1
|
Schiffelers LDJ, Tesfamariam YM, Jenster LM, Diehl S, Binder SC, Normann S, Mayr J, Pritzl S, Hagelauer E, Kopp A, Alon A, Geyer M, Ploegh HL, Schmidt FI. Antagonistic nanobodies implicate mechanism of GSDMD pore formation and potential therapeutic application. Nat Commun 2024; 15:8266. [PMID: 39327452 PMCID: PMC11427689 DOI: 10.1038/s41467-024-52110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Inflammasome activation results in the cleavage of gasdermin D (GSDMD) by pro-inflammatory caspases. The N-terminal domains (GSDMDNT) oligomerize and assemble pores penetrating the target membrane. As methods to study pore formation in living cells are insufficient, the order of conformational changes, oligomerization, and membrane insertion remained unclear. We have raised nanobodies (VHHs) against human GSDMD and find that cytosolic expression of VHHGSDMD-1 and VHHGSDMD-2 prevents oligomerization of GSDMDNT and pyroptosis. The nanobody-stabilized GSDMDNT monomers partition into the plasma membrane, suggesting that membrane insertion precedes oligomerization. Inhibition of GSDMD pore formation switches cell death from pyroptosis to apoptosis, likely driven by the enhanced caspase-1 activity required to activate caspase-3. Recombinant antagonistic nanobodies added to the extracellular space prevent pyroptosis and exhibit unexpected therapeutic potential. They may thus be suitable to treat the ever-growing list of diseases caused by activation of (non-) canonical inflammasomes.
Collapse
Affiliation(s)
- Lisa D J Schiffelers
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yonas M Tesfamariam
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lea-Marie Jenster
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Stefan Diehl
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sophie C Binder
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sabine Normann
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jonathan Mayr
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Steffen Pritzl
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Elena Hagelauer
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anja Kopp
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Assaf Alon
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Matthias Geyer
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Bulvas O, Knejzlík Z, Sýs J, Filimoněnko A, Čížková M, Clarová K, Rejman D, Kouba T, Pichová I. Deciphering the allosteric regulation of mycobacterial inosine-5'-monophosphate dehydrogenase. Nat Commun 2024; 15:6673. [PMID: 39107302 PMCID: PMC11303537 DOI: 10.1038/s41467-024-50933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.
Collapse
Affiliation(s)
- Ondřej Bulvas
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdeněk Knejzlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Sýs
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anatolij Filimoněnko
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Čížková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kamila Clarová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Kouba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Wood TW, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon-derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. RESEARCH SQUARE 2024:rs.3.rs-4559920. [PMID: 39041030 PMCID: PMC11261967 DOI: 10.21203/rs.3.rs-4559920/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The human genome contains 24 gag-like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag-like genes PNMA1 and PNMA4 support reproductive capacity during aging. Analysis of donated human ovaries shows that expression of both genes declines normally with age, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
Affiliation(s)
- Thomas W.P. Wood
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - William S. Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Harrison B. Cullen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mayra Romero
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Cecilia S. Blengini
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Shreya Sarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Julia Sorkin
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Hilina Bekele
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Chen Jin
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexei Chemiakine
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rishad C. Khondker
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - José V.V. Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia Stem Cell Initiative, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, New York, NY 10032, USA
| | - Binyam Mogessie
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Devanshi Jain
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Yousin Suh
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s and the Aging Brain, New York, NY, USA
| |
Collapse
|
4
|
Lin J, Bjørk PK, Kolte MV, Poulsen E, Dedic E, Drace T, Andersen SU, Nadzieja M, Liu H, Castillo-Michel H, Escudero V, González-Guerrero M, Boesen T, Pedersen JS, Stougaard J, Andersen KR, Reid D. Zinc mediates control of nitrogen fixation via transcription factor filamentation. Nature 2024; 631:164-169. [PMID: 38926580 PMCID: PMC11222152 DOI: 10.1038/s41586-024-07607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Plants adapt to fluctuating environmental conditions by adjusting their metabolism and gene expression to maintain fitness1. In legumes, nitrogen homeostasis is maintained by balancing nitrogen acquired from soil resources with nitrogen fixation by symbiotic bacteria in root nodules2-8. Here we show that zinc, an essential plant micronutrient, acts as an intracellular second messenger that connects environmental changes to transcription factor control of metabolic activity in root nodules. We identify a transcriptional regulator, FIXATION UNDER NITRATE (FUN), which acts as a sensor, with zinc controlling the transition between an inactive filamentous megastructure and an active transcriptional regulator. Lower zinc concentrations in the nodule, which we show occur in response to higher levels of soil nitrate, dissociates the filament and activates FUN. FUN then directly targets multiple pathways to initiate breakdown of the nodule. The zinc-dependent filamentation mechanism thus establishes a concentration readout to adapt nodule function to the environmental nitrogen conditions. In a wider perspective, these results have implications for understanding the roles of metal ions in integration of environmental signals with plant development and optimizing delivery of fixed nitrogen in legume crops.
Collapse
Affiliation(s)
- Jieshun Lin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Peter K Bjørk
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Marie V Kolte
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Emil Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Emil Dedic
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Taner Drace
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Huijun Liu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas. Universidad Politécnica de Madrid, Madrid, Spain
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Dugald Reid
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), La Trobe University, Melbourne, Victoria, Australia.
- Department of Animal, Plant and Soil Sciences, School of Agriculture Bioscience and Environment, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Meier SSM, Multamäki E, Ranzani AT, Takala H, Möglich A. Leveraging the histidine kinase-phosphatase duality to sculpt two-component signaling. Nat Commun 2024; 15:4876. [PMID: 38858359 PMCID: PMC11164954 DOI: 10.1038/s41467-024-49251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Bacteria must constantly probe their environment for rapid adaptation, a crucial need most frequently served by two-component systems (TCS). As one component, sensor histidine kinases (SHK) control the phosphorylation of the second component, the response regulator (RR). Downstream responses hinge on RR phosphorylation and can be highly stringent, acute, and sensitive because SHKs commonly exert both kinase and phosphatase activity. With a bacteriophytochrome TCS as a paradigm, we here interrogate how this catalytic duality underlies signal responses. Derivative systems exhibit tenfold higher red-light sensitivity, owing to an altered kinase-phosphatase balance. Modifications of the linker intervening the SHK sensor and catalytic entities likewise tilt this balance and provide TCSs with inverted output that increases under red light. These TCSs expand synthetic biology and showcase how deliberate perturbations of the kinase-phosphatase duality unlock altered signal-response regimes. Arguably, these aspects equally pertain to the engineering and the natural evolution of TCSs.
Collapse
Affiliation(s)
| | - Elina Multamäki
- Department of Anatomy, University of Helsinki, Helsinki, Finland
| | - Américo T Ranzani
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Heikki Takala
- Department of Anatomy, University of Helsinki, Helsinki, Finland.
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland.
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany.
- Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, Bayreuth, Germany.
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany.
| |
Collapse
|
6
|
Hoffmann A, Steffens U, Maček B, Franz-Wachtel M, Nieselt K, Harbig TA, Scherlach K, Hertweck C, Sahl HG, Bierbaum G. The unusual mode of action of the polyketide glycoside antibiotic cervimycin C. mSphere 2024; 9:e0076423. [PMID: 38722162 PMCID: PMC11237698 DOI: 10.1128/msphere.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
Cervimycins A-D are bis-glycosylated polyketide antibiotics produced by Streptomyces tendae HKI 0179 with bactericidal activity against Gram-positive bacteria. In this study, cervimycin C (CmC) treatment caused a spaghetti-like phenotype in Bacillus subtilis 168, with elongated curved cells, which stayed joined after cell division, and exhibited a chromosome segregation defect, resulting in ghost cells without DNA. Electron microscopy of CmC-treated Staphylococcus aureus (3 × MIC) revealed swollen cells, misshapen septa, cell wall thickening, and a rough cell wall surface. Incorporation tests in B. subtilis indicated an effect on DNA biosynthesis at high cervimycin concentrations. Indeed, artificial downregulation of the DNA gyrase subunit B gene (gyrB) increased the activity of cervimycin in agar diffusion tests, and, in high concentrations (starting at 62.5 × MIC), the antibiotic inhibited S. aureus DNA gyrase supercoiling activity in vitro. To obtain a more global view on the mode of action of CmC, transcriptomics and proteomics of cervimycin treated versus untreated S. aureus cells were performed. Interestingly, 3 × MIC of cervimycin did not induce characteristic responses, which would indicate disturbance of the DNA gyrase activity in vivo. Instead, cervimycin induced the expression of the CtsR/HrcA heat shock operon and the expression of autolysins, exhibiting similarity to the ribosome-targeting antibiotic gentamicin. In summary, we identified the DNA gyrase as a target, but at low concentrations, electron microscopy and omics data revealed a more complex mode of action of cervimycin, which comprised induction of the heat shock response, indicating protein stress in the cell.IMPORTANCEAntibiotic resistance of Gram-positive bacteria is an emerging problem in modern medicine, and new antibiotics with novel modes of action are urgently needed. Secondary metabolites from Streptomyces species are an important source of antibiotics, like the cervimycin complex produced by Streptomyces tendae HKI 0179. The phenotypic response of Bacillus subtilis and Staphylococcus aureus toward cervimycin C indicated a chromosome segregation and septum formation defect. This effect was at first attributed to an interaction between cervimycin C and the DNA gyrase. However, omics data of cervimycin treated versus untreated S. aureus cells indicated a different mode of action, because the stress response did not include the SOS response but resembled the response toward antibiotics that induce mistranslation or premature chain termination and cause protein stress. In summary, these results point toward a possibly novel mechanism that generates protein stress in the cells and subsequently leads to defects in cell and chromosome segregation.
Collapse
Affiliation(s)
- Alina Hoffmann
- University Hospital Bonn, Institute of Medical Microbiology, Immunology and Parasitology, Bonn, Germany
| | - Ursula Steffens
- University Hospital Bonn, Institute of Medical Microbiology, Immunology and Parasitology, Bonn, Germany
| | - Boris Maček
- University of Tübingen, Proteome Center Tübingen, Tübingen, Germany
| | | | - Kay Nieselt
- University of Tübingen, Interfaculty Institute for Bioinformatics and Medical Informatics, Tübingen, Germany
| | - Theresa Anisja Harbig
- University of Tübingen, Interfaculty Institute for Bioinformatics and Medical Informatics, Tübingen, Germany
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Friedrich Schiller University Jena, Institute of Microbiology, Faculty of Biological Sciences, Jena, Germany
| | - Hans-Georg Sahl
- University of Bonn, Institute for Pharmaceutical Microbiology, Bonn, Germany
| | - Gabriele Bierbaum
- University Hospital Bonn, Institute of Medical Microbiology, Immunology and Parasitology, Bonn, Germany
| |
Collapse
|
7
|
Wood TWP, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JVV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon - derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.592987. [PMID: 38798495 PMCID: PMC11118267 DOI: 10.1101/2024.05.11.592987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The human genome contains 24 gag -like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag -like genes PNMA1 and PNMA4 support reproductive capacity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. Analysis of donated human ovaries shows that expression of both genes declines normally with aging, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
|
8
|
Feldberg AL, Mayerthaler F, Rüschenbaum J, Kröger J, Mootz HD. Carrier Protein Interaction with Competing Adenylation and Epimerization Domains in a Nonribosomal Peptide Synthetase Analyzed by FRET. Angew Chem Int Ed Engl 2024; 63:e202317753. [PMID: 38488324 DOI: 10.1002/anie.202317753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 04/11/2024]
Abstract
In multi-domain nonribosomal peptide synthetases (NRPSs) the order of domains and their catalytic specificities dictate the structure of the peptide product. Peptidyl-carrier proteins (PCPs) bind activated amino acids and channel elongating peptidyl intermediates along the protein template. To this end, fine-tuned interactions with the catalytic domains and large-scale PCP translocations are necessary. Despite crystal structure snapshots of several PCP-domain interactions, the conformational dynamics under catalytic conditions in solution remain poorly understood. We report a FRET reporter of gramicidin S synthetase 1 (GrsA; with A-PCP-E domains) to study for the first time the interaction between PCP and adenylation (A) domain in the presence of an epimerization (E) domain, a competing downstream partner for the PCP. Bulk FRET measurements showed that upon PCP aminoacylation a conformational shift towards PCP binding to the A domain occurs, indicating the E domain acts on its PCP substrate out of a disfavored conformational equilibrium. Furthermore, the A domain was found to preferably bind the D-Phe-S-Ppant-PCP stereoisomer, suggesting it helps in establishing the stereoisomeric mixture in favor of the D-aminoacyl moiety. These observations surprisingly show that the conformational logic can deviate from the order of domains and thus reveal new principles in the multi-domain interplay of NRPSs.
Collapse
Affiliation(s)
- Anna-Lena Feldberg
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Florian Mayerthaler
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Jennifer Rüschenbaum
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Jonas Kröger
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Henning D Mootz
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
9
|
Morizono MA, McGuire KL, Birouty NI, Herzik MA. Structural insights into GrpEL1-mediated nucleotide and substrate release of human mitochondrial Hsp70. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593630. [PMID: 38798347 PMCID: PMC11118385 DOI: 10.1101/2024.05.10.593630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Maintenance of protein homeostasis is necessary for cell viability and depends on a complex network of chaperones and co-chaperones, including the heat-shock protein 70 (Hsp70) system. In human mitochondria, mitochondrial Hsp70 (mortalin) and the nucleotide exchange factor (GrpEL1) work synergistically to stabilize proteins, assemble protein complexes, and facilitate protein import. However, our understanding of the molecular mechanisms guiding these processes is hampered by limited structural information. To elucidate these mechanistic details, we used cryoEM to determine the first structures of full-length human mortalin-GrpEL1 complexes in previously unobserved states. Our structures and molecular dynamics simulations allow us to delineate specific roles for mortalin-GrpEL1 interfaces and to identify steps in GrpEL1-mediated nucleotide and substrate release by mortalin. Subsequent analyses reveal conserved mechanisms across bacteria and mammals and facilitate a complete understanding of sequential nucleotide and substrate release for the Hsp70 chaperone system.
Collapse
Affiliation(s)
- Marc A. Morizono
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Kelly L. McGuire
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Natalie I. Birouty
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Mark A. Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| |
Collapse
|
10
|
Alodaini D, Hernandez-Rocamora V, Boelter G, Ma X, Alao MB, Doherty HM, Bryant JA, Moynihan P, Moradigaravand D, Glinkowska M, Vollmer W, Banzhaf M. Reduced peptidoglycan synthesis capacity impairs growth of E. coli at high salt concentration. mBio 2024; 15:e0032524. [PMID: 38426748 PMCID: PMC11005333 DOI: 10.1128/mbio.00325-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
Gram-negative bacteria have a thin peptidoglycan layer between the cytoplasmic and outer membranes protecting the cell from osmotic challenges. Hydrolases of this structure are needed to cleave bonds to allow the newly synthesized peptidoglycan strands to be inserted by synthases. These enzymes need to be tightly regulated and their activities coordinated to prevent cell lysis. To better understand this process in Escherichia coli, we probed the genetic interactions of mrcA (encodes PBP1A) and mrcB (encodes PBP1B) with genes encoding peptidoglycan amidases and endopeptidases in envelope stress conditions. Our extensive genetic interaction network analysis revealed relatively few combinations of hydrolase gene deletions with reduced fitness in the absence of PBP1A or PBP1B, showing that none of the amidases or endopeptidases is strictly required for the functioning of one of the class A PBPs. This illustrates the robustness of the peptidoglycan growth mechanism. However, we discovered that the fitness of ∆mrcB cells is significantly reduced under high salt stress and in vitro activity assays suggest that this phenotype is caused by a reduced peptidoglycan synthesis activity of PBP1A at high salt concentration.IMPORTANCEEscherichia coli and many other bacteria have a surprisingly high number of peptidoglycan hydrolases. These enzymes function in concert with synthases to facilitate the expansion of the peptidoglycan sacculus under a range of growth and stress conditions. The synthases PBP1A and PBP1B both contribute to peptidoglycan expansion during cell division and growth. Our genetic interaction analysis revealed that these two penicillin-binding proteins (PBPs) do not need specific amidases, endopeptidases, or lytic transglycosylases for function. We show that PBP1A and PBP1B do not work equally well when cells encounter high salt stress and demonstrate that PBP1A alone cannot provide sufficient PG synthesis activity under this condition. These results show how the two class A PBPs and peptidoglycan hydrolases govern cell envelope integrity in E. coli in response to environmental challenges and particularly highlight the importance of PBP1B in maintaining cell fitness under high salt conditions.
Collapse
Affiliation(s)
- Dema Alodaini
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Victor Hernandez-Rocamora
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gabriela Boelter
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xuyu Ma
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Micheal B. Alao
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Hannah M. Doherty
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jack A. Bryant
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Patrick Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Danesh Moradigaravand
- KAUST Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
- Laboratory for Infectious Disease Epidemiology, KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - Monika Glinkowska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Waldemar Vollmer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
11
|
Xu Q, Vogt A, Frechen F, Yi C, Küçükerden M, Ngum N, Sitjà-Roqueta L, Greiner A, Parri R, Masana M, Wenger N, Wachten D, Möglich A. Engineering Bacteriophytochrome-coupled Photoactivated Adenylyl Cyclases for Enhanced Optogenetic cAMP Modulation. J Mol Biol 2024; 436:168257. [PMID: 37657609 DOI: 10.1016/j.jmb.2023.168257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Sensory photoreceptors abound in nature and enable organisms to adapt behavior, development, and physiology to environmental light. In optogenetics, photoreceptors allow spatiotemporally precise, reversible, and non-invasive control by light of cellular processes. Notwithstanding the development of numerous optogenetic circuits, an unmet demand exists for efficient systems sensitive to red light, given its superior penetration of biological tissue. Bacteriophytochrome photoreceptors sense the ratio of red and far-red light to regulate the activity of enzymatic effector modules. The recombination of bacteriophytochrome photosensor modules with cyclase effectors underlies photoactivated adenylyl cyclases (PAC) that catalyze the synthesis of the ubiquitous second messenger 3', 5'-cyclic adenosine monophosphate (cAMP). Via homologous exchanges of the photosensor unit, we devised novel PACs, with the variant DmPAC exhibiting 40-fold activation of cyclase activity under red light, thus surpassing previous red-light-responsive PACs. Modifications of the PHY tongue modulated the responses to red and far-red light. Exchanges of the cyclase effector offer an avenue to further enhancing PACs but require optimization of the linker to the photosensor. DmPAC and a derivative for 3', 5'-cyclic guanosine monophosphate allow the manipulation of cyclic-nucleotide-dependent processes in mammalian cells by red light. Taken together, we advance the optogenetic control of second-messenger signaling and provide insight into the signaling and design of bacteriophytochrome receptors.
Collapse
Affiliation(s)
- Qianzhao Xu
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Arend Vogt
- Charité - University Medicine Berlin, Department of Neurology with Experimental Neurology, 10117 Berlin, Germany. https://twitter.com/ArendVogt
| | - Fabian Frechen
- Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany
| | - Chengwei Yi
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Melike Küçükerden
- Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Neville Ngum
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Laia Sitjà-Roqueta
- Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Bayreuth 95440, Germany
| | - Rhein Parri
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Mercè Masana
- Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain. https://twitter.com/mercemasana
| | - Nikolaus Wenger
- Charité - University Medicine Berlin, Department of Neurology with Experimental Neurology, 10117 Berlin, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany. https://twitter.com/DagmarWachten
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany; Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, 95447 Bayreuth, Germany; North-Bavarian NMR Center, Universität Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
12
|
Dumelie JG, Chen Q, Miller D, Attarwala N, Gross SS, Jaffrey SR. Biomolecular condensates create phospholipid-enriched microenvironments. Nat Chem Biol 2024; 20:302-313. [PMID: 37973889 PMCID: PMC10922641 DOI: 10.1038/s41589-023-01474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/08/2023] [Indexed: 11/19/2023]
Abstract
Proteins and RNA can phase separate from the aqueous cellular environment to form subcellular compartments called condensates. This process results in a protein-RNA mixture that is chemically different from the surrounding aqueous phase. Here, we use mass spectrometry to characterize the metabolomes of condensates. To test this, we prepared mixtures of phase-separated proteins and extracts of cellular metabolites and identified metabolites enriched in the condensate phase. Among the most condensate-enriched metabolites were phospholipids, due primarily to the hydrophobicity of their fatty acyl moieties. We found that phospholipids can alter the number and size of phase-separated condensates and in some cases alter their morphology. Finally, we found that phospholipids partition into a diverse set of endogenous condensates as well as artificial condensates expressed in cells. Overall, these data show that many condensates are protein-RNA-lipid mixtures with chemical microenvironments that are ideally suited to facilitate phospholipid biology and signaling.
Collapse
Affiliation(s)
- Jason G Dumelie
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Dawson Miller
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
13
|
Mao YQ, Seraphim TV, Wan Y, Wu R, Coyaud E, Bin Munim M, Mollica A, Laurent E, Babu M, Mennella V, Raught B, Houry WA. DPCD is a regulator of R2TP in ciliogenesis initiation through Akt signaling. Cell Rep 2024; 43:113713. [PMID: 38306274 DOI: 10.1016/j.celrep.2024.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024] Open
Abstract
R2TP is a chaperone complex consisting of the AAA+ ATPases RUVBL1 and RUVBL2, as well as RPAP3 and PIH1D1 proteins. R2TP is responsible for the assembly of macromolecular complexes mainly acting through different adaptors. Using proximity-labeling mass spectrometry, we identified deleted in primary ciliary dyskinesia (DPCD) as an adaptor of R2TP. Here, we demonstrate that R2TP-DPCD influences ciliogenesis initiation through a unique mechanism by interaction with Akt kinase to regulate its phosphorylation levels rather than its stability. We further show that DPCD is a heart-shaped monomeric protein with two domains. A highly conserved region in the cysteine- and histidine-rich domains-containing proteins and SGT1 (CS) domain of DPCD interacts with the RUVBL2 DII domain with high affinity to form a stable R2TP-DPCD complex both in cellulo and in vitro. Considering that DPCD is one among several CS-domain-containing proteins found to associate with RUVBL1/2, we propose that RUVBL1/2 are CS-domain-binding proteins that regulate complex assembly and downstream signaling.
Collapse
Affiliation(s)
- Yu-Qian Mao
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Thiago V Seraphim
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Yimei Wan
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Ruikai Wu
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Muhammad Bin Munim
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Antonio Mollica
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Estelle Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Vito Mennella
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; MRC Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QR, UK; Department of Pathology, School of Biological Sciences, University of Cambridge, Cambridge CB2 1QP, UK
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
14
|
Komiya E, Takamatsu S, Miura D, Tsukakoshi K, Tsugawa W, Sode K, Ikebukuro K, Asano R. Exploration and Application of DNA-Binding Proteins to Make a Versatile DNA-Protein Covalent-Linking Patch (D-Pclip): The Case of a Biosensing Element. J Am Chem Soc 2024; 146:4087-4097. [PMID: 38295327 PMCID: PMC10870700 DOI: 10.1021/jacs.3c12668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
DNA-protein complexes are attractive components with broad applications in various research fields, such as DNA aptamer-enzyme complexes as biosensing elements. However, noncovalent DNA-protein complexes often decrease detection sensitivity because they are highly susceptible to environmental conditions. In this study, we developed a versatile DNA-protein covalent-linking patch (D-Pclip) for fabricating covalent and stoichiometric DNA-protein complexes. We comprehensively explored the database to determine the DNA-binding ability of the candidates and selected UdgX as the only uracil-DNA glycosylase known to form covalent bonds with DNA via uracil, with a binding efficiency >90%. We integrated a SpyTag/SpyCatcher protein-coupling system into UdgX to create a universal and convenient D-Pclip. The usability of D-Pclip was shown by preparing a stoichiometric model complex of a hemoglobin (Hb)-binding aptamer and glucose oxidase (GOx) by mixing at 4 °C. The prepared aptamer-GOx complexes detected Hb in a dose-dependent manner within the clinically required detection range in buffer and human serum without any washing procedures. D-Pclip covalently connects any uracil-inserted DNA sequence and any SpyCatcher-fused protein stoichiometrically; therefore, it has a high potential for various applications.
Collapse
Affiliation(s)
- Erika Komiya
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shouhei Takamatsu
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Daimei Miura
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kaori Tsukakoshi
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Wakako Tsugawa
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Sode
- Joint
Department of Biomedical Engineering, University
of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
- Institute
of Global Innovation Research, Tokyo University
of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8509, Japan
| | - Kazunori Ikebukuro
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ryutaro Asano
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Institute
of Global Innovation Research, Tokyo University
of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
15
|
Bashiri G, Bulloch EMM, Bramley WR, Davidson M, Stuteley SM, Young PG, Harris PWR, Naqvi MSH, Middleditch MJ, Schmitz M, Chang WC, Baker EN, Squire CJ. Poly-γ-glutamylation of biomolecules. Nat Commun 2024; 15:1310. [PMID: 38346985 PMCID: PMC10861534 DOI: 10.1038/s41467-024-45632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
Poly-γ-glutamate tails are a distinctive feature of archaeal, bacterial, and eukaryotic cofactors, including the folates and F420. Despite decades of research, key mechanistic questions remain as to how enzymes successively add glutamates to poly-γ-glutamate chains while maintaining cofactor specificity. Here, we show how poly-γ-glutamylation of folate and F420 by folylpolyglutamate synthases and γ-glutamyl ligases, non-homologous enzymes, occurs via processive addition of L-glutamate onto growing γ-glutamyl chain termini. We further reveal structural snapshots of the archaeal γ-glutamyl ligase (CofE) in action, crucially including a bulged-chain product that shows how the cofactor is retained while successive glutamates are added to the chain terminus. This bulging substrate model of processive poly-γ-glutamylation by terminal extension is arguably ubiquitous in such biopolymerisation reactions, including addition to folates, and demonstrates convergent evolution in diverse species from archaea to humans.
Collapse
Affiliation(s)
- Ghader Bashiri
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Esther M M Bulloch
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - William R Bramley
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Madison Davidson
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Stephanie M Stuteley
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Paul G Young
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Muhammad S H Naqvi
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Martin J Middleditch
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Michael Schmitz
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Edward N Baker
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Christopher J Squire
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
16
|
Fu L, Weiskopf EN, Akkermans O, Swanson NA, Cheng S, Schwartz TU, Görlich D. HIV-1 capsids enter the FG phase of nuclear pores like a transport receptor. Nature 2024; 626:843-851. [PMID: 38267583 PMCID: PMC10881386 DOI: 10.1038/s41586-023-06966-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
HIV-1 infection requires nuclear entry of the viral genome. Previous evidence suggests that this entry proceeds through nuclear pore complexes (NPCs), with the 120 × 60 nm capsid squeezing through an approximately 60-nm-wide central channel1 and crossing the permeability barrier of the NPC. This barrier can be described as an FG phase2 that is assembled from cohesively interacting phenylalanine-glycine (FG) repeats3 and is selectively permeable to cargo captured by nuclear transport receptors (NTRs). Here we show that HIV-1 capsid assemblies can target NPCs efficiently in an NTR-independent manner and bind directly to several types of FG repeats, including barrier-forming cohesive repeats. Like NTRs, the capsid readily partitions into an in vitro assembled cohesive FG phase that can serve as an NPC mimic and excludes much smaller inert probes such as mCherry. Indeed, entry of the capsid protein into such an FG phase is greatly enhanced by capsid assembly, which also allows the encapsulated clients to enter. Thus, our data indicate that the HIV-1 capsid behaves like an NTR, with its interior serving as a cargo container. Because capsid-coating with trans-acting NTRs would increase the diameter by 10 nm or more, we suggest that such a 'self-translocating' capsid undermines the size restrictions imposed by the NPC scaffold, thereby bypassing an otherwise effective barrier to viral infection.
Collapse
Affiliation(s)
- Liran Fu
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Erika N Weiskopf
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Onno Akkermans
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas A Swanson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
17
|
Kita T, Chiba K, Wang J, Nakagawa A, Niwa S. Comparative analysis of two Caenorhabditis elegans kinesins KLP-6 and UNC-104 reveals a common and distinct activation mechanism in kinesin-3. eLife 2024; 12:RP89040. [PMID: 38206323 PMCID: PMC10945585 DOI: 10.7554/elife.89040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Kinesin-3 is a family of microtubule-dependent motor proteins that transport various cargos within the cell. However, the mechanism underlying kinesin-3 activations remains largely elusive. In this study, we compared the biochemical properties of two Caenorhabditis elegans kinesin-3 family proteins, KLP-6 and UNC-104. Both KLP-6 and UNC-104 are predominantly monomeric in solution. As previously shown for UNC-104, non-processive KLP-6 monomer is converted to a processive motor when artificially dimerized. We present evidence that releasing the autoinhibition is sufficient to trigger dimerization of monomeric UNC-104 at nanomolar concentrations, which results in processive movement of UNC-104 on microtubules, although it has long been thought that enrichment in the phospholipid microdomain on cargo vesicles is required for the dimerization and processive movement of UNC-104. In contrast, KLP-6 remains to be a non-processive monomer even when its autoinhibition is unlocked, suggesting a requirement of other factors for full activation. By examining the differences between KLP-6 and UNC-104, we identified a coiled-coil domain called coiled-coil 2 (CC2) that is required for the efficient dimerization and processive movement of UNC-104. Our results suggest a common activation mechanism for kinesin-3 family members, while also highlighting their diversification.
Collapse
Affiliation(s)
- Tomoki Kita
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku UniversitySendaiJapan
| | - Jiye Wang
- Institute for Protein Research, Osaka UniversityOsakaJapan
| | | | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku UniversitySendaiJapan
| |
Collapse
|
18
|
de Witt J, Molitor R, Gätgens J, Ortmann de Percin Northumberland C, Kruse L, Polen T, Wynands B, van Goethem K, Thies S, Jaeger K, Wierckx N. Biodegradation of poly(ester-urethane) coatings by Halopseudomonas formosensis. Microb Biotechnol 2024; 17:e14362. [PMID: 37991424 PMCID: PMC10834883 DOI: 10.1111/1751-7915.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 11/23/2023] Open
Abstract
Impranil® DLN-SD is a poly(ester-urethane) (PEU) that is widely used as coating material for textiles to fine-tune and improve their properties. Since coatings increase the complexity of such plastic materials, they can pose a hindrance for sustainable end-of-life solutions of plastics using enzymes or microorganisms. In this study, we isolated Halopseudomonas formosensis FZJ due to its ability to grow on Impranil DLN-SD and other PEUs as sole carbon sources. The isolated strain was exceptionally thermotolerant as it could degrade Impranil DLN-SD at up to 50°C. We identified several putative extracellular hydrolases of which the polyester hydrolase Hfor_PE-H showed substrate degradation of Impranil DLN-SD and thus was purified and characterized in detail. Hfor_PE-H showed moderate temperature stability (Tm = 53.9°C) and exhibited activity towards Impranil DLN-SD as well as polyethylene terephthalate. Moreover, we revealed the enzymatic release of monomers from Impranil DLN-SD by Hfor_PE-H using GC-ToF-MS and could decipher the associated metabolic pathways in H. formosensis FZJ. Overall, this study provides detailed insights into the microbial and enzymatic degradation of PEU coatings, thereby deepening our understanding of microbial coating degradation in both contained and natural environments. Moreover, the study highlights the relevance of the genus Halopseudomonas and especially the novel isolate and its enzymes for future bio-upcycling processes of coated plastic materials.
Collapse
Affiliation(s)
- Jan de Witt
- Institute of Bio‐ and Geosciences IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
| | - Rebecka Molitor
- Institute of Molecular Enzyme Technology, Heinrich‐Heine‐University DüsseldorfForschungszentrum JülichJülichGermany
| | - Jochem Gätgens
- Institute of Bio‐ and Geosciences IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
| | | | - Luzie Kruse
- Institute of Molecular Enzyme Technology, Heinrich‐Heine‐University DüsseldorfForschungszentrum JülichJülichGermany
| | - Tino Polen
- Institute of Bio‐ and Geosciences IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
| | - Benedikt Wynands
- Institute of Bio‐ and Geosciences IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
| | | | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich‐Heine‐University DüsseldorfForschungszentrum JülichJülichGermany
| | - Karl‐Erich Jaeger
- Institute of Bio‐ and Geosciences IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
- Institute of Molecular Enzyme Technology, Heinrich‐Heine‐University DüsseldorfForschungszentrum JülichJülichGermany
| | - Nick Wierckx
- Institute of Bio‐ and Geosciences IBG‐1: Biotechnology, Forschungszentrum JülichJülichGermany
| |
Collapse
|
19
|
Jennings MR, Min S, Xu GS, Homayuni K, Suresh B, Haikal YA, Blazeck J. Optimized expression and purification of a human adenosine deaminase in E. coli and characterization of its Asp8Asn variant. Protein Expr Purif 2024; 213:106362. [PMID: 37683902 PMCID: PMC10664833 DOI: 10.1016/j.pep.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Homo sapiens adenosine deaminase isoform 1 (HsADA1) hydrolyzes adenosine and 2-deoxyadenosine as a key step in the purine nucleoside salvage pathway. Some HsADA1 mutations have severe deleterious effects, as is the case in a severe combined immunodeficiency resulting from loss of enzyme activity (ADA-SCID). Other mutations that reduce enzyme activity, for instance the Asp8Asn (D8N) variant, do not cause ADA-SCID but are correlated with other consequences to health. To ease further study of HsADA1 and its variants, we optimized an inexpensive, recombinant expression process in an Escherichia coli host through multiplexed parameter testing enabled by a lysate-based microtiter plate assay. We demonstrate the importance of gene codon usage, induction time and temperature, and alcohol supplementation towards improving enzyme yield to a final titer of 5 mg per liter of culture. We further show that use of a double-histidine-tag (his-tag) system greatly improves purity. We then utilize our expression and purification framework to produce the HsADA1 D8N variant, which had previously not been purified to homogeneity. We confirm that the D8N variant is ∼30% less active than the wildtype HsADA1 and show that it better retains its activity in human serum. Additionally, we show that both HsADA1 and the D8N variant have heightened activity in serum, driven in part by a previously undescribed phenomenon involving albumin. Therefore, this work presents a valuable process to produce HsADA1 that allows for insights into it and its variants' behavior. We also confirm the utility of lysate-based activity assays towards finding optimal E. coli expression conditions for enzymes and show how fusing his-tags in tandem can enhance product purity.
Collapse
Affiliation(s)
- Maria Rain Jennings
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Soohyon Min
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Grace S Xu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kassandra Homayuni
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Bhavana Suresh
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yusef Amir Haikal
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
20
|
Rodrigues Andrade KC, Cordeiro de Abreu JA, Guimarães MB, Abrunhosa LS, Leôncio Rodrigues AL, Fonseca-Bazzo YM, Silveira D, Souza PM, Magalhães PO. Heterologous expression of fungal L-asparaginase: a systematic review. Future Microbiol 2024; 19:157-171. [PMID: 37882841 DOI: 10.2217/fmb-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023] Open
Abstract
Aim: To review the available literature about heterologous expression of fungal L-asparaginase (L-ASNase). Materials & methods: A search was conducted across PubMed, Science Direct, Scopus and Web of Science databases; 4172 citations were identified and seven articles were selected. Results: The results showed that heterologous expression of fungal L-ASNase was performed mostly in bacterial expression systems, except for a study that expressed L-ASNase in a yeast system. Only three publications reported the purification and characterization of the enzyme. Conclusion: The information reported in this systematic review can contribute significantly to the recognition of the importance of biotechnological techniques for L-ASNase production.
Collapse
Affiliation(s)
| | | | - Marina Borges Guimarães
- Laboratory of Natural Products, Health Science School, University of Brasília, Brasília, 70910-900, Brazil
| | - Letícia Santos Abrunhosa
- Laboratory of Natural Products, Health Science School, University of Brasília, Brasília, 70910-900, Brazil
| | | | - Yris Maria Fonseca-Bazzo
- Laboratory of Natural Products, Health Science School, University of Brasília, Brasília, 70910-900, Brazil
| | - Damaris Silveira
- Laboratory of Natural Products, Health Science School, University of Brasília, Brasília, 70910-900, Brazil
| | - Paula Monteiro Souza
- Laboratory of Natural Products, Health Science School, University of Brasília, Brasília, 70910-900, Brazil
| | - Pérola Oliveira Magalhães
- Laboratory of Natural Products, Health Science School, University of Brasília, Brasília, 70910-900, Brazil
| |
Collapse
|
21
|
Suo Y, Chen A, La Clair JJ, Burkart MD. Substrate Sequestration and Chain Flipping in Human Mitochondrial Acyl Carrier Protein. Biochemistry 2023; 62:3548-3553. [PMID: 38039071 DOI: 10.1021/acs.biochem.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Outside of their involvement in energy production, mitochondria play a critical role for the cell through their access to a discrete pathway for fatty acid biosynthesis. Despite decades of study in bacterial fatty acid synthases (the putative evolutionary mitochondrial precursor), our understanding of human mitochondrial fatty acid biosynthesis remains incomplete. In particular, the role of the key carrier protein, human mitochondrial acyl carrier protein (mACP), which shuttles the substrate intermediates through the pathway, has not been well-studied in part due to challenges in protein expression and purification. Herein, we report a reliable method for recombinant Escherichia coli expression and purification of mACP. Fundamental characteristics, including substrate sequestration and chain-flipping activity, are demonstrated in mACP using solvatochromic response. This study provides an efficient approach toward understanding the fundamental protein-protein interactions of mACP and its partner proteins, ultimately leading to a molecular understanding of human mitochondrial diseases such as mitochondrial fatty acid oxidation deficiencies.
Collapse
Affiliation(s)
- Yixing Suo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
22
|
Gaspary A, Laureau R, Dyatel A, Dursuk G, Simon Y, Berchowitz LE. Rie1 and Sgn1 form an RNA-binding complex that enforces the meiotic entry cell fate decision. J Cell Biol 2023; 222:e202302074. [PMID: 37638885 PMCID: PMC10460998 DOI: 10.1083/jcb.202302074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Budding yeast cells have the capacity to adopt few but distinct physiological states depending on environmental conditions. Vegetative cells proliferate rapidly by budding while spores can survive prolonged periods of nutrient deprivation and/or desiccation. Whether or not a yeast cell will enter meiosis and sporulate represents a critical decision that could be lethal if made in error. Most cell fate decisions, including those of yeast, are understood as being triggered by the activation of master transcription factors. However, mechanisms that enforce cell fates posttranscriptionally have been more difficult to attain. Here, we perform a forward genetic screen to determine RNA-binding proteins that affect meiotic entry at the posttranscriptional level. Our screen revealed several candidates with meiotic entry phenotypes, the most significant being RIE1, which encodes an RRM-containing protein. We demonstrate that Rie1 binds RNA, is associated with the translational machinery, and acts posttranscriptionally to enhance protein levels of the master transcription factor Ime1 in sporulation conditions. We also identified a physical binding partner of Rie1, Sgn1, which is another RRM-containing protein that plays a role in timely Ime1 expression. We demonstrate that these proteins act independently of cell size regulation pathways to promote meiotic entry. We propose a model explaining how constitutively expressed RNA-binding proteins, such as Rie1 and Sgn1, can act in cell fate decisions both as switch-like enforcers and as repressors of spurious cell fate activation.
Collapse
Affiliation(s)
- Alec Gaspary
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raphaelle Laureau
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Annie Dyatel
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gizem Dursuk
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Yael Simon
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer’s and the Aging Brain, New York, NY, USA
| |
Collapse
|
23
|
Shvarev D, Scholz AI, Moeller A. Conformational variability of cyanobacterial ChlI, the AAA+ motor of magnesium chelatase involved in chlorophyll biosynthesis. mBio 2023; 14:e0189323. [PMID: 37737632 PMCID: PMC10653834 DOI: 10.1128/mbio.01893-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Photosynthesis is an essential life process that relies on chlorophyll. In photosynthetic organisms, chlorophyll synthesis involves multiple steps and depends on magnesium chelatase. This enzyme complex is responsible for inserting magnesium into the chlorophyll precursor, but the molecular mechanism of this process is not fully understood. By using cryogenic electron microscopy and conducting functional analyses, we have discovered that the motor subunit ChlI of magnesium chelatase undergoes conformational changes in the presence of ATP. Our findings offer new insights into how energy is transferred from ChlI to the other components of magnesium chelatase. This information significantly contributes to our understanding of the initial step in chlorophyll biosynthesis and lays the foundation for future studies on the entire process of chlorophyll production.
Collapse
Affiliation(s)
- Dmitry Shvarev
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
| | - Alischa Ira Scholz
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
| | - Arne Moeller
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
24
|
Konas D, Cho S, Thomas OD, Bhatti MM, Leon Hernandez K, Moran C, Booter H, Candela T, Lacap J, McFadden P, van den Berg S, Welter AM, Peralta A, Janson CA, Catalano J, Goodey NM. Investigating the Roles of Active Site Residues in Mycobacterium tuberculosis Indole-3-glycerol Phosphate Synthase, a Potential Target for Antitubercular Agents. ACS BIO & MED CHEM AU 2023; 3:438-447. [PMID: 37876495 PMCID: PMC10591298 DOI: 10.1021/acsbiomedchemau.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 10/26/2023]
Abstract
Mycobacterium tuberculosis drug resistance is emerging and new drug targets are needed. Tryptophan biosynthesis is necessary for M. tuberculosis replication and virulence. Indole-3-glycerol phosphate synthase (IGPS) catalyzes a step in M. tuberculosis tryptophan biosynthesis and has been suggested as a potential anti-infective target, but our understanding of this enzyme is limited. To aid in inhibitor design and gain a greater mechanistic picture of this enzyme, there is a need to understand the roles of active site amino acids in ligand binding and catalysis. In this work, we explored the roles of conserved active site amino acids Glu57, Lys59, Lys119, Glu168, and Glu219. Mutation of each to Ala results in loss of all detectable activity. The Glu57Gln, Lys59Arg, Lys119Arg, Glu168Gln, and Glu219Asp mutations result in large activity losses, while Glu219Gln has enhanced activity. Analysis of the enzymatic data yields the following main conclusions: (A) Lys119 is the likely catalytic acid in the CdRP ring closure step. (B) Glu168 stabilizes a charged reaction intermediate and may also be the catalytic base. (C) Glu57, Glu219, and Lys119 form a closely arranged triad in which Glu57 and Glu219 modulate the pKa of Lys119, and thus overall activity. This increased understanding of inter- and intramolecular interactions and demonstration of the highly coordinated nature of the M. tuberculosis IGPS active site provide new mechanistic information and guidance for future work with this potential new drug target.
Collapse
Affiliation(s)
- David
W. Konas
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Sarah Cho
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Oshane D. Thomas
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Maryum M. Bhatti
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Katherine Leon Hernandez
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Cinthya Moran
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Hedda Booter
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Thomas Candela
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Joseph Lacap
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Paige McFadden
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Savannah van den Berg
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Alyssa M. Welter
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Ashley Peralta
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Cheryl A. Janson
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Jaclyn Catalano
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Nina M. Goodey
- Department of Chemistry and
Biochemistry, Montclair State University 1 Normal Avenue, Montclair, New Jersey 07043, United States
| |
Collapse
|
25
|
Wang P, Lin Z, Lin S, Zheng B, Zhang Y, Hu J. Prokaryotic Expression, Purification, and Antibacterial Activity of the Hepcidin Peptide of Crescent Sweetlips ( Plectorhinchus cinctus). Curr Issues Mol Biol 2023; 45:7212-7227. [PMID: 37754240 PMCID: PMC10528233 DOI: 10.3390/cimb45090456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
The hepcidin peptide of crescent sweetlips (Plectorhinchus cinctus) is a cysteine-rich, cationic antimicrobial peptide that plays a crucial role in the innate immune system's defense against invading microbes. The aim of this study was to identify the optimal parameters for prokaryotic expression and purification of this hepcidin peptide and characterize its antibacterial activity. The recombinant hepcidin peptides were expressed in Escherichia coli strain Arctic Express (DE3), with culture and induction conditions optimized using response surface methodology (RSM). The obtained hepcidin peptides were then purified before tag cleavage, and their antibacterial activity was determined. The obtained results revealed that induction temperature had the most significant impact on the production of soluble recombinant peptides. The optimum induction conditions were determined to be an isopropylthio-β-galactoside (IPTG) concentration of 0.21 mmol/L, induction temperature of 18.81 °C, and an induction time of 16.01 h. Subsequently, the recombinant hepcidin peptide was successfully purified using Ni-IDA affinity chromatography followed by SUMO protease cleavage. The obtained hepcidin peptide (without His-SUMO tag) demonstrated strong antimicrobial activity in vitro against V. parahaemolyticus, E. coli, and S. aureus. The results showed prokaryotic (E. coli) expression is a feasible way to produce the hepcidin peptide of crescent sweetlips in a cost-effective way, which has great potential to be used as an antimicrobial agent in aquaculture.
Collapse
Affiliation(s)
- Peixin Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China (S.L.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongjing Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China (S.L.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China (S.L.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China (S.L.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China (S.L.); (B.Z.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
26
|
Janardhanan J, Kim C, Qian Y, Yang J, Meisel J, Ding D, Speri E, Schroeder V, Wolter W, Oliver A, Mobashery S, Chang M. A dual-action antibiotic that kills Clostridioides difficile vegetative cells and inhibits spore germination. Proc Natl Acad Sci U S A 2023; 120:e2304110120. [PMID: 37155891 PMCID: PMC10193928 DOI: 10.1073/pnas.2304110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the most lethal of the five CDC urgent public health treats, resulting in 12,800 annual deaths in the United States alone [Antibiotic Resistance Threats in the United States, 2019 (2019), www.cdc.gov/DrugResistance/Biggest-Threats.html]. The high recurrence rate and the inability of antibiotics to treat such infections mandate discovery of new therapeutics. A major challenge with CDI is the production of spores, leading to multiple recurrences of infection in 25% of patients [C. P. Kelly, J. T. LaMont, N. Engl. J. Med. 359, 1932-1940 (2008)], with potentially lethal consequence. Herein, we describe the discovery of an oxadiazole as a bactericidal anti-C. difficile agent that inhibits both cell-wall peptidoglycan biosynthesis and spore germination. We document that the oxadiazole binds to the lytic transglycosylase SleC and the pseudoprotease CspC for prevention of spore germination. SleC degrades the cortex peptidoglycan, a critical step in the initiation of spore germination. CspC senses germinants and cogerminants. Binding to SleC is with higher affinity than that to CspC. Prevention of spore germination breaks the nefarious cycles of CDI recurrence in the face of the antibiotic challenge, which is a primary cause of therapeutic failure. The oxadiazole exhibits efficacy in a mouse model of recurrent CDI and holds promise in clinical treatment of CDI.
Collapse
Affiliation(s)
- Jeshina Janardhanan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Choon Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Yuanyuan Qian
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jingdong Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Jayda E. Meisel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Derong Ding
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Enrico Speri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Valerie A. Schroeder
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - William R. Wolter
- Freimann Life Sciences Center, University of Notre Dame, Notre Dame, IN46556
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
27
|
Susvirkar V, Faesen AC. Shieldin complex assembly kinetics and DNA binding by SHLD3. Commun Biol 2023; 6:384. [PMID: 37031298 PMCID: PMC10082759 DOI: 10.1038/s42003-023-04757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
The Shieldin complex represses end resection at DNA double-strand breaks (DSBs) and thereby serves as a pro-non homologous end joining (NHEJ) factor. The molecular details of the assembly of Shieldin and its recruitment to DSBs are unclear. Shieldin contains two REV7 molecules, which have the rare ability to slowly switch between multiple distinct native states and thereby could dynamically control the assembly of Shieldin. Here, we report the identification of a promiscuous DNA binding domain in SHLD3. At the N-terminus, SHLD3 interacts with a dimer of REV7 molecules. We show that the interaction between SHLD3 and the first REV7 is remarkably slow, while in contrast the interaction between SHLD3 and SHLD2 with a second REV7 molecule is fast and does not require structural remodeling. Overall, these results provide insights into the rate-limiting step of the molecular assembly of the Shieldin complex and its recruitment at DNA DSBs.
Collapse
Affiliation(s)
- Vivek Susvirkar
- Biochemistry of Signal Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alex C Faesen
- Biochemistry of Signal Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
28
|
Zhou S, Wei Y. Kaleidoscope megamolecules synthesis and application using self-assembly technology. Biotechnol Adv 2023; 65:108147. [PMID: 37023967 DOI: 10.1016/j.biotechadv.2023.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/20/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The megamolecules with high ordered structures play an important role in chemical biology and biomedical engineering. Self-assembly, a long-discovered but very appealing technique, could induce many reactions between biomacromolecules and organic linking molecules, such as an enzyme domain and its covalent inhibitors. Enzyme and its small-molecule inhibitors have achieved many successes in medical application, which realize the catalysis process and theranostic function. By employing the protein engineering technology, the building blocks of enzyme fusion protein and small molecule linker can be assembled into a novel architecture with the specified organization and conformation. Molecular level recognition of enzyme domain could provide both covalent reaction sites and structural skeleton for the functional fusion protein. In this review, we will discuss the range of tools available to combine functional domains by using the recombinant protein technology, which can assemble them into precisely specified architectures/valences and develop the kaleidoscope megamolecules for catalytic and medical application.
Collapse
Affiliation(s)
- Shengwang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
29
|
Tomihari A, Kiyota M, Matsuura A, Itakura E. Alpha 2-macroglobulin acts as a clearance factor in the lysosomal degradation of extracellular misfolded proteins. Sci Rep 2023; 13:4680. [PMID: 36977730 PMCID: PMC10050189 DOI: 10.1038/s41598-023-31104-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Proteostasis regulates protein folding and degradation; its maintenance is essential for resistance to stress and aging. The loss of proteostasis is associated with many age-related diseases. Within the cell, molecular chaperones facilitate the refolding of misfolded proteins into their bioactive forms, thus preventing undesirable interactions and aggregation. Although the mechanisms of intracellular protein degradation pathways for intracellular misfolded proteins have been extensively studied, the protein degradation pathway for extracellular proteins remain poorly understood. In this study, we identified several misfolded proteins that are substrates for alpha 2-macroglobulin (α2M), an extracellular chaperone. We also established a lysosomal internalization assay for α2M, which revealed that α2M mediates the lysosomal degradation of extracellular misfolded proteins. Comparative analyses of α2M and clusterin, another extracellular chaperone, indicated that α2M preferentially targets aggregation-prone proteins. Thus, we present the degradation pathway of α2M, which interacts with aggregation-prone proteins for lysosomal degradation via selective internalization.
Collapse
Affiliation(s)
- Ayaka Tomihari
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Inage-Ku, Chiba, 263-8522, Japan
| | - Mako Kiyota
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Inage-Ku, Chiba, 263-8522, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Inage-Ku, Chiba, 263-8522, Japan
| | - Eisuke Itakura
- Department of Biology, Graduate School of Science, Chiba University, Inage-Ku, Chiba, 263-8522, Japan.
| |
Collapse
|
30
|
Le‐Trilling VTK, Banchenko S, Paydar D, Leipe PM, Binting L, Lauer S, Graziadei A, Klingen R, Gotthold C, Bürger J, Bracht T, Sitek B, Jan Lebbink R, Malyshkina A, Mielke T, Rappsilber J, Spahn CMT, Voigt S, Trilling M, Schwefel D. Structural mechanism of CRL4-instructed STAT2 degradation via a novel cytomegaloviral DCAF receptor. EMBO J 2023; 42:e112351. [PMID: 36762436 PMCID: PMC9975947 DOI: 10.15252/embj.2022112351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
Human cytomegalovirus (CMV) is a ubiquitously distributed pathogen whose rodent counterparts such as mouse and rat CMV serve as common infection models. Here, we conducted global proteome profiling of rat CMV-infected cells and uncovered a pronounced loss of the transcription factor STAT2, which is crucial for antiviral interferon signalling. Via deletion mutagenesis, we found that the viral protein E27 is required for CMV-induced STAT2 depletion. Cellular and in vitro analyses showed that E27 exploits host-cell Cullin4-RING ubiquitin ligase (CRL4) complexes to induce poly-ubiquitylation and proteasomal degradation of STAT2. Cryo-electron microscopy revealed how E27 mimics molecular surface properties of cellular CRL4 substrate receptors called DCAFs (DDB1- and Cullin4-associated factors), thereby displacing them from the catalytic core of CRL4. Moreover, structural analyses showed that E27 recruits STAT2 through a bipartite binding interface, which partially overlaps with the IRF9 binding site. Structure-based mutations in M27, the murine CMV homologue of E27, impair the interferon-suppressing capacity and virus replication in mouse models, supporting the conserved importance of DCAF mimicry for CMV immune evasion.
Collapse
Affiliation(s)
| | - Sofia Banchenko
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Darius Paydar
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
- Zentrum für KinderpsychiatrieUniversitätsklinik ZürichZürichSwitzerland
| | - Pia Madeleine Leipe
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Lukas Binting
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Simon Lauer
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Andrea Graziadei
- Bioanalytics Unit, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Robin Klingen
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Christine Gotthold
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Jörg Bürger
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Microscopy and Cryo‐Electron Microscopy Service GroupMax‐Planck‐Institute for Molecular GeneticsBerlinGermany
| | - Thilo Bracht
- Medizinisches Proteom‐CenterRuhr‐University BochumBochumGermany
- Department of Anesthesia, Intensive Care Medicine and Pain TherapyUniversity Hospital Knappschaftskrankenhaus BochumBochumGermany
| | - Barbara Sitek
- Medizinisches Proteom‐CenterRuhr‐University BochumBochumGermany
- Department of Anesthesia, Intensive Care Medicine and Pain TherapyUniversity Hospital Knappschaftskrankenhaus BochumBochumGermany
| | - Robert Jan Lebbink
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Anna Malyshkina
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Thorsten Mielke
- Microscopy and Cryo‐Electron Microscopy Service GroupMax‐Planck‐Institute for Molecular GeneticsBerlinGermany
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of BiotechnologyTechnische Universität BerlinBerlinGermany
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Christian MT Spahn
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| | - Sebastian Voigt
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Mirko Trilling
- Institute for VirologyUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - David Schwefel
- Institute of Medical Physics and BiophysicsCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
31
|
Fabrication of Fe3O4@SiO2@PDA-Ni2+ nanoparticles for one-step affinity immobilization and purification of His-tagged glucose dehydrogenase. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
32
|
Rübsam H, Krönauer C, Abel NB, Ji H, Lironi D, Hansen SB, Nadzieja M, Kolte MV, Abel D, de Jong N, Madsen LH, Liu H, Stougaard J, Radutoiu S, Andersen KR. Nanobody-driven signaling reveals the core receptor complex in root nodule symbiosis. Science 2023; 379:272-277. [PMID: 36656954 DOI: 10.1126/science.ade9204] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Understanding the composition and activation of multicomponent receptor complexes is a challenge in biology. To address this, we developed a synthetic approach based on nanobodies to drive assembly and activation of cell surface receptors and apply the concept by manipulating receptors that govern plant symbiosis with nitrogen-fixing bacteria. We show that the Lotus japonicus Nod factor receptors NFR1 and NFR5 constitute the core receptor complex initiating the cortical root nodule organogenesis program as well as the epidermal program controlling infection. We find that organogenesis signaling is mediated by the intracellular kinase domains whereas infection requires functional ectodomains. Finally, we identify evolutionarily distant barley receptors that activate root nodule organogenesis, which could enable engineering of biological nitrogen-fixation into cereals.
Collapse
Affiliation(s)
- Henriette Rübsam
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Christina Krönauer
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Nikolaj B Abel
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Hongtao Ji
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.,National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Damiano Lironi
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Simon B Hansen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Marie V Kolte
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Dörte Abel
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Noor de Jong
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lene H Madsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Huijun Liu
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
33
|
Chung YH, Volckaert BA, Steinmetz NF. Development of a Modular NTA:His Tag Viral Vaccine for Co-delivery of Antigen and Adjuvant. Bioconjug Chem 2023; 34:269-278. [PMID: 36608270 PMCID: PMC10545220 DOI: 10.1021/acs.bioconjchem.2c00601] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted the need for vaccines that are effective, but quickly produced. Of note, vaccines with plug-and-play capabilities that co-deliver antigen and adjuvant to the same cell have shown remarkable success. Our approach of utilizing a nitrilotriacetic acid (NTA) histidine (His)-tag chemistry with viral adjuvants incorporates both of these characteristics: plug-and-play and co-delivery. We specifically utilize the cowpea mosaic virus (CPMV) and the virus-like particles from bacteriophage Qβ as adjuvants and bind the model antigen ovalbumin (OVA). Successful binding of the antigen to the adjuvant/carrier was verified by SDS-PAGE, western blot, and ELISA. Immunization in C57BL/6J mice demonstrates that with Qβ - but not CPMV - there is an improved antibody response against the target antigen using the Qβ-NiNTA:His-OVA versus a simple admixture of antigen and adjuvant. Antibody isotyping also shows that formulation of the vaccines can alter T helper biases; while the Qβ-NiNTA:His-OVA particle produces a balanced Th1/Th2 bias the admixture was strongly Th2. In a mouse model of B16F10-OVA, we further demonstrate improved survival and slower tumor growth in the vaccine groups compared to controls. The NiNTA:His chemistry demonstrates potential for rapid development of future generation vaccines enabling plug-and-play capabilities with effectiveness boosted by co-delivery to the same cell.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
| | - Britney A Volckaert
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
34
|
Janssen K, Krasenbrink J, Strangfeld S, Kroheck S, Josten M, Engeser M, Bierbaum G. Elucidation of the Bridging Pattern of the Lantibiotic Pseudomycoicidin. Chembiochem 2023; 24:e202200540. [PMID: 36399337 PMCID: PMC10107895 DOI: 10.1002/cbic.202200540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Lantibiotics are post-translationally modified antibiotic peptides with lanthionine thioether bridges that represent potential alternatives to conventional antibiotics. The lantibiotic pseudomycoicidin is produced by Bacillus pseudomycoides DSM 12442 and is effective against many Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. While prior work demonstrated that pseudomycoicidin possesses one disulfide bridge and four thioether bridges, the ring topology has so far remained unclear. Here, we analyzed several pseudomycoicidin analogues that are affected in ring formation via MALDI-TOF-MS and tandem mass spectrometry with regard to their dehydration and fragmentation patterns, respectively. As a result, we propose a bridging pattern involving Thr8 and Cys13, Thr10 and Cys16, Ser18 and Cys21, and Ser20 and Cys26, thus, forming two double ring systems. Additionally, we localized the disulfide bridge to connect Cys3 and Cys7 and, therefore, fully elucidated the bridging pattern of pseudomycoicidin.
Collapse
Affiliation(s)
- Kathrin Janssen
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Julia Krasenbrink
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.,Present address: Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Sarina Strangfeld
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Sarah Kroheck
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Michaele Josten
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Marianne Engeser
- Kekulé Institute of Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| |
Collapse
|
35
|
Enhanced Fusobacterium nucleatum Genetics Using Host DNA Methyltransferases To Bypass Restriction-Modification Systems. J Bacteriol 2022; 204:e0027922. [PMID: 36326270 PMCID: PMC9764991 DOI: 10.1128/jb.00279-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial restriction-modification (R-M) systems are a first-line immune defense against foreign DNA from viruses and other bacteria. While R-M systems are critical in maintaining genome integrity, R-M nucleases unfortunately present significant barriers to targeted genetic modification. Bacteria of the genus Fusobacterium are oral, Gram-negative, anaerobic, opportunistic pathogens that are implicated in the progression and severity of multiple cancers and tissue infections, yet our understanding of their direct roles in disease have been severely hindered by their genetic recalcitrance. Here, we demonstrate a path to overcome these barriers in Fusobacterium by using native DNA methylation as a host mimicry strategy to bypass R-M system cleavage of transformed plasmid DNA. We report the identification, characterization, and successful use of Fusobacterium nucleatum type II and III DNA methyltransferase (MTase) enzymes to produce a multifold increase in gene knockout efficiency in the strain Fusobacterium nucleatum subsp. nucleatum 23726, as well as the first system for efficient gene knockouts and complementations in F. nucleatum subsp. nucleatum 25586. We show plasmid protection can be accomplished in vitro with purified enzymes, as well as in vivo in an Escherichia coli host that constitutively expresses F. nucleatum subsp. nucleatum MTase enzymes. In summary, this proof-of-concept study characterizes specific MTases that are critical for bypassing R-M systems and has enhanced our understanding of enzyme combinations that could be used to genetically modify clinical isolates of Fusobacterium that have thus far been inaccessible to molecular characterization. IMPORTANCE Fusobacterium nucleatum is an oral opportunistic pathogen associated with diseases that include cancer and preterm birth. Our understanding of how this bacterium modulates human disease has been hindered by a lack of genetic systems. Here, we show that F. nucleatum DNA methyltransferase-modified plasmid DNA overcomes the transformation barrier and has allowed the development of a genetic system in a previously inaccessible strain. We present a strategy that could potentially be expanded to enable the genetic modification of highly recalcitrant strains, thereby fostering investigational studies to uncover novel host-pathogen interactions in Fusobacterium.
Collapse
|
36
|
Jaudal M, Mayo‐Smith M, Poulet A, Whibley A, Peng Y, Zhang L, Thomson G, Trimborn L, Jacob Y, van Wolfswinkel JC, Goldstone DC, Wen J, Mysore KS, Putterill J. MtING2 encodes an ING domain PHD finger protein which affects Medicago growth, flowering, global patterns of H3K4me3, and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1029-1050. [PMID: 36178149 PMCID: PMC9828230 DOI: 10.1111/tpj.15994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Flowering of the reference legume Medicago truncatula is promoted by winter cold (vernalization) followed by long-day photoperiods (VLD) similar to winter annual Arabidopsis. However, Medicago lacks FLC and CO, key regulators of Arabidopsis VLD flowering. Most plants have two INHIBITOR OF GROWTH (ING) genes (ING1 and ING2), encoding proteins with an ING domain with two anti-parallel alpha-helices and a plant homeodomain (PHD) finger, but their genetic role has not been previously described. In Medicago, Mting1 gene-edited mutants developed and flowered normally, but an Mting2-1 Tnt1 insertion mutant and gene-edited Mting2 mutants had developmental abnormalities including delayed flowering particularly in VLD, compact architecture, abnormal leaves with extra leaflets but no trichomes, and smaller seeds and barrels. Mting2 mutants had reduced expression of activators of flowering, including the FT-like gene MtFTa1, and increased expression of the candidate repressor MtTFL1c, consistent with the delayed flowering of the mutant. MtING2 overexpression complemented Mting2-1, but did not accelerate flowering in wild type. The MtING2 PHD finger bound H3K4me2/3 peptides weakly in vitro, but analysis of gene-edited mutants indicated that it was dispensable to MtING2 function in wild-type plants. RNA sequencing experiments indicated that >7000 genes are mis-expressed in the Mting2-1 mutant, consistent with its strong mutant phenotypes. Interestingly, ChIP-seq analysis identified >5000 novel H3K4me3 locations in the genome of Mting2-1 mutants compared to wild type R108. Overall, our mutant study has uncovered an important physiological role of a plant ING2 gene in development, flowering, and gene expression, which likely involves an epigenetic mechanism.
Collapse
Affiliation(s)
- Mauren Jaudal
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Matthew Mayo‐Smith
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Axel Poulet
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - Annabel Whibley
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Yongyan Peng
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Lulu Zhang
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Geoffrey Thomson
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - Laura Trimborn
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
- Institute for Plant Sciences, BiocenterUniversity of CologneZülpicher Str. 47b50674CologneGermany
| | - Yannick Jacob
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - Josien C. van Wolfswinkel
- Yale UniversityDepartment of MolecularCellular and Developmental BiologyFaculty of Arts and Sciences260 Whitney AvenueNew HavenCT06511USA
| | - David C. Goldstone
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| | - Jiangqi Wen
- Institute for Agricultural BiosciencesOklahoma State University3210 Sam Noble ParkwayArdmoreOK73401USA
| | - Kirankumar S. Mysore
- Institute for Agricultural BiosciencesOklahoma State University3210 Sam Noble ParkwayArdmoreOK73401USA
| | - Joanna Putterill
- School of Biological SciencesUniversity of AucklandPrivate Bag 92019Auckland1142New Zealand
| |
Collapse
|
37
|
Jenster LM, Lange KE, Normann S, vom Hemdt A, Wuerth JD, Schiffelers LD, Tesfamariam YM, Gohr FN, Klein L, Kaltheuner IH, Ebner S, Lapp DJ, Mayer J, Moecking J, Ploegh HL, Latz E, Meissner F, Geyer M, Kümmerer BM, Schmidt FI. P38 kinases mediate NLRP1 inflammasome activation after ribotoxic stress response and virus infection. J Exp Med 2022; 220:213626. [PMID: 36315050 PMCID: PMC9623368 DOI: 10.1084/jem.20220837] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Inflammasomes integrate cytosolic evidence of infection or damage to mount inflammatory responses. The inflammasome sensor NLRP1 is expressed in human keratinocytes and coordinates inflammation in the skin. We found that diverse stress signals induce human NLRP1 inflammasome assembly by activating MAP kinase p38: While the ribotoxic stress response to UV and microbial molecules exclusively activates p38 through MAP3K ZAKα, infection with arthropod-borne alphaviruses, including Semliki Forest and Chikungunya virus, activates p38 through ZAKα and potentially other MAP3K. We demonstrate that p38 directly phosphorylates NLRP1 and that serine 107 in the linker region is critical for activation. NLRP1 phosphorylation is followed by ubiquitination of NLRP1PYD, N-terminal degradation of NLRP1, and nucleation of inflammasomes by NLRP1UPA-CARD. In contrast, activation of NLRP1 by nanobody-mediated ubiquitination, viral proteases, or inhibition of DPP9 was independent of p38 activity. Taken together, we define p38 activation as a unifying signaling hub that controls NLRP1 inflammasome activation by integrating a variety of cellular stress signals relevant to the skin.
Collapse
Affiliation(s)
- Lea-Marie Jenster
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Karl-Elmar Lange
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sabine Normann
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anja vom Hemdt
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jennifer D. Wuerth
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Yonas M. Tesfamariam
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Florian N. Gohr
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany,Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura Klein
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ines H. Kaltheuner
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Stefan Ebner
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dorothee J. Lapp
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jacob Mayer
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jonas Moecking
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia,Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hidde L. Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
| | - Eicke Latz
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Felix Meissner
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Beate M. Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany,German Centre for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| | - Florian I. Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany,Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany,Correspondence to Florian I. Schmidt:
| |
Collapse
|
38
|
Cervimycin-Resistant Staphylococcus aureus Strains Display Vancomycin-Intermediate Resistant Phenotypes. Microbiol Spectr 2022; 10:e0256722. [PMID: 36173303 PMCID: PMC9603734 DOI: 10.1128/spectrum.02567-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Resistance to antibiotics is an increasing problem and necessitates novel antibacterial therapies. The polyketide antibiotics cervimycin A to D are natural products of Streptomyces tendae HKI 0179 with promising activity against multidrug-resistant staphylococci and vancomycin-resistant enterococci. To initiate mode of action studies, we selected cervimycin C- and D-resistant (CmR) Staphylococcus aureus strains. Genome sequencing of CmR mutants revealed amino acid exchanges in the essential histidine kinase WalK, the Clp protease proteolytic subunit ClpP or the Clp ATPase ClpC, and the heat shock protein DnaK. Interestingly, all characterized CmR mutants harbored a combination of mutations in walK and clpP or clpC. In vitro and in vivo analyses showed that the mutations in the Clp proteins abolished ClpP or ClpC activity, and the deletion of clpP rendered S. aureus but not all Bacillus subtilis strains cervimycin-resistant. The essential gene walK was the second mutational hotspot in the CmR S. aureus strains, which decreased WalK activity in vitro and generated a vancomycin-intermediate resistant phenotype, with a thickened cell wall, a lower growth rate, and reduced cell lysis. Transcriptomic and proteomic analyses revealed massive alterations in the CmR strains compared to the parent strain S. aureus SG511, with major shifts in the heat shock regulon, the metal ion homeostasis, and the carbohydrate metabolism. Taken together, mutations in the heat shock genes clpP, clpC, and dnaK, and the walK kinase gene in CmR mutants induced a vancomycin-intermediate resistant phenotype in S. aureus, suggesting cell wall metabolism or the Clp protease system as primary target of cervimycin. IMPORTANCE Staphylococcus aureus is a frequent cause of infections in both the community and hospital setting. Resistance development of S. aureus to various antibiotics is a severe problem for the treatment of this pathogen worldwide. New powerful antimicrobial agents against Gram-positives are needed, since antibiotics like vancomycin fail to cure vancomycin-intermediate resistant S. aureus (VISA) and vancomycin-resistant enterococci (VRE) infections. One candidate substance with promising activity against these organisms is cervimycin, which is an antibiotic complex with a yet unknown mode of action. In our study, we provide first insights into the mode of action of cervimycins. By characterizing cervimycin-resistant S. aureus strains, we revealed the Clp system and the essential kinase WalK as mutational hotspots for cervimycin resistance in S. aureus. It further emerged that cervimycin-resistant S. aureus strains show a VISA phenotype, indicating a role of cervimycin in perturbing the bacterial cell envelope.
Collapse
|
39
|
Scholz S, Kerestetzopoulou S, Wiebach V, Schnegotzki R, Schmid B, Reyna‐González E, Ding L, Süssmuth RD, Dittmann E, Baunach M. One-Pot Chemoenzymatic Synthesis of Microviridin Analogs Containing Functional Tags. Chembiochem 2022; 23:e202200345. [PMID: 35995730 PMCID: PMC9826346 DOI: 10.1002/cbic.202200345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/31/2022] [Indexed: 01/11/2023]
Abstract
Microviridins are a prominent family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) featuring characteristic lactone and lactam rings. Their unusual cage-like architecture renders them highly potent serine protease inhibitors of which individual variants specifically inhibit different types of proteases of pharmacological interest. While posttranslational modifications are key for the stability and bioactivity of RiPPs, additional attractive properties can be introduced by functional tags. To date - although highly desirable - no method has been reported to incorporate functional tags in microviridin scaffolds or the overarching class of graspetides. In this study, a chemoenzymatic in vitro platform is used to introduce functional tags in various microviridin variants yielding biotinylated, dansylated or propargylated congeners. This straightforward approach paves the way for customized protease inhibitors with built-in functionalities that can help to unravel the still elusive ecological roles and targets of this remarkable class of compounds and to foster applications based on protease inhibition.
Collapse
Affiliation(s)
- Stella Scholz
- Department of MicrobiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Sofia Kerestetzopoulou
- Department of MicrobiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Vincent Wiebach
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts Plads, Building 221DK-2800 Kgs.LyngbyDenmark
| | - Romina Schnegotzki
- Institute of ChemistryTechnical University BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Bianca Schmid
- Institute of ChemistryTechnical University BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Emmanuel Reyna‐González
- Department of MicrobiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Ling Ding
- Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts Plads, Building 221DK-2800 Kgs.LyngbyDenmark
| | - Roderich D. Süssmuth
- Institute of ChemistryTechnical University BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Elke Dittmann
- Department of MicrobiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
| | - Martin Baunach
- Department of MicrobiologyUniversity of PotsdamKarl-Liebknecht-Str. 24/2514476Potsdam-GolmGermany
- Institute of Pharmaceutical BiologyUniversity of BonnNussallee 653115BonnGermany
| |
Collapse
|
40
|
Dey S, Batisse C, Shukla J, Webster MW, Takacs M, Saint-André C, Weixlbaumer A. Structural insights into RNA-mediated transcription regulation in bacteria. Mol Cell 2022; 82:3885-3900.e10. [DOI: 10.1016/j.molcel.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
|
41
|
Taka JRH, Sun Y, Goldstone DC. Mapping the interaction between Trim28 and the
KRAB
domain at the center of Trim28 silencing of endogenous retroviruses. Protein Sci 2022; 31:e4436. [PMID: 36173157 PMCID: PMC9601868 DOI: 10.1002/pro.4436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022]
Abstract
Transcription of endogenous retroviral elements are tightly regulated during development by members of the KRAB‐containing zinc finger proteins (KRAB‐ZFPs) and the co‐repressor Trim28 (also known as Kap‐1 or Tif1β). KRAB‐ZFPs form the largest family of transcription regulators in mammals and initiate transcriptional silencing by tethering Trim28 to a target locus. Subsequently, Trim28 recruits chromatin modifying effectors resulting in the formation of heterochromatin. In the present study, we identify surface exposed residues on the central six turns of the Trim28 coiled‐coil region forming the binding interface for the KRAB domain. Using AlphaFold2 (AF2) we provide high confidence models of the interface between Trim28 and the KRAB domain and identified leucine 301 on each chain of the Trim28 monomer to act as a pin extending into a hydrophobic pocket on the KRAB domain surface. Site directed mutations in the Trim28‐KRAB binding interface abolished binding to the KRAB domain. Our work provides a detailed understanding of the specific interactions between the KRAB domain and the Trim28 coiled‐coil and how this interaction may be regulated during silencing events.
Collapse
Affiliation(s)
- Jamie R. H. Taka
- School of Biological Sciences University of Auckland Auckland New Zealand
| | - Yunyuan Sun
- School of Biological Sciences University of Auckland Auckland New Zealand
| | - David C. Goldstone
- School of Biological Sciences University of Auckland Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery Auckland New Zealand
| |
Collapse
|
42
|
Abraham N, Schroeter KL, Zhu Y, Chan J, Evans N, Kimber MS, Carere J, Zhou T, Seah SYK. Structure-function characterization of an aldo-keto reductase involved in detoxification of the mycotoxin, deoxynivalenol. Sci Rep 2022; 12:14737. [PMID: 36042239 PMCID: PMC9427786 DOI: 10.1038/s41598-022-19040-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin, produced by filamentous fungi such as Fusarium graminearum, that causes significant yield losses of cereal grain crops worldwide. One of the most promising methods to detoxify this mycotoxin involves its enzymatic epimerization to 3-epi-DON. DepB plays a critical role in this process by reducing 3-keto-DON, an intermediate in the epimerization process, to 3-epi-DON. DepBRleg from Rhizobium leguminosarum is a member of the new aldo-keto reductase family, AKR18, and it has the unusual ability to utilize both NADH and NADPH as coenzymes, albeit with a 40-fold higher catalytic efficiency with NADPH compared to NADH. Structural analysis of DepBRleg revealed the putative roles of Lys-217, Arg-290, and Gln-294 in NADPH specificity. Replacement of these residues by site-specific mutagenesis to negatively charged amino acids compromised NADPH binding with minimal effects on NADH binding. The substrate-binding site of DepBRleg is larger than its closest structural homolog, AKR6A2, likely contributing to its ability to utilize a wide range of aldehydes and ketones, including the mycotoxin, patulin, as substrates. The structure of DepBRleg also suggests that 3-keto-DON can adopt two binding modes to facilitate 4-pro-R hydride transfer to either the re- or si-face of the C3 ketone providing a possible explanation for the enzyme's ability to convert 3-keto-DON to 3-epi-DON and DON in diastereomeric ratios of 67.2% and 32.8% respectively.
Collapse
Affiliation(s)
- Nadine Abraham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Kurt L Schroeter
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Jonathan Chan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Natasha Evans
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Matthew S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Jason Carere
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Stephen Y K Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.
| |
Collapse
|
43
|
Paliwal D, Thom M, Hussein A, Ravishankar D, Wilkes A, Charleston B, Jones IM. Towards Reverse Vaccinology for Bovine TB: High Throughput Expression of Full Length Recombinant Mycobacterium bovis Proteins. Front Mol Biosci 2022; 9:889667. [PMID: 36032666 PMCID: PMC9402895 DOI: 10.3389/fmolb.2022.889667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis caused by Mycobacterium bovis, is a significant global pathogen causing economic loss in livestock and zoonotic TB in man. Several vaccine approaches are in development including reverse vaccinology which uses an unbiased approach to select open reading frames (ORF) of potential vaccine candidates, produce them as recombinant proteins and assesses their immunogenicity by direct immunization. To provide feasibility data for this approach we have cloned and expressed 123 ORFs from the M. bovis genome, using a mixture of E. coli and insect cell expression. We used a concatenated open reading frames design to reduce the number of clones required and single chain fusion proteins for protein pairs known to interact, such as the members of the PPE-PE family. Over 60% of clones showed soluble expression in one or the other host and most allowed rapid purification of the tagged bTB protein from the host cell background. The catalogue of recombinant proteins represents a resource that may be suitable for test immunisations in the development of an effective bTB vaccine.
Collapse
Affiliation(s)
- Deepa Paliwal
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Areej Hussein
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Alex Wilkes
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
- *Correspondence: Ian M. Jones,
| |
Collapse
|
44
|
Pedersen H, Jensen RK, Hansen AG, Petersen SV, Thiel S, Laursen NS, Andersen GR. Structure-Guided Engineering of a Complement Component C3-Binding Nanobody Improves Specificity and Adds Cofactor Activity. Front Immunol 2022; 13:872536. [PMID: 35935935 PMCID: PMC9352930 DOI: 10.3389/fimmu.2022.872536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/22/2022] [Indexed: 01/13/2023] Open
Abstract
The complement system is a part of the innate immune system, where it labels intruding pathogens as well as dying host cells for clearance. If complement regulation is compromised, the system may contribute to pathogenesis. The proteolytic fragment C3b of complement component C3, is the pivot point of the complement system and provides a scaffold for the assembly of the alternative pathway C3 convertase that greatly amplifies the initial complement activation. This makes C3b an attractive therapeutic target. We previously described a nanobody, hC3Nb1 binding to C3 and its degradation products. Here we show, that extending the N-terminus of hC3Nb1 by a Glu-Trp-Glu motif renders the resulting EWE-hC3Nb1 (EWE) nanobody specific for C3 degradation products. By fusing EWE to N-terminal CCP domains from complement Factor H (FH), we generated the fusion proteins EWEnH and EWEµH. In contrast to EWE, these fusion proteins supported Factor I (FI)-mediated cleavage of human and rat C3b. The EWE, EWEµH, and EWEnH proteins bound C3b and iC3b with low nanomolar dissociation constants and exerted strong inhibition of alternative pathway-mediated deposition of complement. Interestingly, EWEnH remained soluble above 20 mg/mL. Combined with the observed reactivity with both human and rat C3b as well as the ability to support FI-mediated cleavage of C3b, this features EWEnH as a promising candidate for in vivo studies in rodent models of complement driven pathogenesis.
Collapse
Affiliation(s)
- Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nick Stub Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- *Correspondence: Gregers Rom Andersen,
| |
Collapse
|
45
|
Dietler J, Gelfert R, Kaiser J, Borin V, Renzl C, Pilsl S, Ranzani AT, García de Fuentes A, Gleichmann T, Diensthuber RP, Weyand M, Mayer G, Schapiro I, Möglich A. Signal transduction in light-oxygen-voltage receptors lacking the active-site glutamine. Nat Commun 2022; 13:2618. [PMID: 35552382 PMCID: PMC9098866 DOI: 10.1038/s41467-022-30252-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/22/2022] [Indexed: 11/12/2022] Open
Abstract
In nature as in biotechnology, light-oxygen-voltage photoreceptors perceive blue light to elicit spatiotemporally defined cellular responses. Photon absorption drives thioadduct formation between a conserved cysteine and the flavin chromophore. An equally conserved, proximal glutamine processes the resultant flavin protonation into downstream hydrogen-bond rearrangements. Here, we report that this glutamine, long deemed essential, is generally dispensable. In its absence, several light-oxygen-voltage receptors invariably retained productive, if often attenuated, signaling responses. Structures of a light-oxygen-voltage paradigm at around 1 Å resolution revealed highly similar light-induced conformational changes, irrespective of whether the glutamine is present. Naturally occurring, glutamine-deficient light-oxygen-voltage receptors likely serve as bona fide photoreceptors, as we showcase for a diguanylate cyclase. We propose that without the glutamine, water molecules transiently approach the chromophore and thus propagate flavin protonation downstream. Signaling without glutamine appears intrinsic to light-oxygen-voltage receptors, which pertains to biotechnological applications and suggests evolutionary descendance from redox-active flavoproteins. Light-oxygen-voltage (LOV) photoreceptors perceive blue light to elicit spatio-temporally defined cellular responses, and their signalling process has been extensively characterized. Here the authors report that the light signal is still transduced in the absence of a conserved Gln residue, thought to be key.
Collapse
Affiliation(s)
- Julia Dietler
- Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany
| | - Renate Gelfert
- Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany
| | - Jennifer Kaiser
- Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany
| | - Veniamin Borin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christian Renzl
- Life and Medical Sciences (LIMES), University of Bonn, 53121, Bonn, Germany
| | - Sebastian Pilsl
- Life and Medical Sciences (LIMES), University of Bonn, 53121, Bonn, Germany
| | | | | | - Tobias Gleichmann
- Biophysical Chemistry, Humboldt-University Berlin, 10115, Berlin, Germany
| | | | - Michael Weyand
- Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany
| | - Günter Mayer
- Life and Medical Sciences (LIMES), University of Bonn, 53121, Bonn, Germany.,Center of Aptamer Research & Development, University of Bonn, 53121, Bonn, Germany
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany. .,Biophysical Chemistry, Humboldt-University Berlin, 10115, Berlin, Germany. .,Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, 95447, Bayreuth, Germany. .,North-Bavarian NMR Center, Universität Bayreuth, 95447, Bayreuth, Germany.
| |
Collapse
|
46
|
Herod SG, Dyatel A, Hodapp S, Jovanovic M, Berchowitz LE. Clearance of an amyloid-like translational repressor is governed by 14-3-3 proteins. Cell Rep 2022; 39:110753. [PMID: 35508136 PMCID: PMC9156962 DOI: 10.1016/j.celrep.2022.110753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Amyloids are fibrous protein aggregates associated with age-related diseases. While these aggregates are typically described as irreversible and pathogenic, some cells use reversible amyloid-like structures that serve important functions. The RNA-binding protein Rim4 forms amyloid-like assemblies that are essential for translational control during Saccharomyces cerevisiae meiosis. Rim4 amyloid-like assemblies are disassembled in a phosphorylation-dependent manner at meiosis II onset. By investigating Rim4 clearance, we elucidate co-factors that mediate clearance of amyloid-like assemblies in a physiological setting. We demonstrate that yeast 14-3-3 proteins bind to Rim4 assemblies and facilitate their subsequent phosphorylation and timely clearance. Furthermore, distinct 14-3-3 proteins play non-redundant roles in facilitating phosphorylation and clearance of amyloid-like Rim4. Additionally, we find that 14-3-3 proteins contribute to global protein aggregate homeostasis. Based on the role of 14-3-3 proteins in aggregate homeostasis and their interactions with disease-associated assemblies, we propose that these proteins may protect against pathological protein aggregates.
Collapse
Affiliation(s)
- S Grace Herod
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY, USA
| | - Annie Dyatel
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefanie Hodapp
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Luke E Berchowitz
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY, USA.
| |
Collapse
|
47
|
Li S, Wang Z, Guo X, Chen P, Tang Y. Potent anti-tumor activity of CD45RA-targeting Hm3A4-Ranpirnase against myeloid lineage leukemias. Bioengineered 2022; 13:8631-8642. [PMID: 35322728 PMCID: PMC9161826 DOI: 10.1080/21655979.2022.2054159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
CD45RA is a specific marker for leukemia stem cell (LSC) sub-populations in acute myeloid leukemia (AML). Ranpirnase (Rap), an amphibian RNase, has been extensively investigated in preclinical and clinical studies for its antitumor activity. Rap could be administered repeatedly to patients without inducing an immune response. Reversible renal toxicity has been reported to be dose-limiting. In this study, we generated a novel immunotoxin targeting LSCs: Hm3A4-Rap, which was composed of Rap and Hm3A4, a human-mouse chimeric antibody against CD45RA. This immunotoxin was generated recombinantly by fusing Rap to Hm3A4 at the Fc terminus and then produced by stably transfecting CHO cells. The immunotoxin was purified using Ni-NTA and then evaluated using RT-PCR, SDS-PAGE, antibody titer assays, competitive inhibition assays, and internalization assays. In addition, the purity, molecular integrity, and affinity to the CD45RA antigen were determined. In vitro studies demonstrated that Hm3A4-Rap could efficiently kill target cells. In vivo studies demonstrated that Hm3A4-Rap had potent anti-leukemia activity, with dosed mice showing a significant increase in survival time compared to control mice (P < 0.01). In summary, our immunotoxin had excellent biological activity suggesting its potential therapeutic value for treating AML patients. Additional preclinical and clinical studies are needed to develop this immunotoxin as a treatment option for patients with leukemia.
Collapse
Affiliation(s)
- Sisi Li
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, PR China
- Division/Center of Pediatric Hematology-Oncology at the Children’s Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Medical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| | - Zhujun Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR, China
| | - Xiaoping Guo
- Division/Center of Pediatric Hematology-Oncology at the Children’s Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Medical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| | - Ping Chen
- Division/Center of Pediatric Hematology-Oncology at the Children’s Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Medical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| | - Yongmin Tang
- Division/Center of Pediatric Hematology-Oncology at the Children’s Hospital of Zhejiang University School of Medicine, The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Medical Research Center for Child Health, Hangzhou, Zhejiang, PR China
| |
Collapse
|
48
|
Zhu C, Guo X, Dumas P, Takacs M, Abdelkareem M, Vanden Broeck A, Saint-André C, Papai G, Crucifix C, Ortiz J, Weixlbaumer A. Transcription factors modulate RNA polymerase conformational equilibrium. Nat Commun 2022; 13:1546. [PMID: 35318334 PMCID: PMC8940904 DOI: 10.1038/s41467-022-29148-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/01/2022] [Indexed: 01/26/2023] Open
Abstract
RNA polymerase (RNAP) frequently pauses during the transcription of DNA to RNA to regulate gene expression. Transcription factors NusA and NusG modulate pausing, have opposing roles, but can bind RNAP simultaneously. Here we report cryo-EM reconstructions of Escherichia coli RNAP bound to NusG, or NusA, or both. RNAP conformational changes, referred to as swivelling, correlate with transcriptional pausing. NusA facilitates RNAP swivelling to further increase pausing, while NusG counteracts this role. Their structural effects are consistent with biochemical results on two categories of transcriptional pauses. In addition, the structures suggest a cooperative mechanism of NusA and NusG during Rho-mediated transcription termination. Our results provide a structural rationale for the stochastic nature of pausing and termination and how NusA and NusG can modulate it. Pausing of RNA polymerase (RNAP) and transcription is regulated by the NusA and NusG transcription factors in bacteria. Here the authors provide structural evidence for how they interact with RNAP to carry out their pausing roles and also reveal functions for NusA and NusG in transcription termination.
Collapse
Affiliation(s)
- Chengjin Zhu
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
| | - Xieyang Guo
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.,GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | - Philippe Dumas
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
| | - Maria Takacs
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
| | - Mo'men Abdelkareem
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
| | - Arnaud Vanden Broeck
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
| | - Charlotte Saint-André
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
| | - Gabor Papai
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
| | - Corinne Crucifix
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
| | - Julio Ortiz
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France.,Université de Strasbourg, 67404, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.,Forschungszentrum Jülich, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Jülich, Germany
| | - Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404, Illkirch, France. .,Université de Strasbourg, 67404, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.
| |
Collapse
|
49
|
Takamatsu S, Lee I, Lee J, Asano R, Tsugawa W, Ikebukuro K, Dick JE, Sode K. Transient potentiometry based d-serine sensor using engineered d-amino acid oxidase showing quasi-direct electron transfer property. Biosens Bioelectron 2022; 200:113927. [PMID: 34995837 DOI: 10.1016/j.bios.2021.113927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/08/2021] [Accepted: 12/25/2021] [Indexed: 11/18/2022]
Abstract
d-Serine biosensing has been extensively reported based on enzyme sensors using flavin adenine dinucleotide (FAD) -dependent d-amino acid oxidase (DAAOx), based on the monitoring of hydrogen peroxide generated by the enzymatic reaction, which is affected by dissolved oxygen concentration in the measurement environment in in vivo use. Here we report a novel sensing principle for d-serine, transient potentiometry based d-serine sensor using engineered DAAOx showing quasi-direct electron transfer (DET) property. DAAOx Gly52Val mutant, revealed to possess dye-mediated dehydrogenase activity using artificial synthetic electron acceptors, while its oxidase activity was negligible. The enzyme was immobilized on electrode and was modified with amine-reactive phenazine ethosulfate, resulted an enzyme electrode showing quasi-DET type response. Although OCP based monitoring took more than several minutes to obtain steady state OCP value, the time dependent OCP change monitoring, transient potentiometry, provided rapid and sensitive sensor signals. While dOCP/dt based monitoring was suitable for sensing with longer than 5 s time resolution with d-serine concentration range between 0.5 mM and 5 mM, dOCP/d t based monitoring is suitable for d-serine monitoring with much shorter time resolution (less than 1 s) with high sensitivity with wider dynamic range (20 μM-30 mM). The maximum dOCP/d t was -39.2 ± 2.0 mV/s1/2, the Km(app) was 1.9 mM, and the lower limit of detection was 20 μM. In addition, d-serine monitoring was also possible in the artificial cerebrospinal fluid. The transient potentiometry based sensing reported in this study will be further utilized to realize miniaturized, continuous, real-time, in vivo sensor for d-serine monitoring.
Collapse
Affiliation(s)
- Shouhei Takamatsu
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan; Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Inyoung Lee
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Jinhee Lee
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
50
|
de Leeuw R, Kronenberg-Tenga R, Eibauer M, Medalia O. Filament assembly of the C. elegans lamin in the absence of helix 1A. Nucleus 2022; 13:49-57. [PMID: 35130129 PMCID: PMC8824219 DOI: 10.1080/19491034.2022.2032917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Lamins are the major constituent of the nuclear lamina, a protein meshwork underlying the inner nuclear membrane. Nuclear lamins are type V intermediate filaments that assemble into ~3.5 nm thick filaments. To date, only the conditions for the in vitro assembly of Caenorhabditis elegans lamin (Ce-lamin) are known. Here, we investigated the assembly of Ce-lamin filaments by cryo-electron microscopy and tomography. We show that Ce-lamin is composed of ~3.5 nm protofilaments that further interact in vitro and are often seen as 6–8 nm thick filaments. We show that the assembly of lamin filaments is undisturbed by the removal of flexible domains, that is, the intrinsically unstructured head and tail domains. In contrast, much of the coiled-coil domains are scaffold elements that are essential for filament assembly. Moreover, our results suggest that Ce-lamin helix 1A has a minor scaffolding role but is important to the lateral assembly regulation of lamin protofilaments.
Collapse
Affiliation(s)
- Rebecca de Leeuw
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|