlated to the increased PAR4 expression. Taken together, the results demonstrated that the up-regulated expression of PAR4 and TFF2 frequently occurs in colorectal cancer tissues, and that overexpression of PAR4 may be resulted from promoter hypomethylation. While TFF2 promotes invasion activity of LoVo cells overexpressing PAR4, and this effect was significantly decreased when PAR4 was knockdowned in HT-29 cells. Our findings will be helpful in further investigations into the functions and molecular mechanisms of Proteinase-activated receptors (PARs) and Trefoil factor factors (TFFs) during the progression of colorectal cancer.
Collapse
|
26
|
Cereda V, Formica V, Menghi A, Pellicori S, Roselli M. Kallikrein-related peptidases targeted therapies in prostate cancer: perspectives and challenges. Expert Opin Investig Drugs 2015; 24:929-47. [PMID: 25858813 DOI: 10.1517/13543784.2015.1035708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Despite the emergence of several new effective treatments for metastatic castration-resistant prostate cancer patients, disease progression inevitably occurs, leading scientific community to carefully look for novel therapeutic targets of prostate cancer. Kallikrein (KLK)-related peptidases have been demonstrated to facilitate prostate tumorigenesis and disease progression through the development of an oncogenic microenvironment for prostate cells. AREAS COVERED This review first summarizes the large amount of preclinical data showing the involvement of KLKs in prostate cancer pathobiology. In the second part, the authors assess the current status and future directions for KLK-targeted therapy and briefly describe the advances and challenges implicated in the design of effective manufactured drugs. The authors then focus on the preclinical data and on Phase I/II studies of the most promising KLK-targeted agents in prostate cancer. The drugs discussed here are divided on the basis of their mechanism of action: KLK-engineered inhibitors; KLK-activated pro-drugs; KLK-targeted microRNAs and small interfering RNAs(-/)small hairpin RNAs; KLK vaccines and antibodies. EXPERT OPINION Targeting KLK expression and/or activity could be a promising direction in prostate cancer treatment. Future human clinical trials will help us to evaluate the real benefits, toxicities and the consequent optimal use of KLK-targeted drugs, as mono-therapy or in combination regimens.
Collapse
Affiliation(s)
- Vittore Cereda
- 1 University of Rome Tor Vergata, Tor Vergata University Clinical Center, Department of Systems Medicine, Medical Oncology , Viale Oxford 81, 00133 Rome , Italy +39 0620908190 ; +39 0620903504 ;
| | | | | | | | | |
Collapse
|
27
|
Kularathna PK, Pagel CN, Mackie EJ. Tumour progression and cancer-induced pain: a role for protease-activated receptor-2? Int J Biochem Cell Biol 2014; 57:149-56. [PMID: 25448411 DOI: 10.1016/j.biocel.2014.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/23/2014] [Indexed: 02/08/2023]
Abstract
The role of proteases in modifying the microenvironment of tumour cells has long been recognised. With the discovery of the protease-activated receptor family of G protein-coupled receptors a mechanism for cells to sense and respond directly to proteases in their microenvironment was revealed. Many early studies described the roles of protease-activated receptors in the cellular events that occur during blood coagulation and inflammation. More recently, studies have begun to focus on the roles of protease-activated receptors in the establishment, progression and metastasis of a variety of tumours. This review will focus on the expression of protease-activated receptor-2 and its activators by normal and neoplastic tissues, and describe current evidence that activation of protease-activated receptor-2 is an important event at multiple stages of tumour progression and in pain associated with cancer.
Collapse
Affiliation(s)
- Pamuditha K Kularathna
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles N Pagel
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eleanor J Mackie
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
28
|
Queiroz KCS, Shi K, Duitman J, Aberson HL, Wilmink JW, van Noesel CJM, Richel DJ, Spek CA. Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. Int J Cancer 2014; 135:2294-304. [PMID: 24436106 DOI: 10.1002/ijc.28726] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/02/2014] [Indexed: 12/26/2022]
Abstract
Protease activated receptor (PAR)-1 expression in tumor cells is associated with disease progression and overall survival in a variety of cancers of epithelial origin; however, the importance of PAR-1 in the tumor microenvironment remains unexplored. Utilizing an orthotopic pancreatic cancer model in which tumor cells are PAR-1 positive whereas stromal cells are PAR-1 negative, we show that PAR-1 expression in the microenvironment drives progression and induces chemoresistance of pancreatic cancer. PAR-1 enhances monocyte recruitment into the tumor microenvironment by regulating monocyte migration and fibroblast dependent chemokine production thereby inducing chemoresistance. Overall, our data identify a novel role of PAR-1 in the pancreatic tumor microenvironment and suggest that PAR-1 may be an attractive target to reduce drug resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Karla C S Queiroz
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Rybinski B, Franco-Barraza J, Cukierman E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol Genomics 2014; 46:223-44. [PMID: 24520152 PMCID: PMC4035661 DOI: 10.1152/physiolgenomics.00158.2013] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/04/2014] [Indexed: 02/07/2023] Open
Abstract
For decades tumors have been recognized as "wounds that do not heal." Besides the commonalities that tumors and wounded tissues share, the process of wound healing also portrays similar characteristics with chronic fibrosis. In this review, we suggest a tight interrelationship, which is governed as a concurrence of cellular and microenvironmental reactivity among wound healing, chronic fibrosis, and cancer development/progression (i.e., the WHFC triad). It is clear that the same cell types, as well as soluble and matrix elements that drive wound healing (including regeneration) via distinct signaling pathways, also fuel chronic fibrosis and tumor progression. Hence, here we review the relationship between fibrosis and cancer through the lens of wound healing.
Collapse
Affiliation(s)
- Brad Rybinski
- Cancer Biology Program, Fox Chase Cancer Center/Temple Health, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
30
|
Zhang Y, Yang R, Burwinkel B, Breitling LP, Holleczek B, Schöttker B, Brenner H. F2RL3 methylation in blood DNA is a strong predictor of mortality. Int J Epidemiol 2014; 43:1215-25. [PMID: 24510982 DOI: 10.1093/ije/dyu006] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Smoking is a major cause of morbidity and mortality. Smoking-related epigenetic biomarkers may open new avenues to better quantify the adverse health effects of smoking, and to better understanding of the underlying mechanisms. We aimed to evaluate the clinical implications of F2RL3 methylation, a novel epigenetic biomarker of smoking exposure disclosed by recent genome-wide methylation studies. METHODS Blood DNA methylation at F2RL3 (also known as PAR-4) was quantified in baseline samples of 3588 participants aged 50-75 years in a large population-based prospective cohort study by MALDI-TOF mass spectrometry. Deaths were recorded during a median follow-up of 10.1 years. The associations of methylation intensity and of smoking with all-cause, cardiovascular, cancer and other mortality were assessed by Cox's proportional hazards regression, controlling for potential confounding factors. RESULTS Lower methylation intensity at F2RL3 was strongly associated with mortality. After adjustment for multiple covariates including smoking, hazard ratios [95% confidence interval (CI)] for death from any cause, cardiovascular disease, cancer or other causes were 2.60 (95% CI, 1.81-3.74), 2.45 (95% CI, 1.28-4.68), 2.94 (95% CI, 1.68-5.14) and 2.39 (95% CI, 1.11-5.16), respectively, in subjects in the lowest quartile of methylation intensity compared with subjects in the highest quartile. The associations with mortality outcomes were much stronger among men than among women. In addition, strong positive associations of smoking with each of the outcomes were substantially weakened, and almost disappeared when controlling for F2RL3 methylation intensity. CONCLUSIONS F2RL3 methylation is a strong predictor of mortality, including all-cause, cardiovascular, cancer and other mortality. Systemic adverse effects of smoking may be mediated by pathways associated with F2RL3 methylation.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| | - Rongxi Yang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, GermanyDivision of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| | - Barbara Burwinkel
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, GermanyDivision of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| | - Lutz P Breitling
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| | - Bernd Holleczek
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, Division of Molecular Epidemiology, German Cancer Research Center, Heidelberg, Germany, Molecular Biology of Breast Cancer, Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany and Saarland Cancer Registry, Saarbrücken, Germany
| |
Collapse
|
31
|
Zhang Y, Yang R, Burwinkel B, Breitling LP, Brenner H. F2RL3 methylation as a biomarker of current and lifetime smoking exposures. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:131-7. [PMID: 24273234 PMCID: PMC3915264 DOI: 10.1289/ehp.1306937] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 11/21/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Recent genome-wide DNA methylation studies have found a pronounced difference in methylation of the F2RL3 gene (also known as PAR-4) in blood DNA according to smoking exposure. Knowledge on the variation of F2RL3 methylation by various degrees of smoking exposure is still very sparse. OBJECTIVES We aimed to assess dose-response relationships of current and lifetime active smoking exposure with F2RL3 methylation. METHODS In a large population-based study, we quantified blood DNA methylation at F2RL3 for 3,588 participants using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Associations of smoking exposure with methylation intensity were examined by multiple linear regression, controlling for potential confounding factors and paying particular attention to dose-response patterns with respect to current and lifetime smoking exposure as well as time since cessation of smoking. RESULTS F2RL3 methylation intensity showed a strong association with smoking status (p < 0.0001), which persisted after controlling for potential confounding factors. Clear inverse dose-response relationships with F2RL3 methylation intensity were seen for both current intensity and lifetime pack-years of smoking. Among former smokers, F2RL3 methylation intensity increased gradually from levels close to those of current smokers for recent quitters to levels close to never smokers for long-term (> 20 years) quitters. CONCLUSIONS F2RL3 methylation is a promising biomarker for both current and long-term past tobacco exposure, and its predictive value for smoking-related diseases warrants further exploration.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Clinical Epidemiology and Aging Research, and
| | | | | | | | | |
Collapse
|
32
|
Proteinase-activated receptor-1 and immunomodulatory effects of a PAR1-activating peptide in a mouse model of prostatitis. Mediators Inflamm 2014; 2013:748395. [PMID: 24459330 PMCID: PMC3891427 DOI: 10.1155/2013/748395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/07/2013] [Indexed: 11/17/2022] Open
Abstract
Background. Nonbacterial prostatitis has no established etiology. We hypothesized that proteinase-activated receptor-1 (PAR1) can play a role in prostatitis. We therefore investigated the effects of PAR1 stimulation in the context of a new model of murine nonbacterial prostatitis. Methods. Using a hapten (ethanol-dinitrobenzene sulfonic acid- (DNBS-)) induced prostatitis model with both wild-type and PAR1-null mice, we examined (1) the location of PAR1 in the mouse prostate and (2) the impact of a PAR1-activating peptide (TFLLR-NH2: PAR1-TF) on ethanol-DNBS-induced inflammation. Results. Ethanol-DNBS-induced inflammation was maximal at 2 days. In the tissue, PAR1 was expressed predominantly along the apical acini of prostatic epithelium. Although PAR1-TF on its own did not cause inflammation, its coadministration with ethanol-DNBS reduced all indices of acute prostatitis. Further, PAR1-TF administration doubled the prostatic production of interleukin-10 (IL-10) compared with ethanol-DNBS treatment alone. This enhanced IL-10 was not observed in PAR1-null mice and was not caused by the reverse-sequence receptor-inactive peptide, RLLFT-NH2. Surprisingly, PAR1-TF, also diminished ethanol-DNBS-induced inflammation in PAR1-null mice. Conclusions. PAR1 is expressed in the mouse prostate and its activation by PAR1-TF elicits immunomodulatory effects during ethanol-DNBS-induced prostatitis. However, PAR1-TF also diminishes ethanol-DNBS-induced inflammation via a non-PAR1 mechanism by activating an as-yet unknown receptor.
Collapse
|
33
|
Hockla A, Miller E, Salameh MA, Copland JA, Radisky DC, Radisky ES. PRSS3/mesotrypsin is a therapeutic target for metastatic prostate cancer. Mol Cancer Res 2013; 10:1555-66. [PMID: 23258495 DOI: 10.1158/1541-7786.mcr-12-0314] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PRSS3/mesotrypsin is an atypical isoform of trypsin that has been associated with breast, lung, and pancreatic cancer cell malignancy. In analyses of open source transcriptional microarray data, we find that PRSS3 expression is upregulated in metastatic prostate cancer tissue, and that expression of PRSS3 in primary prostate tumors is prognostic of systemic progression following prostatectomy. Using a mouse orthotopic model with bioluminescent imaging, we show that PRSS3/mesotrypsin is critical for prostate cancer metastasis. Silencing of PRSS3 inhibits anchorage-independent growth of prostate cancer cells in soft agar assays, and suppresses invasiveness in Matrigel transwell assays and three-dimensional (3D) cell culture models. We further show that treatment with recombinant mesotrypsin directly promotes an invasive cellular phenotype in prostate cancer cells and find that these effects are specific and require the proteolytic activity of mesotrypsin, because neither cationic trypsin nor a mesotrypsin mutant lacking activity can drive the invasive phenotype. Finally, we show that a newly developed, potent inhibitor of mesotrypsin activity can suppress prostate cancer cell invasion to a similar extent as PRSS3 gene silencing. This study defines mesotrypsin as an important mediator of prostate cancer progression and metastasis, and suggests that inhibition of mesotrypsin activity may provide a novel modality for prostate cancer treatment.
Collapse
Affiliation(s)
- Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Prostate cancer (PCa), a highly heterogeneous disease, is the one of the leading cause of morbidity and mortality in the developed countries. Historically used biomarkers such as prostatic acid phosphatase (PAP), serum prostate-specific antigen (PSA), and its precursor have not stood the challenge of sensitivity and specificity. At present, there is need to re-evaluate the approach to diagnose and monitor PCa. To this end, molecular markers that can accurately identify men with PCa at an early stage, and those who would benefit from early therapeutic intervention, are the need of the hour. There has been unprecedented progress in the development of new PCa biomarkers through advancements in proteomics, tissue DNA and protein/RNA microarray, identification of microRNA, isolation of circulating tumor cells, and tumor immunohistochemistry. This review will examine the current status of prostate cancer biomarkers with emphasis on emerging biomarkers by evaluating their diagnostic and prognostic potentials.
Collapse
Affiliation(s)
- Tapan Bhavsar
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
35
|
Ferreira JG, Diniz PMM, Andrade de Paula CA, Lobo YA, Paredes-Gamero EJ, Paschoalin T, Nogueira-Pedro A, Maza PK, Toledo MS, Suzuki E, Oliva MLV. The impaired viability of prostate cancer cell lines by the recombinant plant kallikrein inhibitor. J Biol Chem 2013; 288:13641-54. [PMID: 23511635 DOI: 10.1074/jbc.m112.404053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Kallikreins play a pivotal role in establishing prostate cancer. RESULTS In contrast to the classical Kunitz plant inhibitor SbTI, the recombinant kallikrein inhibitor (rBbKIm) led to prostate cancer cell death, whereas fibroblast viability was not affected. CONCLUSION rBbKIm shows selective cytotoxic effect and angiogenesis inhibition against prostate cancer cells. SIGNIFICANCE New actions of rBbKIm may contribute to understanding the mechanisms of prostate cancer. Prostate cancer is the most common type of cancer, and kallikreins play an important role in the establishment of this disease. rBbKIm is the recombinant Bauhinia bauhinioides kallikreins inhibitor that was modified to include the RGD/RGE motifs of the inhibitor BrTI from Bauhinia rufa. This work reports the effects of rBbKIm on DU145 and PC3 prostate cancer cell lines. rBbKIm inhibited the cell viability of DU145 and PC3 cells but did not affect the viability of fibroblasts. rBbKIm caused an arrest of the PC3 cell cycle at the G0/G1 and G2/M phases but did not affect the DU145 cell cycle, although rBbKIm triggers apoptosis and cytochrome c release into the cytosol of both cell types. The differences in caspase activation were observed because rBbKIm treatment promoted activation of caspase-3 in DU145 cells, whereas caspase-9 but not caspase-3 was activated in PC3 cells. Because angiogenesis is important to the development of a tumor, the effect of rBbKIm in this process was also analyzed, and an inhibition of 49% was observed in in vitro endothelial cell capillary-like tube network formation. In summary, we demonstrated that different properties of the protease inhibitor rBbKIm may be explored for investigating the androgen-independent prostate cancer cell lines PC3 and DU145.
Collapse
Affiliation(s)
- Joana Gasperazzo Ferreira
- Departments of Biochemistry, Universidade Federal de São Paulo-Escola Paulista de Medicina, 04044-020, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tumor dormancy: long-term survival in a hostile environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 734:181-200. [PMID: 23143980 DOI: 10.1007/978-1-4614-1445-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor dormancy occurs when cancer cells are present but the tumor does not grow. Following treatment, patients may enter complete remission in which persistent cells represent the minimal residual disease (MRD). Experimental models and clinical data suggest that the absolute quantity of this MRD is extremely low. Very few cancer cells can persist for years or decades under these hostile conditions that include continuous exposure to maintenance treatment, autologous anti-tumor immune response, and a nonpermissive microenvironment. Dormant tumor cells may survive despite these destruction factors if they adapt and develop strategies to escape from cell death. Escape may result in a state of equilibrium between MRD and the patient. Equilibrium between the immune response and tumor cells can result in long-term tumor dormancy; however, after variable lengths of time, tumor dormancy ends, and the disease progresses. Experimental models have shown that dormant tumor cells may over-express B7-H1 and B7.1 and inhibit cytotoxic T-cell mediated lysis. This resistance could be therapeutically targeted using drugs like MEK inhibitors that modulate pathways involved in B7-H1 expression. Dormant tumor cells may also develop nonspecific resistance mechanisms to cell death, such as deregulation of JAK/STAT and mTORC2/AKT pathways or autocrine and paracrine production of cytokines. This deregulation leads to cross-resistance between the immune response and cytotoxic drugs, indicating that the long-term selection that occurs in vivo during tumor dormancy may ultimately result in resistant relapse. Long-term selection of cancer cells in vitro using tyrosine kinase inhibitors selects cells that harbor the same resistance mechanisms as dormant tumor cells. Elucidating the mechanisms underlying the equilibrium that allows for the persistence of dormant tumor cells presents a novel strategy for targeted drug treatment in the context of maintenance therapy.
Collapse
|
37
|
Hägglöf C, Bergh A. The stroma-a key regulator in prostate function and malignancy. Cancers (Basel) 2012; 4:531-48. [PMID: 24213323 PMCID: PMC3712705 DOI: 10.3390/cancers4020531] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/20/2012] [Accepted: 05/21/2012] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is a very common and highly unpredictable form of cancer. Whereas many prostate cancers are slow growing and could be left without treatment, others are very aggressive. Additionally, today there is no curative treatment for prostate cancer patients with local or distant metastasis. Identification of new, improved prognostic and diagnostic biomarkers for prostate cancer and the finding of better treatment strategies for metastatic prostate cancer is therefore highly warranted. Interactions between epithelium and stroma are known to be important already during prostate development and this interplay is critical also in development, progression of primary tumors and growth of metastases. It is therefore reasonable to expect that future biomarkers and therapeutic targets can be identified in the prostate tumor and metastasis stroma and this possibility should be further explored.
Collapse
Affiliation(s)
- Christina Hägglöf
- Department of Medical Biosciences, Pathology, Umeå University, Umeå 90185, Sweden.
| | | |
Collapse
|
38
|
|
39
|
Zhang Y, Yu G, Jiang P, Xiang Y, Li W, Lee W, Zhang Y. Decreased expression of protease-activated receptor 4 in human gastric cancer. Int J Biochem Cell Biol 2011; 43:1277-83. [PMID: 21635966 DOI: 10.1016/j.biocel.2011.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/03/2011] [Accepted: 05/16/2011] [Indexed: 02/06/2023]
Abstract
Protease-activated receptors (PARs) are a unique family of G-protein coupled receptors. PAR4, the most recently identified PAR member, was reported to be overexpressed during the progression of colon and prostate cancers. Though PAR4 mRNA was detected in normal stomach, the role of PAR4 in gastric cancer has not been investigated. In this study, differential expression of PAR4 was measured by real-time PCR (n=28) and tissue microarrays (n=74). We showed that PAR4 was located from basal to middle portions of normal gastric mucosa. PAR4 expression was remarkably decreased in gastric cancer tissues as compared with matched noncancerous tissues, especially in positive lymph node or low differentiation cancers. Furthermore, methylation of the PAR4 promoter in cell lines was assessed by treatment with 5-aza-2'-deoxycytidine and genomic bisulfite sequencing. AGS and N87 human gastric cancer cell lines did not express PAR4, as compared to HT-29 human colon cancer cell line with significant PAR4 expression. Treatment with 5-aza-2'-deoxycytidine restored PAR4 expression in AGS and N87 cells, which exhibited significantly more 5-methylcytosines in the PAR4 promoter compared with HT-29 cells. Our results revealed that down-regulation of PAR4 expression occurs frequently in gastric cancers and exhibits association with more aggressive gastric cancer. Interestingly, the loss of PAR4 expression in gastric cancers may result from hypermethylation of the PAR4 promoter.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao Chang Road, Kunming, Yunnan 650223, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Fernández-Serra A, Rubio-Briones J, García-Casado Z, Solsona E, López-Guerrero JA. [Prostate cancer: the revolution of the fusion genes]. Actas Urol Esp 2011; 35:420-8. [PMID: 21601955 DOI: 10.1016/j.acuro.2010.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 11/02/2010] [Accepted: 11/05/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND TMPRSS2-ETS fusion gene rearrangements constitute a very common and specific alteration in prostate cancer cells. These genetic alterations lead the overexpression of ETS genes which encode the E26 family of transcription factors involved in cell proliferation. Of this family, the ERG oncogene is overexpressed in almost 50% of prostate cancer cases. EVIDENCE SYNTHESIS TMPRSS2-ERG overexpresses ERG through an androgen-mediated response. Structurally, the rearrangement is due to interstitial deletion and to a lesser extent to reciprocal translocation and plays a key role in cellular metabolism. Almost all fusion gene transcripts produce a truncated ERG protein and the presence of a specific isoform of this gene suggests the clonality of the tumor; hence, metastasis shares the fusion gene status of their primary lesion. Although the prognostic implications of TMPRSS2-ERG have not been fully elucidated, they constitutes a field of great diagnostic potential and, therefore, the development of techniques to identify and to analyze the presence and characteristics of this gene in a non-invasive fashion deserves great interest in this area. Currently, there is evidence supporting the hypothesis that the presence of fusion gene differentiates two molecular groups within prostate cancer with a differential behaviour making the fusion gene a potential therapeutic target. In this regard, the use of anti-HDAC (trichostatin), antagonists of estrogen receptor alpha and abiraterone acetate have shown promising results. CONCLUSIONS This review describes the great potential offered by the investigation of fusion genes in PC and the need for further studies.
Collapse
Affiliation(s)
- A Fernández-Serra
- Laboratorio de Biología Molecular, Fundación Instituto Valenciano de Oncología, Valencia, España
| | | | | | | | | |
Collapse
|
41
|
Chang LH, Chen CH, Huang DY, Pai HC, Pan SL, Teng CM. Thrombin induces expression of twist and cell motility via the hypoxia-inducible factor-1α translational pathway in colorectal cancer cells. J Cell Physiol 2011; 226:1060-8. [PMID: 20857420 DOI: 10.1002/jcp.22428] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Deep vein thrombosis associated with advanced cancer is known as Trousseau's syndrome. We hypothesized that thrombin, an activator of protease-activated receptor (PAR)-1 and PAR-4 contributes to tumor metastasis. In this study, we demonstrated that thrombin and the PAR-1 activating peptide (AP) SFLLRN, but not the PAR-4 AP GYPGKF, induced HIF-1α activities, protein expression, and cell motility in colorectal cancer cells, and these actions were significantly inhibited by the PAR-1 antagonist SCH79797. Moreover, thrombin-induced HIF-1α activity and cell motility were blocked by inhibiting important mediators of signaling transduction, including the ERK, PI3K, and mTOR pathways. These results showed that thrombin induced HIF-1α protein expression through PAR-1 and HIF-1α translational de novo protein synthesis. Twist can regulate epithelial-mesenchymal transition (EMT) and increase tumor metastasis. However, we observed that thrombin-induced HIF-1α increased Twist mRNA and its protein level was mediated by the modulation of PAR-1 activation and the HIF-1α translational pathway. In addition, Twist could increase N-cadherin but not E-cadherin to promote tumor metastasis. Overexpression of dominant-negative HIF-1α reversed thrombin-mediated Twist and Twist-induced N-cadherin expression. Moreover, siTwist inhibited Twist-induced N-cadherin and Thrombin-induced cell motility. In conclusion, our study showed that thrombin-induced HIF-1α upregulated Twist at the transcriptional level to enhance cell motility. These findings show that thrombin upregulates Twist via HIF-1α to make tumor cells malignant and also establish a link between the coagulation disorder and cancer metastasis.
Collapse
Affiliation(s)
- Li-Hsun Chang
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 2011; 130:248-82. [PMID: 21277892 DOI: 10.1016/j.pharmthera.2011.01.003] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
Discovered in the 1990s, protease activated receptors(1) (PARs) are membrane-spanning cell surface proteins that belong to the G protein coupled receptor (GPCR) family. A defining feature of these receptors is their irreversible activation by proteases; mainly serine. Proteolytic agonists remove the PAR extracellular amino terminal pro-domain to expose a new amino terminus, or tethered ligand, that binds intramolecularly to induce intracellular signal transduction via a number of molecular pathways that regulate a variety of cellular responses. By these mechanisms PARs function as cell surface sensors of extracellular and cell surface associated proteases, contributing extensively to regulation of homeostasis, as well as to dysfunctional responses required for progression of a number of diseases. This review examines common and distinguishing structural features of PARs, mechanisms of receptor activation, trafficking and signal termination, and discusses the physiological and pathological roles of these receptors and emerging approaches for modulating PAR-mediated signaling in disease.
Collapse
Affiliation(s)
- Mark N Adams
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane Qld 4101, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Wang X, Liu HT, Li SL, Li K, Lin N, Fan QX, Zheng YL. Prognostic Value of Protease-Activated Receptor 2 Expression in Oesophageal Squamous Cell Carcinoma. J Int Med Res 2010; 38:1381-8. [DOI: 10.1177/147323001003800420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protease-activated receptor-2 (PAR-2) is essential for the initiation and development of tumours, suggesting that the detection of PAR-2 expression might serve as a clinical marker in the prediction or diagnosis of clinical outcomes of malignant neoplasia. Using immunohisto chemical methods, this study investigated whether the detection of PAR-2 protein had clinical implications for patients with oesophageal squamous cell carcinoma (OSCC). PAR-2 protein was present at a high level in primary OSCC sites but at a low level in normal oesophageal tissue. The level of PAR-2 protein in tumours was significantly correlated with the clinical stage and histological grade of disease. Patients with tumours highly positive for PAR-2 protein had a significantly worse prognosis than those with lower PAR-2 levels. Thus, the over-expression of PAR-2 is a characteristic feature of OSCC and suggests that the immuno histochemical detection of raised levels of PAR-2 may be a potentially useful prognostic indicator.
Collapse
Affiliation(s)
| | - HT Liu
- Laboratory for Cell Biology, Department of Bioengineering, Zhengzhou University, Zhengzhou, Henan, China
| | - SL Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | | | | | |
Collapse
|
44
|
Expression of proteinase-activated receptor 1-4 (PAR 1-4) in human cancer. J Mol Histol 2010; 41:89-99. [PMID: 20563836 DOI: 10.1007/s10735-010-9274-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/02/2010] [Indexed: 01/13/2023]
Abstract
Proteinase activated receptors (PAR 1-4) are membrane receptors with a unique way of activation by proteinases like thrombin, trypsin and matrix metalloproteinases which lead to a specific cellular response. To evaluate the significance of expression and co-expression of PAR in cancer we performed a survey on published data. A Pubmed literature search on "PAR, thrombin, cancer" was performed and 46 publications were selected for systematic review based on the availability of information on tumor type, material type, detection method and specification of positive cases. PAR-1 was found in 77.3% of malignant samples (n = 678), PAR-2 in 79.5% (n = 592), PAR-3 in 12.6% (n = 87) and PAR-4 in 54.9% (n = 153). PAR-1 and -2 were present in adenocarcinomas, melanomas, osteosarcomas, glioblastomas, meningiomas, leukaemias and squamous cell carcinomas. Presence of PAR-3 was limited to kidney and liver cancer. The data on PAR-4 expression was inconclusive. Those studies analysing PAR-1 and PAR-2 reported coexpression of the two receptors. PAR-1 and -2 are widely expressed in human tumors suggesting an important role in tumorigenesis and providing potential targets for therapy. PAR-3 and PAR-4 are less frequently detectable, their expression and potential role in tumorigenesis require further investigation.
Collapse
|
45
|
Yang Y, Qin W, Tian G, Jian W. Expression and functional characterization of a Rho-family small GTPase CDC42 from Trichinella spiralis. Parasitol Res 2010; 107:153-62. [PMID: 20369253 DOI: 10.1007/s00436-010-1851-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/12/2010] [Indexed: 12/31/2022]
Abstract
A full-length cDNA encoding a Rho-family small GTPase gene cdc42 of Trichinella spiralis was expressed in E. coli. The recombinant protein of TsCDC42 was purified and used to raise the polyclonal antibodies. The expression of TsCDC42 in different stages of parasite was investigated. The western blot showed that TsCDC42 was expressed in all stages of T. spiralis, including newborn larvae, muscle larvae and adult worms. The immuno-localization revealed that TsCDC42 was ubiquitously distributed in the newborn larvae, muscle larvae and adult worm. Cross-species RNAi was done by knockdown Tscdc42 RNAi in C. elegans. The results revealed that endogenous expression level of CDC42 was decreased by knockdown Tscdc42 RNAi in C. elegans, and this knockdown reduced the progeny of C. elegans. It suggested that Tscdc42 might play the same roles in the early development of T. spiralis.
Collapse
Affiliation(s)
- Yurong Yang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.
| | | | | | | |
Collapse
|
46
|
Wang W, Mize GJ, Zhang X, Takayama TK. Kallikrein-related peptidase-4 initiates tumor-stroma interactions in prostate cancer through protease-activated receptor-1. Int J Cancer 2010; 126:599-610. [PMID: 19795418 DOI: 10.1002/ijc.24904] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In prostate cancer, the mechanism by which the stromal cells surrounding the cancer epithelium become reactive and overproduce growth factors is unclear. Furthermore, the precise process of how these stromal cells stimulate the cancer epithelium is not fully understood. We recently found that protease-activated receptor-1 (PAR-1) in these reactive stromal cells is upregulated. To investigate the role of PAR-1 in the stromal-epithelial interaction, WPMY-1 stromal myofibroblasts were stimulated with PAR-1 agonists including thrombin and PAR-1 activating peptide. We show that WPMY-1 cells have functional PAR-1 by signaling through ERK1/2. Conditioned media (CM) from PAR-1 agonists-treated WPMY-1 cells stimulate the epithelial LNCaP cells leading to ERK1/2 activation and cell proliferation. Cytokine array analysis of the CM demonstrates that PAR-1 induces stromal cells to release numerous cytokines, of which interleukin 6 (IL-6) is the major factor responsible for mitogenic signaling in LNCaP cells. CM further induces expression of prostate-specific kallikrein-related peptidase-3 (KLK3/PSA) and KLK4 in LNCaP cells via the IL-6 pathway. Moreover, KLK4 functions as a potent agonist of PAR-1 by cleaving the receptor at the proper site on cell surface. KLK4 triggers transmembrane signaling and upregulates IL-6 in WPMY-1 cells through PAR-1. Immunohistochemical analysis indicates that PAR-1 is predominantly expressed in peritumoral stroma while KLK4 is produced exclusively by the epithelial cancer cells. These data provide evidence for a novel double-paracrine mechanism whereby cancer epithelium produces KLK4 to activate PAR-1 in the surrounding stroma, which in-turn releases cytokines (IL-6) that stimulate cancer cells to proliferate and increase production of KLKs.
Collapse
Affiliation(s)
- Wenbin Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
47
|
Chen LM, Hatfield ML, Fu YY, Chai KX. Prostasin regulates iNOS and cyclin D1 expression by modulating protease-activated receptor-2 signaling in prostate epithelial cells. Prostate 2009; 69:1790-801. [PMID: 19670249 DOI: 10.1002/pros.21030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prostasin is down-regulated during inflammation and in invasive cancers, and plays a role in regulation of inflammatory gene expression and invasion. METHODS We used the human benign prostatic hyperplasia cell line BPH-1 to investigate gene expression changes associated with siRNA-mediated loss of prostasin expression. Quantitative PCR and/or western blotting were used to evaluate the expression changes of iNOS, ICAM-1, cyclin D1, IL-6, and IL-8. Gene expression changes were also evaluated in the presence of a PAR-2 antagonist. The PC-3 human prostate cancer cell line was used for evaluation of gene expression in response to prostasin re-expression. RESULTS Prostasin silencing in BPH-1 was associated with up-regulation of iNOS, ICAM-1, IL-6, and IL-8, and down-regulation of cyclin D1; as well as reduced proliferation and invasion. The iNOS up-regulation and cyclin D1 down-regulation associated with prostasin silencing were inhibited by a PAR-2 antagonist. Re-expression of prostasin, a serine active-site mutant, and a GPI-anchor-free mutant, in the PC-3 cells resulted in PAR-2 and cyclin D1 transcription up-regulation. Transcription up-regulation of IL-6 and IL-8 was associated with re-expression of the serine active-site mutant prostasin in the PC-3 cells. Transcription up-regulation of IL-8, but to a lesser extent, was also observed in PC-3 cells expressing the wild-type prostasin. Expression of a serine protease active prostasin, GPI-anchored or anchor-free, prevented the IL-6 induction in response to PAR-2. The GPI-anchor-free prostasin also prevented the IL-8 induction. CONCLUSIONS Prostasin plays a negative regulatory role on PAR-2-mediated signaling in prostate epithelial cells.
Collapse
Affiliation(s)
- Li-Mei Chen
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, USA
| | | | | | | |
Collapse
|
48
|
Proteinase-activated receptor 2 expression in breast cancer and its role in breast cancer cell migration. Oncogene 2009; 28:3047-57. [PMID: 19543320 DOI: 10.1038/onc.2009.163] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteinase-activated receptor 2 (PAR2) is a G protein-coupled receptor that is activated by trypsin-like proteinases. PAR2 is detected in breast tumor specimens; however, it is not clear how PAR2 level in breast cancer cell/tissues compares with normal cell/tissues. Here, we show the elevation of PAR2 protein level in 76 of 105 breast tumor specimens but only 5 of 24 normal breast tissues. PAR2 level is also higher in breast cancer cell lines than that in normal breast cells and non-cancerous breast cell lines. To determine the role of PAR2 in breast carcinogenesis, we examined the effect of PAR2 agonists on cell proliferation and migration. Our studies show that PAR2 agonists (PAR2-activating peptide and trypsin) are neither potent growth enhancers nor chemoattractants to breast cancer cells. Instead, PAR2 agonists induce significant chemokinesis. PAR2-mediated chemokinesis is G(alphai)-dependent, and inhibiting Src kinase activity or silencing c-Src expression blocks PAR2-mediated chemokinesis. These results suggest that c-Src works downstream of G(alphai) to mediate this PAR2 agonist-induced event. To characterize c-Src effector, we reveal that PAR2 agonists activate JNKs in a Src-dependent manner and that JNK activity is essential for PAR2-mediated chemokinesis. Moreover, PAR2 agonist stimulation leads to paxillin Ser(178) phosphorylation and paxillin(S178A) mutant inhibits PAR2-mediated chemokinesis. In conclusion, our studies show that PAR2 agonists facilitate breast cancer cell chemokinesis through the G(alphai)-c-Src-JNK-paxillin signaling pathway.
Collapse
|
49
|
Zhang X, Wang W, True LD, Vessella RL, Takayama TK. Protease-activated receptor-1 is upregulated in reactive stroma of primary prostate cancer and bone metastasis. Prostate 2009; 69:727-36. [PMID: 19170048 PMCID: PMC2720055 DOI: 10.1002/pros.20920] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Prostate cancer progression is partly facilitated by tumor-stroma interactions. We recently reported that protease-activated receptors (PAR-1 and PAR-2) are overexpressed in prostate cancer, and PAR-1 expression in peritumoral stroma is associated with biochemical recurrence. However, the nature of PAR expression in prostate tumor microenvironment is not fully understood. We therefore evaluated PAR-1 and PAR-2 expression in primary prostate cancer and bone metastasis. METHODS PAR-1 and PAR-2 expression in normal, primary prostate cancer and the corresponding bone metastatic tissues were examined by immunohistochemistry, and double-label immunohistochemistry with the use of additional markers. RESULTS PAR-1 was expressed in peritumoral stroma in the majority of primary cancer tissues (83%). Serial sections and double-label immunohistochemistry determined that these PAR-1 expressing stromal cells were predominantly myofibroblasts, the primary cell type in reactive stroma. Analysis of cancer glands revealed that PAR-1 expression was significantly increased in the reactive stroma around higher Gleason grade cancers. PAR-2 was predominantly expressed in the primary cancer cells as well as smooth muscle cells but not in reactive stroma. In bone metastasis, PAR-1 expression in cancer cells was elevated compared to the primary site from the same patient. In the bone reactive stroma, PAR-1 was present in vascular endothelial cells and fibroblasts, while both PAR-1 and PAR-2 were expressed in osteoblasts and osteoclasts. CONCLUSIONS In primary prostate cancer and bone metastasis, PAR-1 is upregulated in reactive stroma and PAR-2 is uniformly overexpressed in carcinoma cells, suggesting these receptors may play potentially different roles in prostate cancer development and metastasis.
Collapse
Affiliation(s)
- Xiaotun Zhang
- Department of Urology, University of Washington, Seattle, Washington
| | - Wenbin Wang
- Department of Urology, University of Washington, Seattle, Washington
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Lawrence D. True
- Department of Pathology University of Washington, Seattle, Washington
| | | | - Thomas K. Takayama
- Department of Urology, University of Washington, Seattle, Washington
- Department of Biochemistry, University of Washington, Seattle, Washington
- To whom correspondence should be addressed. University of Washington Box 356510 1959 NE Pacific ST Seattle, WA 98195-7350 E-mail: FAX: (206) 543-5368
| |
Collapse
|
50
|
Gratio V, Walker F, Lehy T, Laburthe M, Darmoul D. Aberrant expression of proteinase-activated receptor 4 promotes colon cancer cell proliferation through a persistent signaling that involves Src and ErbB-2 kinase. Int J Cancer 2009; 124:1517-25. [PMID: 19058300 DOI: 10.1002/ijc.24070] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thrombin is now recognized as an important factor in many cancers. Here, we examined the expression and role of the recently discovered thrombin receptor PAR4, in human colon cancer cells. PAR4 mRNA was found in 10 out of 14 (71%) human colon cancer cell lines tested but not in epithelial cells isolated from normal human colon. This finding is in line with immunostaining results of PAR4 in human colon tumors and its absence in normal human colonic mucosa. Investigation of the functional significance of the aberrant expression of PAR4 in colon cancer cells revealed (i) a prompt increase in intracellular calcium concentration on challenge with PAR4-specific agonist AP4 (100 microM) and (ii) marked mitogenic response (2.5-fold increase in cell number) in a dose-dependent manner on treatment with AP4 (0.1-300 microM). Analysis of the signaling pathways downstream of PAR4 activation in HT29 cells showed (i) a sustained phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2) and (ii) the involvement of epidermal growth factor receptor B-2 (ErbB-2) but not of epidermal growth factor receptor in PAR4-induced mitogen-activated protein kinase activation. Tyrphostin AG1478, the ErbB inhibitor, reversed the action of AP4 on ERK1/2 and ErbB-2 phosphorylation and HT29 cell growth. Finally, the Src inhibitor PP2 abrogated ErbB-2 and ERK phosphorylation and HT29 cell proliferation, suggesting the essential role of Src activity in PAR4-induced phosphorylation of ErbB-2. These data highlight the role of PAR4 as a new important player in the control of colon tumors and underline the critical role of ErbB-2 transactivation.
Collapse
Affiliation(s)
- Valérie Gratio
- INSERM U773, Faculté de Médecine Xavier Bichat 75018 Paris, France
| | | | | | | | | |
Collapse
|