1
|
Naeini VF, Baniassadi M, Foroutan M, Rémond Y, George D. Decisive structural elements in water and ion permeation through mechanosensitive channels of large conductance: insights from molecular dynamics simulation. RSC Adv 2022; 12:17803-17816. [PMID: 35765322 PMCID: PMC9201702 DOI: 10.1039/d2ra02284b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this paper, a series of equilibrium molecular dynamics simulations (EMD), steered molecular dynamics (SMD), and computational electrophysiology methods are carried out to explore water and ion permeation through mechanosensitive channels of large conductance (MscL). This research aims to identify the pore-lining side chains of the channel in different conformations of MscL homologs by analyzing the pore size. The distribution of permeating water dipole angles through the pore domains enclosed by VAL21 and GLU104 demonstrated that water molecules are oriented toward the charged oxygen headgroups of GLU104 from their hydrogen atoms to retain this interaction in a stabilized fashion. Although, this behavior was not perceived for VAL21. Numerical assessments of the secondary structure clarified that, during the ion permeation, in addition to the secondary structure alterations, the structure of Tb-MscL would also undergo significant conformational changes. It was elucidated that VAL21, GLU104, and water molecules accomplish a fundamental task in ion permeation. The mentioned residues hinder ion permeation so that the pulling SMD force is increased remarkably when the ions permeate through the domains enclosed by VAL21 and GLU102. The hydration level and potassium diffusivity in the hydrophobic gate of the transmembrane domain were promoted by applying the external electric field. Furthermore, the implementation of an external electric field altered the distribution pattern for potassium ions in the system while intensifying the accumulation of Cl− in the vicinity of ARG11 and ARG98. Graphical representation of the most determinant pore-lining side chains of Tb-MscL along with the solid surfaces depicting the spatial shape of the interior pore.![]()
Collapse
Affiliation(s)
- Vahid Fadaei Naeini
- Division of Machine Elements, Luleå University of Technology 97187 Luleå Sweden
| | - Majid Baniassadi
- School of Mechanical Engineering, College of Engineering, University of Tehran Tehran Iran.,University of Strasbourg, ICube Laboratory/CNRS 2 Rue Boussingault 67000 Strasbourg France
| | - Masumeh Foroutan
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Yves Rémond
- University of Strasbourg, ICube Laboratory/CNRS 2 Rue Boussingault 67000 Strasbourg France
| | - Daniel George
- University of Strasbourg, ICube Laboratory/CNRS 2 Rue Boussingault 67000 Strasbourg France
| |
Collapse
|
2
|
Katsuta H, Sawada Y, Sokabe M. Biophysical Mechanisms of Membrane-Thickness-Dependent MscL Gating: An All-Atom Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7432-7442. [PMID: 30113845 DOI: 10.1021/acs.langmuir.8b02074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The bacterial mechanosensitive channel, MscL, is activated by membrane tension, acting as a safety valve to prevent cell lysis against hypotonic challenge. It has been established that its activation threshold decreases with membrane thickness, while the underlying mechanism remains to be solved. We performed all-atom molecular dynamics (MD) simulations for the initial opening process of MscL embedded in four different types of lipid bilayers with different thicknesses: 1,2-dilauroyl- sn-glycero-3-phosphocholine (DLPC)), 1,2-dimyristoyl-glycero-3-phosphorylcholine (DMPC), 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), and 1,2-distearoyl- sn-glycero-3-phosphocholine (DSPC). In response to membrane stretching, channel opening occurred only in the thinner membranes (DLPC and DMPC) in a thickness-dependent way. We found that the MscL opening was governed by the rate and degree of membrane thinning and that the channel opening was tightly associated with the tilting of transmembrane (TM) helices of MscL toward the membrane plane. Upon membrane stretching, the order parameter of acyl chains of thinner membranes (DLPC and DMPC) became smaller, whereas other thicker membranes (DPPC and DSPC) showed interdigitation with little changes in the order parameter. The decreased order parameter contributed much more to membrane thinning than did interdigitation. We conclude that the membrane-thickness-dependent MscL opening mainly arises from structural changes in MscL to match the altered membrane thickness by stretching.
Collapse
|
3
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Tong J, Wu Z, Briggs MM, Schulten K, McIntosh TJ. The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness. Biophys J 2017; 111:90-9. [PMID: 27410737 DOI: 10.1016/j.bpj.2016.05.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022] Open
Abstract
Aquaporin-4 (AQP4), the primary water channel in glial cells of the mammalian brain, plays a critical role in water transport in the central nervous system. Previous experiments have shown that the water permeability of AQP4 depends on the cholesterol content in the lipid bilayer, but it was not clear whether changes in permeability were due to direct cholesterol-AQP4 interactions or to indirect effects caused by cholesterol-induced changes in bilayer elasticity or bilayer thickness. To determine the effects resulting only from bilayer thickness, here we use a combination of experiments and simulations to analyze AQP4 in cholesterol-free phospholipid bilayers with similar elastic properties but different hydrocarbon core thicknesses previously determined by x-ray diffraction. The channel (unit) water permeabilities of AQP4 measured by osmotic-gradient experiments were 3.5 ± 0.2 × 10(-13) cm(3)/s (mean ± SE), 3.0 ± 0.3 × 10(-13) cm(3)/s, 2.5 ± 0.2 × 10(-13) cm(3)/s, and 0.9 ± 0.1 × 10(-13) cm(3)/s in bilayers containing (C22:1)(C22:1)PC, (C20:1)(C20:1)PC, (C16:0)(C18:1)PC, and (C13:0)(C13:0)PC, respectively. Channel permeabilities obtained by molecular dynamics (MD) simulations were 3.3 ± 0.1 × 10(-13) cm(3)/s and 2.5 ± 0.1 × 10(-13) cm(3)/s in (C22:1)(C22:1)PC and (C14:0)(C14:0)PC bilayers, respectively. Both the osmotic-gradient and MD-simulation results indicated that AQP4 channel permeability decreased with decreasing bilayer hydrocarbon thickness. The MD simulations also suggested structural modifications in AQP4 in response to changes in bilayer thickness. Although the simulations showed no appreciable changes to the radius of the pore located in the hydrocarbon region of the bilayers, the simulations indicated that there were changes in both pore length and α-helix organization near the cytoplasmic vestibule of the channel. These structural changes, caused by mismatch between the hydrophobic length of AQP4 and the bilayer hydrocarbon thickness, could explain the observed differences in water permeability with changes in bilayer thickness.
Collapse
Affiliation(s)
- Jihong Tong
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Zhe Wu
- Center for the Physics of Living Cells and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Margaret M Briggs
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Klaus Schulten
- Center for the Physics of Living Cells and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois.
| | - Thomas J McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
5
|
Sawada Y, Sokabe M. Molecular dynamics study on protein-water interplay in the mechanogating of the bacterial mechanosensitive channel MscL. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:531-43. [PMID: 26233760 PMCID: PMC4562998 DOI: 10.1007/s00249-015-1065-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/18/2015] [Indexed: 11/03/2022]
Abstract
One of the goals of mechanosensitive channel (MSC) studies is to understand the underlying molecular and biophysical mechanisms of the mechano-gating process from force sensing to gate opening. We focus on the latter process and investigate the role of water in the bacterial MSC MscL, which is activated by membrane tension. We analyze the interplay between water and the gate-constituting amino acids, Leu19-Gly26, through molecular dynamics simulations. To highlight the role of water, specifically hydration of the gate, in MscL gating, we restrain lateral movements of the water molecules along the water-vapor interfaces at the top and bottom of the vapor bubble, plugging the closed gate. The gating behaviors in this model and the normal MscL model, in which water movements are unrestrained, are compared. In the normal model, increased membrane tension breaks the hydrogen bond between Leu19 and Val 23 of the inner helix, exposing the backbone carbonyl oxygen of Leu19 to the water-accessible lumen side of the gate. Associated with this activity, water comes to access the vapor region and stably interacts with the carbonyl oxygen to induce a dewetting to wetting transition that facilitates gate expansion toward channel opening. By contrast, in the water-restrained model, carbonyl oxygen is also exposed, but no further conformational changes occur at the gate. This suggests that gate opening relies on a conformational change initiated by wetting. The penetrated water weakens the hydrophobic interaction between neighboring transmembrane inner helices called the "hydrophobic lock" by wedging into the space between their interacting portions.
Collapse
Affiliation(s)
- Yasuyuki Sawada
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | | |
Collapse
|
6
|
Assembly and stability of Salmonella enterica ser. Typhi TolC protein in POPE and DMPE. J Biol Phys 2014; 40:387-400. [PMID: 25011632 DOI: 10.1007/s10867-014-9357-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022] Open
Abstract
In this work we assessed the suitability of two different lipid membranes for the simulation of a TolC protein from Salmonella enterica serovar Typhi. The TolC protein family is found in many pathogenic Gram-negative bacteria including Vibrio cholera and Pseudomonas aeruginosa and acts as an outer membrane channel for expulsion of drug and toxin from the cell. In S. typhi, the causative agent for typhoid fever, the TolC outer membrane protein is an antigen for the pathogen. The lipid environment is an important modulator of membrane protein structure and function. We evaluated the conformation of the TolC protein in the presence of DMPE and POPE bilayers using molecular dynamics simulation. The S. typhi TolC protein exhibited similar conformational dynamics to TolC and its homologues. Conformational flexibility of the protein is seen in the C-terminal, extracellular loops, and α-helical region. Despite differences in the two lipids, significant similarities in the motion of the protein in POPE and DMPE were observed, including the rotational motion of the C-terminal residues and the partially open extracellular loops. However, analysis of the trajectories demonstrated effects of hydrophobic matching of the TolC protein in the membrane, particularly in the lengthening of the lipids and subtle movements of the protein's β-barrel towards the lower leaflet in DMPE. The study exhibited the use of molecular dynamics simulation in revealing the differential effect of membrane proteins and lipids on each other. In this study, POPE is potentially a more suitable model for future simulation of the S. typhi TolC protein.
Collapse
|
7
|
Martinac B, Nomura T, Chi G, Petrov E, Rohde PR, Battle AR, Foo A, Constantine M, Rothnagel R, Carne S, Deplazes E, Cornell B, Cranfield CG, Hankamer B, Landsberg MJ. Bacterial mechanosensitive channels: models for studying mechanosensory transduction. Antioxid Redox Signal 2014; 20:952-69. [PMID: 23834368 DOI: 10.1089/ars.2013.5471] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Sensations of touch and hearing are manifestations of mechanical contact and air pressure acting on touch receptors and hair cells of the inner ear, respectively. In bacteria, osmotic pressure exerts a significant mechanical force on their cellular membrane. Bacteria have evolved mechanosensitive (MS) channels to cope with excessive turgor pressure resulting from a hypo-osmotic shock. MS channel opening allows the expulsion of osmolytes and water, thereby restoring normal cellular turgor and preventing cell lysis. RECENT ADVANCES As biological force-sensing systems, MS channels have been identified as the best examples of membrane proteins coupling molecular dynamics to cellular mechanics. The bacterial MS channel of large conductance (MscL) and MS channel of small conductance (MscS) have been subjected to extensive biophysical, biochemical, genetic, and structural analyses. These studies have established MscL and MscS as model systems for mechanosensory transduction. CRITICAL ISSUES In recent years, MS ion channels in mammalian cells have moved into focus of mechanotransduction research, accompanied by an increased awareness of the role they may play in the pathophysiology of diseases, including cardiac hypertrophy, muscular dystrophy, or Xerocytosis. FUTURE DIRECTIONS A recent exciting development includes the molecular identification of Piezo proteins, which function as nonselective cation channels in mechanosensory transduction associated with senses of touch and pain. Since research on Piezo channels is very young, applying lessons learned from studies of bacterial MS channels to establishing the mechanism by which the Piezo channels are mechanically activated remains one of the future challenges toward a better understanding of the role that MS channels play in mechanobiology.
Collapse
Affiliation(s)
- Boris Martinac
- 1 Molecular Cardiology and Biophysics Division/Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute , Darlinghurst, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sawada Y, Murase M, Sokabe M. The gating mechanism of the bacterial mechanosensitive channel MscL revealed by molecular dynamics simulations: from tension sensing to channel opening. Channels (Austin) 2013; 6:317-31. [PMID: 23146938 DOI: 10.4161/chan.21895] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the ultimate goals of the study on mechanosensitive (MS) channels is to understand the biophysical mechanisms of how the MS channel protein senses forces and how the sensed force induces channel gating. The bacterial MS channel MscL is an ideal subject to reach this goal owing to its resolved 3D protein structure in the closed state on the atomic scale and large amounts of electrophysiological data on its gating kinetics. However, the structural basis of the dynamic process from the closed to open states in MscL is not fully understood. In this study, we performed molecular dynamics (MD) simulations on the initial process of MscL opening in response to a tension increase in the lipid bilayer. To identify the tension-sensing site(s) in the channel protein, we calculated interaction energy between membrane lipids and candidate amino acids (AAs) facing the lipids. We found that Phe78 has a conspicuous interaction with the lipids, suggesting that Phe78 is the primary tension sensor of MscL. Increased membrane tension by membrane stretch dragged radially the inner (TM1) and outer (TM2) helices of MscL at Phe78, and the force was transmitted to the pentagon-shaped gate that is formed by the crossing of the neighboring TM1 helices in the inner leaflet of the bilayer. The radial dragging force induced radial sliding of the crossing portions, leading to a gate expansion. Calculated energy for this expansion is comparable to an experimentally estimated energy difference between the closed and the first subconductance state, suggesting that our model simulates the initial step toward the full opening of MscL. The model also successfully mimicked the behaviors of a gain of function mutant (G22N) and a loss of function mutant (F78N), strongly supporting that our MD model did simulate some essential biophysical aspects of the mechano-gating in MscL.
Collapse
Affiliation(s)
- Yasuyuki Sawada
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | |
Collapse
|
9
|
Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Modeling and simulation of ion channels. Chem Rev 2012; 112:6250-84. [PMID: 23035940 PMCID: PMC3633640 DOI: 10.1021/cr3002609] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Swati Bhattacharya
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Jejoong Yoo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - David Wells
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| |
Collapse
|
10
|
Abstract
Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.
Collapse
|
11
|
Deplazes E, Louhivuori M, Jayatilaka D, Marrink SJ, Corry B. Structural investigation of MscL gating using experimental data and coarse grained MD simulations. PLoS Comput Biol 2012; 8:e1002683. [PMID: 23028281 PMCID: PMC3447979 DOI: 10.1371/journal.pcbi.1002683] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/21/2012] [Indexed: 12/02/2022] Open
Abstract
The mechanosensitive channel of large conductance (MscL) has become a model system in which to understand mechanosensation, a process involved in osmoregulation and many other physiological functions. While a high resolution closed state structure is available, details of the open structure and the gating mechanism remain unknown. In this study we combine coarse grained simulations with restraints from EPR and FRET experiments to study the structural changes involved in gating with much greater level of conformational sampling than has previously been possible. We generated a set of plausible open pore structures that agree well with existing open pore structures and gating models. Most interestingly, we found that membrane thinning induces a kink in the upper part of TM1 that causes an outward motion of the periplasmic loop away from the pore centre. This previously unobserved structural change might present a new mechanism of tension sensing and might be related to a functional role in osmoregulation. Cells in biological organisms have to be able to respond to mechanical forces during processes such as touch, hearing, pain sensation and tissue growth. One way this is achieved is through mechanosensitive ion channels, membrane embedded proteins that initiate electrical signalling upon tension within the cell or cell membrane. The malfunction of such channels is also associated with a range of diseases including muscular dystrophy and cardiac arrhythmia. In this manuscript, we study in detail the mechanosensitive channel of large conductance (MscL) from bacteria, a model system in which to understand the principles of mechanosensation. Despite many years of investigative work the details of how the protein senses tension in the surrounding membrane remain unknown. By combining structural data from experiments with computer simulation we are able to model the open channel structure of the protein and report previously unobserved structural changes that might present a new mechanism of sensing tension. The methods developed in this paper are not limited to the study of mechanosensitive ion channels and may be useful in understanding the structure and function of other membrane proteins.
Collapse
Affiliation(s)
- Evelyne Deplazes
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Perth, Australia
| | | | | | | | | |
Collapse
|
12
|
Balleza D. Mechanical properties of lipid bilayers and regulation of mechanosensitive function: from biological to biomimetic channels. Channels (Austin) 2012; 6:220-33. [PMID: 22790280 DOI: 10.4161/chan.21085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Material properties of lipid bilayers, including thickness, intrinsic curvature and compressibility regulate the function of mechanosensitive (MS) channels. This regulation is dependent on phospholipid composition, lateral packing and organization within the membrane. Therefore, a more complete framework to understand the functioning of MS channels requires insights into bilayer structure, thermodynamics and phospholipid structure, as well as lipid-protein interactions. Phospholipids and MS channels interact with each other mainly through electrostatic forces and hydrophobic matching, which are also crucial for antimicrobial peptides. They are excellent models for studying the formation and stabilization of membrane pores. Importantly, they perform equivalent responses as MS channels: (1) tilting in response to tension and (2) dissipation of osmotic gradients. Lessons learned from pore forming peptides could enrich our knowledge of mechanisms of action and evolution of these channels. Here, the current state of the art is presented and general principles of membrane regulation of mechanosensitive function are discussed.
Collapse
Affiliation(s)
- Daniel Balleza
- Unidad de Biofísica, CSIC, UPV/EHU, Universidad del País Vasco, Leioa, Spain.
| |
Collapse
|
13
|
Etchebest C, Debret G. Critical review of general guidelines for membrane proteins model building and analysis. Methods Mol Biol 2010; 654:363-385. [PMID: 20665276 DOI: 10.1007/978-1-60761-762-4_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Membrane proteins play major roles in many biological processes such as signalling, transport, etc. They have been shown to be involved in the development of many diseases and have become important drug targets per se. The understanding of their functional properties may be facilitated if a 3D structure is available. However, in the case of membrane proteins, only a few 3D structures have been solved to date. Bioinformatics and molecular modelling approaches are thus powerful alternatives to fill the gap between the sequence and the structure. Here, a review of the most recent approaches is proposed together with guidelines on how to use them. In addition, insofar as important biological processes require conformational changes, we discuss some interesting methods aimed at exploring the dynamic behaviour of proteins in their membrane environment. The paper ends with a brief description of useful approaches for determining oligomerisation or ligand binding sites.
Collapse
Affiliation(s)
- Catherine Etchebest
- INSERM UMR-S 665, Equipe Dynamique des Structures et des Interactions des Macromolécules Biologiques (DSIMB), Institut National de Transfusion Sanguine (INTS), Université Paris Diderot - Paris 7, Paris, France.
| | | |
Collapse
|
14
|
Asymmetric conformational flexibility in the ATP-binding cassette transporter HI1470/1. Biophys J 2009; 96:1918-30. [PMID: 19254551 DOI: 10.1016/j.bpj.2008.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022] Open
Abstract
Putative metal-chelate-type ABC transporter HI1470/1 is homologous with vitamin B(12) importer BtuCD but exhibits a distinct inward-facing conformation in contrast to the outward-facing conformation of BtuCD. Normal-mode analysis of HI1470/1 reveals the intrinsic asymmetric conformational flexibility in this transporter and demonstrates that the transition from the inward-facing to the outward-facing conformation is realized through the asymmetric motion of individual subunits of the transporter. This analysis suggests that the asymmetric arrangement of the BtuC dimer in the crystal structure of the BtuCD-F complex represents an intermediate state relating HI1470/1 and BtuCD. Furthermore, a twisting motion between transmembrane domains and nucleotide-binding domains encoded in the lowest-frequency normal mode of this type of importer is found to contribute to the conformational transitions during the whole cycle of substrate transportation. A more complete translocation mechanism of the BtuCD type importer is proposed.
Collapse
|
15
|
Tang Y, Yoo J, Yethiraj A, Cui Q, Chen X. Mechanosensitive channels: insights from continuum-based simulations. Cell Biochem Biophys 2008; 52:1-18. [PMID: 18787764 PMCID: PMC2651832 DOI: 10.1007/s12013-008-9024-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2008] [Indexed: 11/25/2022]
Abstract
Mechanotransduction plays an important role in regulating cell functions and it is an active topic of research in biophysics. Despite recent advances in experimental and numerical techniques, the intrinsic multiscale nature imposes tremendous challenges for revealing the working mechanisms of mechanosensitive channels. Recently, a continuum-mechanics-based hierarchical modeling and simulation framework has been established and applied to study the mechanical responses and gating behaviors of a prototypical mechanosensitive channel, the mechanosensitive channel of large conductance (MscL) in bacteria Escherichia coli (E. coli), from which several putative gating mechanisms have been tested and new insights are deduced. This article reviews these latest findings using the continuum mechanics framework and suggests possible improvements for future simulation studies. This computationally efficient and versatile continuum-mechanics-based protocol is poised to make contributions to the study of a variety of mechanobiology problems.
Collapse
Affiliation(s)
- Yuye Tang
- Nanomechanics Research Center, Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027
| | - Jejoong Yoo
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin, Madison, WI 53706
| | - Arun Yethiraj
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin, Madison, WI 53706
| | - Qiang Cui
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin, Madison, WI 53706
| | - Xi Chen
- Nanomechanics Research Center, Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027
| |
Collapse
|