1
|
Jhingan GD, Manich M, Olivo-Marin JC, Guillen N. Live Cells Imaging and Comparative Phosphoproteomics Uncover Proteins from the Mechanobiome in Entamoeba histolytica. Int J Mol Sci 2023; 24:ijms24108726. [PMID: 37240072 DOI: 10.3390/ijms24108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite and the causative agent of amoebiasis in humans. This amoeba invades human tissues by taking advantage of its actin-rich cytoskeleton to move, enter the tissue matrix, kill and phagocyte the human cells. During tissue invasion, E. histolytica moves from the intestinal lumen across the mucus layer and enters the epithelial parenchyma. Faced with the chemical and physical constraints of these diverse environments, E. histolytica has developed sophisticated systems to integrate internal and external signals and to coordinate cell shape changes and motility. Cell signalling circuits are driven by interactions between the parasite and extracellular matrix, combined with rapid responses from the mechanobiome in which protein phosphorylation plays an important role. To understand the role of phosphorylation events and related signalling mechanisms, we targeted phosphatidylinositol 3-kinases followed by live cell imaging and phosphoproteomics. The results highlight 1150 proteins, out of the 7966 proteins within the amoebic proteome, as members of the phosphoproteome, including signalling and structural molecules involved in cytoskeletal activities. Inhibition of phosphatidylinositol 3-kinases alters phosphorylation in important members of these categories; a finding that correlates with changes in amoeba motility and morphology, as well as a decrease in actin-rich adhesive structures.
Collapse
Affiliation(s)
| | - Maria Manich
- Institut Pasteur, Cell Biology of Parasitism Unit, 75015 Paris, France
- Institut Pasteur, Biological Image Analysis Unit, 75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, 75015 Paris, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Biological Image Analysis Unit, 75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, 75015 Paris, France
| | - Nancy Guillen
- Institut Pasteur, Cell Biology of Parasitism Unit, 75015 Paris, France
- Institut Pasteur, Biological Image Analysis Unit, 75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS-ERL9195, 75015 Paris, France
| |
Collapse
|
2
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Nakada-Tsukui K, Nozaki T. Trogocytosis in Unicellular Eukaryotes. Cells 2021; 10:cells10112975. [PMID: 34831198 PMCID: PMC8616307 DOI: 10.3390/cells10112975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/25/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022] Open
Abstract
Trogocytosis is a mode of internalization of a part of a live cell by nibbling and is mechanistically distinct from phagocytosis, which implies internalization of a whole cell or a particle. Trogocytosis has been demonstrated in a broad range of cell types in multicellular organisms and is also known to be involved in a plethora of functions. In immune cells, trogocytosis is involved in the "cross-dressing" between antigen presenting cells and T cells, and is thus considered to mediate intercellular communication. On the other hand, trogocytosis has also been reported in a variety of unicellular organisms including the protistan (protozoan) parasite Entamoeba histolytica. E. histolytica ingests human T cell line by trogocytosis and acquires complement resistance and cross-dresses major histocompatibility complex (MHC) class I on the cell surface. Furthermore, trogocytosis and trogocytosis-like phenomena (nibbling of a live cell, not previously described as trogocytosis) have also been reported in other parasitic protists such as Trichomonas, Plasmodium, Toxoplasma, and free-living amoebae. Thus, trogocytosis is conserved in diverse eukaryotic supergroups as a means of intercellular communication. It is depicting the universality of trogocytosis among eukaryotes. In this review, we summarize our current understanding of trogocytosis in unicellular organisms, including the history of its discovery, taxonomical distribution, roles, and molecular mechanisms.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Correspondence: (K.N.-T.); (T.N.); Tel.: +81-3-5285-1111 (K.N.-T.); +81-3-5841-3526 (T.N.)
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Correspondence: (K.N.-T.); (T.N.); Tel.: +81-3-5285-1111 (K.N.-T.); +81-3-5841-3526 (T.N.)
| |
Collapse
|
4
|
Watanabe N, Nakada-Tsukui K, Nozaki T. Diversity of phosphoinositide binding proteins in Entamoeba histolytica. Parasitol Int 2021; 83:102367. [PMID: 33905816 DOI: 10.1016/j.parint.2021.102367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/26/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
Phosphatidylinositol phosphates (PIPs, phosphoinositides) are localized to the membranes of all cellular compartments, and play pivotal roles in multiple cellular events. To fulfill their functions, PIPs that are located to specific organelles or membrane domains bind to and recruit various proteins in spatiotemporal specific manner via protein domains that selectively bind to either a single or an array of PIPs. In Entamoeba histolytica, the human intestinal protozoan parasite, PIPs and PIP-binding proteins have been shown to be involved in their virulence-associated mechanisms such as cell motility, vesicular traffic, trogo- and phagocytosis. In silico search of the domains and the signatures implicated in PIP binding in the E. histolytica proteome allows identification of dozens of potential PIP-binding proteins. However, such analysis is often misleading unless the protein domain used as query is cautiously selected and the binding specificity of the proteins are experimentally validated. This is because all the domains initially presumed to bind PIPs in other systems are not always capable of PIP binding, but rather involved in other biological roles. In this review, we carried out in silico survey of proteins which have PIP-binding domains in the E. histolytica genome by utilizing only validated PIP-binding domains that had been experimentally proven to be faithful PIP-binding bioprobes. Our survey has identified that FYVE (Fab1, YOTB1, Vac1, EEA1) and PH (pleckstrin homology) domain containing proteins are the most expanded families in E. histolytica. A few FYVE domain-containing proteins (EhFP4 and 10) and phox homology (PX) domain containing proteins (EhSNX1 and 2) were previously studied in depth in E. histolytica. Furthermore, most of the identified PH domain-containing proteins are annotated as protein kinases and possess protein kinase domains. Overall, PIP-binding domain-containing proteins that can be identified by in silico survey of the genome using the domains from well characterized bioprobes are limited in E. histolytica. However, their domain architectures are often unique, suggesting unique evolution of PIP-binding domain-containing proteins in this organism.
Collapse
Affiliation(s)
- Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Shrivastav MT, Malik Z, Somlata. Revisiting Drug Development Against the Neglected Tropical Disease, Amebiasis. Front Cell Infect Microbiol 2021; 10:628257. [PMID: 33718258 PMCID: PMC7943716 DOI: 10.3389/fcimb.2020.628257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022] Open
Abstract
Amebiasis is a neglected tropical disease which is caused by the protozoan parasite Entamoeba histolytica. This disease is one of the leading causes of diarrhea globally, affecting largely impoverished residents in developing countries. Amebiasis also remains one of the top causes of gastrointestinal diseases in returning international travellers. Despite having many side effects, metronidazole remains the drug of choice as an amebicidal tissue-active agent. However, emergence of metronidazole resistance in pathogens having similar anaerobic metabolism and also in laboratory strains of E. histolytica has necessitated the identification and development of new drug targets and therapeutic strategies against the parasite. Recent research in the field of amebiasis has led to a better understanding of the parasite’s metabolic and cellular pathways and hence has been useful in identifying new drug targets. On the other hand, new molecules effective against amebiasis have been mined by modifying available compounds, thereby increasing their potency and efficacy and also by repurposing existing approved drugs. This review aims at compiling and examining up to date information on promising drug targets and drug molecules for the treatment of amebiasis.
Collapse
Affiliation(s)
- Manish T Shrivastav
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Zainab Malik
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Sauvey C, Ehrenkaufer G, Shi D, Debnath A, Abagyan R. Antineoplastic kinase inhibitors: A new class of potent anti-amoebic compounds. PLoS Negl Trop Dis 2021; 15:e0008425. [PMID: 33556060 PMCID: PMC7895358 DOI: 10.1371/journal.pntd.0008425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/19/2021] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Entamoeba histolytica is a protozoan parasite which infects approximately 50 million people worldwide, resulting in an estimated 70,000 deaths every year. Since the 1960s E. histolytica infection has been successfully treated with metronidazole. However, drawbacks to metronidazole therapy exist, including adverse effects, a long treatment course, and the need for an additional drug to prevent cyst-mediated transmission. E. histolytica possesses a kinome with approximately 300–400 members, some of which have been previously studied as potential targets for the development of amoebicidal drug candidates. However, while these efforts have uncovered novel potent inhibitors of E. histolytica kinases, none have resulted in approved drugs. In this study we took the alternative approach of testing a set of twelve previously FDA-approved antineoplastic kinase inhibitors against E. histolytica trophozoites in vitro. This resulted in the identification of dasatinib, bosutinib, and ibrutinib as amoebicidal agents at low-micromolar concentrations. Next, we utilized a recently developed computational tool to identify twelve additional drugs with human protein target profiles similar to the three initial hits. Testing of these additional twelve drugs led to the identification of ponatinib, neratinib, and olmutinib were identified as highly potent, with EC50 values in the sub-micromolar range. All of these six drugs were found to kill E. histolytica trophozoites as rapidly as metronidazole. Furthermore, ibrutinib was found to kill the transmissible cyst stage of the model organism E. invadens. Ibrutinib thus possesses both amoebicidal and cysticidal properties, in contrast to all drugs used in the current therapeutic strategy. These findings together reveal antineoplastic kinase inhibitors as a highly promising class of potent drugs against this widespread and devastating disease. Every year, nearly a hundred thousand people worldwide die from infection by the intestinal parasite Entamoeba histolytica, despite the widespread availability of metronidazole as a treatment. Here we report that six anticancer drugs of the kinase inhibitor class possess potent anti-amoebic properties, with one of them killing both actively dividing parasite and its transmissible cysts. These anticancer kinase inhibitors, including the dual-purpose drug with both amoebicidal and cysticidal activities may be used to treat amoebiasis, especially in cancer patients or in life-threatening brain- and liver-infecting forms of the disease.
Collapse
Affiliation(s)
- Conall Sauvey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School for Pharmacy and Pharmaceutical Sciences, University of California—San Diego, La Jolla, California, United States of America
- * E-mail: (CS); (RA)
| | - Gretchen Ehrenkaufer
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Da Shi
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School for Pharmacy and Pharmaceutical Sciences, University of California—San Diego, La Jolla, California, United States of America
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School for Pharmacy and Pharmaceutical Sciences, University of California—San Diego, La Jolla, California, United States of America
| | - Ruben Abagyan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School for Pharmacy and Pharmaceutical Sciences, University of California—San Diego, La Jolla, California, United States of America
- * E-mail: (CS); (RA)
| |
Collapse
|
7
|
Agarwal S, Rath PP, Anand G, Gourinath S. Uncovering the Cyclic AMP Signaling Pathway of the Protozoan Parasite Entamoeba histolytica and Understanding Its Role in Phagocytosis. Front Cell Infect Microbiol 2020; 10:566726. [PMID: 33102254 PMCID: PMC7546249 DOI: 10.3389/fcimb.2020.566726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/17/2020] [Indexed: 01/13/2023] Open
Abstract
Second messenger signaling controls a surprisingly diverse range of processes in several eukaryotic pathogens. Molecular machinery and pathways involving these messengers thus hold tremendous opportunities for therapeutic interventions. Relative to Ca2+ signaling, the knowledge of a crucial second messenger cyclic AMP (cAMP) and its signaling pathway is very scant in the intestinal parasite Entamoeba histolytica. In the current study, mining the available genomic resources, we have for the first time identified the cAMP signal transduction pathway of E. histolytica. Three heptahelical proteins with variable G-protein-coupled receptor domains, heterotrimeric G-proteins (Gα, Gβ, and Gγ subunits), soluble adenylyl cyclase, cyclase-associated protein, and enzyme carbonic anhydrase were identified in its genome. We could also identify several putative candidate genes for cAMP downstream effectors such as protein kinase A, A-kinase anchoring proteins, and exchange protein directly activated by the cAMP pathway. Using specific inhibitors against key identified targets, we could observe changes in the intracellular cAMP levels as well as defect in the rate of phagocytosis of red blood cells by the parasite E. histolytica. We thus strongly believe that characterization of some of these unexplored crucial signaling determinants will provide a paradigm shift in understanding the pathogenicity of this organism.
Collapse
Affiliation(s)
- Shalini Agarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Gaurav Anand
- International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | | |
Collapse
|
8
|
Ca 2+-binding protein from Entamoeba histolytica (EhCaBP6) is a novel GTPase. Biochem Biophys Res Commun 2020; 527:631-637. [PMID: 32423808 DOI: 10.1016/j.bbrc.2020.04.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 11/23/2022]
Abstract
GTPases are molecular switches, which regulate a variety of cellular processes such as cell polarity, gene transcription, microtubule dynamics, cell-cycle etc. In this paper, we characterize a Ca2+-binding protein from Entamoeba histolytica (EhCaBP6) as a novel GTPase. We locate the active site for GTP hydrolysis within the C-terminal domain of EhCaBP6, although it requires full length protein for its complete range of activity. Using NMR studies, we observe that GTP binding induces conformational change in EhCaBP6. The identification of this novel and unusual Ca2+-dependent GTPase is important to elucidate the unconventional cell cycle of E. histolytica.
Collapse
|
9
|
Ávila-García R, Valdés J, Jáuregui-Wade JM, Ayala-Sumuano JT, Cerbón-Solórzano J. The metabolic pathway of sphingolipids biosynthesis and signaling in Entamoeba histolytica. Biochem Biophys Res Commun 2019; 522:574-579. [PMID: 31785811 DOI: 10.1016/j.bbrc.2019.11.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Sphingolipids (SLs) synthesis involves a complex metabolic pathway occurring between the endoplasmic reticulum (ER) and Golgi apparatus, generating ceramide synthesis and complex lipids, respectively. Here we show that E. histolytica, apparently lacking cellular organelles (ER and Golgi apparatus), synthesizes a wide variety of sphingolipid subspecies, being particularly abundant those of long-chain fatty acids. In silico analysis showed five putative genes coding for ceramide synthases (CerS), all of them coding for proteins containing the TLC domain, a region conserved in CerS of multiple organisms. These genes are abundantly expressed in different growth phases. Silencing and overexpression of CerS C4M4U4 (the closest homolog of human CerS 2 and 3) demonstrated its involvement in the synthesis of ceramide. Additionally, we identify C4M4U4, SMS2 and PKC (α, βII) proteins and their subcellular localization of E. histolytica, suggesting that these subcellular compartments might be involved in the biosynthesis and signaling pathway of sphingolipids, and evidencing different sphingolipid synthesis pathways in Entamoeba.
Collapse
Affiliation(s)
| | - Jesús Valdés
- Department of Biochemistry, CINVESTAV-IPN, Ciudad de México, Mexico
| | | | | | | |
Collapse
|
10
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Singh T, Agarwal T, Ghosh SK. Identification and functional analysis of a stress-responsive MAPK15 in Entamoeba invadens. Mol Biochem Parasitol 2018; 222:34-44. [PMID: 29730364 DOI: 10.1016/j.molbiopara.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/30/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023]
Abstract
E. histolytica, a protozoan parasite is the causative agent of amoebiasis in human beings. It exists in two different forms - the motile trophozoite form which undergoes encystation under starvation conditions to form the non-motile, osmotically resistant cyst form. Cellular stresses stimulate several signaling cascades which assist the parasite in counter-attacking such conditions thereby, promoting cell survival. To study the stress-associated pathways activated during encystation, we have used Entamoeba invadens, a reptilian parasite as a model organism because of its ability to undergo encystation under in vitro conditions. In this study, we have identified a stress-responsive MAPK which gets upregulated under different stress conditions, including encystation. Sequence analysis and phylogenetic classification show that the MAPK belongs to the atypical MAPK15 family (henceforth, named EiMAPK15), which does not require an upstream MAPKK for its phosphorylation and activation. The in vitro kinase activity of recombinant EiMAPK15 exhibits its auto-phosphorylation ability. Immunolocalization studies reveal that the protein is mainly cytosolic under normal growing conditions but gets translocated into the nucleus under stress conditions. Knockdown of EiMAPK15 using double-stranded RNA was found to reduce the expression of other encystation-specific genes which in turn, resulted in the decline of the overall encystation efficiency of the cells. Overall, the present work has laid the platform for further characterization of this important MAPK gene in Entamoeba invadens.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
12
|
Chen F, Zhang L, Lin Z, Cheng ZMM. Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling. BMC Genomics 2018; 19:306. [PMID: 29703146 PMCID: PMC5924475 DOI: 10.1186/s12864-018-4685-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Background Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca2+ signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals. Results Based on the exploration of genomes and transcriptomes from all the six eukaryotic supergroups, we report here in Metakinetoplastina protists a novel gene family. This family, with a proposed name SCAMK, comprises SnRK3 fused calmodulin-like III kinase genes and was likely evolved through the insertion of a calmodulin-like3 gene into an SnRK3 gene by unequal crossover of homologous chromosomes in meiosis cell. Its origin dated back to the time intersection at least 450 million-year-ago when Excavata parasites, Vertebrata hosts, and Insecta vectors evolved. We also analyzed SCAMK’s unique expression pattern and structure, and proposed it as one of the leading calcium signal conversion pathways in Excavata parasite. These characters made SCAMK gene as a potential drug target for treating human African trypanosomiasis. Conclusions This report identified a novel gene fusion and dated its precise fusion time in Metakinetoplastina protists. This potential fourth eukaryotic calcium signal conversion pathway complements our current knowledge that convergent evolution occurs in eukaryotic calcium signaling. Electronic supplementary material The online version of this article (10.1186/s12864-018-4685-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps; Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.,Department of Plant Sciences, University of Tennessee, Knoxville, 37996, USA
| | - Liangsheng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps; Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, 63103-2010, USA
| | - Zong-Ming Max Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. .,Department of Plant Sciences, University of Tennessee, Knoxville, 37996, USA.
| |
Collapse
|
13
|
Schaap P, Schilde C. Encystation: the most prevalent and underinvestigated differentiation pathway of eukaryotes. MICROBIOLOGY-SGM 2018; 164:727-739. [PMID: 29620506 DOI: 10.1099/mic.0.000653] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Not long ago, protists were considered one of four eukaryote kingdoms, but recent gene-based phylogenies show that they contribute to all nine eukaryote subdomains. The former kingdoms of animals, plants and fungi are now relegated to lower ranks within subdomains. Most unicellular protists respond to adverse conditions by differentiating into dormant walled cysts. As cysts, they survive long periods of starvation, drought and other environmental threats, only to re-emerge when conditions improve. For protists pathogens, the resilience of their cysts can prevent successful treatment or eradication of the disease. In this context, effort has been directed towards understanding the molecular mechanisms that control encystation. We here firstly summarize the prevalence of encystation across protists and next focus on Amoebozoa, where most of the health-related issues occur. We review current data on processes and genes involved in encystation of the obligate parasite Entamoeba histolytica and the opportunistic pathogen Acanthamoeba. We show how the cAMP-mediated signalling pathway that controls spore and stalk cell encapsulation in Dictyostelium fruiting bodies could be retraced to a stress-induced pathway controlling encystation in solitary Amoebozoa. We highlight the conservation and prevalence of cAMP signalling genes in Amoebozoan genomes and the suprisingly large and varied repertoire of proteins for sensing and processing environmental signals in individual species.
Collapse
Affiliation(s)
- Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | |
Collapse
|
14
|
Samanta SK, Varghese SS, Krishnan D, Baidya M, Nayak D, Mukherjee S, Ghosh SK. A novel encystation specific protein kinase regulates chitin synthesis in Entamoeba invadens. Mol Biochem Parasitol 2018; 220:19-27. [DOI: 10.1016/j.molbiopara.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
|
15
|
Mazumdar R, Endler L, Monoyios A, Hess M, Bilic I. Establishment of a de novo Reference Transcriptome of Histomonas meleagridis Reveals Basic Insights About Biological Functions and Potential Pathogenic Mechanisms of the Parasite. Protist 2017; 168:663-685. [DOI: 10.1016/j.protis.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/21/2017] [Accepted: 09/23/2017] [Indexed: 12/28/2022]
|
16
|
López-Contreras L, Hernández-Ramírez VI, Herrera-Martínez M, Montaño S, Constantino-Jonapa LA, Chávez-Munguía B, Talamás-Rohana P. Structural and functional characterization of the divergent Entamoeba Src using Src inhibitor-1. Parasit Vectors 2017; 10:500. [PMID: 29047404 PMCID: PMC5648430 DOI: 10.1186/s13071-017-2461-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
Background The abundant number of kinases that Entamoeba histolytica possesses allows us to assume that the regulation of cellular functions by phosphorylation-dephosphorylation processes is very important. However, the kinases responsible for the phosphorylation in Entamoeba spp. vary in the structure of their domains and, therefore, could be responsible for the unusual biological characteristics of this parasite. In higher eukaryotes, Src kinases share conserved structural domains and are very important in the regulation of the actin cytoskeleton. In both Entamoeba histolytica and Entamoeba invadens, the major Src kinase homologue of higher eukaryotes lacks SH3 and SH2 domains, but does have KELCH domains; the latter are part of actin cross-linking proteins in higher eukaryotic cells. Methods The function of the EhSrc protein kinase of Entamoeba spp. was evaluated using Src inhibitor-1, microscopy assays, Src kinase activity and western blot. In addition, to define the potential inhibitory mechanism of Src-inhibitor-1 for the amoebic EhSrc protein kinase, molecular dynamic simulations using NAnoscale Molecular Dynamics (NAMD2) program and docking studies were performed with MOE software. Results We demonstrate that Src inhibitor-1 is able to prevent the activity of EhSrc protein kinase, most likely by binding to the catalytic domain, which affects cell morphology via the disruption of actin cytoskeleton remodeling and the formation of phagocytic structures without an effect on cell adhesion. Furthermore, in E. invadens, Src inhibitor-1 inhibited the encystment process by blocking RhoA GTPase activity, a small GTPase protein of Rho family. Conclusions Even though the EhSrc molecule of Entamoeba is not a typical Src, because its divergent amino acid sequence, it is a critical factor in the biology of this parasite via the regulation of actin cytoskeleton remodeling via RhoA GTPase activation. Based on this, we conclude that EhSrc could become a target molecule for the future design of drugs that can prevent the transmission of the disease. Electronic supplementary material The online version of this article (10.1186/s13071-017-2461-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luilli López-Contreras
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Camino a Tilcuatla s/n Municipio de San Agustín Tlaxiaca. C.P, 42160, Pachuca de Soto, Hidalgo, Mexico
| | - Verónica Ivonne Hernández-Ramírez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Avenida Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, CDMX, CP, Mexico
| | - Mayra Herrera-Martínez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Avenida Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, CDMX, CP, Mexico
| | - Sarita Montaño
- Facultad de Ciencias Químico Biológicas de la Universidad Autónoma de Sinaloa, Calz. de las Américas Norte 2771, Burócrata, 80030, Culiacán de Rosales, Sinaloa, Mexico
| | - Luis Alejandro Constantino-Jonapa
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Avenida Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, CDMX, CP, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Avenida Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, CDMX, CP, Mexico
| | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Avenida Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, CDMX, CP, Mexico.
| |
Collapse
|
17
|
Haubrich BA, Swinney DC. Enzyme Activity Assays for Protein Kinases: Strategies to Identify Active Substrates. Curr Drug Discov Technol 2016; 13:2-15. [PMID: 26768716 DOI: 10.2174/1570163813666160115125930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Abstract
Protein kinases are an important class of enzymes and drug targets. New opportunities to discover medicines for neglected diseases can be leveraged by the extensive kinase tools and knowledge created in targeting human kinases. A valuable tool for kinase drug discovery is an enzyme assay that measures catalytic function. The functional assay can be used to identify inhibitors, estimate affinity, characterize molecular mechanisms of action (MMOAs) and evaluate selectivity. However, establishing an enzyme assay for a new kinases requires identification of a suitable substrate. Identification of a new kinase's endogenous physiologic substrate and function can be extremely costly and time consuming. Fortunately, most kinases are promiscuous and will catalyze the phosphotransfer from ATP to alternative substrates with differing degrees of catalytic efficiency. In this manuscript we review strategies and successes in the identification of alternative substrates for kinases from organisms responsible for many of the neglected tropical diseases (NTDs) towards the goal of informing strategies to identify substrates for new kinases. Approaches for establishing a functional kinase assay include measuring auto-activation and use of generic substrates and peptides. The most commonly used generic substrates are casein, myelin basic protein, and histone. Sequence homology modeling can provide insights into the potential substrates and the requirement for activation. Empirical approaches that can identify substrates include screening of lysates (which may also help identify native substrates) and use of peptide arrays. All of these approaches have been used with a varying degree of success to identify alternative substrates.
Collapse
Affiliation(s)
- Brad A Haubrich
- Institute for Rare and Neglected Diseases Drug Discovery, 897 Independence Ave, Suite 2C, Mountain View, CA 94043, USA.
| | | |
Collapse
|
18
|
Barratt J, Gough R, Stark D, Ellis J. Bulky Trichomonad Genomes: Encoding a Swiss Army Knife. Trends Parasitol 2016; 32:783-797. [PMID: 27312283 DOI: 10.1016/j.pt.2016.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023]
Abstract
The trichomonads are a remarkably successful lineage of ancient, predominantly parasitic protozoa. Recent molecular analyses have revealed extensive duplication of certain genetic loci in trichomonads. Consequently, their genomes are exceptionally large compared to other parasitic protozoa. Retention of these large gene expansions across different trichomonad families raises the question: do these duplications afford an advantage? Many duplicated genes are linked to the parasitic lifestyle and some are regulated differently to their paralogues, suggesting they have acquired new functions. It is proposed that these large genomes encode a Swiss army knife of sorts, packed with a multitude of tools for use in many different circumstances. This may have bestowed trichomonads with the extraordinary versatility that has undoubtedly contributed to their success.
Collapse
Affiliation(s)
- Joel Barratt
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia.
| | - Rory Gough
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Damien Stark
- Division of Microbiology, Sydpath, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| |
Collapse
|
19
|
Knockdown of Five Genes Encoding Uncharacterized Proteins Inhibits Entamoeba histolytica Phagocytosis of Dead Host Cells. Infect Immun 2016; 84:1045-1053. [PMID: 26810036 DOI: 10.1128/iai.01325-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/15/2016] [Indexed: 12/17/2022] Open
Abstract
Entamoeba histolytica is the protozoan parasite that causes invasive amebiasis, which is endemic to many developing countries and characterized by dysentery and liver abscesses. The virulence of E. histolytica correlates with the degree of host cell engulfment, or phagocytosis, and E. histolytica phagocytosis alters amebic gene expression in a feed-forward manner that results in an increased phagocytic ability. Here, we used a streamlined RNA interference screen to silence the expression of 15 genes whose expression was upregulated in phagocytic E. histolytica trophozoites to determine whether these genes actually function in the phagocytic process. When five of these genes were silenced, amebic strains with significant decreases in the ability to phagocytose apoptotic host cells were produced. Phagocytosis of live host cells, however, was largely unchanged, and the defects were surprisingly specific for phagocytosis. Two of the five encoded proteins, which we named E. histolytica ILWEQ (EhILWEQ) and E. histolytica BAR (EhBAR), were chosen for localization via SNAP tag labeling and localized to the site of partially formed phagosomes. Therefore, both EhILWEQ and EhBAR appear to contribute to E. histolytica virulence through their function in phagocytosis, and the large proportion (5/15 [33%]) of gene-silenced strains with a reduced ability to phagocytose host cells validates the previously published microarray data set demonstrating feed-forward control of E. histolytica phagocytosis. Finally, although only limited conclusions can be drawn from studies using the virulence-deficient G3 Entamoeba strain, the relative specificity of the defects induced for phagocytosis of apoptotic cells but not healthy cells suggests that cell killing may play a rate-limiting role in the process of Entamoeba histolytica host cell engulfment.
Collapse
|
20
|
|
21
|
Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:641392. [PMID: 26090431 PMCID: PMC4450279 DOI: 10.1155/2015/641392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites.
Collapse
|
22
|
Linford AS, Jiang NM, Edwards TE, Sherman NE, Van Voorhis WC, Stewart LJ, Myler PJ, Staker BL, Petri WA. Crystal structure and putative substrate identification for the Entamoeba histolytica low molecular weight tyrosine phosphatase. Mol Biochem Parasitol 2014; 193:33-44. [PMID: 24548880 DOI: 10.1016/j.molbiopara.2014.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/12/2014] [Accepted: 01/22/2014] [Indexed: 11/28/2022]
Abstract
Entamoeba histolytica is a eukaryotic intestinal parasite of humans, and is endemic in developing countries. We have characterized the E. histolytica putative low molecular weight protein tyrosine phosphatase (LMW-PTP). The structure for this amebic tyrosine phosphatase was solved, showing the ligand-induced conformational changes necessary for binding of substrate. In amebae, it was expressed at low but detectable levels as detected by immunoprecipitation followed by immunoblotting. A mutant LMW-PTP protein in which the catalytic cysteine in the active site was replaced with a serine lacked phosphatase activity, and was used to identify a number of trapped putative substrate proteins via mass spectrometry analysis. Seven of these putative substrate protein genes were cloned with an epitope tag and overexpressed in amebae. Five of these seven putative substrate proteins were demonstrated to interact specifically with the mutant LMW-PTP. This is the first biochemical study of a small tyrosine phosphatase in Entamoeba, and sets the stage for understanding its role in amebic biology and pathogenesis.
Collapse
Affiliation(s)
- Alicia S Linford
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | - Nona M Jiang
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Emerald Bio, Bainbridge Island, WA 98110, USA
| | - Nicholas E Sherman
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lance J Stewart
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Emerald Bio, Bainbridge Island, WA 98110, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Seattle Biomedical Research Institute, Seattle, WA 98109, USA; Departments of Global Health and Medical Education & Biomedical Informatics, University of Washington, Seattle, WA 98195, USA
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Emerald Bio, Bainbridge Island, WA 98110, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA; Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
23
|
RAKSHAMBIKAI R, SRINIVASAN N, GADKARI RUPALIA. REPERTOIRE OF PROTEIN KINASES ENCODED IN THE GENOME OF ZEBRAFISH SHOWS REMARKABLY LARGE POPULATION OF PIM KINASES. J Bioinform Comput Biol 2014; 12:1350014. [DOI: 10.1142/s0219720013500145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In recent times, zebrafish has garnered lot of popularity as model organism to study human cancers. Despite high evolutionary divergence from humans, zebrafish develops almost all types of human tumors when induced. However, mechanistic details of tumor formation have remained largely unknown. Present study is aimed at analysis of repertoire of kinases in zebrafish proteome to provide insights into various cellular components. Annotation using highly sensitive remote homology detection methods revealed "substantial expansion" of Ser/Thr/Tyr kinase family in zebrafish compared to humans, constituting over 3% of proteome. Subsequent classification of kinases into subfamilies revealed presence of large number of CAMK group of kinases, with massive representation of PIM kinases, important for cell cycle regulation and growth. Extensive sequence comparison between human and zebrafish PIM kinases revealed high conservation of functionally important residues with a few organism specific variations. There are about 300 PIM kinases in zebrafish kinome, while human genome codes for only about 500 kinases altogether. PIM kinases have been implicated in various human cancers and are currently being targeted to explore their therapeutic potentials. Hence, in depth analysis of PIM kinases in zebrafish has opened up new avenues of research to verify the model organism status of zebrafish.
Collapse
Affiliation(s)
- R. RAKSHAMBIKAI
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - N. SRINIVASAN
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - RUPALI A. GADKARI
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
24
|
Anwar T, Gourinath S. Analysis of the Protein phosphotome of Entamoeba histolytica reveals an intricate phosphorylation network. PLoS One 2013; 8:e78714. [PMID: 24236039 PMCID: PMC3827238 DOI: 10.1371/journal.pone.0078714] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/22/2013] [Indexed: 01/06/2023] Open
Abstract
Phosphorylation is the most common mechanism for the propagation of intracellular signals. Protein phosphatases and protein kinases play a dynamic antagonistic role in protein phosphorylation. Protein phosphatases make up a significant fraction of eukaryotic proteome. In this article, we report the identification and analysis of protein phosphatases in the intracellular parasite Entamoeba histolytica. Based on an in silico analysis, we classified 250 non-redundant protein phosphatases in E. histolytica. The phosphotome of E. histolytica is 3.1% of its proteome and 1.3 times of the human phosphotome. In this extensive study, we identified 42 new putative phosphatases (39 hypothetical proteins and 3 pseudophosphatases). The presence of pseudophosphatases may have an important role in virulence of E. histolytica. A comprehensive phosphotome analysis of E. histolytica shows spectacular low similarity to human phosphatases, making them potent candidates for drug target.
Collapse
Affiliation(s)
- Tamanna Anwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
25
|
Goldberg JM, Griggs AD, Smith JL, Haas BJ, Wortman JR, Zeng Q. Kinannote, a computer program to identify and classify members of the eukaryotic protein kinase superfamily. ACTA ACUST UNITED AC 2013; 29:2387-94. [PMID: 23904509 PMCID: PMC3777111 DOI: 10.1093/bioinformatics/btt419] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motivation: Kinases of the eukaryotic protein kinase superfamily are key regulators of most aspects eukaryotic cellular behavior and have provided several drug targets including kinases dysregulated in cancers. The rapid increase in the number of genomic sequences has created an acute need to identify and classify members of this important class of enzymes efficiently and accurately. Results: Kinannote produces a draft kinome and comparative analyses for a predicted proteome using a single line command, and it is currently the only tool that automatically classifies protein kinases using the controlled vocabulary of Hanks and Hunter [Hanks and Hunter (1995)]. A hidden Markov model in combination with a position-specific scoring matrix is used by Kinannote to identify kinases, which are subsequently classified using a BLAST comparison with a local version of KinBase, the curated protein kinase dataset from www.kinase.com. Kinannote was tested on the predicted proteomes from four divergent species. The average sensitivity and precision for kinome retrieval from the test species are 94.4 and 96.8%. The ability of Kinannote to classify identified kinases was also evaluated, and the average sensitivity and precision for full classification of conserved kinases are 71.5 and 82.5%, respectively. Kinannote has had a significant impact on eukaryotic genome annotation, providing protein kinase annotations for 36 genomes made public by the Broad Institute in the period spanning 2009 to the present. Availability: Kinannote is freely available at http://sourceforge.net/projects/kinannote. Contact:jmgold@broadinstitute.org Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jonathan M Goldberg
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA and Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The parasite Entamoeba histolytica causes amebic colitis and systemic amebiasis. Among the known amebic factors contributing to pathogenesis are signaling pathways involving heterotrimeric and Ras superfamily G proteins. Here, we review the current knowledge of the roles of heterotrimeric G protein subunits, Ras, Rho and Rab GTPase families in E. histolytica pathogenesis, as well as of their downstream signaling effectors and nucleotide cycle regulators. Heterotrimeric G protein signaling likely modulates amebic motility and attachment to and killing of host cells, in part through activation of an RGS-RhoGEF (regulator of G protein signaling-Rho guanine nucleotide exchange factor) effector. Rho family GTPases, as well as RhoGEFs and Rho effectors (formins and p21-activated kinases) regulate the dynamic actin cytoskeleton of E. histolytica and associated pathogenesis-related cellular processes, such as migration, invasion, phagocytosis and evasion of the host immune response by surface receptor capping. A remarkably large family of 91 Rab GTPases has multiple roles in a complex amebic vesicular trafficking system required for phagocytosis and pinocytosis and secretion of known virulence factors, such as amebapores and cysteine proteases. Although much remains to be discovered, recent studies of G protein signaling in E. histolytica have enhanced our understanding of parasitic pathogenesis and have also highlighted possible targets for pharmacological manipulation.
Collapse
|
27
|
Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1302-21. [PMID: 23524293 DOI: 10.1016/j.bbapap.2013.03.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/07/2013] [Indexed: 01/15/2023]
Abstract
The group of AGC protein kinases includes more than 60 protein kinases in the human genome, classified into 14 families: PDK1, AKT/PKB, SGK, PKA, PKG, PKC, PKN/PRK, RSK, NDR, MAST, YANK, DMPK, GRK and SGK494. This group is also widely represented in other eukaryotes, including causative organisms of human infectious diseases. AGC kinases are involved in diverse cellular functions and are potential targets for the treatment of human diseases such as cancer, diabetes, obesity, neurological disorders, inflammation and viral infections. Small molecule inhibitors of AGC kinases may also have potential as novel therapeutic approaches against infectious organisms. Fundamental in the regulation of many AGC kinases is a regulatory site termed the "PIF-pocket" that serves as a docking site for substrates of PDK1. This site is also essential to the mechanism of activation of AGC kinases by phosphorylation and is involved in the allosteric regulation of N-terminal domains of several AGC kinases, such as PKN/PRKs and atypical PKCs. In addition, the C-terminal tail and its interaction with the PIF-pocket are involved in the dimerization of the DMPK family of kinases and may explain the molecular mechanism of allosteric activation of GRKs by GPCR substrates. In this review, we briefly introduce the AGC kinases and their known roles in physiology and disease and the discovery of the PIF-pocket as a regulatory site in AGC kinases. Finally, we summarize the current status and future therapeutic potential of small molecules directed to the PIF-pocket; these molecules can allosterically activate or inhibit the kinase as well as act as substrate-selective inhibitors. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- José M Arencibia
- Research Group PhosphoSites, Department of Internal Medicine I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
28
|
Bosch DE, Kimple AJ, Muller RE, Giguère PM, Machius M, Willard FS, Temple BRS, Siderovski DP. Heterotrimeric G-protein signaling is critical to pathogenic processes in Entamoeba histolytica. PLoS Pathog 2012; 8:e1003040. [PMID: 23166501 PMCID: PMC3499586 DOI: 10.1371/journal.ppat.1003040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/03/2012] [Indexed: 01/08/2023] Open
Abstract
Heterotrimeric G-protein signaling pathways are vital components of physiology, and many are amenable to pharmacologic manipulation. Here, we identify functional heterotrimeric G-protein subunits in Entamoeba histolytica, the causative agent of amoebic colitis. The E. histolytica Gα subunit EhGα1 exhibits conventional nucleotide cycling properties and is seen to interact with EhGβγ dimers and a candidate effector, EhRGS-RhoGEF, in typical, nucleotide-state-selective fashions. In contrast, a crystal structure of EhGα1 highlights unique features and classification outside of conventional mammalian Gα subfamilies. E. histolytica trophozoites overexpressing wildtype EhGα1 in an inducible manner exhibit an enhanced ability to kill host cells that may be wholly or partially due to enhanced host cell attachment. EhGα1-overexpressing trophozoites also display enhanced transmigration across a Matrigel barrier, an effect that may result from altered baseline migration. Inducible expression of a dominant negative EhGα1 variant engenders the converse phenotypes. Transcriptomic studies reveal that modulation of pathogenesis-related trophozoite behaviors by perturbed heterotrimeric G-protein expression includes transcriptional regulation of virulence factors and altered trafficking of cysteine proteases. Collectively, our studies suggest that E. histolytica possesses a divergent heterotrimeric G-protein signaling axis that modulates key aspects of cellular processes related to the pathogenesis of this infectious organism.
Collapse
Affiliation(s)
- Dustin E. Bosch
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adam J. Kimple
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robin E. Muller
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Patrick M. Giguère
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mischa Machius
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Francis S. Willard
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brenda R. S. Temple
- Department of Biochemistry & Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- R. L. Juliano Structural Bioinformatics Core, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David P. Siderovski
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia, United States of America
| |
Collapse
|
29
|
Abstract
Protein kinases (PKs) of parasitic protozoa are being evaluated as drug targets. A large number of protein kinases within the protein kinome of Entamoeba histolytica strongly suggest that protein phosphorylation is a key component of pathogenesis regulation by this parasite. PI3 K and Src are kinases previously described in this parasite, but their role is poorly understood. Here, the effect of Src-1-inhibitor and PI3 K inhibitor (Wortmannin) on the virulence factors of E. histolytica was evaluated. Results show that both inhibitors affect the actin cytoskeleton and the amoebic movement. Also, the proteolytic activity is diminished by Wortmannin, but not by Src-inhibitor-1; however, the phagocytic capacity is diminished by Wortmannin and Src-1-inhibitor. Finally, we found that the virulence in vivo of E. histolytica is affected by Wortmannin but not by Src-1-inhibitor. This study opens the way for the design of anti-amoebic drugs based on kinase inhibition.
Collapse
|
30
|
Abstract
The parasitic protozoan Entamoeba histolytica is aptly named for its capacity to destroy host tissue. When E. histolytica trophozoites invade the lamina propria of a host colon, extracellular matrices are degraded while host cells are killed and phagocytosed. The ability of E. histolytica to phagocytose host cells correlates with virulence in vivo. In order to better understand the mechanism of phagocytosis, we used an E. histolytica Affymetrix microarray chip to measure the total gene expression of phagocytic and nonphagocytic subpopulations. Using paramagnetic beads coated with a known host ligand that stimulates phagocytosis, phagocytic and nonphagocytic amoebae from a single culture were purified. Microarray analysis of the subpopulations identified 121 genes with >2-fold higher expression in phagocytic than in nonphagocytic amoebae. Functional annotation identified genes encoding proteins involved in actin binding and cytoskeletal organization as highly enriched gene clusters. Post hoc analyses of selected genes showed that the gene expression profile identified in the microarray experiment did not exist prior to cell sorting but rather was stimulated through phagocytosis. Further, these expression profiles correlated with an increase in phagocytic ability, as E. histolytica cultures exposed to an initial stimulus of phagocytosis showed increased phagocytic ability upon a second stimulus. To our knowledge, this is the first description of such feed-forward regulation of gene expression and phagocytic ability in a phagocyte.
Collapse
|
31
|
Manning G, Reiner DS, Lauwaet T, Dacre M, Smith A, Zhai Y, Svard S, Gillin FD. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biol 2011; 12:R66. [PMID: 21787419 PMCID: PMC3218828 DOI: 10.1186/gb-2011-12-7-r66] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 05/04/2011] [Accepted: 07/25/2011] [Indexed: 01/23/2023] Open
Abstract
Background The major human intestinal pathogen Giardia lamblia is a very early branching eukaryote with a minimal genome of broad evolutionary and biological interest. Results To explore early kinase evolution and regulation of Giardia biology, we cataloged the kinomes of three sequenced strains. Comparison with published kinomes and those of the excavates Trichomonas vaginalis and Leishmania major shows that Giardia's 80 core kinases constitute the smallest known core kinome of any eukaryote that can be grown in pure culture, reflecting both its early origin and secondary gene loss. Kinase losses in DNA repair, mitochondrial function, transcription, splicing, and stress response reflect this reduced genome, while the presence of other kinases helps define the kinome of the last common eukaryotic ancestor. Immunofluorescence analysis shows abundant phospho-staining in trophozoites, with phosphotyrosine abundant in the nuclei and phosphothreonine and phosphoserine in distinct cytoskeletal organelles. The Nek kinase family has been massively expanded, accounting for 198 of the 278 protein kinases in Giardia. Most Neks are catalytically inactive, have very divergent sequences and undergo extensive duplication and loss between strains. Many Neks are highly induced during development. We localized four catalytically active Neks to distinct parts of the cytoskeleton and one inactive Nek to the cytoplasm. Conclusions The reduced kinome of Giardia sheds new light on early kinase evolution, and its highly divergent sequences add to the definition of individual kinase families as well as offering specific drug targets. Giardia's massive Nek expansion may reflect its distinctive lifestyle, biphasic life cycle and complex cytoskeleton.
Collapse
Affiliation(s)
- Gerard Manning
- Razavi Newman Center for Bioinformatics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ghosh AS, Ray D, Dutta S, Raha S. EhMAPK, the mitogen-activated protein kinase from Entamoeba histolytica is associated with cell survival. PLoS One 2010; 5:e13291. [PMID: 20949043 PMCID: PMC2951911 DOI: 10.1371/journal.pone.0013291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 09/16/2010] [Indexed: 12/15/2022] Open
Abstract
Mitogen Activated Protein Kinases (MAPKs) are a class of serine/threonine kinases that regulate a number of different cellular activities including cell proliferation, differentiation, survival and even death. The pathogen Entamoeba histolytica possess a single homologue of a typical MAPK gene (EhMAPK) whose identification was previously reported by us but its functional implications remained unexplored. EhMAPK, the only mitogen-activated protein kinase from the parasitic protist Entamoeba histolytica with Threonine-X-Tyrosine (TXY) phosphorylation motif was cloned, expressed in E. coli and functionally characterized under different stress conditions. The expression profile of EhMAPK at the protein and mRNA level remained similar among untreated, heat shocked and hydrogen peroxide-treated samples in all cases of dose and time. But a significant difference was obtained in the phosphorylation status of the protein in response to different stresses. Heat shock at 43°C or 0.5 mM H2O2 treatment enhanced the phosphorylation status of EhMAPK and augmented the kinase activity of the protein whereas 2.0 mM H2O2 treatment induced dephosphorylation of EhMAPK and loss of kinase activity. 2.0 mM H2O2 treatment reduced parasite viability significantly but heat shock and 0.5 mM H2O2 treatment failed to adversely affect E. histolytica viability. Therefore, a distinct possibility that activation of EhMAPK is associated with stress survival in E. histolytica is seen. Our study also gives a glimpse of the regulatory mechanism of the protein under in vivo conditions. Since the parasite genome lacks any typical homologue of mammalian MEK, the dual specificity kinases which are the upstream activators of MAPK, indications of the existence of some alternate regulatory mechanisms of the EhMAPK activity is perceived. These may include the autophosphorylation activity of the protein itself in combination with some upstream phosphatases which are not yet identified.
Collapse
Affiliation(s)
- Anupama Sardar Ghosh
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear physics, Kolkata, India
| | | | | | | |
Collapse
|
33
|
Classification of protein kinases on the basis of both kinase and non-kinase regions. PLoS One 2010; 5:e12460. [PMID: 20856812 PMCID: PMC2939887 DOI: 10.1371/journal.pone.0012460] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 07/27/2010] [Indexed: 11/19/2022] Open
Abstract
Background Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multi-domain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. Methodology Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. Conclusions The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multi-domain architecture.
Collapse
|
34
|
Tyagi N, Anamika K, Srinivasan N. A framework for classification of prokaryotic protein kinases. PLoS One 2010; 5:e10608. [PMID: 20520783 PMCID: PMC2877116 DOI: 10.1371/journal.pone.0010608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 04/13/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. METHODOLOGY/PRINCIPAL FINDINGS We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. CONCLUSION/SIGNIFICANCE Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular organization which indicates a degree of complexity and protein-protein interactions in the signaling pathways in these microbes.
Collapse
Affiliation(s)
- Nidhi Tyagi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| | | | | |
Collapse
|
35
|
Deshmukh K, Anamika K, Srinivasan N. Evolution of domain combinations in protein kinases and its implications for functional diversity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 102:1-15. [PMID: 20026163 DOI: 10.1016/j.pbiomolbio.2009.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/10/2009] [Indexed: 01/01/2023]
Abstract
Protein kinases phosphorylating Ser/Thr/Tyr residues in several cellular proteins exert tight control over their biological functions. They constitute the largest protein family in most eukaryotic species. Protein kinases classified based on sequence similarity in their catalytic domains, cluster into subfamilies, which share gross functional properties. Many protein kinases are associated or tethered covalently to domains that serve as adapter or regulatory modules, aiding substrate recruitment, specificity, and also serve as scaffolds. Hence the modular organisation of the protein kinases serves as guidelines to their functional and molecular properties. Analysis of genomic repertoires of protein kinases in eukaryotes have revealed wide spectrum of domain organisation across various subfamilies of kinases. Occurrence of organism-specific novel domain combinations suggests functional diversity achieved by protein kinases in order to regulate variety of biological processes. In addition, domain architecture of protein kinases revealed existence of hybrid protein kinase subfamilies and their emerging roles in the signaling of eukaryotic organisms. In this review we discuss the repertoire of non-kinase domains tethered to multi-domain kinases in the metazoans. Similarities and differences in the domain architectures of protein kinases in these organisms indicate conserved and unique features that are critical to functional specialization.
Collapse
Affiliation(s)
- Krupa Deshmukh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
36
|
Current and future perspectives on the chemotherapy of the parasitic protozoa Trichomonas vaginalis and Entamoeba histolytica. Future Med Chem 2009; 1:619-43. [DOI: 10.4155/fmc.09.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Trichomonas vaginalis and Entamoeba histolytica are clinically important protozoa that affect humans. T. vaginalis produces sexually transmitted infections and E. histolytica is the causative agent of amebic dysentery. Metronidazole, a compound first used to treat T. vaginalis in 1959, is still the main drug used worldwide to treat these pathogens. It is essential to find new biochemical differences in these organisms that could be exploited to develop new antiprotozoal chemotherapeutics. Recent findings associated with T. vaginalis and E. histolytica biochemistry and host–pathogen interactions are surveyed. Knowledge concerning the biochemistry of these parasites is serving to form the foundation for the development of new approaches to control these important human pathogens.
Collapse
|
37
|
Anamika K, Martin J, Srinivasan N. Comparative kinomics of human and chimpanzee reveal unique kinship and functional diversity generated by new domain combinations. BMC Genomics 2008; 9:625. [PMID: 19105813 PMCID: PMC2651890 DOI: 10.1186/1471-2164-9-625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 12/23/2008] [Indexed: 11/20/2022] Open
Abstract
Background Phosphorylation by protein kinases is a common event in many cellular processes. Further, many kinases perform specialized roles and are regulated by non-kinase domains tethered to kinase domain. Perturbation in the regulation of kinases leads to malignancy. We have identified and analysed putative protein kinases encoded in the genome of chimpanzee which is a close evolutionary relative of human. Result The shared core biology between chimpanzee and human is characterized by many orthologous protein kinases which are involved in conserved pathways. Domain architectures specific to chimp/human kinases have been observed. Chimp kinases with unique domain architectures are characterized by deletion of one or more non-kinase domains in the human kinases. Interestingly, counterparts of some of the multi-domain human kinases in chimp are characterized by identical domain architectures but with kinase-like non-kinase domain. Remarkably, out of 587 chimpanzee kinases no human orthologue with greater than 95% sequence identity could be identified for 160 kinases. Variations in chimpanzee kinases compared to human kinases are brought about also by differences in functions of domains tethered to the catalytic kinase domain. For example, the heterodimer forming PB1 domain related to the fold of ubiquitin/Ras-binding domain is seen uniquely tethered to PKC-like chimpanzee kinase. Conclusion Though the chimpanzee and human are evolutionary very close, there are chimpanzee kinases with no close counterpart in the human suggesting differences in their functions. This analysis provides a direction for experimental analysis of human and chimpanzee protein kinases in order to enhance our understanding on their specific biological roles.
Collapse
Affiliation(s)
- Krishanpal Anamika
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
38
|
Vicente JB, Ehrenkaufer GM, Saraiva LM, Teixeira M, Singh U. Entamoeba histolytica modulates a complex repertoire of novel genes in response to oxidative and nitrosative stresses: implications for amebic pathogenesis. Cell Microbiol 2008; 11:51-69. [PMID: 18778413 DOI: 10.1111/j.1462-5822.2008.01236.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Upon host infection, the protozoan parasite Entamoeba histolytica is confronted with reactive oxygen and nitrogen species and must survive these stresses in order to cause invasive disease. We analysed the parasite's response to oxidative and nitrosative stresses, probing the transcriptional changes of trophozoites of a pathogenic strain after a 60 min exposure to H2O2 (1 mM) or a NO donor (dipropylenetriamine-NONOate, 200 microM), using whole-genome DNA microarrays. Genes encoding reactive oxygen and nitrogen species detoxification enzymes had high transcriptional levels under basal conditions and upon exposure to both stresses. On a whole-genome level, there was significant modulation of gene expression by H2O2 (286 genes regulated) and dipropylenetriamine-NONOate (1036 genes regulated) with a significant overlap of genes modulated under both conditions (164 genes). A number of transcriptionally regulated genes were in signalling/regulatory and repair/metabolic pathways. However, the majority of genes with altered transcription encode unknown proteins, suggesting as yet unraveled response pathways in E. histolytica. Trophozoites of a non-pathogenic E. histolytica strain had a significantly muted transcriptional response to H2O2 compared with the pathogenic strain, hinting that differential response to oxidative stress may be one factor that contributes to the pathogenic potential of E. histolytica.
Collapse
Affiliation(s)
- João B Vicente
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5107, USA
| | | | | | | | | |
Collapse
|