1
|
Alexopoulos S, McGawley M, Mathews R, Papakostopoulou S, Koulas S, Leonidas DD, Zwain T, Hayes JM, Skamnaki V. Evidence for the Quercetin Binding Site of Glycogen Phosphorylase as a Target for Liver-Isoform-Selective Inhibitors against Glioblastoma: Investigation of Flavanols Epigallocatechin Gallate and Epigallocatechin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24070-24081. [PMID: 39433280 PMCID: PMC11528470 DOI: 10.1021/acs.jafc.4c06920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Glycogen phosphorylase (GP) is the rate-determining enzyme in glycogenolysis, and its druggability has been extensively studied over the years for the development of therapeutics against type 2 diabetes (T2D) and, more recently, cancer. However, the conservation of binding sites between the liver and muscle isoforms makes the inhibitor selectivity challenging. Using a combination of kinetic, crystallographic, modeling, and cellular studies, we have probed the binding of dietary flavonoids epigallocatechin gallate (EGCG) and epigallocatechin (EGC) to GP isoforms. The structures of rmGPb-EGCG and rmGPb-EGC complexes were determined by X-ray crystallography, showing binding at the quercetin binding site (QBS) in agreement with kinetic studies that revealed both compounds as noncompetitive inhibitors of GP, with EGCG also causing a significant reduction in cell viability and migration of U87-MG glioblastoma cells. Interestingly, EGCG exhibits different binding modes to GP isoforms, revealing QBS as a promising site for GP targeting, offering new opportunities for the design of liver-selective GP inhibitors.
Collapse
Affiliation(s)
- Serafeim Alexopoulos
- Department
of Biochemistry and Biotechnology, University
of Thessaly, Biopolis, Larisa 41500, Greece
| | - Megan McGawley
- School
of Pharmacy & Biomedical Sciences, University
of Central Lancashire, Preston PR1 2HE, U.K.
| | - Roshini Mathews
- School
of Pharmacy & Biomedical Sciences, University
of Central Lancashire, Preston PR1 2HE, U.K.
| | - Souzana Papakostopoulou
- Department
of Biochemistry and Biotechnology, University
of Thessaly, Biopolis, Larisa 41500, Greece
| | - Symeon Koulas
- Department
of Biochemistry and Biotechnology, University
of Thessaly, Biopolis, Larisa 41500, Greece
| | - Demetres D. Leonidas
- Department
of Biochemistry and Biotechnology, University
of Thessaly, Biopolis, Larisa 41500, Greece
| | - Tamara Zwain
- School
of Pharmacy & Biomedical Sciences, University
of Central Lancashire, Preston PR1 2HE, U.K.
| | - Joseph M. Hayes
- School
of Pharmacy & Biomedical Sciences, University
of Central Lancashire, Preston PR1 2HE, U.K.
| | - Vasiliki Skamnaki
- Department
of Biochemistry and Biotechnology, University
of Thessaly, Biopolis, Larisa 41500, Greece
| |
Collapse
|
2
|
Roychowdhury T, McNutt SW, Pasala C, Nguyen HT, Thornton DT, Sharma S, Botticelli L, Digwal CS, Joshi S, Yang N, Panchal P, Chakrabarty S, Bay S, Markov V, Kwong C, Lisanti J, Chung SY, Ginsberg SD, Yan P, De Stanchina E, Corben A, Modi S, Alpaugh ML, Colombo G, Erdjument-Bromage H, Neubert TA, Chalkley RJ, Baker PR, Burlingame AL, Rodina A, Chiosis G, Chu F. Phosphorylation-driven epichaperome assembly is a regulator of cellular adaptability and proliferation. Nat Commun 2024; 15:8912. [PMID: 39414766 PMCID: PMC11484706 DOI: 10.1038/s41467-024-53178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The intricate network of protein-chaperone interactions is crucial for maintaining cellular function. Recent discoveries have unveiled the existence of specialized chaperone assemblies, known as epichaperomes, which serve as scaffolding platforms that orchestrate the reconfiguration of protein-protein interaction networks, thereby enhancing cellular adaptability and proliferation. This study explores the structural and regulatory aspects of epichaperomes, with a particular focus on the role of post-translational modifications (PTMs) in their formation and function. A key finding is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 within an intrinsically disordered region, as critical determinants of epichaperome assembly. Our data demonstrate that phosphorylation of these serine residues enhances HSP90's interactions with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Moreover, we establish a direct link between epichaperome function and cellular physiology, particularly in contexts where robust proliferation and adaptive behavior are essential, such as in cancer and pluripotent stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone assemblies in diseases characterized by epichaperome dysregulation, thereby bridging the gap between fundamental research and precision medicine.
Collapse
Affiliation(s)
- Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seth W McNutt
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hieu T Nguyen
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Daniel T Thornton
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luke Botticelli
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nan Yang
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Markov
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlene Kwong
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeanine Lisanti
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sun Young Chung
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen D Ginsberg
- Departments of Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa De Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Maimonides Medical Center, Brooklyn, NY, USA
| | - Shanu Modi
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary L Alpaugh
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Rowan University, Glassboro, NJ, USA
| | | | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Robert J Chalkley
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Peter R Baker
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, University of California, San Francisco, CA, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Feixia Chu
- Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
3
|
Javid A, Ahmed M. A computational odyssey: uncovering classical β-lactamase inhibitors in dry fruits. J Biomol Struct Dyn 2024; 42:4578-4604. [PMID: 37288775 DOI: 10.1080/07391102.2023.2220817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
In the antibacterial arsenal, β-lactams have held a prominent position, but increasing resistance due to unauthorized use and genetic factors requires new strategies. Combining β-lactamase inhibitors with broad-spectrum β-lactams proves effective in combating this resistance. ESBL producers demand new inhibitors, leading to the exploration of plant-derived secondary metabolites for potent β-lactam antibiotics or alternative inhibitors. Using virtual screening, molecular docking, ADMET analysis, and molecular dynamic simulation, this study actively analyzed the inhibitory activity of figs, cashews, walnuts, and peanuts against SHV-1, NDM-1, KPC-2, and OXA-48 β-lactamases. Using AutoDock Vina, the docking affinities of various compounds for target enzymes were initially screened, revealing 12 bioactive compounds with higher affinities for the target enzymes compared to Avibactam and Tazobactam. Top-scoring metabolites, including Oleanolic acid, Protocatechuic acid, and Tannin, were subjected to MD simulation studies to further analyze the stability of the docked complexes using WebGro. The simulation coordinates, in terms of RMSD, RMSF, SASA, Rg, and hydrogen bonds formed, showed that these phytocompounds are stable enough to retain in the active sites at various orientations. The PCA and FEL analysis also showed the stability of the dynamic motion of Cα residues of phytochemical-bound enzymes. The pharmacokinetic analysis of the top phytochemicals was performed to analyze their bioavailability and toxicity. This study provides new insights into the therapeutic potential of phytochemicals of selected dry fruits and contributes to future experimental studies to identify βL inhibitors from plants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amina Javid
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Mehboob Ahmed
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| |
Collapse
|
4
|
Mathomes RT, Koulas SM, Tsialtas I, Stravodimos G, Welsby PJ, Psarra AMG, Stasik I, Leonidas DD, Hayes JM. Multidisciplinary docking, kinetics and X-ray crystallography studies of baicalein acting as a glycogen phosphorylase inhibitor and determination of its' potential against glioblastoma in cellular models. Chem Biol Interact 2023; 382:110568. [PMID: 37277066 DOI: 10.1016/j.cbi.2023.110568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Glycogen phosphorylase (GP) is the rate-determining enzyme in the glycogenolysis pathway. Glioblastoma (GBM) is amongst the most aggressive cancers of the central nervous system. The role of GP and glycogen metabolism in the context of cancer cell metabolic reprogramming is recognised, so that GP inhibitors may have potential treatment benefits. Here, baicalein (5,6,7-trihydroxyflavone) is studied as a GP inhibitor, and for its effects on glycogenolysis and GBM at the cellular level. The compound is revealed as a potent GP inhibitor against human brain GPa (Ki = 32.54 μM), human liver GPa (Ki = 8.77 μM) and rabbit muscle GPb (Ki = 5.66 μM) isoforms. It is also an effective inhibitor of glycogenolysis (IC50 = 119.6 μM), measured in HepG2 cells. Most significantly, baicalein demonstrated anti-cancer potential through concentration- and time-dependent decrease in cell viability for three GBM cell-lines (U-251 MG, U-87 MG, T98-G) with IC50 values of ∼20-55 μM (48- and 72-h). Its effectiveness against T98-G suggests potential against GBM with resistance to temozolomide (the first-line therapy) due to a positive O6-methylguanine-DNA methyltransferase (MGMT) status. The solved X-ray structure of rabbit muscle GP-baicalein complex will facilitate structure-based design of GP inhibitors. Further exploration of baicalein and other GP inhibitors with different isoform specificities against GBM is suggested.
Collapse
Affiliation(s)
- Rachel T Mathomes
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Symeon M Koulas
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Ioannis Tsialtas
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - George Stravodimos
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Philip J Welsby
- Department of Postgraduate Medical Education, Edge Hill University, Ormskirk, L39 4QP, United Kingdom
| | - Anna-Maria G Psarra
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Izabela Stasik
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Demetres D Leonidas
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| | - Joseph M Hayes
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom.
| |
Collapse
|
5
|
Natarajan P, Manne M, Koduru SK, Bokkasam TS. 3-deazaadenosine: A promising novel p38γ antagonist with potential as a breast cancer therapeutic agent. Cancer Treat Res Commun 2023; 36:100744. [PMID: 37481995 DOI: 10.1016/j.ctarc.2023.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Human p38γ protein kinase, or MAPK12, is a crucial signaling protein that is important in channelizing membrane signals to the nucleus in the MAPK cascade pathway, associated with breast and colorectal cancer, besides other forms of malignancies and atherosclerotic lesions too. P38γ has a significant contribution to the progression of breast carcinoma due to its multifaceted functions. Targeting p38γ for defining potent antagonists against p38γ can turn out to be an attractive and novel means of breast cancer therapeutics. Novel and potent lead molecules were designed utilizing computational drug design methodologies. Using high-throughput virtual screening, 1909 geometrically similar analogs of known inhibitors were generated, primarily using BIRB796, SB202190, ANP, CHEBI: 620708, and CHEBI: 524699. Chemical correctness was ensured using LigPrep for the standalone library, and Prep Wizard for p38γ using Maestro v.11.5. Using the Glide v5.5 flexible docking procedure on a standalone library of p38γ binding sites, we defined 18 potential leads and assessed their ADMET properties. Lead "1", among the proposed four p38γ antagonists with high-scoring and favorable interactions, was considered for 100 ns molecular dynamics simulations. Among the four proposed leads, Lead '1' displayed consistent and stable bonding interactions with p38γ throughout the 100 ns molecular dynamics (MD) simulations. Additionally, it formed water bridges, contributing to its strong association with the protein. Notably, Lead '1' (3-deazaadenosine) exhibited favorable root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) within the acceptable range of pharmacological properties. Thus, 3-deazaadenosine and its mimetic might be promising new directions for developing a novel class of antagonists for breast cancer treatment.
Collapse
Affiliation(s)
- Pradeep Natarajan
- Bioinformatics Center, Department of Biotechnology, Anna University, Chennai, Tamil Nadu 600025, India.
| | - Munikumar Manne
- Clinical Division, ICMR-National Institute of Nutrition, Jamai-Osmania (Post), Hyderabad, 500007 Telangana, India.
| | - Swetha Kumari Koduru
- Department of Bio-sciences and Sericulture, Sri Padmavati Mahila Visvavidyalayam Women's University, Tirupati, Andhra Pradesh 517502, India
| | - Teja Sree Bokkasam
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam Women's University, Tirupati, Andhra Pradesh 517502, India
| |
Collapse
|
6
|
Emmerich TD, Hayes JM. In Silico-Motivated Discovery of Novel Potent Glycogen Synthase-3 Inhibitors: 1-(Alkyl/arylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione Identified as a Scaffold for Kinase Inhibitor Development. Pharmaceuticals (Basel) 2023; 16:ph16050661. [PMID: 37242443 DOI: 10.3390/ph16050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) isoforms α and β have diverse roles within cell biology, and have been linked with multiple diseases that include prominent CNS conditions such as Alzheimer's disease and several psychiatric disorders. In this study, motivated by computation, we aimed to identify novel ATP-binding site inhibitors of GSK-3 with CNS-active potential. A ligand screening (docking) protocol against GSK-3β was first optimized, employing an active/decoy benchmarking set, with the final protocol selected based on statistical performance analysis. The optimized protocol involved pre-filtering of ligands using a three-point 3D-pharmacophore, followed by Glide-SP docking applying hinge region hydrogen bonding constraints. Using this approach, the Biogenic subset of the ZINC15 compound database was screened, focused on compounds with potential for CNS-activity. Twelve compounds (generation I) were selected for experimental validation using in vitro GSK-3β binding assays. Two hit compounds, 1 and 2, with 6-amino-7H-benzo[e]perimidin-7-one and 1-(phenylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione type scaffolds were identified with IC50 values of 1.63 µM and 20.55 µM, respectively. Ten analogues of 2 (generation II) were selected for structure activity relationship (SAR) analysis and revealed four low micromolar inhibitors (<10 µM), with 19 (IC50 = 4.1 µM)~five times more potent than initial hit compound 2. Selectivity screening of low micromolar inhibitors 14 and 19 (comparing aryl- and alkyl-substituents) against 10 homologous kinases revealed unique selectivity profiles, with both compounds more potent against the GSK-3α isoform (IC50s~2 µM) and, additionally, inhibitors of PKBβ (IC50s < 25 µM). Compound 14 also inhibited ERK2 and 19, PKCγ, but generally good selectivity for GSK-3 isoforms over the other kinases was observed. The compounds had excellent predicted oral bioavailability and CNS-activity profiles, presenting promising candidates for future testing in cellular models of disease.
Collapse
Affiliation(s)
- Thomas D Emmerich
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Joseph M Hayes
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
7
|
Mayack BK. Modeling disruption of Apis mellifera (honey bee) odorant-binding protein function with high-affinity binders. J Mol Recognit 2023; 36:e3008. [PMID: 36792370 DOI: 10.1002/jmr.3008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Chemical toxins pose a great threat to honey bee health because they affect memory and cognition, diminish immunity, and increase susceptibility to infection, resulting in decreased colony performance, reproduction, and survival. Although the behavioral effects of sub-lethal chemical exposure on honey bees have been intensively studied, how xenobiotics affect olfaction, at the molecular level, still needs to be elucidated. In the present work, in silico tools, such as molecular docking, binding free energy calculations, and molecular dynamics simulations are used to predict if environmental chemicals have stronger binding affinities to honey bee antennal odorant-binding protein 14 (OBP14) than the representative floral odors citralva, eugenol, and the fluorescent probe 1-N-phenylnaphthylamine. Based on structural analysis, 21 chemicals from crop pesticides, household appliances, cosmetics, food, public health-related products, and other sources, many of which are pervasive in the hive environment, have higher binding affinities than the floral odors. These results suggest that chemical exposures are likely to interfere with the honey bee's sense of smell and this disruptive mechanism may be responsible for the lower associative learning and memory based on olfaction found in bees exposed to pesticides. Moreover, bees mainly rely on olfactory cues to perceive their environment and orient themselves as well as to discriminate and identify their food, predators, nestmates, and diseased individuals that need to be removed with hygienic behavior. In summary, sub-lethal exposure to environmental toxins can contribute to colony collapse in several ways from the disruption of proper olfaction functioning.
Collapse
Affiliation(s)
- Berin Karaman Mayack
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, California, USA.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| |
Collapse
|
8
|
Katari SK, Pasala C, Nalamolu RM, Bitla AR, Umamaheswari A. In silico trials to design potent inhibitors against matrilysin (MMP-7). J Biomol Struct Dyn 2022; 40:11851-11862. [PMID: 34405760 DOI: 10.1080/07391102.2021.1965032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The study deals with structure-based rational drug design against the chief zinc-rely endopeptidase called matrilysin (MMP-7) that is involved in inflammatory and metastasis process of several carcinomas. Hyperactivated matrilysin of human was targeted, because of its hydrolytic actions on extracellular matrix (ECM) protein components constitutes fibrillar collagens, gelatins, fibronectins and it also activates zymogen forms of vital matrix metalloproteinases (gelatinase A-MMP-2 and B-MMP-9) responsible for ECM destruction in many cancers. In the present work, e-pharmacophores were generated for the respective five co-crystal structures of human matrilysin by mapping ligand's pharmacophoric features. During the lead-optimization campaign, the five e-pharmacophores-based shape screening against an in-house library of >21 million compounds created a dataset of 5000 structural analogs. The subsequent three different docking strategies, including rigid-receptor docking, quantum-polarized-ligand docking, induced-fit docking and free energy binding calculations resulted four leads as novel and potent MMP-7 binders. These four leads were observed with good pharmacological features and good receiver operating characteristics curve metrics (ROC: 0.93) in post-docking evaluations against five existing co-crystal inhibitors and 1000 decoy molecules with MMP-7. Moreover, stability and dynamics behavior of matrilysin-lead1 complex and matrilysin-cocrystal ligand (TQJ) complex were analyzed in natural physiological milieu of 1000 ns or 1 µs molecular dynamics simulations. Lead1-MMP-7 complex was found with an average Cα root-mean-square deviation (RMSD) of 2.35 Å, average ligand root-mean-square fluctuations (RMSF) of 0.66 Å and the strong metallic interactions with E220, a key residue for proteolytic action thereby hinders ECM proteolysis that in turn can halt metastatic cancerous condition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sudheer Kumar Katari
- Department of Bioinformatics, Bioinformatics Centre, Sri Venkateswara Institute of Medical Sciences University, Tirupati, Andhra Pradesh, India
| | - Chiranjeevi Pasala
- Department of Bioinformatics, Bioinformatics Centre, Sri Venkateswara Institute of Medical Sciences University, Tirupati, Andhra Pradesh, India
| | - Ravina Madhulitha Nalamolu
- Department of Bioinformatics, Bioinformatics Centre, Sri Venkateswara Institute of Medical Sciences University, Tirupati, Andhra Pradesh, India
| | - Aparna R Bitla
- Department of Biochemistry, Sri Venkateswara Institute of Medical Sciences University, Tirupati, Andhra Pradesh, India
| | - Amineni Umamaheswari
- Department of Bioinformatics, Bioinformatics Centre, Sri Venkateswara Institute of Medical Sciences University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
9
|
Zhao G, Liu X, Wang S, Bai Z, Zhang S, Wang Y, Yu H, Xu X. Hydrogen bonding penalty used for virtual screening to discover potent inhibitors for Papain-Like cysteine proteases of SARS-CoV-2. Chem Biol Drug Des 2022; 100:502-514. [PMID: 35792890 PMCID: PMC9349924 DOI: 10.1111/cbdd.14115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/26/2022]
Abstract
The Papain-Like proteases (PLpro) of SARS-CoV-2 play a crucial role in viral replication and the formation of nonstructural proteins. To find available inhibitors, the 3D structure of PLpro of SARS2 was obtained by homologous modelling, and we used this structure as a target to search for inhibitors through molecular docking and MM/GBSA binding free energy rescoring. A novel hydrogen bonding penalty was applied to the screening process, which meanwhile took desolvation into account. Finally, 61 compounds were acquired and 4 of them with IC50 at micromolar level tested in vitro enzyme activity assay, which includes clinical drugs tegaserod. Considering the importance of crystal water molecules, the 4 compounds were re-docked and considered bound waters in the active site as a part of PLpro. The binding modes of these 4 compounds were further explored with metadynamics simulations. The hits will provide a starting point for future key interactions identified and lead optimization targetting PLpro.
Collapse
Affiliation(s)
- Guangjian Zhao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Pilot National Laboratory for Marine Science and TechnologyCenter for Innovation Marine Drug Screening & EvaluationQingdaoChina
- Marine Biomedical Research Institute of QingdaoQingdaoChina
| | - Xiaochun Liu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Pilot National Laboratory for Marine Science and TechnologyCenter for Innovation Marine Drug Screening & EvaluationQingdaoChina
- Marine Biomedical Research Institute of QingdaoQingdaoChina
| | - Suyun Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐ScienceWuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
| | - Zhongyue Bai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Pilot National Laboratory for Marine Science and TechnologyCenter for Innovation Marine Drug Screening & EvaluationQingdaoChina
- Marine Biomedical Research Institute of QingdaoQingdaoChina
| | - Siyu Zhang
- Pilot National Laboratory for Marine Science and TechnologyCenter for Innovation Marine Drug Screening & EvaluationQingdaoChina
- Marine Biomedical Research Institute of QingdaoQingdaoChina
- School of Life ScienceLanzhou UniversityLanzhouChina
| | - Yifan Wang
- Pilot National Laboratory for Marine Science and TechnologyCenter for Innovation Marine Drug Screening & EvaluationQingdaoChina
- Marine Biomedical Research Institute of QingdaoQingdaoChina
- College of Food Science and EngineeringOcean University of ChinaQingdaoChina
| | - Haibo Yu
- School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNew South WalesAustralia
| | - Ximing Xu
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Pilot National Laboratory for Marine Science and TechnologyCenter for Innovation Marine Drug Screening & EvaluationQingdaoChina
- Marine Biomedical Research Institute of QingdaoQingdaoChina
| |
Collapse
|
10
|
Khan NS, Pradhan D, Choudhary S, Swargam S, Jain AK, Poddar NK. The interaction analysis between human serum albumin with chlorpyrifos and its derivatives through sub-atomic docking and molecular dynamics simulation techniques. 3 Biotech 2022; 12:272. [PMID: 36105863 PMCID: PMC9464670 DOI: 10.1007/s13205-022-03344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Chlorpyrifos (CPF) is an extensively used organophosphate pesticide for crop protection. However, there are concerns about it contaminating the environment and human health, with estimated three lakh deaths annually. The molecular modeling protocol was assisted in redesigning thirteen well-known CPF linkers and inserting them at five selectable CPF (R1-R5) positions of CPF to get 258 CPF derivatives. CPF and its derivatives were optimized using LigPrep and docked to a grid centralized on Trp214 using extra precision glide docking. The Binding free energy of complexes was calculated using molecular mechanics/generalized born surface area (MM-GBSA). CPF and CPFD-225 have glide scores of - 3.08 and - 6.152 kcal/mol, respectively, with human serum albumin and ΔG bind for CPF (- 33.041817 kcal/mol) (- 52.825 kcal/mol) for CPF-D225. The top ten CPF derivatives showed at least ninefold better binding free energy than the CPF proposed for polyclonal antibody production. Subsequently, molecular docking studies revealed that CPF and its derivatives could bind to human serum albumin (HSA). Furthermore, using the Desmond package, a 100-ns molecular dynamics (MD) simulation was performed on the potential binding site. The final systems of CPF-HSA and CPF-222D complexes consist of 76,014 and 76,026 atoms, respectively. The physical stability of both the systems (CPF-HSA and CPF-222D) was analyzed by considering the overall potential energy, RMSF, RMSD, Hydrophobic interactions, and water-mediated patterns, which showed total energy of - 141,610 kcal/mol and - 140,150 kcal/mol, respectively. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03344-7.
Collapse
Affiliation(s)
- Noor Saba Khan
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, 110029 India
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh 243123 India
| | | | - Saumya Choudhary
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, 110029 India
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007 India
| | - Sandeep Swargam
- Genomics and Epidemiology Division, INSACOG Unit, National Centre for Disease Control, New Delhi, 110054 India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, 110029 India
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| | - Nitesh Kumar Poddar
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh 243123 India
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007 India
| |
Collapse
|
11
|
Orr AA, Kuhlmann SK, Tamamis P. Computational design of a β-wrapin's N-terminal domain with canonical and non-canonical amino acid modifications mimicking curcumin's proposed inhibitory function. Biophys Chem 2022; 286:106805. [DOI: 10.1016/j.bpc.2022.106805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
|
12
|
Bhojwani HR, Joshi UJ. Homology Modelling, Docking-based Virtual Screening, ADME Properties, and Molecular Dynamics Simulation for Identification of Probable Type II Inhibitors of AXL Kinase. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211004102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
AXL kinase is an important member of the TAM family for kinases which is
involved in most cancers. Considering its role in different cancers due to its pro-tumorigenic effects and its
involvement in the resistance, it has gained importance recently. Majority of research carried out is on Type I
inhibitors and limited studies have been carried out for Type II inhibitors. Taking this into consideration, we
have attempted to build Homology models to identify the Type II inhibitors for the AXL kinase.
Methods:
Homology Models for DFG-out C-helix-in/out state were developed using SWISS Model,
PRIMO, and Prime. These models were validated by different methods and further evaluated for stability
by molecular dynamics simulation using Desmond software. Selected models PED1-EB and PEDI1-EB
were used for the docking-based virtual screening of four compound libraries using Glide software. The
hits identified were subjected to interaction analysis and shortlisted compounds were subjected to Prime
MM-GBSA studies for energy calculation. These compounds were also docked in the DFG-in state to
check for binding and elimination of any compounds that may not be Type II inhibitors. The Prime energies
were calculated for these complexes as well and some compounds were eliminated. ADMET studies
were carried out using Qikprop. Some selected compounds were subjected to molecular dynamics simulation
using Desmond for evaluating the stability of the complexes.
Results:
Out of 78 models inclusive of both DFG-out C-helix-in and DFG-out C-helix-out, 5 models were
identified after different types of evaluation as well as validation studies. 1 model representing each type
(PED1-EB and PEDI1-EB) was selected for the screening studies. The screening studies resulted in the
identification of 29 compounds from the screen on PED1-EB and 10 compounds from the screen on
PEDI1-EB. Hydrogen bonding interactions with Pro621, Met623, and Asp690 were observed for these
compounds primarily. In some compounds, hydrogen bonding with Leu542, Glu544, Lys567, and
Asn677 as well as pi-pi stacking interactions with either Phe622 or Phe691 were also seen. 4 compounds
identified from PED1-EB screen were subjected to molecular dynamics simulation and their interactions
were found to be consistent during the simulation. 2 compounds identified from PEDI1-EB screen were
also subjected to the simulation studies, however, their interactions with Asp690 were not observed for a
significant time and in both cases differed from the docked pose.
Conclusion:
Multiple models of DFG-out conformations of AXL kinase were built, validated and used
for virtual screening. Different compounds were identified in the virtual screening, which may possibly
act as Type II inhibitors for AXL kinase. Some more experimental studies can be done to validate these
findings in future. This study will play a guiding role in the further development of the newer Type II
inhibitors of the AXL kinase for the probable treatment of cancer.
Collapse
Affiliation(s)
- Heena R. Bhojwani
- Department of Pharmaceutical Chemistry, Principal K.M. Kundnani College of Pharmacy, Colaba, Cuffe Parade,
Mumbai 400005, India
| | - Urmila J. Joshi
- Department of Pharmaceutical Chemistry, Principal K.M. Kundnani College of Pharmacy, Colaba, Cuffe Parade,
Mumbai 400005, India
| |
Collapse
|
13
|
Exploring the effect of temperature on inhibition of non-structural protease 3 of Chikungunya virus using molecular dynamics simulations and thermodynamics parameters. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Qureshi S, Khandelwal R, Madhavi M, Khurana N, Gupta N, Choudhary SK, Suresh RA, Hazarika L, Srija CD, Sharma K, Hindala MR, Hussain T, Nayarisseri A, Singh SK. A Multi-target Drug Designing for BTK, MMP9, Proteasome and TAK1 for the Clinical Treatment of Mantle Cell Lymphoma. Curr Top Med Chem 2021; 21:790-818. [PMID: 33463471 DOI: 10.2174/1568026621666210119112336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mantle cell lymphoma (MCL) is a type of non-Hodgkin lymphoma characterized by the mutation and overexpression of the cyclin D1 protein by the reciprocal chromosomal translocation t(11;14)(q13:q32). AIM The present study aims to identify potential inhibition of MMP9, Proteasome, BTK, and TAK1 and determine the most suitable and effective protein target for the MCL. METHODOLOGY Nine known inhibitors for MMP9, 24 for proteasome, 15 for BTK and 14 for TAK1 were screened. SB-3CT (PubChem ID: 9883002), oprozomib (PubChem ID: 25067547), zanubrutinib (PubChem ID: 135565884) and TAK1 inhibitor (PubChem ID: 66760355) were recognized as drugs with high binding capacity with their respective protein receptors. 41, 72, 102 and 3 virtual screened compounds were obtained after the similarity search with compound (PubChem ID:102173753), PubChem compound SCHEMBL15569297 (PubChem ID:72374403), PubChem compound SCHEMBL17075298 (PubChem ID:136970120) and compound CID: 71814473 with best virtual screened compounds. RESULT MMP9 inhibitors show commendable affinity and good interaction profile of compound holding PubChem ID:102173753 over the most effective established inhibitor SB-3CT. The pharmacophore study of the best virtual screened compound reveals its high efficacy based on various interactions. The virtual screened compound's better affinity with the target MMP9 protein was deduced using toxicity and integration profile studies. CONCLUSION Based on the ADMET profile, the compound (PubChem ID: 102173753) could be a potent drug for MCL treatment. Similar to the established SB-3CT, the compound was non-toxic with LD50 values for both the compounds lying in the same range.
Collapse
Affiliation(s)
- Shahrukh Qureshi
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Nizam College, Osmania University, Hyderabad - 500001, Telangana State, India
| | - Naveesha Khurana
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Neha Gupta
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Saurav K Choudhary
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Revathy A Suresh
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Lima Hazarika
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Chillamcherla D Srija
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Mali R Hindala
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Sanjeev K Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630 003, Tamil Nadu, India
| |
Collapse
|
15
|
Schepetkin IA, Plotnikov MB, Khlebnikov AI, Plotnikova TM, Quinn MT. Oximes: Novel Therapeutics with Anticancer and Anti-Inflammatory Potential. Biomolecules 2021; 11:biom11060777. [PMID: 34067242 PMCID: PMC8224626 DOI: 10.3390/biom11060777] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Oximes have been studied for decades because of their significant roles as acetylcholinesterase reactivators. Over the last twenty years, a large number of oximes have been reported with useful pharmaceutical properties, including compounds with antibacterial, anticancer, anti-arthritis, and anti-stroke activities. Many oximes are kinase inhibitors and have been shown to inhibit over 40 different kinases, including AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase (CDK), serine/threonine kinases glycogen synthase kinase 3 α/β (GSK-3α/β), Aurora A, B-Raf, Chk1, death-associated protein-kinase-related 2 (DRAK2), phosphorylase kinase (PhK), serum and glucocorticoid-regulated kinase (SGK), Janus tyrosine kinase (JAK), and multiple receptor and non-receptor tyrosine kinases. Some oximes are inhibitors of lipoxygenase 5, human neutrophil elastase, and proteinase 3. The oxime group contains two H-bond acceptors (nitrogen and oxygen atoms) and one H-bond donor (OH group), versus only one H-bond acceptor present in carbonyl groups. This feature, together with the high polarity of oxime groups, may lead to a significantly different mode of interaction with receptor binding sites compared to corresponding carbonyl compounds, despite small changes in the total size and shape of the compound. In addition, oximes can generate nitric oxide. This review is focused on oximes as kinase inhibitors with anticancer and anti-inflammatory activities. Oximes with non-kinase targets or mechanisms of anti-inflammatory activity are also discussed.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark B. Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia;
| | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Scientific Research Institute of Biological Medicine, Altai State University, 656049 Barnaul, Russia
| | - Tatiana M. Plotnikova
- Department of Pharmacology, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence: ; Tel.: +1-406-994-4707; Fax: +1-406-994-4303
| |
Collapse
|
16
|
Mahajan M, Suryavanshi S, Bhowmick S, Alasmary FA, Almutairi TM, Islam MA, Kaul-Ghanekar R. Matairesinol, an active constituent of HC9 polyherbal formulation, exhibits HDAC8 inhibitory and anticancer activity. Biophys Chem 2021; 273:106588. [PMID: 33848944 DOI: 10.1016/j.bpc.2021.106588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Histone deacetylase 8 (HDAC8) has emerged as a promising drug target for cancer therapeutics development. HDAC8 has been reported to regulate cancer cell proliferation, invasion and promote metastasis through modulation of cell cycle associated proteins. Of late, phytocompounds have been demonstrated to exhibit anticancer and anti-HDAC8 activity. Here, we have shown the HDAC8 inhibitory potential of an active phytocompound from HC9 (herbal composition-9), a polyherbal anticancer formulation based on the traditional Ayurvedic drug, Stanya Shodhan Kashaya. HC9 was recently reported to exhibit anticancer activity against breast cancer cells through induction of cell cycle arrest, decrease in migration and invasion as well as regulation of inflammation and chromatin modulators. In silico studies such as molecular docking, molecular dynamics (MD) simulation and binding free energy analyses showed greater binding energy values and interaction stability of MA with HDAC8 compared to other phytocompounds of HC9. Interestingly, in vitro validation confirmed the anti-HDAC8 activity of MA. Further, in vitro studies showed that MA significantly decreased the viability of breast and prostate cancer cell lines, thereby confirming its anticancer potential.
Collapse
Affiliation(s)
- Minal Mahajan
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India
| | - Snehal Suryavanshi
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 91 APC Road, Kolkata 700 009, India
| | - Fatmah Ali Alasmary
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Tahani Mazyad Almutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Ruchika Kaul-Ghanekar
- Cancer Research Lab., Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India.
| |
Collapse
|
17
|
Davies MP, Benitez R, Perez C, Jakupovic S, Welsby P, Rzepecka K, Alder J, Davidson C, Martinez A, Hayes JM. Structure-Based Design of Potent Selective Nanomolar Type-II Inhibitors of Glycogen Synthase Kinase-3β. J Med Chem 2021; 64:1497-1509. [PMID: 33499592 DOI: 10.1021/acs.jmedchem.0c01568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
For the first time, the in silico design, screening, and in vitro validation of potent GSK-3β type-II inhibitors are presented. In the absence of crystallographic evidence for a DFG-out GSK-3β activation loop conformation, computational models were designed using an adapted DOLPHIN approach and a method consisting of Prime loop refinement, induced-fit docking, and molecular dynamics. Virtual screening of the Biogenics subset from the ZINC database led to an initial selection of 20 Phase I compounds revealing two low micromolar inhibitors in an isolated enzyme assay. Twenty more analogues (Phase II compounds) related to the hit [pyrimidin-2-yl]amino-furo[3,2-b]furyl-urea scaffold were selected for structure-activity relationship analysis. The Phase II studies led to five highly potent nanomolar inhibitors, with compound 23 (IC50 =0.087 μM) > 100 times more potent than the best Phase I inhibitor, and selectivity for GSK-3β inhibition compared to homologous kinases was observed. Ex vivo experiments (SH-SY5Y cell lines) for tau hyperphosphorylation revealed promising neuroprotective effects at low micromolar concentrations. The type-II inhibitor design has been unraveled as a potential route toward more clinically effective GSK-3β inhibitors.
Collapse
Affiliation(s)
- Matthew P Davies
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Rocio Benitez
- Centro de Investigaciones Biologicas, CSIC, Avenida Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Concepción Perez
- Instituto de Quimica Medica, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Sven Jakupovic
- AnalytiCon Discovery GmbH, Hermannswerder Haus 17, 14473 Potsdam, Germany
| | - Philip Welsby
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Klaudia Rzepecka
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Jane Alder
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Colin Davidson
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Ana Martinez
- Centro de Investigaciones Biologicas, CSIC, Avenida Ramiro de Maeztu 9, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28031 Madrid, Spain
| | - Joseph M Hayes
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
18
|
Drakou CE, Gardeli C, Tsialtas I, Alexopoulos S, Mallouchos A, Koulas SM, Tsagkarakou AS, Asimakopoulos D, Leonidas DD, Psarra AMG, Skamnaki VT. Affinity Crystallography Reveals Binding of Pomegranate Juice Anthocyanins at the Inhibitor Site of Glycogen Phosphorylase: The Contribution of a Sugar Moiety to Potency and Its Implications to the Binding Mode. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10191-10199. [PMID: 32840370 DOI: 10.1021/acs.jafc.0c04205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anthocyanins (ACNs) are dietary phytochemicals with an acknowledged therapeutic significance. Pomegranate juice (PJ) is a rich source of ACNs with potential applications in nutraceutical development. Glycogen phosphorylase (GP) catalyzes the first step of glycogenolysis and is a molecular target for the development of antihyperglycemics. The inhibitory potential of the ACN fraction of PJ is assessed through a combination of in vitro assays, ex vivo investigation in hepatic cells, and X-ray crystallography studies. The ACN extract potently inhibits muscle and liver isoforms of GP. Affinity crystallography reveals the structural basis of inhibition through the binding of pelargonidin-3-O-glucoside at the GP inhibitor site. The glucopyranose moiety is revealed as a major determinant of potency as it promotes a structural binding mode different from that observed for other flavonoids. This inhibitory effect of the ACN scaffold and its binding mode at the GP inhibitor binding site may have significant implications for future structure-based drug design endeavors.
Collapse
Affiliation(s)
- Christina E Drakou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500, Larisa, Greece
| | - Chrysavgi Gardeli
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece
| | - Ioannis Tsialtas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500, Larisa, Greece
| | - Serafeim Alexopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500, Larisa, Greece
| | - Athanasios Mallouchos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500, Larisa, Greece
| | - Symeon M Koulas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500, Larisa, Greece
| | - Anastasia S Tsagkarakou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500, Larisa, Greece
| | - Demetres Asimakopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500, Larisa, Greece
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500, Larisa, Greece
| | - Anna-Maria G Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500, Larisa, Greece
| | - Vasiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500, Larisa, Greece
| |
Collapse
|
19
|
Synthetic flavonoid derivatives targeting the glycogen phosphorylase inhibitor site: QM/MM-PBSA motivated synthesis of substituted 5,7-dihydroxyflavones, crystallography, in vitro kinetics and ex-vivo cellular experiments reveal novel potent inhibitors. Bioorg Chem 2020; 102:104003. [DOI: 10.1016/j.bioorg.2020.104003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 01/31/2023]
|
20
|
Wang Q, Jiang M, Isupov MN, Chen Y, Littlechild JA, Sun L, Wu X, Wang Q, Yang W, Chen L, Li Q, Wu Y. The crystal structure of Arabidopsis BON1 provides insights into the copine protein family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1215-1232. [PMID: 32369638 DOI: 10.1111/tpj.14797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The Arabidopsis thaliana BON1 gene product is a member of the evolutionary conserved eukaryotic calcium-dependent membrane-binding protein family. The copine protein is composed of two C2 domains (C2A and C2B) followed by a vWA domain. The BON1 protein is localized on the plasma membrane, and is known to suppress the expression of immune receptor genes and to positively regulate stomatal closure. The first structure of this protein family has been determined to 2.5-Å resolution and shows the structural features of the three conserved domains C2A, C2B and vWA. The structure reveals the third Ca2+ -binding region in C2A domain is longer than classical C2 domains and a novel Ca2+ binding site in the vWA domain. The structure of BON1 bound to Mn2+ is also presented. The binding of the C2 domains to phospholipid (PSF) has been modeled and provides an insight into the lipid-binding mechanism of the copine proteins. Furthermore, the selectivity of the separate C2A and C2B domains and intact BON1 to bind to different phospholipids has been investigated, and we demonstrated that BON1 could mediate aggregation of liposomes in response to Ca2+ . These studies have formed the basis of further investigations into the important role that the copine proteins play in vivo.
Collapse
Affiliation(s)
- Qianchao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meiqin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Michail N Isupov
- Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Yayu Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Jennifer A Littlechild
- Henry Wellcome Center for Biocatalysis, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Lifang Sun
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Xiuling Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qin Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wendi Yang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Lifei Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Qi Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, 350117, P. R. China
| |
Collapse
|
21
|
Ganguly M, Hazarika J, Sarma S, Bhuyan P, Mahanta R. Estrogen receptor modulation of some polyphenols extracted from Daucus carota as a probable mechanism for antifertility effect: An in silico study. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620410047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The seeds of Daucus carota, traditionally used by women in many countries to prevent conception, were proved to have negative impact on reproductive hormone levels as well as on the estrous cycles in albino mice affecting the fertility status. This study is an attempt to investigate the possible role of polyphenols present in the seeds in hampering the reproductive processes. The Molecular Docking, Molecular Dynamics (MD) simulation and binding free energy calculation studies reveal that six polyphenols present in the seeds can bind with the active sites of human Estrogen Receptor (ER) and may interfere in the estrogen signaling in human. These polyphenols were found to bind to a conservative pocket of ER[Formula: see text], which is comprised of residues 343–388, 421–428 and 525–540. Docking studies indicated the presence of strong hydrogen bonding, pi–pi interactions and numerous hydrophobic interactions that stabilize the ER[Formula: see text]-polyphenol complexes. The docked complexes were further subjected to MM/GBSA analysis to calculate binding free energies. Molecular dynamic simulation studies carried out for a period of 20[Formula: see text]ns revealed low RMS deviation values suggesting high accuracy of the docking poses and stability of the complexes. Out of the six polyphenols, catechin and epicatechin have shown highest binding affinity towards the ER[Formula: see text] receptor. These findings will help in identifying ER modulators of plant origin targeting ER alpha and predicting their effects on the reproductive hormone homeostasis. Moreover, this study may form preliminary basis for further identification of potential herbal antifertility agents.
Collapse
Affiliation(s)
- Mausumi Ganguly
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Jnyandeep Hazarika
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Shruti Sarma
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Pranjal Bhuyan
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Rita Mahanta
- Department of Zoology, Cotton University, Guwahati 781001, Assam, India
| |
Collapse
|
22
|
Jia WQ, Feng XY, Liu YY, Han ZZ, Jing Z, Xu WR, Cheng XC. Identification of Phosphoinositide-3 Kinases Delta and Gamma Dual Inhibitors Based on the p110δ/γ Crystal Structure. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190730163431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Phosphoinositide-3 kinases (PI3Ks) are key signaling molecules that affect
a diverse array of biological processes in cells, including proliferation, differentiation, survival, and
metabolism. The abnormal activity of PI3K signals is closely related to the occurrence of many diseases,
which has become a very promising drug target, especially for the treatment of cancer.
PI3Kδ/γ inhibitors can reduce toxicity concerns for chronic indications such as asthma and rheumatoid
arthritis compared with pan PI3Ks inhibitors.
Methods:
With the aim of finding more effective PI3Kδ/γ dual inhibitors, virtual screening,
ADMET prediction Molecular Dynamics (MD) simulations and MM-GBSA were executed based
on the known p110δ/γ crystal structure. Compound ZINC28564067 with high docking score and
low toxicity was obtained.
Results:
By MD simulations and MM-GBSA, we could observe that ZINC28564067 had more favorable
conformation binding to the PI3Kδ/γ than the original ligands.
Conclusion:
The results provided a rapid approach for the discovery of novel PI3Kδ/γ dual inhibitors
which might be a potential anti-tumor lead compound.
Collapse
Affiliation(s)
- Wen-Qing Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiao-Yan Feng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ya-Ya Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhen-Zhen Han
- Baokang Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhi Jing
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wei-Ren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
23
|
Kumar D, Kumari K, Jayaraj A, Kumar V, Kumar RV, Dass SK, Chandra R, Singh P. Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. J Biomol Struct Dyn 2020; 39:2659-2672. [PMID: 32362235 PMCID: PMC7212547 DOI: 10.1080/07391102.2020.1752310] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The current outbreak of a novel coronavirus, named as SARS-CoV-2 causing COVID-19
occurred in 2019, is in dire need of finding potential therapeutic agents. Recently,
ongoing viral epidemic due to coronavirus (SARS-CoV-2) primarily affected mainland China
that now threatened to spread to populations in most countries of the world. In spite of
this, there is currently no antiviral drug/ vaccine available against coronavirus
infection, COVID-19. In the present study, computer-aided drug design-based screening to
find out promising inhibitors against the coronavirus (SARS-CoV-2) leads to infection,
COVID-19. The lead therapeutic molecule was investigated through docking and molecular
dynamics simulations. In this, binding affinity of noscapines(23B)-protease of SARS-CoV-2
complex was evaluated through MD simulations at different temperatures. Our research group
has established that noscapine is a chemotherapeutic agent for the treatment of drug
resistant cancers; however, noscapine was also being used as anti-malarial, anti-stroke
and cough-suppressant. This study suggests for the first time that noscapine exerts its
antiviral effects by inhibiting viral protein synthesis.
Collapse
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India.,Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, D.D.U. College, University of Delhi, New Delhi, India
| | | | - Vinod Kumar
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi, India
| | | | - Sujata K Dass
- Department of Neurology, BLK Super Speciality Hospital, New Delhi, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India
| |
Collapse
|
24
|
Pasala C, Katari SK, Nalamolu RM, Aparna RB, Amineni U. Integration of core hopping, quantum-mechanics, molecular mechanics coupled binding-energy estimations and dynamic simulations for fragment-based novel therapeutic scaffolds against Helicobacter pylori strains. Comput Biol Chem 2019; 83:107126. [DOI: 10.1016/j.compbiolchem.2019.107126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/15/2019] [Accepted: 09/10/2019] [Indexed: 01/28/2023]
|
25
|
Barr D, Szennyes E, Bokor É, Al-Oanzi ZH, Moffatt C, Kun S, Docsa T, Sipos Á, Davies MP, Mathomes RT, Snape TJ, Agius L, Somsák L, Hayes JM. Identification of C-β-d-Glucopyranosyl Azole-Type Inhibitors of Glycogen Phosphorylase That Reduce Glycogenolysis in Hepatocytes: In Silico Design, Synthesis, in Vitro Kinetics, and ex Vivo Studies. ACS Chem Biol 2019; 14:1460-1470. [PMID: 31243960 DOI: 10.1021/acschembio.9b00172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Several C-β-d-glucopyranosyl azoles have recently been uncovered as among the most potent glycogen phosphorylase (GP) catalytic site inhibitors discovered to date. Toward further exploring their translational potential, ex vivo experiments have been performed for their effectiveness in reduction of glycogenolysis in hepatocytes. New compounds for these experiments were predicted in silico where, for the first time, effective ranking of GP catalytic site inhibitor potencies using the molecular mechanics-generalized Born surface area (MM-GBSA) method has been demonstrated. For a congeneric training set of 27 ligands, excellent statistics in terms of Pearson (RP) and Spearman (RS) correlations (both 0.98), predictive index (PI = 0.99), and area under the receiver operating characteristic curve (AU-ROC = 0.99) for predicted versus experimental binding affinities were obtained, with ligand tautomeric/ionization states additionally considered using density functional theory (DFT). Seven 2-aryl-4(5)-(β-d-glucopyranosyl)-imidazoles and 2-aryl-4-(β-d-glucopyranosyl)-thiazoles were subsequently synthesized, and kinetics experiments against rabbit muscle GPb revealed new potent inhibitors with best Ki values in the low micromolar range (5c = 1.97 μM; 13b = 4.58 μM). Ten C-β-d-glucopyranosyl azoles were then tested ex vivo in mouse primary hepatocytes. Four of these (5a-c and 9d) demonstrated significant reduction of glucagon stimulated glycogenolysis (IC50 = 30-60 μM). Structural and predicted physicochemical properties associated with their effectiveness were analyzed with permeability related parameters identified as crucial factors. The most effective ligand series 5 contained an imidazole ring, and the calculated pKa (Epik: 6.2; Jaguar 5.5) for protonated imidazole suggests that cellular permeation through the neutral state is favored, while within the cell, there is predicted more favorable binding to GP in the protonated form.
Collapse
Affiliation(s)
- Daniel Barr
- School of Physical Sciences & Computing, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Eszter Szennyes
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary
| | - Éva Bokor
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary
| | - Ziad H. Al-Oanzi
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Colin Moffatt
- Health & Life Sciences, De Montfort University, Gateway House, Leicester LE1 9BH, United Kingdom
| | - Sándor Kun
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary
| | - Tibor Docsa
- Department of Medical Chemistry, Medical and Health Science Centre, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Ádám Sipos
- Department of Medical Chemistry, Medical and Health Science Centre, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Matthew P. Davies
- School of Physical Sciences & Computing, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Rachel T. Mathomes
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Timothy J. Snape
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Loranne Agius
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary
| | - Joseph M. Hayes
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
26
|
Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, Hou T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem Rev 2019; 119:9478-9508. [DOI: 10.1021/acs.chemrev.9b00055] [Citation(s) in RCA: 578] [Impact Index Per Article: 115.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ercheng Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huiyong Sun
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhe Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Liu
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU−ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200122, China
- Department of Chemistry, New York University, New York, New York 10003, United States
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
27
|
Sullivan MV, Dennison SR, Archontis G, Reddy SM, Hayes JM. Toward Rational Design of Selective Molecularly Imprinted Polymers (MIPs) for Proteins: Computational and Experimental Studies of Acrylamide Based Polymers for Myoglobin. J Phys Chem B 2019; 123:5432-5443. [DOI: 10.1021/acs.jpcb.9b03091] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark V. Sullivan
- School of Physical Sciences & Computing, Division of Chemistry, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Sarah R. Dennison
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | | | - Subrayal M. Reddy
- School of Physical Sciences & Computing, Division of Chemistry, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Joseph M. Hayes
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
28
|
High Consistency of Structure-Based Design and X-Ray Crystallography: Design, Synthesis, Kinetic Evaluation and Crystallographic Binding Mode Determination of Biphenyl- N-acyl-β-d-Glucopyranosylamines as Glycogen Phosphorylase Inhibitors. Molecules 2019; 24:molecules24071322. [PMID: 30987252 PMCID: PMC6479789 DOI: 10.3390/molecules24071322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022] Open
Abstract
Structure-based design and synthesis of two biphenyl-N-acyl-β-d-glucopyranosylamine derivatives as well as their assessment as inhibitors of human liver glycogen phosphorylase (hlGPa, a pharmaceutical target for type 2 diabetes) is presented. X-ray crystallography revealed the importance of structural water molecules and that the inhibitory efficacy correlates with the degree of disturbance caused by the inhibitor binding to a loop crucial for the catalytic mechanism. The in silico-derived models of the binding mode generated during the design process corresponded very well with the crystallographic data.
Collapse
|
29
|
Loop dynamics behind the affinity of DARPins towards ERK2: Molecular dynamics simulations (MDs) and elastic network model (ENM). J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Tchoumtchoua J, Halabalaki M, Gikas E, Tsarbopoulos A, Fotaki N, Liu L, Nam S, Jove R, Skaltsounis LA. Preliminary pharmacokinetic study of the anticancer 6BIO in mice using an UHPLC-MS/MS approach. J Pharm Biomed Anal 2018; 164:317-325. [PMID: 30412805 DOI: 10.1016/j.jpba.2018.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022]
Abstract
Indirubins represent a group of natural and synthetic products with bio-activities against numerous human cancer cell lines acting by inhibiting protein kinases. The natural sources of indirubins are plants of Isatis sp., Indigofera sp., and Polygonum sp., recombinant bacteria, mammalian urine and some marine mollusks. Specifically, the halogenated derivative 6-bromo indirubin-3'-oxime (6BIO) possesses increased selectivity against GSK-3. However, to our knowledge, no analytical method to determine 6BIO in biological fluids has been developed till now. Therefore, a rapid, sensitive and high throughput UHPLC-MS/MS methods were developed and validated to evaluate the concentrations of 6BIO in mice plasma. Plasma samples were pre-treated by protein precipation using cold mixture of methanol: acetonitrile (9:1, v/v) and separations were carried out on a Hypersil Gold C18 column (50 × 2.1 mm i.d.; 1.9 μm p.s.) using 0.1% acetic acid and methanol as mobile phase at a flow rate of 500 mL/min in a gradient mode. For quantitation, a hybrid LTQ-Orbitrap MS equipped with an electro-spray ionization source was used applying a selected reaction monitoring (SRM) option. The monitored transitions were m/z 354.0 → 324.0 for 6BIO and 297.1 → 282.1 for afromorsin (used as the internal standard) in the negative mode. Following the EMA, ICH and FDA guidelines for validation of analytical procedures, the assay method was fully validated in terms of selectivity, linearity, recovery, matrix effect, accuracy, precision, stability, and robustness. The validated methods were successfully applied to the pharmacokinetic studies of 6BIO following an oral administration to mice at the dose of 50 mg/kg. The results indicated that 6BIO possesses a Tmax of 30 min, a half-life of 1 h, and low plasma bioavailability.
Collapse
Affiliation(s)
- Job Tchoumtchoua
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece
| | - Evangelos Gikas
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Anthony Tsarbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down Bath, BA2 7AY, United Kingdom
| | - Lucy Liu
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Sangkil Nam
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Richard Jove
- Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771, Athens, Greece.
| |
Collapse
|
31
|
Targeting Nucleotide Binding Domain of Multidrug Resistance-associated Protein-1 (MRP1) for the Reversal of Multi Drug Resistance in Cancer. Sci Rep 2018; 8:11973. [PMID: 30097643 PMCID: PMC6086895 DOI: 10.1038/s41598-018-30420-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is the major cause, by which cancer cells expel the drugs out, developing a challenge against the current chemotherapeutic drugs regime. This mechanism is attributed to the over expression of ABC transporters like MRP1 on the surface of cells. Since nucleotide binding domains (NBD) of ABC transporters are the site of ATP binding and hydrolysis, thereby in this study we have targeted NBD1 of MRP1using molecular docking and molecular dynamic simulations (MDS). The compounds present in the FDA approved library were docked against NBD1 of the human multidrug resistance associated protein 1 (PDB ID: 2CBZ). For the docking studies, Standard Precision and Extra Precision methods were employed. After the EP docking studies, ligands showed an extremely low docking score that was indicative of very high binding affinity of the ligands to the NBD. Apart from the low docking score, another short listing criterion in simulation studies was the interaction of incoming ligand with the desired conserved residues of NDB involved in ATP binding and hydrolysis. Based on these measures, potassium citrate (DB09125) and technetium Tc-99m medronate (DB09138) were chosen and subjected to 100 ns simulation studies. From the MDS study we concluded that between these two compounds, potassium citrate is a better candidate for targeting MRP1.
Collapse
|
32
|
Chatzileontiadou DSM, Tsika AC, Diamantopoulou Z, Delbé J, Badet J, Courty J, Skamnaki VT, Parmenopoulou V, Komiotis D, Hayes JM, Spyroulias GA, Leonidas DD. Evidence for Novel Action at the Cell-Binding Site of Human Angiogenin Revealed by Heteronuclear NMR Spectroscopy, in silico and in vivo Studies. ChemMedChem 2018; 13:259-269. [PMID: 29314771 DOI: 10.1002/cmdc.201700688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Indexed: 12/11/2022]
Abstract
A member of the ribonuclease A superfamily, human angiogenin (hAng) is a potent angiogenic factor. Heteronuclear NMR spectroscopy combined with induced-fit docking revealed a dual binding mode for the most antiangiogenic compound of a series of ribofuranosyl pyrimidine nucleosides that strongly inhibit hAng's angiogenic activity in vivo. While modeling suggests the potential for simultaneous binding of the inhibitors at the active and cell-binding sites, NMR studies indicate greater affinity for the cell-binding site than for the active site. Additionally, molecular dynamics simulations at 100 ns confirmed the stability of binding at the cell-binding site with the predicted protein-ligand interactions, in excellent agreement with the NMR data. This is the first time that a nucleoside inhibitor is reported to completely inhibit the angiogenic activity of hAng in vivo by exerting dual inhibitory activity on hAng, blocking both the entrance of hAng into the cell and its ribonucleolytic activity.
Collapse
Affiliation(s)
- Demetra S M Chatzileontiadou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.,Current address: Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Australia
| | | | - Zoi Diamantopoulou
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Université Paris-EST Créteil, CNRS ERL 9215, France.,Current address: Cancer Research (UK) Manchester Institute, Manchester, UK
| | - Jean Delbé
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Université Paris-EST Créteil, CNRS ERL 9215, France
| | - Josette Badet
- INSERM U1139, Université Paris Descartes, 4 avenue de l'Observatoire, 75006, Paris, France
| | - José Courty
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Université Paris-EST Créteil, CNRS ERL 9215, France
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Vanessa Parmenopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Dimitri Komiotis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Joseph M Hayes
- Centre for Materials Science and School of Physical Sciences & Computing, University of Central Lancashire, Preston, PR1 2HE, UK
| | | | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| |
Collapse
|
33
|
Jia WQ, Jing Z, Liu X, Feng XY, Liu YY, Wang SQ, Xu WR, Liu JW, Cheng XC. Virtual identification of novel PPARα/γ dual agonists by scaffold hopping of saroglitazar. J Biomol Struct Dyn 2017; 36:3496-3512. [DOI: 10.1080/07391102.2017.1392363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wen-Qing Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Zhi Jing
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiao-Yan Feng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ya-Ya Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Jian-Wen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
34
|
Liu X, Jing Z, Jia WQ, Wang SQ, Ma Y, Xu WR, Liu JW, Cheng XC. Identification of novel PPARα/γ dual agonists by virtual screening, ADMET prediction and molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:2988-3002. [DOI: 10.1080/07391102.2017.1373706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xin Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Jing
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wen-Qing Jia
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wei-Ren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Jian-Wen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
35
|
Design, sythesis and evaluation of a series of 3- or 4-alkoxy substituted phenoxy derivatives as PPARs agonists. Oncotarget 2017; 8:20766-20783. [PMID: 28186999 PMCID: PMC5400543 DOI: 10.18632/oncotarget.15198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/25/2017] [Indexed: 11/25/2022] Open
Abstract
Peroxisome proliferators-activated receptors (PPARα, γ and δ) are potentially effective targets for Type 2 diabetes mellitus therapy. The severe effects of known glitazones and the successfully approved agents (saroglitazar and lobeglitazone) motivated us to study novelly potent PPARs drugs with improved safety profile. In this work, we received 15 carboxylic acids based on the combination principle to integrate the polar head of bezafibrate with the hydrophobic tail of pioglitazone. Another 12 tetrazoles based on the bioisosterism principle were obtained accordingly. Furthermore, in vitro PPARs transactivation assays on these 3- or 4-alkoxy substituted phenoxy derivatives afforded six compounds. Interactions and binding stability from the docking analysis and 20 ns molecular dynamic simulations confirmed the representative compounds to be suitable and plausible for PPARs pockets. The above-mentioned results demonstrated that the compounds may be used as reference for further optimization for enhanced PPARs activities and wide safety range.
Collapse
|
36
|
Li J, Du H, Wu Z, Su H, Liu G, Tang Y, Li W. Interactions of omeprazole-based analogues with cytochrome P450 2C19: a computational study. MOLECULAR BIOSYSTEMS 2017; 12:1913-21. [PMID: 27098535 DOI: 10.1039/c6mb00139d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 2C19 (CYP2C19) is one of 57 drug metabolizing enzymes in humans and is responsible for the metabolism of ∼7-10% of drugs in clinical use. Recently omeprazole-based analogues were reported to be the potent inhibitors of CYP2C19 and have the potential to be used as the tool compounds for studying the substrate selectivity of CYP2C19. However, the binding modes of these compounds with CYP2C19 remain to be elucidated. In this study, a combination of molecular docking, molecular dynamics (MD), and MM/GBSA calculations was employed to systematically investigate the interactions between these compounds and CYP2C19. The binding modes of these analogues were analyzed in detail. The results indicated that the inclusion of explicit active site water molecules could improve binding energy prediction when the water molecules formed a hydrogen bonding network between the ligand and protein. We also found that the effect of active site water molecules on binding free energy prediction was dependent on the ligand binding modes. Our results unravel the interactions of these omeprazole-based analogues with CYP2C19 and might be helpful for the future design of potent CYP2C19 inhibitors with improved metabolic properties.
Collapse
Affiliation(s)
- Junhao Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Hanwen Du
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Haixia Su
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
37
|
van der Waals interactions govern C -β- d -glucopyranosyl triazoles’ nM inhibitory potency in human liver glycogen phosphorylase. J Struct Biol 2017; 199:57-67. [DOI: 10.1016/j.jsb.2017.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022]
|
38
|
Ganesan A, Coote ML, Barakat K. Molecular dynamics-driven drug discovery: leaping forward with confidence. Drug Discov Today 2017; 22:249-269. [DOI: 10.1016/j.drudis.2016.11.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/22/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022]
|
39
|
Priya P, Kesheri M, Sinha RP, Kanchan S. Molecular Dynamics Simulations for Biological Systems. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Molecular dynamics simulation is an important tool to capture the dynamicity of biological molecule and the atomistic insights. These insights are helpful to explore biological functions. Molecular dynamics simulation from femto seconds to milli seconds scale give a large ensemble of conformations that can reveal many biological mysteries. The main focus of the chapter is to throw light on theories, requirement of molecular dynamics for biological studies and application of molecular dynamics simulations. Molecular dynamics simulations are widely used to study protein-protein interaction, protein-ligand docking, effects of mutation on interactions, protein folding and flexibility of the biological molecules. This chapter also deals with various methods/algorithms of protein tertiary structure prediction, their strengths and weaknesses.
Collapse
|
40
|
Kantsadi AL, Bokor É, Kun S, Stravodimos GA, Chatzileontiadou DS, Leonidas DD, Juhász-Tóth É, Szakács A, Batta G, Docsa T, Gergely P, Somsák L. Synthetic, enzyme kinetic, and protein crystallographic studies of C -β- d -glucopyranosyl pyrroles and imidazoles reveal and explain low nanomolar inhibition of human liver glycogen phosphorylase. Eur J Med Chem 2016; 123:737-745. [DOI: 10.1016/j.ejmech.2016.06.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/19/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
41
|
Zhang J, Liu X, Wang SQ, Liu GY, Xu WR, Cheng XC, Wang RL. Identification of dual ligands targeting angiotensin II type 1 receptor and peroxisome proliferator-activated receptor-γ by core hopping of telmisartan. J Biomol Struct Dyn 2016; 35:2665-2680. [PMID: 27602589 DOI: 10.1080/07391102.2016.1227726] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It has been reported previously that some angiotensin II receptor blockers not only antagonize angiotensin II type 1 receptor (AT1R), but also exert stimulation in peroxisome proliferator-activated receptor γ (PPARγ) partial activation, among which telmisartan displays the best. Telmisartan has been tested as a bifunctional ligand with antihypertensive and hypoglycemic activity. Aiming at more potent leads with selective AT1R antagonism and PPARγ partial agonism, the three parts of telmisartan including the distal benzimidazole ring, the biphenyl moiety, and the carboxylic acid group experienced modification by core hopping method in our study. The central benzimidazole ring, however, remained intact considering its great affinity toward AT1R and PPARγ. We utilized computational techniques for the sake of details on the binding interactions and conformational stability. Standard precision docking analysis and absorption, distribution, metabolism, excretion, and toxicity prediction received 10 molecules with higher Glide scores, similar interactions, and improved pharmacokinetic profiles compared to telmisartan. Comp#91 with highest scores for AT1R (-11.92 kcal/mol) and PPARγ (-13.88 kcal/mol) exhibited excellent binding modes and pharmacokinetic parameters. Molecular dynamics trajectories on best docking pose of comp#91 confirmed the docking results and verified the conformational stability with both receptors throughout the course of 20-ns simulations. Thus, comp#91 could be identified as a promising lead in the development of dual AT1R antagonist and PPARγ partial agonist against hypertension and type 2 diabetes.
Collapse
Affiliation(s)
- Jun Zhang
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| | - Xin Liu
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| | - Shu-Qing Wang
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| | - Gui-You Liu
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| | - Wei-Ren Xu
- b Tianjin Key Laboratory of Molecular Design and Drug Discovery , Tianjin Institute of Pharmaceutical Research , Tianjin 300193 , China
| | - Xian-Chao Cheng
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| | - Run-Ling Wang
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| |
Collapse
|
42
|
Maffucci I, Contini A. Improved Computation of Protein–Protein Relative Binding Energies with the Nwat-MMGBSA Method. J Chem Inf Model 2016; 56:1692-704. [DOI: 10.1021/acs.jcim.6b00196] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Irene Maffucci
- Dipartimento di Scienze Farmaceutiche
− Sezione di Chimica Generale e Organica “Alessandro
Marchesini”, Università degli Studi di Milano, Via
Venezian, 21, 20133 Milano, Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche
− Sezione di Chimica Generale e Organica “Alessandro
Marchesini”, Università degli Studi di Milano, Via
Venezian, 21, 20133 Milano, Italy
| |
Collapse
|
43
|
Recabarren R, Fuenzalida-Valdivia I, Alzate-Morales J. Studying the binding mechanisms of veratryl alcohol to P. chrysosporium lignin peroxidase: insights from theoretical approaches. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1828-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Natarajan P, Priyadarshini V, Pradhan D, Manne M, Swargam S, Kanipakam H, Bhuma V, Amineni U. E-pharmacophore-based virtual screening to identify GSK-3β inhibitors. J Recept Signal Transduct Res 2015; 36:445-58. [PMID: 27305963 DOI: 10.3109/10799893.2015.1122043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase which has attracted significant attention during recent years in drug design studies. The deregulation of GSK-3β increased the loss of hippocampal neurons by triggering apoptosis-mediating production of neurofibrillary tangles and alleviates memory deficits in Alzheimer's disease (AD). Given its role in the formation of neurofibrillary tangles leading to AD, it has been a major therapeutic target for intervention in AD, hence was targeted in the present study. Twenty crystal structures were refined to generate pharmacophore models based on energy involvement in binding co-crystal ligands. Four common e-pharmacophore models were optimized from the 20 pharmacophore models. Shape-based screening of four e-pharmacophore models against nine established small molecule databases using Phase v3.9 had resulted in 1800 compounds having similar pharmacophore features. Rigid receptor docking (RRD) was performed for 1800 compounds and 20 co-crystal ligands with GSK-3β to generate dock complexes. Interactions of the best scoring lead obtained through RRD were further studied with quantum polarized ligand docking (QPLD), induced fit docking (IFD) and molecular mechanics/generalized Born surface area. Comparing the obtained leads to 20 co-crystal ligands resulted in 18 leads among them, lead1 had the lowest docking score, lower binding free energy and better binding orientation toward GSK-3β. The 50 ns MD simulations run confirmed the stable nature of GSK-3β-lead1 docking complex. The results from RRD, QPLD, IFD and MD simulations confirmed that lead1 might be used as a potent antagonist for GSK-3β.
Collapse
Affiliation(s)
- Pradeep Natarajan
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| | - Vani Priyadarshini
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| | - Dibyabhaba Pradhan
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| | - Munikumar Manne
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| | - Sandeep Swargam
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| | - Hema Kanipakam
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| | - Vengamma Bhuma
- b Department of Neurology , SVIMS University , Tirupati , India
| | - Umamaheswari Amineni
- a Bioinformatics Centre, Department of Bioinformatics, SVIMS University , Tirupati , India and
| |
Collapse
|
45
|
Jatana N, Thukral L, Latha N. Structural signatures of DRD4 mutants revealed using molecular dynamics simulations: Implications for drug targeting. J Mol Model 2015; 22:14. [PMID: 26680992 DOI: 10.1007/s00894-015-2868-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
Human Dopamine Receptor D4 (DRD4) orchestrates several neurological functions and represents a target for many psychological disorders. Here, we examined two rare variants in DRD4; V194G and R237L, which elicit functional alterations leading to disruption of ligand binding and G protein coupling, respectively. Using atomistic molecular dynamics (MD) simulations, we provide in-depth analysis to reveal structural signatures of wild and mutant complexes with their bound agonist and antagonist ligands. We constructed intra-protein network graphs to discriminate the global conformational changes induced by mutations. The simulations also allowed us to elucidate the local side-chain dynamical variations in ligand-bound mutant receptors. The data suggest that the mutation in transmembrane V (V194G) drastically disrupts the organization of ligand binding site and causes disorder in the native helical arrangement. Interestingly, the R237L mutation leads to significant rewiring of side-chain contacts in the intracellular loop 3 (site of mutation) and also affects the distant transmembrane topology. Additionally, these mutations lead to compact ICL3 region compared to the wild type, indicating that the receptor would be inaccessible for G protein coupling. Our findings thus reveal unreported structural determinants of the mutated DRD4 receptor and provide a robust framework for design of effective novel drugs.
Collapse
Affiliation(s)
- Nidhi Jatana
- Bioinformatics Infrastructure Facility, Sri Venkateswara College (University of Delhi), Benito Juarez Road, Dhaula Kuan, New Delhi, 110 021, India.,CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110020, India.
| | - N Latha
- Bioinformatics Infrastructure Facility, Sri Venkateswara College (University of Delhi), Benito Juarez Road, Dhaula Kuan, New Delhi, 110 021, India.
| |
Collapse
|
46
|
Arfeen M, Patel R, Khan T, Bharatam PV. Molecular dynamics simulation studies of GSK-3β ATP competitive inhibitors: understanding the factors contributing to selectivity. J Biomol Struct Dyn 2015. [PMID: 26209183 DOI: 10.1080/07391102.2015.1063457] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glycogen synthase kinase-3 is a constitutively acting, multifunctional serine threonine kinase, the role of which has been implicated in several physiological pathways and has emerged as a promising target for the treatment of type-II diabetes and Alzheimer's disease. In order to provide a detailed understanding of the origin of selectivity determinants of ATP competitive inhibitors, molecular dynamics simulations in combination with MM-PBSA binding energy calculations were performed using crystal structures of GSK-3β and CDK-2 in complex with 12 ATP competitive inhibitors. Analysis of energy contributions indicate that electrostatic interaction energy dictates the selectivity of ATP competitive inhibitors against CDK-2. Key interactions as well as residues that potentially make a major contribution to the binding free energy were identified at the ATP binding site. This analysis stresses the need for the inhibitors to interact with Lys85, Thr138, and Arg141 in the binding site of GSK-3β to show selectivity. The residue-wise energy decomposition analysis further suggested the additional role of Gln185 in determining the selectivity of maleimides. The results obtained in this study can be utilized to design new selective GSK-3 ATP competitive inhibitors.
Collapse
Affiliation(s)
- Minhajul Arfeen
- a Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research , Sector-67, S.A.S. Nagar, Punjab 160062 , India
| | - Rahul Patel
- a Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research , Sector-67, S.A.S. Nagar, Punjab 160062 , India
| | - Tosif Khan
- a Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research , Sector-67, S.A.S. Nagar, Punjab 160062 , India
| | - Prasad V Bharatam
- a Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research , Sector-67, S.A.S. Nagar, Punjab 160062 , India
| |
Collapse
|
47
|
A systematic methodology for large scale compound screening: A case study on the discovery of novel S1PL inhibitors. J Mol Graph Model 2015; 63:110-24. [PMID: 26724452 DOI: 10.1016/j.jmgm.2015.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/07/2015] [Accepted: 11/06/2015] [Indexed: 01/30/2023]
Abstract
Decrease in sphingosine 1-phosphate (S1P) concentration induces migration of pathogenic T cells to the blood stream, disrupts the CNS and it is implicated in multiple sclerosis (MS), a progressive inflammatory disorder of the central nervous system (CNS), and Alzheimer's disease (AD). A promising treatment alternative for MS and AD is inhibition of the activity of the microsomal enzyme sphingosine 1-phosphate lyase (S1PL), which degrades intracellular S1P. This report describes an integrated systematic approach comprising virtual screening, molecular docking, substructure search and molecular dynamics simulation to discover novel S1PL inhibitors. Virtual screening of the ZINC database via ligand-based and structure-based pharmacophore models yielded 10000 hits. After molecular docking, common substructures of the top ranking hits were identified. The ligand binding poses were optimized by induced fit docking. MD simulations were performed on the complex structures to determine the stability of the S1PL-ligand complex and to calculate the binding free energy. Selectivity of the selected molecules was examined by docking them to hERG and cytochrome P450 receptors. As a final outcome, 15 compounds from different chemotypes were proposed as potential S1PL inhibitors. These molecules may guide future medicinal chemistry efforts in the discovery of new compounds against the destructive action of pathogenic T cells.
Collapse
|
48
|
Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1. Cell Rep 2015; 10:1850-60. [PMID: 25801024 DOI: 10.1016/j.celrep.2015.02.052] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/13/2015] [Accepted: 02/23/2015] [Indexed: 12/27/2022] Open
Abstract
RIPK1 and RIPK3, two closely related RIPK family members, have emerged as important regulators of pathologic cell death and inflammation. In the current work, we report that the Bcr-Abl inhibitor and anti-leukemia agent ponatinib is also a first-in-class dual inhibitor of RIPK1 and RIPK3. Ponatinib potently inhibited multiple paradigms of RIPK1- and RIPK3-dependent cell death and inflammatory tumor necrosis factor alpha (TNF-α) gene transcription. We further describe design strategies that utilize the ponatinib scaffold to develop two classes of inhibitors (CS and PN series), each with greatly improved selectivity for RIPK1. In particular, we detail the development of PN10, a highly potent and selective "hybrid" RIPK1 inhibitor, capturing the best properties of two different allosteric RIPK1 inhibitors, ponatinib and necrostatin-1. Finally, we show that RIPK1 inhibitors from both classes are powerful blockers of TNF-induced injury in vivo. Altogether, these findings outline promising candidate molecules and design approaches for targeting RIPK1- and RIPK3-driven inflammatory pathologies.
Collapse
|
49
|
Mladenović M, Stanković N, Matić S, Stanić S, Mihailović M, Mihailović V, Katanić J, Boroja T, Vuković N. Newly discovered chroman-2,4-diones neutralize the in vivo DNA damage induced by alkylation through the inhibition of Topoisomerase IIα: A story behind the molecular modeling approach. Biochem Pharmacol 2015; 98:243-66. [PMID: 26319574 DOI: 10.1016/j.bcp.2015.08.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023]
Abstract
Eight chroman-2,4-diones, namely 2a-h, previously investigated as anticoagulants, of which 2a and 2f as the most active, were evaluated as in vivo genotoxic agents in Wistar rat livers and kidneys using the comet assay. Compounds 2a, 2b, and 2f without genotoxic activity were applied prior to ethyl methanesulfonate (EMS) and diminished EMS-induced DNA damage according to the total score and percentage of reduction. EMS produce harmful O(6)-ethylguanine lesion which is incorporated in aberrant genotoxic GT and TG pairing after ATP-dependent DNA strand breaks have been catalyzed by rat Topoisomerase IIα (rTopIIα, EC 5.99.1.3). Therefore, the mechanism of 2a, 2b, and 2f antigenotoxic activity was investigated on the enzyme level using molecular docking and molecular dynamics simulations insamuch as it had been determined that compounds do not intercalate DNA but instead inhibit the ATPase activity. Calculations predicted that compounds inhibit ATP hydrolysis before the DNA-EMS cleavage is being catalyzed by rTopIIα, prevent EMS mutagenic and carcinogenic effects, and beside anticoagulant activity can even be applied in the cancer treatment to control the rate of anticancer alkylation drugs.
Collapse
Affiliation(s)
- Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Nevena Stanković
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Sanja Matić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Snežana Stanić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Vladimir Mihailović
- Bioactive Natural Products Investigation, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Jelena Katanić
- Bioactive Natural Products Investigation, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Tatjana Boroja
- Bioactive Natural Products Investigation, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| | - Nenad Vuković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, PO Box 60, 34000 Kragujevac, Serbia.
| |
Collapse
|
50
|
Chaitanya S, Das M, Bhat P, Ebenezer M. Computational Modelling of Dapsone Interaction With Dihydropteroate Synthase inMycobacterium leprae; Insights Into Molecular Basis of Dapsone Resistance in Leprosy. J Cell Biochem 2015; 116:2293-303. [DOI: 10.1002/jcb.25180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/31/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Sundeep Chaitanya
- Research Officer; Department of Laboratories; Molecular Biology and Immunology Division; The Schieffelin Institute of Health-Research and Leprosy Center (SIH-R&LC); Karigiri; Vellore Tamil Nadu 632106 India
| | - Madhusmita Das
- Research Officer; Department of Laboratories; Molecular Biology and Immunology Division; The Schieffelin Institute of Health-Research and Leprosy Center (SIH-R&LC); Karigiri; Vellore Tamil Nadu 632106 India
| | - Pritesh Bhat
- Applications Scientist; Schrodinger, Inc.; Near KMWA Vidya Niketan; Mahalakshmipuram; Bangalore 560 086 India
| | - Mannam Ebenezer
- The Schieffelin Institute of Health-Research and Leprosy Center (SIH-R&LC); Karigiri; Vellore Tamil Nadu 632106 India
| |
Collapse
|