1
|
Silver SV, Tucker KJ, Vickman RE, Lanman NA, Semmes OJ, Alvarez NS, Popovics P. Characterization of prostate macrophage heterogeneity, foam cell markers, and CXCL17 upregulation in a mouse model of steroid hormone imbalance. Sci Rep 2024; 14:21029. [PMID: 39251671 PMCID: PMC11383972 DOI: 10.1038/s41598-024-71137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a prevalent age-related condition often characterized by debilitating urinary symptoms. Its etiology is believed to stem from hormonal imbalance, particularly an elevated estradiol-to-testosterone ratio and chronic inflammation. Our previous studies using a mouse steroid hormone imbalance model identified a specific increase in macrophages that migrated and accumulated in the prostate lumen where they differentiated into lipid-laden foam cells in mice implanted with testosterone and estradiol pellets, but not in sham animals. The current study focused on further characterizing the cellular heterogeneity of the prostate in this model as well as identifying the specific transcriptomic signature of the recruited foam cells. Moreover, we aimed to identify epithelia-derived signals that drive macrophage infiltration and luminal translocation. Male C57BL/6J mice were implanted with slow-release testosterone and estradiol pellets (T + E2) or sham surgery was performed and the ventral prostates were harvested two weeks later for scRNA-seq analysis. We identified Ear2 + and Cd72 + macrophages that were elevated in response to steroid hormone imbalance, whereas a Mrc1 + resident macrophage population did not change. In addition, an Spp1 + foam cell cluster was almost exclusively found in T + E2 mice. Further markers of foam cells were also identified, including Gpnmb and Trem2, and GPNMB was confirmed as a novel histological marker with immunohistochemistry. Foam cells were also shown to express known pathological factors Vegf, Tgfb1, Ccl6, Cxcl16 and Mmp12. Intriguingly, a screen for chemokines identified the upregulation of epithelia-derived Cxcl17, a known monocyte attractant, in T + E2 prostates suggesting that it might be responsible for the elevated macrophage number as well as their translocation to the lumen. Our study identified macrophage subsets that responded to steroid hormone imbalance as well as further confirmed a potential pathological role of luminal foam cells in the prostate. These results underscore a potential pathological role of the identified prostate foam cells and suggests CXCL17-mediated macrophage migration as a critical initiating event.
Collapse
Affiliation(s)
- Samara V Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kayah J Tucker
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Renee E Vickman
- Department of Surgery, Endeavor Health, An Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Nadia A Lanman
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Nehemiah S Alvarez
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
2
|
Yan H, He B, He L, Ye H. Screening study on significant Chinese herb for anti-idiopathic pulmonary fibrosis by combining clinical experience prescriptions and molecular dynamics simulation technologies. J Biomol Struct Dyn 2024; 42:6393-6409. [PMID: 37963492 DOI: 10.1080/07391102.2023.2263792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/01/2023] [Indexed: 11/16/2023]
Abstract
Various techniques such as data mining, network pharmacology, molecular docking and molecular dynamics simulation were used in this study to screen and validate effective herbal medicines for the treatment of idiopathic pulmonary fibrosis (IPF) and to reveal their mechanisms of action at the molecular level. The use of this approach will provide new tools and ideas for future drug screening, especially for the application of herbal medicines in the treatment of complex diseases. Among them, the five identified core targets, including IL6, TP53, AKT1, VEGFA, and TNF, as well as a series of major active compounds, will be important references for future anti-IPF drug development. This information will accelerate the discovery and development of relevant drugs. Meanwhile, this study further confirmed the potential value of four Chinese herbal medicines, including Gancao, Danshen, Huangqin, and Sanqi, in the treatment of IPF. This will promote more clinical trials and practices to confirm and optimise the application of these herbs. Finally, this study is an important theoretical guide to enhance the advantages of Chinese herbal medicines in the prevention and treatment of major and difficult diseases, as well as to understand and utilise the potential efficacy of Chinese herbal medicines. This will further promote the scientific research and clinical application of herbal medicines and provide more possibilities for future disease treatmentCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Haiting Yan
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Beibei He
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li He
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua Ye
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Silver SV, Tucker KJ, Vickman RE, Lanman NA, Semmes OJ, Alvarez NS, Popovics P. PROSTATE CELL HETEROGENEITY AND CXCL17 UPREGULATION IN MOUSE STEROID HORMONE IMBALANCE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590980. [PMID: 38712029 PMCID: PMC11071464 DOI: 10.1101/2024.04.24.590980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Benign prostatic hyperplasia (BPH) is a prevalent age-related condition often characterized by debilitating urinary symptoms. Its etiology is believed to stem from hormonal imbalance, particularly an elevated estradiol-to-testosterone ratio and chronic inflammation. Our previous studies using a mouse steroid hormone imbalance model identified a specific increase in macrophages that migrate and accumulate in the prostate lumen where they differentiate into lipid-laden foam cells in mice implanted with testosterone and estradiol pellets, but not in sham animals. The current study focused on further characterizing the cellular heterogeneity of the prostate in this model as well as identifying the specific transcriptomic signature of the recruited foam cells. Moreover, we aimed to identify the epithelia-derived signals that drive macrophage infiltration and luminal translocation. Male C57BL/6J mice were implanted with slow-release testosterone and estradiol pellets (T+E2) and harvested the ventral prostates two weeks later for scRNA-seq analysis, or performed sham surgery. We identified Ear2+ and Cd72+ macrophages that were elevated in response to steroid hormone imbalance, whereas a Mrc1+ resident macrophage population did not change. In addition, an Spp1+ foam cell cluster was almost exclusively found in T+E2 mice. Further markers of foam cells were also identified, including Gpnmb and Trem2, and GPNMB was confirmed as a novel histological marker with immunohistochemistry. Foam cells were also shown to express known pathological factors Vegf, Tgfb1, Ccl6, Cxcl16 and Mmp12. Intriguingly, a screen for chemokines identified the upregulation of epithelial-derived Cxcl17, a known monocyte attractant, in T+E2 prostates suggesting that it might be responsible for the elevated macrophage number as well as their translocation to the lumen. Our study identified macrophage subsets that respond to steroid hormone imbalance as well as further confirmed a potential pathological role of luminal foam cells in the prostate. These results underscore a pathological role of the identified prostate foam cells and suggests CXCL17-mediated macrophage migration as a critical initiating event.
Collapse
Affiliation(s)
- Samara V. Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA
| | - Kayah J. Tucker
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA
| | - Renee E Vickman
- Department of Surgery, Endeavor Health, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Nadia A. Lanman
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA
| | - Nehemiah S. Alvarez
- Department of Surgery, Endeavor Health, an Academic Affiliate of the University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
4
|
Wang L, Niu X. Immunoregulatory Roles of Osteopontin in Diseases. Nutrients 2024; 16:312. [PMID: 38276550 PMCID: PMC10819284 DOI: 10.3390/nu16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Osteopontin (OPN) is a multifunctional protein that plays a pivotal role in the immune system. It is involved in various biological processes, including cell adhesion, migration and survival. The study of the immunomodulatory effects of OPN is of paramount importance due to its potential therapeutic applications. A comprehensive understanding of how OPN regulates the immune response could pave the way for the development of novel treatments for a multitude of diseases, including autoimmune disorders, infectious diseases and cancer. Therefore, in the following paper, we provide a systematic overview of OPN and its immunoregulatory roles in various diseases, laying the foundation for the development of OPN-based therapies in the future.
Collapse
Affiliation(s)
- Lebei Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
5
|
Tang Z, Xia Z, Wang X, Liu Y. The critical role of osteopontin (OPN) in fibrotic diseases. Cytokine Growth Factor Rev 2023; 74:86-99. [PMID: 37648616 DOI: 10.1016/j.cytogfr.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is a pathological condition characterized by the excessive deposition of extracellular matrix components in tissues and organs, leading to progressive architectural remodelling and contributing to the development of various diseases. Osteopontin (OPN), a highly phosphorylated glycoprotein, has been increasingly recognized for its involvement in the progression of tissue fibrosis. This review provides a comprehensive overview of the genetic and protein structure of OPN and focuses on our current understanding of the role of OPN in the development of fibrosis in the lungs and other tissues. Additionally, special attention is given to the potential of OPN as a biomarker and a novel therapeutic target in the treatment of fibrosis.
Collapse
Affiliation(s)
- Ziyi Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zijing Xia
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangpeng Wang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100000, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Silver SV, Popovics P. The Multifaceted Role of Osteopontin in Prostate Pathologies. Biomedicines 2023; 11:2895. [PMID: 38001899 PMCID: PMC10669591 DOI: 10.3390/biomedicines11112895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The prostate gland, located beneath the bladder and surrounding the proximal urethra in men, plays a vital role in reproductive physiology and sexual health. Despite its importance, the prostate is vulnerable to various pathologies, including prostatitis, benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Osteopontin (OPN), a versatile protein involved in wound healing, inflammatory responses, and fibrotic diseases, has been implicated in all three prostate conditions. The role of OPN in prostatic pathophysiology, affecting both benign and malignant prostate conditions, is significant. Current evidence strongly suggests that OPN is expressed at a higher level in prostate cancer and promotes tumor progression and aggressiveness. Conversely, OPN is primarily secreted by macrophages and foam cells in benign prostate conditions and provokes inflammation and fibrosis. This review discusses the accumulating evidence on the role of OPN in prostatic diseases, cellular sources, and potential roles while also highlighting areas for future investigations.
Collapse
Affiliation(s)
- Samara V. Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
7
|
Cao Y, Zhang H, Tang XH, Tu GL, Tian Y, Luo GH, Wang YD, Wang Z, An LY, Luo MX, Tang L. Alterations in the balance of sex hormones may affect rat prostatic inflammation and fibrosis, and osteopontin might be involved in this process. Int Urol Nephrol 2023; 55:2355-2365. [PMID: 36890408 DOI: 10.1007/s11255-023-03544-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE This study aimed to investigate the effects of sex hormone imbalance on rat prostatic inflammation and fibrosis and identify the key molecules involved. METHODS Castrated Sprague-Dawley (SD) rats were treated with a constant dose of oestradiol (E2) and different doses of dihydrotestosterone (DHT) to achieve different oestrogen/androgen ratios. After 8 weeks, serum E2 and DHT concentrations, relative seminal vesicle weights, histopathological changes and inflammation were measured, collagen fiber content and oestrogen receptor (ER) and androgen receptor (AR) expression were detected, mRNA sequencing and bioinformatics analysis were performed to identify differentially expressed genes (DEGs). RESULTS The severity of inflammation in the rat dorsolateral prostate (DLP) was higher, collagen fibre content and ER expression in the rat DLP and prostatic urethra were increased and AR expression in the rat DLP was decreased in the 1:1 E2/DHT-treated group than that in the 1:10 E2/DHT-treated group. RNA-seq analysis identified 487 DEGs, and striking increases in the expression of mRNAs encoding collagen, collagen synthesis and degradation enzymes, growth factors and binding proteins, cytokines and chemokines, and cell-surface molecules were confirmed in the 1:1 E2/DHT-treated group compared to the 1:10 E2/DHT-treated group. mRNA expression of secreted phosphoprotein 1 (Spp1) and protein expression of osteopontin (OPN, encoded by Spp1) were increased in the 1:1 E2/DHT-treated group compared to the 1:10 E2/DHT-treated group, and Spp1 expression correlated positively with Mmp7, Cxcl6 and Igfn1 expression. CONCLUSIONS The imbalance in the oestrogen/androgen ratio may affect rat prostatic inflammation and fibrosis, and OPN might be involved in this process.
Collapse
Affiliation(s)
- Ying Cao
- Guizhou University Medical College, Guiyang, 550025, China.
| | - Heng Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Xiao-Hu Tang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Gui-Lan Tu
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Ye Tian
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Guang-Heng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yan-Dong Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Zhen Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Lin-Yue An
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Mu-Xia Luo
- Guizhou University Medical College, Guiyang, 550025, China
| | - Lei Tang
- Guizhou University Medical College, Guiyang, 550025, China
| |
Collapse
|
8
|
Li H, Madnick S, Zhao H, Hall S, Amin A, Dent MP, Boekelheide K. A novel co-culture model of human prostate epithelial and stromal cells for androgenic and antiandrogenic screening. Toxicol In Vitro 2023; 91:105624. [PMID: 37230229 PMCID: PMC10527365 DOI: 10.1016/j.tiv.2023.105624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/07/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
The risk assessment of endocrine-disrupting chemicals (EDCs) greatly relies on in vitro screening. A 3-dimensional (3D) in vitro prostate model that can reflect physiologically-relevant prostate epithelial and stromal crosstalk can significantly advance the current androgen assessment. This study built a prostate epithelial and stromal co-culture microtissue model with BHPrE and BHPrS cells in scaffold-free hydrogels. The optimal 3D co-culture condition was defined, and responses of the microtissue to androgen (dihydrotestosterone, DHT) and anti-androgen (flutamide) exposure were characterized using molecular and image profiling techniques. The co-culture prostate microtissue maintained a stable structure for up to seven days and presented molecular and morphological features of the early developmental stage of the human prostate. The cytokeratin 5/6 (CK5/6) and cytokeratin 18 (CK18) immunohistochemical staining indicated epithelial heterogeneity and differentiation in these microtissues. The prostate-related gene expression profiling did not efficiently differentiate androgen and anti-androgen exposure. However, a cluster of distinctive 3D image features was identified and could be applied in the androgenic and anti-androgenic effect prediction. Overall, the current study established a co-culture prostate model that provided an alternative strategy for (anti-)androgenic EDC safety assessment and highlighted the potential and advantage of utilizing image features to predict endpoints in chemical screening.
Collapse
Affiliation(s)
- Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| | - Samantha Madnick
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - He Zhao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Susan Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Matthew P Dent
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire MK44 1LQ, UK
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
9
|
Saup R, Nair N, Shen J, Schmaus A, Thiele W, Garvalov BK, Sleeman JP. Increased Circulating Osteopontin Levels Promote Primary Tumour Growth, but Do Not Induce Metastasis in Melanoma. Biomedicines 2023; 11:biomedicines11041038. [PMID: 37189656 DOI: 10.3390/biomedicines11041038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Osteopontin (OPN) is a phosphoprotein with diverse functions in various physiological and pathological processes. OPN expression is increased in multiple cancers, and OPN within tumour tissue has been shown to promote key stages of cancer development. OPN levels are also elevated in the circulation of cancer patients, which in some cases has been correlated with enhanced metastatic propensity and poor prognosis. However, the precise impact of circulating OPN (cOPN) on tumour growth and progression remains insufficiently understood. To examine the role of cOPN, we used a melanoma model, in which we stably increased the levels of cOPN through adeno-associated virus-mediated transduction. We found that increased cOPN promoted the growth of primary tumours, but did not significantly alter the spontaneous metastasis of melanoma cells to the lymph nodes or lungs, despite an increase in the expression of multiple factors linked to tumour progression. To assess whether cOPN has a role at later stages of metastasis formation, we employed an experimental metastasis model, but again could not detect any increase in pulmonary metastasis in animals with elevated levels of cOPN. These results demonstrate that increased levels of OPN in the circulation play distinct roles during different stages of melanoma progression.
Collapse
|
10
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
11
|
Tang L, Xiao Q, Mei Y, He S, Zhang Z, Wang R, Wang W. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnology 2021; 19:423. [PMID: 34915901 PMCID: PMC8679967 DOI: 10.1186/s12951-021-01174-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the exciting breakthroughs in medical technology, cancer still accounts for one of the principle triggers of death and conventional therapeutic modalities often fail to attain an effective cure. Recently, nanobiotechnology has made huge advancement in cancer therapy with gigantic application potential because of their ability in achieving precise and controlled drug release, elevating drug solubility and reducing adverse effects. Carbon nanotubes (CNTs), one of the most promising carbon-related nanomaterials, have already achieved much success in biomedical field. Due to their excellent optical property, thermal and electronic conductivity, easy functionalization ability and high drug loading capacity, CNTs can be applied in a multifunctional way for cancer treatment and diagnosis. In this review, we will give an overview of the recent progress of CNT-based drug delivery systems in cancer theranostics, which emphasizes their targetability to intracellular components of tumor cells and extracellular elements in tumor microenvironment. Moreover, a detailed introduction on how CNTs penetrate inside the tumor cells to reach their sites of action and achieve the therapeutic effects, as well as their diagnostic applications will be highlighted. ![]()
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ziyao Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ruotong Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
12
|
Popovics P, Jain A, Skalitzky KO, Schroeder E, Ruetten H, Cadena M, Uchtmann KS, Vezina CM, Ricke WA. Osteopontin Deficiency Ameliorates Prostatic Fibrosis and Inflammation. Int J Mol Sci 2021; 22:ijms222212461. [PMID: 34830342 PMCID: PMC8617904 DOI: 10.3390/ijms222212461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fibrogenic and inflammatory processes in the prostate are linked to the development of lower urinary tract symptoms (LUTS) in men. Our previous studies identified that osteopontin (OPN), a pro-fibrotic cytokine, is abundant in the prostate of men with LUTS, and its secretion is stimulated by inflammatory cytokines potentially to drive fibrosis. This study investigates whether the lack of OPN ameliorates inflammation and fibrosis in the mouse prostate. We instilled uropathogenic E. coli (UTI89) or saline (control) transurethrally to C57BL/6J (WT) or Spp1tm1Blh/J (OPN-KO) mice and collected the prostates one or 8 weeks later. We found that OPN mRNA and protein expression were significantly induced by E. coli-instillation in the dorsal prostate (DP) after one week in WT mice. Deficiency in OPN expression led to decreased inflammation and fibrosis and the prevention of urinary dysfunction after 8 weeks. RNAseq analysis identified that E. coli-instilled WT mice expressed increased levels of inflammatory and fibrotic marker RNAs compared to OPN-KO mice including Col3a1, Dpt, Lum and Mmp3 which were confirmed by RNAscope. Our results indicate that OPN is induced by inflammation and prolongs the inflammatory state; genetic blockade of OPN accelerates recovery after inflammation, including a resolution of prostate fibrosis.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Asha Jain
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kegan O. Skalitzky
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elise Schroeder
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah Ruetten
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Cadena
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kristen S. Uchtmann
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Chad M. Vezina
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; (P.P.); (A.J.); (K.O.S.); (E.S.); (H.R.); (M.C.); (K.S.U.); (C.M.V.)
- George M. O’Brien Center of Research Excellence, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
13
|
Influence of Androgen Receptor Antagonist MDV3100 Therapy on Rats With Benign Prostatic Hyperplasia. Int Neurourol J 2021; 25:219-228. [PMID: 34610715 PMCID: PMC8497737 DOI: 10.5213/inj.2142004.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/15/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose To probe the effect and mechanism of androgen receptor antagonist MDV3100 on benign prostatic hyperplasia (BPH) of rats Methods BPH rat model was induced by testosterone propionate. Then antagomir-miR-21-3p or agomir-miR-21-3p was injected into rats before MDV3100 treatment. The prostate index was measured by weighing the wet weight of the rat prostate. The structural morphology of rat prostate was observed after hematoxylin & eosin staining. Immunohistochemistry was applied to evaluate the expression levels of Ki-6 and inflammatory cytokines (interleukin [IL]-6, IL-18, and tumor necrosis factor-α) in rat prostate tissues. Quantitative reverse transcription polymerase chain reaction was utilized for assessment of miR-21-3p expression, and Western blot for the performance of the phosphorylation levels of IKKα and p65. Results Injection of testosterone propionate caused increased prostate gland hyperplasia, heightened miR-21-3p level, and activated nuclear factor-kappa B (NF-κB) signaling pathway. Additionally, BPH was accompanied by inflammatory response, as evidenced by enhanced expressions of Ki-67 and inflammatory cytokines. MDV3100 exposure ameliorated BPH and suppressed miR-21-3p expression. Overexpression of miR-21-3p intensified BPH and inflammation level, while knockdown of miR-21-3p relieved BPH. The coeffect of miR-21-3p upregulation and MDV3100 subjection led to higher inflammatory response, elevated phosphorylation levels of IKKα and p65 than MDV3100 treatment alone. Conclusions Androgen receptor antagonist MDV3100 alleviates BPH and inflammatory response through miR-21-3p downregulation and NF-κB signaling pathway blockade.
Collapse
|
14
|
Jin R, Strand DW, Forbes CM, Case T, Cates JM, Liu Q, Ramirez-Solano M, Milne GL, Sanchez S, Wang ZY, Bjorling DE, Miller NL, Matusik RJ. The prostaglandin pathway is activated in patients who fail medical therapy for benign prostatic hyperplasia with lower urinary tract symptoms. Prostate 2021; 81:944-955. [PMID: 34288015 PMCID: PMC8750893 DOI: 10.1002/pros.24190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/16/2021] [Accepted: 06/29/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Little is known about how benign prostatic hyperplasia (BPH) develops and why patients respond differently to medical therapy designed to reduce lower urinary tract symptoms (LUTS). The Medical Therapy of Prostatic Symptoms (MTOPS) trial randomized men with symptoms of BPH and followed response to medical therapy for up to 6 years. Treatment with a 5α-reductase inhibitor (5ARI) or an alpha-adrenergic receptor antagonist (α-blocker) reduced the risk of clinical progression, while men treated with combination therapy showed a 66% decrease in risk of progressive disease. However, medical therapies for BPH/LUTS are not effective in many patients. The reasons for nonresponse or loss of therapeutic response in the remaining patients over time are unknown. A better understanding of why patients fail to respond to medical therapy may have a major impact on developing new approaches for the medical treatment of BPH/LUTS. Prostaglandins (PG) act on G-protein-coupled receptors (GPCRs), where PGE2 and PGF2 elicit smooth muscle contraction. Therefore, we measured PG levels in the prostate tissue of BPH/LUTS patients to assess the possibility that this signaling pathway might explain the failure of medical therapy in BPH/LUTS patients. METHOD Surgical BPH (S-BPH) was defined as benign prostatic tissue collected from the transition zone (TZ) of patients who failed medical therapy and underwent surgical intervention to relieve LUTS. Control tissue was termed Incidental BPH (I-BPH). I-BPH was TZ obtained from men undergoing radical prostatectomy for low-volume, low-grade prostatic adenocarcinoma (PCa, Gleason score ≤ 7) confined to the peripheral zone. All TZ tissue was confirmed to be cancer-free. S-BPH patients divided into four subgroups: patients on α-blockers alone, 5ARI alone, combination therapy (α-blockers plus 5ARI), or no medical therapy (none) before surgical resection. I-BPH tissue was subgrouped by prior therapy (either on α-blockers or without prior medical therapy before prostatectomy). We measured prostatic tissue levels of prostaglandins (PGF2α , PGI2 , PGE2 , PGD2 , and TxA2 ), quantitative polymerase chain reaction levels of mRNAs encoding enzymes within the PG synthesis pathway, cellular distribution of COX1 (PTGS1) and COX2 (PTGS2), and tested the ability of PGs to contract bladder smooth muscle in an in vitro assay. RESULTS All PGs were significantly elevated in TZ tissues from S-BPH patients (n = 36) compared to I-BPH patients (n = 15), regardless of the treatment subgroups. In S-BPH versus I-BPH, mRNA for PG synthetic enzymes COX1 and COX2 were significantly elevated. In addition, mRNA for enzymes that convert the precursor PGH2 to metabolite PGs were variable: PTGIS (which generates PGI2 ) and PTGDS (PGD2 ) were significantly elevated; nonsignificant increases were observed for PTGES (PGE2 ), AKR1C3 (PGF2α ), and TBxAS1 (TxA2 ). Within the I-BPH group, men responding to α-blockers for symptoms of BPH but requiring prostatectomy for PCa did not show elevated levels of COX1, COX2, or PGs. By immunohistochemistry, COX1 was predominantly observed in the prostatic stroma while COX2 was present in scattered luminal cells of isolated prostatic glands in S-BPH. PGE2 and PGF2α induced contraction of bladder smooth muscle in an in vitro assay. Furthermore, using the smooth muscle assay, we demonstrated that α-blockers that inhibit alpha-adrenergic receptors do not appear to inhibit PG stimulation of GPCRs in bladder muscle. Only patients who required surgery to relieve BPH/LUTS symptoms showed significantly increased tissue levels of PGs and the PG synthetic enzymes. CONCLUSIONS Treatment of BPH/LUTS by inhibition of alpha-adrenergic receptors with pharmaceutical α-blockers or inhibiting androgenesis with 5ARI may fail because of elevated paracrine signaling by prostatic PGs that can cause smooth muscle contraction. In contrast to patients who fail medical therapy for BPH/LUTS, control I-BPH patients do not show the same evidence of elevated PG pathway signaling. Elevation of the PG pathway may explain, in part, why the risk of clinical progression in the MTOPS study was only reduced by 34% with α-blocker treatment.
Collapse
Affiliation(s)
- Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Connor M. Forbes
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin M.M. Cates
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marisol Ramirez-Solano
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ginger L. Milne
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephanie Sanchez
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zunyi Y. Wang
- School of Veterinary Medicine, University of Wisconsin, Madison, WI
| | - Dale E. Bjorling
- School of Veterinary Medicine, University of Wisconsin, Madison, WI
| | - Nicole L. Miller
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert J. Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
- Corresponding author Robert J. Matusik, Ph.D., Department of Urology, A1302 MCN, Vanderbilt University Medical Center, Nashville, TN 37232,
| |
Collapse
|
15
|
Novel Prostate Cancer Biomarkers: Aetiology, Clinical Performance and Sensing Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The review initially provides a short introduction to prostate cancer (PCa) incidence, mortality, and diagnostics. Next, the need for novel biomarkers for PCa diagnostics is briefly discussed. The core of the review provides details about PCa aetiology, alternative biomarkers available for PCa diagnostics besides prostate specific antigen and their biosensing. In particular, low molecular mass biomolecules (ions and metabolites) and high molecular mass biomolecules (proteins, RNA, DNA, glycoproteins, enzymes) are discussed, along with clinical performance parameters.
Collapse
|
16
|
Phua TJ. The Etiology and Pathophysiology Genesis of Benign Prostatic Hyperplasia and Prostate Cancer: A New Perspective. MEDICINES 2021; 8:medicines8060030. [PMID: 34208086 PMCID: PMC8230771 DOI: 10.3390/medicines8060030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Background: The etiology of benign prostatic hyperplasia and prostate cancer are unknown, with ageing being the greatness risk factor. Methods: This new perspective evaluates the available interdisciplinary evidence regarding prostate ageing in terms of the cell biology of regulation and homeostasis, which could explain the timeline of evolutionary cancer biology as degenerative, inflammatory and neoplasm progressions in these multifactorial and heterogeneous prostatic diseases. Results: This prostate ageing degeneration hypothesis encompasses the testosterone-vascular-inflamm-ageing triad, along with the cell biology regulation of amyloidosis and autophagy within an evolutionary tumorigenesis microenvironment. Conclusions: An understanding of these biological processes of prostate ageing can provide potential strategies for early prevention and could contribute to maintaining quality of life for the ageing individual along with substantial medical cost savings.
Collapse
Affiliation(s)
- Teow J Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| |
Collapse
|
17
|
Mangosh TL, Awadallah WN, Grabowska MM, Taylor DJ. SLX4IP Promotes Telomere Maintenance in Androgen Receptor-Independent Castration-Resistant Prostate Cancer through ALT-like Telomeric PML Localization. Mol Cancer Res 2021; 19:301-316. [PMID: 33188147 PMCID: PMC8086381 DOI: 10.1158/1541-7786.mcr-20-0314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
In advanced prostate cancer, resistance to androgen deprivation therapy is achieved through numerous mechanisms, including loss of the androgen receptor (AR) allowing for AR-independent growth. Therapeutic options are limited for AR-independent castration-resistant prostate cancer (CRPC), and defining mechanisms critical for survival is of utmost importance for targeting this lethal disease. Our studies focus on identifying telomere maintenance mechanism (TMM) hallmarks adopted by CRPC to promote survival. TMMs are responsible for telomere elongation to instill replicative immortality and prevent senescence, with the two TMM pathways available being telomerase and alternative lengthening of telomeres (ALT). Here, we show that AR-independent CRPC demonstrates an atypical ALT-like phenotype with variable telomerase expression and activity, whereas AR-dependent models lack discernible ALT hallmarks. In addition, AR-independent CRPC cells exhibited elevated levels of SLX4IP, a protein implicated in promoting ALT. SLX4IP overexpression in AR-dependent C4-2B cells promoted an ALT-like phenotype and telomere maintenance. SLX4IP knockdown in AR-independent DU145 and PC-3 cells led to ALT-like hallmark reduction, telomere shortening, and induction of senescence. In PC-3 xenografts, this effect translated to reduced tumor volume. Using an in vitro model of AR-independent progression, loss of AR in AR-dependent C4-2B cells promoted an atypical ALT-like phenotype in an SLX4IP-dependent manner. Insufficient SLX4IP expression diminished ALT-like hallmarks and resulted in accelerated telomere loss and senescence. IMPLICATIONS: This study demonstrates a unique reliance of AR-independent CRPC on SLX4IP-mediated ALT-like hallmarks and loss of these hallmarks induces telomere shortening and senescence, thereby impairing replicative immortality.
Collapse
Affiliation(s)
- Tawna L Mangosh
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
| | - Wisam N Awadallah
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Magdalena M Grabowska
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio.
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio.
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|