1
|
Mulay AR, Hwang J, Kim DH. Microphysiological Blood-Brain Barrier Systems for Disease Modeling and Drug Development. Adv Healthc Mater 2024; 13:e2303180. [PMID: 38430211 PMCID: PMC11338747 DOI: 10.1002/adhm.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The blood-brain barrier (BBB) is a highly controlled microenvironment that regulates the interactions between cerebral blood and brain tissue. Due to its selectivity, many therapeutics targeting various neurological disorders are not able to penetrate into brain tissue. Pre-clinical studies using animals and other in vitro platforms have not shown the ability to fully replicate the human BBB leading to the failure of a majority of therapeutics in clinical trials. However, recent innovations in vitro and ex vivo modeling called organs-on-chips have shown the potential to create more accurate disease models for improved drug development. These microfluidic platforms induce physiological stressors on cultured cells and are able to generate more physiologically accurate BBBs compared to previous in vitro models. In this review, different approaches to create BBBs-on-chips are explored alongside their application in modeling various neurological disorders and potential therapeutic efficacy. Additionally, organs-on-chips use in BBB drug delivery studies is discussed, and advances in linking brain organs-on-chips onto multiorgan platforms to mimic organ crosstalk are reviewed.
Collapse
Affiliation(s)
- Atharva R. Mulay
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Jihyun Hwang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Center for Microphysiological Systems, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21218
| |
Collapse
|
2
|
Van Lommel J, Holtof M, Tilleman L, Cools D, Vansteenkiste S, Polgun D, Verdonck R, Van Nieuwerburgh F, Vanden Broeck J. Post-feeding transcriptomics reveals essential genes expressed in the midgut of the desert locust. Front Physiol 2023; 14:1232545. [PMID: 37692997 PMCID: PMC10484617 DOI: 10.3389/fphys.2023.1232545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
The digestive tract constitutes an important interface between an animal's internal and external environment. In insects, available gut transcriptome studies are mostly exploratory or look at changes upon infection or upon exposure to xenobiotics, mainly performed in species belonging to holometabolan orders, such as Diptera, Lepidoptera or Coleoptera. By contrast, studies focusing on gene expression changes after food uptake and during digestion are underrepresented. We have therefore compared the gene expression profiles in the midgut of the desert locust, Schistocerca gregaria, between three different time points after feeding, i.e., 24 h (no active digestion), 10 min (the initial stage of feeding), and 2 h (active food digestion). The observed gene expression profiles were consistent with the polyphagous herbivorous lifestyle of this hemimetabolan (orthopteran) species. Our study reveals the upregulation of 576 genes 2 h post-feeding. These are mostly predicted to be associated with digestive physiology, such as genes encoding putative digestive enzymes or nutrient transporters, as well as genes putatively involved in immunity or in xenobiotic metabolism. The 10 min time point represented an intermediate condition, suggesting that the S. gregaria midgut can react rapidly at the transcriptional level to the presence of food. Additionally, our study demonstrated the critical importance of two transcripts that exhibited a significant upregulation 2 h post-feeding: the vacuolar-type H(+)-ATPase and the sterol transporter Niemann-Pick 1b protein, which upon RNAi-induced knockdown resulted in a marked increase in mortality. Their vital role and accessibility via the midgut lumen may make the encoded proteins promising insecticidal target candidates, considering that the desert locust is infamous for its huge migrating swarms that can devastate the agricultural production in large areas of Northern Africa, the Middle East, and South Asia. In conclusion, the transcriptome datasets presented here will provide a useful and promising resource for studying the midgut physiology of S. gregaria, a socio-economically important pest species.
Collapse
Affiliation(s)
- Joachim Van Lommel
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Michiel Holtof
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | | | - Dorien Cools
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Seppe Vansteenkiste
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Daria Polgun
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| | - Rik Verdonck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Lab, Department of Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Shaker B, Yu MS, Song JS, Ahn S, Ryu JY, Oh KS, Na D. LightBBB: computational prediction model of blood-brain-barrier penetration based on LightGBM. Bioinformatics 2021; 37:1135-1139. [PMID: 33112379 DOI: 10.1093/bioinformatics/btaa918] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Identification of blood-brain barrier (BBB) permeability of a compound is a major challenge in neurotherapeutic drug discovery. Conventional approaches for BBB permeability measurement are expensive, time-consuming and labor-intensive. BBB permeability is associated with diverse chemical properties of compounds. However, BBB permeability prediction models have been developed using small datasets and limited features, which are usually not practical due to their low coverage of chemical diversity of compounds. Aim of this study is to develop a BBB permeability prediction model using a large dataset for practical applications. This model can be used for facilitated compound screening in the early stage of brain drug discovery. RESULTS A dataset of 7162 compounds with BBB permeability (5453 BBB+ and 1709 BBB-) was compiled from the literature, where BBB+ and BBB- denote BBB-permeable and non-permeable compounds, respectively. We trained a machine learning model based on Light Gradient Boosting Machine (LightGBM) algorithm and achieved an overall accuracy of 89%, an area under the curve (AUC) of 0.93, specificity of 0.77 and sensitivity of 0.93, when 10-fold cross-validation was performed. The model was further evaluated using 74 central nerve system compounds (39 BBB+ and 35 BBB-) obtained from the literature and showed an accuracy of 90%, sensitivity of 0.85 and specificity of 0.94. Our model outperforms over existing BBB permeability prediction models. AVAILABILITYAND IMPLEMENTATION The prediction server is available at http://ssbio.cau.ac.kr/software/bbb.
Collapse
Affiliation(s)
- Bilal Shaker
- 84 Heukseok-ro, Dongjak-gu, Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Myeong-Sang Yu
- 84 Heukseok-ro, Dongjak-gu, Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jin Sook Song
- Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sunjoo Ahn
- Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Jae Yong Ryu
- Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kwang-Seok Oh
- Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dokyun Na
- 84 Heukseok-ro, Dongjak-gu, Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
A classification model for blood brain barrier penetration. J Mol Graph Model 2020; 96:107516. [DOI: 10.1016/j.jmgm.2019.107516] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022]
|
5
|
Rossi M, De Battisti D, Niven JE. Transepithelial transport of P-glycoprotein substrate by the Malpighian tubules of the desert locust. PLoS One 2019; 14:e0223569. [PMID: 31593571 PMCID: PMC6782089 DOI: 10.1371/journal.pone.0223569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/24/2019] [Indexed: 01/11/2023] Open
Abstract
Extrusion of xenobiotics is essential for allowing animals to remove toxic substances present in their diet or generated as a biproduct of their metabolism. By transporting a wide range of potentially noxious substrates, active transporters of the ABC transporter family play an important role in xenobiotic extrusion. One such class of transporters are the multidrug resistance P-glycoprotein transporters. Here, we investigated P-glycoprotein transport in the Malpighian tubules of the desert locust (Schistocerca gregaria), a species whose diet includes plants that contain toxic secondary metabolites. To this end, we studied transporter physiology using a modified Ramsay assay in which ex vivo Malpighian tubules are incubated in different solutions containing the P-glycoprotein substrate dye rhodamine B in combination with different concentrations of the P-glycoprotein inhibitor verapamil. To determine the quantity of the P-glycoprotein substrate extruded we developed a simple and cheap method as an alternative to liquid chromatography–mass spectrometry, radiolabelled alkaloids or confocal microscopy. Our evidence shows that: (i) the Malpighian tubules contain a P-glycoprotein; (ii) tubule surface area is positively correlated with the tubule fluid secretion rate; and (iii) as the fluid secretion rate increases so too does the net extrusion of rhodamine B. We were able to quantify precisely the relationships between the fluid secretion, surface area, and net extrusion. We interpret these results in the context of the life history and foraging ecology of desert locusts. We argue that P-glycoproteins contribute to the removal of xenobiotic substances from the haemolymph, thereby enabling gregarious desert locusts to maintain toxicity through the ingestion of toxic plants without suffering the deleterious effects themselves.
Collapse
Affiliation(s)
- Marta Rossi
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail: (MR); (JEN)
| | - Davide De Battisti
- Department of Bioscience, Swansea University, Swansea, Singleton park, Wales, United Kingdom
| | - Jeremy Edward Niven
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail: (MR); (JEN)
| |
Collapse
|
6
|
Villacrez M, Hellman K, Ono T, Sugihara Y, Rezeli M, Ek F, Marko-Varga G, Olsson R. Evaluation of Drug Exposure and Metabolism in Locust and Zebrafish Brains Using Mass Spectrometry Imaging. ACS Chem Neurosci 2018; 9:1994-2000. [PMID: 29350027 DOI: 10.1021/acschemneuro.7b00459] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Studying how and where drugs are metabolized in the brain is challenging. In an entire organism, peripheral metabolism produces many of the same metabolites as those in the brain, and many of these metabolites can cross the blood-brain barrier from the periphery, thus making the relative contributions of hepatic and brain metabolism difficult to study in vivo. In addition, drugs and metabolites contained in ventricles and in the residual blood of capillaries in the brain may overestimate drugs' and metabolites' concentrations in the brain. In this study, we examine locusts and zebrafish using matrix assisted laser desorption ionization mass spectrometry imaging to study brain metabolism and distribution. These animal models are cost-effective and ethically sound for initial drug development studies.
Collapse
Affiliation(s)
- Marvin Villacrez
- Chemical Biology & Therapeutics group, Department of Experimental Medical Science, Lund University, S-22184 Lund, Sweden
| | - Karin Hellman
- Chemical Biology & Therapeutics group, Department of Experimental Medical Science, Lund University, S-22184 Lund, Sweden
| | - Tatsuya Ono
- Division of Clinical Protein Science and Imaging, Department of Experimental Medical Science, Lund University, S-22184 Lund, Sweden
| | - Yutaka Sugihara
- Division of Clinical Protein Science and Imaging, Department of Experimental Medical Science, Lund University, S-22184 Lund, Sweden
| | - Melinda Rezeli
- Division of Clinical Protein Science and Imaging, Department of Experimental Medical Science, Lund University, S-22184 Lund, Sweden
| | - Fredrik Ek
- Chemical Biology & Therapeutics group, Department of Experimental Medical Science, Lund University, S-22184 Lund, Sweden
| | - Gyorgy Marko-Varga
- Division of Clinical Protein Science and Imaging, Department of Experimental Medical Science, Lund University, S-22184 Lund, Sweden
| | - Roger Olsson
- Chemical Biology & Therapeutics group, Department of Experimental Medical Science, Lund University, S-22184 Lund, Sweden
| |
Collapse
|
7
|
Hellman K, Aadal Nielsen P, Ek F, Olsson R. An ex Vivo Model for Evaluating Blood-Brain Barrier Permeability, Efflux, and Drug Metabolism. ACS Chem Neurosci 2016; 7:668-80. [PMID: 26930271 DOI: 10.1021/acschemneuro.6b00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The metabolism of drugs in the brain is difficult to study in most species because of enzymatic instability in vitro and interference from peripheral metabolism in vivo. A locust ex vivo model that combines brain barrier penetration, efflux, metabolism, and analysis of the unbound fraction in intact brains was evaluated using known drugs. Clozapine was analyzed, and its major metabolites, clozapine N-oxide (CNO) and N-desmethylclozapine (NDMC), were identified and quantified. The back-transformation of CNO into clozapine observed in humans was also observed in locusts. In addition, risperidone, citalopram, fluoxetine, and haloperidol were studied, and one preselected metabolite for each drug was analyzed, identified, and quantified. Metabolite identification studies of clozapine and midazolam showed that the locust brain was highly metabolically active, and 18 and 14 metabolites, respectively, were identified. The unbound drug fraction of clozapine, NDMC, carbamazepine, and risperidone was analyzed. In addition, coadministration of drugs with verapamil or fluvoxamine was performed to evaluate drug-drug interactions in all setups. All findings correlated well with the data in the literature for mammals except for the stated fact that CNO is a highly blood-brain barrier permeant compound. Overall, the experiments indicated that invertebrates might be useful for screening of blood-brain barrier permeation, efflux, metabolism, and analysis of the unbound fraction of drugs in the brain in early drug discovery.
Collapse
Affiliation(s)
- Karin Hellman
- Chemical Biology & Therapeutics unit, Department of Experimental Medical Science, Lund University, Lund S-22184, Sweden
| | | | - Fredrik Ek
- Chemical Biology & Therapeutics unit, Department of Experimental Medical Science, Lund University, Lund S-22184, Sweden
| | - Roger Olsson
- Chemical Biology & Therapeutics unit, Department of Experimental Medical Science, Lund University, Lund S-22184, Sweden
| |
Collapse
|
8
|
Guseman AJ, Miller K, Kunkle G, Dively GP, Pettis JS, Evans JD, vanEngelsdorp D, Hawthorne DJ. Multi-Drug Resistance Transporters and a Mechanism-Based Strategy for Assessing Risks of Pesticide Combinations to Honey Bees. PLoS One 2016; 11:e0148242. [PMID: 26840460 PMCID: PMC4740413 DOI: 10.1371/journal.pone.0148242] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 01/16/2016] [Indexed: 11/25/2022] Open
Abstract
Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species.
Collapse
Affiliation(s)
- Alex J. Guseman
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kaliah Miller
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Grace Kunkle
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Galen P. Dively
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Jeffrey S. Pettis
- Bee Research Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Jay D. Evans
- Bee Research Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Dennis vanEngelsdorp
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - David J. Hawthorne
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Al-Qadi S, Schiøtt M, Hansen SH, Nielsen PA, Badolo L. An invertebrate model for CNS drug discovery: Transcriptomic and functional analysis of a mammalian P-glycoprotein ortholog. Biochim Biophys Acta Gen Subj 2015; 1850:2439-51. [PMID: 26363463 DOI: 10.1016/j.bbagen.2015.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/28/2015] [Accepted: 09/02/2015] [Indexed: 11/18/2022]
Affiliation(s)
- Sonia Al-Qadi
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark; Faculty of Nursing, Pharmacy and Health professions, Birzeit University, PO Box 14, Birzeit, West Bank, Palestine. Telephone: +972-2-298-2000, Fax: +972-2-281-0656..
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 København Ø, Denmark
| | - Steen Honoré Hansen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Peter Aadal Nielsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Lassina Badolo
- Division of Discovery Chemistry, H. Lundbeck A/S, Copenhagen, Denmark; Division of Drug Metabolism and Pharmacokinetics, H. Lundbeck A/S, Copenhagen, Denmark.
| |
Collapse
|
10
|
Epis S, Porretta D, Mastrantonio V, Comandatore F, Sassera D, Rossi P, Cafarchia C, Otranto D, Favia G, Genchi C, Bandi C, Urbanelli S. ABC transporters are involved in defense against permethrin insecticide in the malaria vector Anopheles stephensi. Parasit Vectors 2014; 7:349. [PMID: 25073980 PMCID: PMC4124152 DOI: 10.1186/1756-3305-7-349] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/15/2014] [Indexed: 11/18/2022] Open
Abstract
Background Proteins from the ABC family (ATP-binding cassette) represent the largest known group of efflux pumps, responsible for transporting specific molecules across lipid membranes in both prokaryotic and eukaryotic organisms. In arthropods they have been shown to play a role in insecticide defense/resistance. The presence of ABC transporters and their possible association with insecticide transport have not yet been investigated in the mosquito Anopheles stephensi, the major vector of human malaria in the Middle East and South Asian regions. Here we investigated the presence and role of ABCs in transport of permethrin insecticide in a susceptible strain of this mosquito species. Methods To identify ABC transporter genes we obtained a transcriptome from untreated larvae of An. stephensi and then compared it with the annotated transcriptome of Anopheles gambiae. To analyse the association between ABC transporters and permethrin we conducted bioassays with permethrin alone and in combination with an ABC inhibitor, and then we investigated expression profiles of the identified genes in larvae exposed to permethrin. Results Bioassays showed an increased mortality of mosquitoes when permethrin was used in combination with the ABC-transporter inhibitor. Genes for ABC transporters were detected in the transcriptome, and five were selected (AnstABCB2, AnstABCB3, AnstABCB4, AnstABCmember6 and AnstABCG4). An increased expression in one of them (AnstABCG4) was observed in larvae exposed to the LD50 dose of permethrin. Contrary to what was found in other insect species, no up-regulation was observed in the AnstABCB genes. Conclusions Our results show for the first time the involvement of ABC transporters in larval defense against permethrin in An. stephensi and, more in general, confirm the role of ABC transporters in insecticide defense. The differences observed with previous studies highlight the need of further research as, despite the growing number of studies on ABC transporters in insects, the heterogeneity of the results available at present does not allow us to infer general trends in ABC transporter-insecticide interactions. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-349) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Claudio Bandi
- Department of Veterinary Science and Public Health, University of Milan, Milan, Italy.
| | | |
Collapse
|