1
|
Ashraf M, El-Sawy HS, El Zaafarany GM, Abdel-Mottaleb MMA. Eucalyptus oil nanoemulsion for enhanced skin deposition of fluticasone propionate in psoriatic plaques: A combinatorial anti-inflammatory effect to suppress implicated cytokines. Arch Pharm (Weinheim) 2024:e2400557. [PMID: 39449230 DOI: 10.1002/ardp.202400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease that affects patients' quality of life. This study aimed to enhance the efficacy of topical application of fluticasone propionate (FP) using a eucalyptus oil-based nanoemulsion, an oil possessing anti-inflammatory activity and extracted from the leaves, fruits, and buds of Eucalyptus globulus or Eucalyptus maidenii, to improve the skin deposition of FP and aid its anti-inflammatory effect. Box-Behnken design was employed to optimize NE formulations, which were characterized for globule size, zeta potential, polydispersity index, rheological behavior, microscopic morphology, ex vivo skin permeation/deposition, and in vivo efficacy using imiquimod-induced psoriatic lesions. The optimized formulation depicted a droplet size of 188 ± 22.4 nm, a zeta potential of -17.63 ± 1.66 mV, and a viscosity of 204.9 mPa s. In addition to the increased FP retention in different skin layers caused by the NE and the reduced PASI score compared to the marketed cream, the levels of inflammatory cytokines IL-1α, IL-6, IL17a were markedly lowered, indicating the improved anti-psoriatic curable efficacy of the optimized formulation in comparison to the FP-marketed product.
Collapse
Affiliation(s)
- Mohamed Ashraf
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacy, Al-Kut University College, Kut, Wasit, Iraq
| | - Ghada M El Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona M A Abdel-Mottaleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Bezerra I, Santos ERSD, Bisneto JSR, Perruci PP, Ferreira AID, Macêdo DCDS, Luz MA, Galdino TP, Machado G, Magalhães NS, Nogueira MCBL, Gubert P. Synthesis and Physicochemical Stability of a Copaiba Balsam Oil ( Copaifera sp.) Nanoemulsion and Prospecting of Toxicological Effects on the Nematode Caenorhabditis elegans. ACS OMEGA 2024; 9:39100-39118. [PMID: 39310144 PMCID: PMC11411554 DOI: 10.1021/acsomega.4c05930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Nanoemulsions are dispersions of oil-in-water (O/W) and water-in-oil (W/O) immiscible liquids. Thus, our main goal was to formulate a nanoemulsion with low surfactant concentrations and outstanding stability using Copaiba balsam oil (Copaifera sp.). The high-energy cavitation homogenization with low Tween 80 levels was employed. Then, electrophoretic and physical mobility properties were assessed, in addition to a one- and two-year physicochemical characterization studies assessment. Copaiba balsam oil and nanoemulsions obtained caryophyllene as a major constituent. The nanoemulsions stored at 4 ± 2 °C exhibited better physical stability. Two years after formulation, the nanoemulsion showed a reduction in the particle size. The size underwent changes in gastric, intestinal, and blood pH, and the PdI was not changed. In FTIR, characteristic bands of sesquiterpenes and overlapping bands were detected. When subjected to freezing and heating cycles, nanoemulsions did not show macroscopic changes in higher concentrations. Nanoemulsions subjected to centrifuge force by 1000 rpm do not show macroscopic instability and phase inversion or destabilization characteristics when diluted. Therefore, the nanoemulsion showed stability for long-term storage. The nematode Caenorhabditis elegans was used to assess the potential toxicity of nanoemulsions. The nanoemulsion did not cause toxicity in the animal model, except in the highest concentration tested, which decreased the defecation cycle interval and body length. The toxicity and stability outcomes reinforce the nanoemulsions' potential for future studies to explore pharmacological mechanisms in superior experimental designs.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Charles dos Santos Macêdo
- Keizo
Asami Institute (iLIKA), Federal University of Pernambuco, Recife 50670-901, Brazil
- Department
of Pharmaceutical Sciences, Federal University
of Pernambuco, Recife 50670-901, Brazil
| | - Mateus Araújo
da Luz
- Northeast
Biomaterials Assessment and Development Laboratory (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Taynah Pereira Galdino
- Northeast
Biomaterials Assessment and Development Laboratory (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Giovanna Machado
- Northeast
Strategic Technologies Center (CETENE), Recife 50740-545, Brazil
| | - Nereide Stela
Santos Magalhães
- Keizo
Asami Institute (iLIKA), Federal University of Pernambuco, Recife 50670-901, Brazil
- Department
of Pharmaceutical Sciences, Federal University
of Pernambuco, Recife 50670-901, Brazil
| | | | - Priscila Gubert
- Keizo
Asami Institute (iLIKA), Federal University of Pernambuco, Recife 50670-901, Brazil
- Federal
University of Western Bahia (UFOB), Barreiras 47800-000, Brazil
| |
Collapse
|
3
|
Shourove JH, Meem FC, Chowdhury RS, Eti SA, Samaddar M. Biocontrol agents and their potential use as nano biopesticides to control the tea red spider mite (Oligonychus coffeae): A comprehensive review. Heliyon 2024; 10:e34605. [PMID: 39148997 PMCID: PMC11325067 DOI: 10.1016/j.heliyon.2024.e34605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Tea red spider mite (TRSM), Oligonychus coffeae Nietner, is one of the major pests that cause considerable crop losses in all tea-growing countries. TRSM management often involves the use of multiple chemical pesticides that are linked to human health risks and environmental pollution. Considering these critical issues, employing biocontrol agents is a potential green approach that may replace synthetic pesticides. This review study aims to discuss the efficacy of plant extracts, entomopathogenic microorganisms, and predators in controlling TRSM. This study includes 44 botanical extracts, 14 microbial species, and 8 potential predators used to control TRSM, along with their respective modes of action. Most of the botanical extracts have ovicidal, adulticidal, and larvicidal activity, ranging from 80 to 100 %, attributed to bioactive compounds such as phenols, alcohols, alkaloids, tannins, and other secondary metabolites. Among microbial pesticides, Purpureocillium lilacinum, Metarhizium robertsii, Aspergillus niger, Pseudomonas fluorescens, and Pseudomonas putida are highly effective against TRSM without causing any harm to the nontarget beneficial insects. Besides, some predators, including green lacewings, ladybirds, and phytoseiid mites have the potential to control TRSM. Employing these biocontrol agents simultaneously in tea plantations could be more effective in preventing TRSM. Nevertheless, their high biodegradability rate, uneven distribution, and uncontrolled release pose challenges for large-scale field applications. This study also explores how nanotechnology can enhance sustainability by addressing the limitations of biopesticides in field conditions. This review study could contribute to the search for potential biocontrol agents and the development of commercial nano biopesticides to control TRSM.
Collapse
Affiliation(s)
- Jahid Hasan Shourove
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fariha Chowdhury Meem
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Razia Sultana Chowdhury
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shamima Akther Eti
- Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Mitu Samaddar
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
4
|
Sonter S, Dwivedi MK, Mishra S, Singh P, Kumar R, Park S, Jeon BH, Singh PK. In vitro larvicidal efficacy of Lantana camara essential oil and its nanoemulsion and enzyme inhibition kinetics against Anopheles culicifacies. Sci Rep 2024; 14:16325. [PMID: 39009775 PMCID: PMC11250815 DOI: 10.1038/s41598-024-67148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Mosquitoes are important vectors for the transmission of several infectious diseases that lead to huge morbidity and mortality. The exhaustive use of synthetic insecticides has led to widespread resistance and environmental pollution. Using essential oils and nano-emulsions as novel insecticides is a promising alternative approach for controlling vector borne diseases. In the current study, Lantana camara EO and NE were evaluated for their larvicidal and pupicidal activities against Anopheles culicifacies. The inhibitory effect of EO and NE on AChE, NSE (α/β), and GST was also evaluated and compared. GC-MS analysis of oil displayed 61 major peaks. The stable nano-emulsion with an observed hydrodynamic diameter of 147.62 nm was formed using the o/w method. The nano-emulsion exhibited good larvicidal (LC50 50.35 ppm and LC90 222.84 ppm) and pupicidal (LC50 54.82 ppm and LC90 174.58 ppm) activities. Biochemical evaluations revealed that LCEO and LCNE inhibited AChE, NSE (α/β), and GST, displaying LCNE to be a potent binder to AChE and NSE enzyme, whereas LCEO showed higher binding potency towards GST. The nano-emulsion provides us with novel opportunities to target different mosquito enzymes with improved insecticidal efficacy. Due to its natural origin, it can be further developed as a safer and more potent larvicide/insecticide capable of combating emerging insecticide resistance.
Collapse
Affiliation(s)
- Shruti Sonter
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Manish Kumar Dwivedi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
- R&D, Hikal Limited, Hinjawadi, Pune, Maharashtra, India
| | - Shringika Mishra
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Prabhakar Singh
- Sophisticated Analytical Instrumentation Facility, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Kumar
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sungmin Park
- Department of Civil and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Prashant Kumar Singh
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India.
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
5
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
6
|
Islam AKMS, Bhuiyan R, Nihad SAI, Akter R, Khan MAI, Akter S, Islam MR, Khokon MAR, Latif MA. Green synthesis and characterization of silver nanoparticles and its efficacy against Rhizoctonia solani, a fungus causing sheath blight disease in rice. PLoS One 2024; 19:e0304817. [PMID: 38889131 PMCID: PMC11185457 DOI: 10.1371/journal.pone.0304817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Rice (Oryza sativa) stands as a crucial staple food worldwide, especially in Bangladesh, where it ranks as the third-largest producer. However, intensified cultivation has made high-yielding rice varieties susceptible to various biotic stresses, notably sheath blight caused by Rhizoctonia solani, which inflicts significant yield losses annually. Traditional fungicides, though effective, pose environmental and health risks. To address this, nanotechnology emerges as a promising avenue, leveraging the antimicrobial properties of nanoparticles like silver nanoparticles (AgNPs). This study explored the green synthesis of AgNPs using Ipomoea carnea leaf extract and silver nitrate (AgNO3), and also examined their efficacy against sheath blight disease in rice. The biosynthesized AgNPs were characterized through various analytical techniques such as UV-vis spectrophotometer, X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Particle size analyzer, Zeta potential, Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscope (TEM) for confirming their successful production and crystalline nature of nanoparticles. The results of UV-visible spectrophotometers revealed an absorption peak ranging from 421 to 434 nm, validated the synthesis of AgNPs in the solution. XRD, DLS, and TEM estimated AgNPs sizes were ~45 nm, 66.2nm, and 46.38 to 73.81 nm, respectively. SEM and FESEM demonstrated that the synthesized AgNPs were spherical in shape. In vitro assays demonstrated the significant inhibitory effects of AgNPs on mycelial growth of Rhizoctonia solani, particularly at higher concentrations and pH levels. Further greenhouse and field experiments validated the antifungal efficacy of AgNPs against sheath blight disease in rice, exhibiting comparable effectiveness to commercial fungicides. The findings highlight the potential of AgNPs as a sustainable and effective alternative for managing rice sheath blight disease, offering a safer solution amidst environmental concerns associated with conventional fungicides.
Collapse
Affiliation(s)
| | - Rejwan Bhuiyan
- Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| | | | - Rumana Akter
- Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| | | | - Shamima Akter
- Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| | - Md. Rashidul Islam
- Department of Plant Pathology Division, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Mohammad Abdul Latif
- Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh
| |
Collapse
|
7
|
Czarnobai De Jorge B, Koßmann A, Hummel HE, Gross J. Evaluation of a push-and-pull strategy using volatiles of host and non-host plants for the management of pear psyllids in organic farming. FRONTIERS IN PLANT SCIENCE 2024; 15:1375495. [PMID: 38841281 PMCID: PMC11150531 DOI: 10.3389/fpls.2024.1375495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Introduction Pear decline (PD) is one of the most devastating diseases of Pyrus communis in Europe and North America. It is caused by the pathogen 'Candidatus Phytoplasma pyri' and transmitted by pear psyllids (Cacopsylla pyri, C. pyricola, and C. pyrisuga). Identifying attractant and repellent volatile organic compounds (VOCs) could improve the development of alternative plant protection measurements like push-pull or attract-and-kill strategies against pear psyllids. Our objective was to investigate which chemical cues of the host plant could influence the host-seeking behavior of pear psyllids, and if cedarwood (CWO) and cinnamon bark (CBO) essential oils could serve as repellents. Results and discussion Based on the literature, the five most abundant VOCs from pear plants elicited EAG responses in both C. pyri and C. pyrisuga psyllid species. In Y-olfactometer trials, single compounds were not attractive to C. pyri. However, the main compound mixture was attractive to C. pyri and C. pyrisuga females. CWO and CBO were repellent against C. pyri, and when formulated into nanofibers (NF), both were repellent in olfactometer trials. However, CBO nanoformulation was ineffective in masking the odors of pear plants. In a field trial, attractive, repellent CWO and blank formulated NF were inserted in attractive green sticky traps. C. pyri captures in traps with CWO NF were statistically lower than in traps with the attractive mixture. Nevertheless, no statistical differences in the numbers of caught specimens were observed between CWO NF and those captured in green traps baited with blank NF. Transparent traps captured fewer psyllids than green ones. In a second field study with a completed different design (push-and-count design), dispensers filled with CBO were distributed within the plantation, and attractive green sticky traps were placed around the plantation. The numbers of trapped pear psyllids increased significantly in the border of the treated plantation, showing that psyllids were repelled by the EOs in the plantation. Although further field evaluation is needed to assess and improve their effectiveness, our results show that these aromatic compounds, repellent or attractive both in nanoformulations and marking pen dispensers, offer great potential as an environmentally sustainable alternative to currently applied methods for managing pear decline vectors.
Collapse
Affiliation(s)
- Bruna Czarnobai De Jorge
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Dossenheim, Germany
- Laboratory of Plant Chemical Ecology, Technical University of Darmstadt, Darmstadt, Germany
| | - Alicia Koßmann
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Dossenheim, Germany
- Laboratory of Plant Chemical Ecology, Technical University of Darmstadt, Darmstadt, Germany
| | - Hans E. Hummel
- Laboratory of Organic Agriculture, Justus-Liebig University of Giessen, Giessen, Germany
- Laboratory of Biodiversity and Ecological Entomology, Illinois Natural History Survey, Champaign, IL, United States
| | - Jürgen Gross
- Laboratory of Applied Chemical Ecology, Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Dossenheim, Germany
| |
Collapse
|
8
|
Ragavendran K, Selvakumaran J, MuthuKanagavel M, Ignacimuthu S, Alharbi NS, Thiruvengadam M, Mutheeswaran S, Ganesan P. Effect of Mosquitocidal, histopathological alteration and non target effects of Sigesbeckia orientalis L. on Anopheles stephensi Liston, Culex quinquefasciatus say and Aedes aegypti L. Vet Parasitol Reg Stud Reports 2024; 49:100997. [PMID: 38462302 DOI: 10.1016/j.vprsr.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Diseases transmitted by vectors have a significant collision on society and community health, particularly in tropical and subtropical regions, where they can cause large-scale outbreaks shortly after initial transmission. The intent of this investigation was to study the plant extract derived from Sigesbeckia orientalis L. in controlling the immature stages of Anopheles, Culex and Aedes mosquitoes, while also considering its potential toxicity to ecosystems. The immature stages were exposed to different extracts (62.5-500 ppm), and the mortality of larvae and pupae, as well as ovicidal activity, were noted after 24 and 120 h of the experiment. The hexane and ethyl aceate extract of S. orientalis presented 100% ovicidal activity against the eggs of Anopheles, Aedes and Culex at 500 ppm concentration after 5 days of treatment. The hexane and ethylacetate extracts presented strong larvicidal activity with LC50 values of 215.7, 332.0, 197.4 and 212.6, 694.9 and 201.7 ppm against treated mosquitoes at 24 h, respectively. The same extract also presented promising pupicidal activity. The LC50 values of hexane extract were 219.6, 353.6, 194.2 and LC50 values of ethyl acetate were 257.6, 387.8 and 259.07 ppm against early stage pupae of three vector mosquitoes, respectively. The extracts from S. orientalis had strong inhibitory activity against growth and development of mosquitoes. SI/PSF values showed that the extracts of S. orientalis did not harm Poecilia reticulata, Diplonychus indicus (Water bug), Gambusia affinis and dragon fly nymph at tested concentrations. Furthermore, examinations of histopathology and growth disruption revealed significant damage to the midgut cells in the treated larvae. The formulations utilizing hexane and ethyl acetate extracts exhibited potent activity without posing any toxicity towards non-target organisms. This study clearly indicated that hexane and ethylacetate extracts showed promising results against treated mosquitoes. The present study documents the first report of the extracts from S. orientalis and they can be further assessed to identify compounds for application purposes.
Collapse
Affiliation(s)
- Kamaraj Ragavendran
- Interdisciplinary Research Centre in Biology, Xavier Research Foundation, St. Xavier's College (Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamilnadu, India
| | - Jeyaraj Selvakumaran
- Interdisciplinary Research Centre in Biology, Xavier Research Foundation, St. Xavier's College (Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamilnadu, India
| | - Mariappan MuthuKanagavel
- Interdisciplinary Research Centre in Biology, Xavier Research Foundation, St. Xavier's College (Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamilnadu, India
| | - Savarimuthu Ignacimuthu
- Interdisciplinary Research Centre in Biology, Xavier Research Foundation, St. Xavier's College (Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamilnadu, India; The Anna and Donald Waite Chair, Creighton University, Omaha, United States of America.
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Subramanian Mutheeswaran
- Interdisciplinary Research Centre in Biology, Xavier Research Foundation, St. Xavier's College (Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamilnadu, India
| | - Pathalam Ganesan
- Interdisciplinary Research Centre in Biology, Xavier Research Foundation, St. Xavier's College (Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamilnadu, India.
| |
Collapse
|
9
|
Hosseinizadeh Z, Osanloo M, Alipour H, Heiran R, Shahriari-Namadi M, Moemenbellah-Fard MD. Nanoliposomal Trachyspermum ammi (L) sprague essential oil for effective control of malaria mosquito larvae, Anopheles stephensi Liston. Exp Parasitol 2023; 255:108644. [PMID: 37939823 DOI: 10.1016/j.exppara.2023.108644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Controlling mosquito vectors at immature stages using larvicides is a practical strategy to stave off mosquito-borne diseases such as malaria. Developing nanoliposomes bearing essential oil is a promising approach to improving the efficacy and stability of EOs-derived larvicides. The main aim of this investigation was to assess the efficacy of nanoliposome containing Trachyspermum ammi L. EO (TAEO-NL) as a new potential formulation to control Anopheles stephensi Liston (Diptera, Culicidae) mosquito larvae. The chemical constituents of T. ammi L. essential oil (TAEO) were first investigated using gas chromatography-mass spectrometry (GC-MS) analysis; its dominant component (48.22%) was thymol. TAEO-NL with a particle size of 54.6 ± 5 nm and zeta potential of -18 ± 0.5 mV were then prepared using the ethanol injection method. Besides, the successful loading of TAEO was confirmed using Attenuated Total Reflection-Fourier Transform Infra-Red (ATR-FTIR) spectroscopy analysis. A significant difference (P < 0.05) was observed in the efficacy of TAEO-NL and TAEO with lethal concentration 50% (LC50) values of 14.09 and 59.47 μg/mL against An. stephensi larvae. However, free nanoliposomes show negligible larvicidal effects (<5%). This nano-formulation could thus be suggested as a green product against insects to impede transmission of deadly infectious diseases with possible field applicability scope.
Collapse
Affiliation(s)
- Z Hosseinizadeh
- Student Research Committee, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - M Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences (FUMS), Fasa, Iran.
| | - H Alipour
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran.
| | - R Heiran
- Estahban Higher Education Center- Shiraz University, Estahban, Iran.
| | - M Shahriari-Namadi
- Student Research Committee, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - M D Moemenbellah-Fard
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran.
| |
Collapse
|
10
|
Martini F, Jijakli MH, Gontier E, Muchembled J, Fauconnier ML. Harnessing Plant's Arsenal: Essential Oils as Promising Tools for Sustainable Management of Potato Late Blight Disease Caused by Phytophthora infestans-A Comprehensive Review. Molecules 2023; 28:7302. [PMID: 37959721 PMCID: PMC10650712 DOI: 10.3390/molecules28217302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Potato late blight disease is caused by the oomycete Phytophthora infestans and is listed as one of the most severe phytopathologies on Earth. The current environmental issues require new methods of pest management. For that reason, plant secondary metabolites and, in particular, essential oils (EOs) have demonstrated promising potential as pesticide alternatives. This review presents the up-to-date work accomplished using EOs against P. infestans at various experimental scales, from in vitro to in vivo. Additionally, some cellular mechanisms of action on Phytophthora spp., especially towards cell membranes, are also presented for a better understanding of anti-oomycete activities. Finally, some challenges and constraints encountered for the development of EOs-based biopesticides are highlighted.
Collapse
Affiliation(s)
- Florian Martini
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - M. Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| | - Eric Gontier
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - Jérôme Muchembled
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| |
Collapse
|
11
|
MOHAPATRA PRIYADARSHINI, CHANDRASEKARAN NATARAJAN. OPTIMIZATION AND CHARACTERIZATION OF ESSENTIAL OILS FORMULATION FOR ENHANCED STABILITY AND DRUG DELIVERY SYSTEM OF MEFLOQUINE. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICS 2023:145-154. [DOI: 10.22159/ijap.2023v15i5.48624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Objective: This work aims to choose suitable essential oil formulations to improve the bioavailability and long-term aqueous stability of mefloquine in drug delivery systems.
Methods: Oil phases of pomegranate oil, black cumin seed oil, and garlic oil. To choose the proper oil and surfactant for creating pseudo-ternary phase diagrams, cremophore EL, tween®20 and tween®80 (surfactants), and brij 35 (co-surfactants) were used in a variety of concentrations and combinations (Smix). Mefloquine was estimated to be soluble in a variety of oils, surfactants, and co-surfactants. Drug solubility, drug release research, thermodynamic stability, mean hydrodynamic size and zeta potential.
Results: Garlic with smix of cremophore EL and brij 35, Pomegranate with Tween 2.0, and Black cumin seed oil with Tween 80 showed the highest solubilization and emulsification capabilities and were further investigated using ternary phase diagrams. When combined with the co-surfactants under investigation, cremophore EL demonstrated a greater self-emulsification zone than tween® 80 and tween 20. Garlic oil, cremophore EL, and brij 35 nanoemulsion showed smaller size, greater zeta potential, less emulsification time, high transmittance, and better drug solubility than microemulsion formulations on especially those made with tween®20 and tween 80. Mefloquine loaded garlic oil nanoemulsion showed considerably low release in body fluid (32.48%) and a good release in intestinal fluid (82.78%) by 12 h in a drug release study.
Conclusion: Garlic oil as the oil phase and a mixture of cremophore EL and brij 35 as the surfactant phase are ideal surfactants and co-surfactant for mefloquine loaded garlic oil nanoemulsion with greater drug release in release kinetics investigation.
Collapse
|
12
|
Ale A, Andrade VS, Gutierrez MF, Bacchetta C, Rossi AS, Orihuela PS, Desimone MF, Cazenave J. Nanotechnology-based pesticides: Environmental fate and ecotoxicity. Toxicol Appl Pharmacol 2023; 471:116560. [PMID: 37230195 DOI: 10.1016/j.taap.2023.116560] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
The imminent increase in global food demand inevitably leads to an increase in agricultural practices, with an emphasis on pesticide applications. Nanotechnology-based pesticides, or nanopesticides, have gained importance as they are more efficient and, in some cases, less toxic than their conventional counterparts. However, concerns about these novel products have arisen as evidence about their (eco)safety is controversial. This review aims to: (1) introduce the currently applied nanotechnology-based pesticides and their mechanisms of toxic action; (2) describe their fate when released into the environment, with an emphasis on aquatic environments; (3) summarize available research on ecotoxicological studies in freshwater non-target organisms through a bibliometric analysis; and (4) identify gaps in knowledge from an ecotoxicological perspective. Our results show that the environmental fate of nanopesticides is poorly studied and depends on both intrinsic and external factors. There is also a need for comparative research into their ecotoxicity between conventional pesticide formulations and their nano-based counterparts. Among the few available studies, most considered fish species as test organisms, compared to algae and invertebrates. Overall, these new materials generate toxic effects on non-target organisms and threaten the integrity of the environment. Therefore, deepening the understanding of their ecotoxicity is crucial.
Collapse
Affiliation(s)
- Analía Ale
- Instituto Nacional de Limnología (INALI), CONICET, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina.
| | - Victoria S Andrade
- Instituto Nacional de Limnología (INALI), CONICET, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina
| | - María F Gutierrez
- Instituto Nacional de Limnología (INALI), CONICET, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina; Escuela Superior de Sanidad "Dr. Ramón Carrillo", FBCB, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Carla Bacchetta
- Instituto Nacional de Limnología (INALI), CONICET, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Andrea S Rossi
- Instituto Nacional de Limnología (INALI), CONICET, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina; Facultad de Humanidades y Ciencias, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Pablo Santo Orihuela
- Universidad de Buenos Aires, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), CONICET, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Martín F Desimone
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN) UNIDEF-CITIDEF-CONICET, Villa Martelli, Buenos Aires, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología (INALI), CONICET, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina; Facultad de Humanidades y Ciencias, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina
| |
Collapse
|
13
|
Assemie A, Gemeda T. Larvicidal Activities of Allium sativum L. and Zingiber officinale Rosc. Extracts against Filariasis Vectors in Hadiya Zone, Ethiopia. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6636837. [PMID: 37292452 PMCID: PMC10247325 DOI: 10.1155/2023/6636837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 06/10/2023]
Abstract
Mosquitoes present an immense threat to millions of people worldwide and act as vectors for filariasis disease. The objective of the study was to determine the effect of Allium sativum and Zingiber officinale extracts against filariasis vectors. The larvae were collected from the breeding site by using standard procedures for identification and larvicidal activities. Twenty grams (20 g) from each (Allium sativum and Zingiber officinale) were extracted separately by aqueous, ethanol, and methanol solvents. The phytochemical analysis was determined in the crude sample by using standard methods. Then, larvicidal effects were determined by introducing 10 larvae of the vectors to the concentrations of 250 ppm, 500 ppm, and 750 ppm of the crude sample, and data were subjected to probit analysis to determine the LC50 and Chi-squared test to check the significance of the mortality by R software. Anopheles funestus, Anopheles gambiae s.l., Anopheles pharoensis, Culex antennatus, and Culex quinquefasciatus were the filariasis vectors identified during the study period. The presence of phytochemical tests such as anthraquinones, flavonoids, glycosides, phenol, saponin, steroids, tannin, and terpenes was obtained. The larvicidal effects of the selected plant extracts ranged from 0%-100%. The lowest LC50 (53 ppm) was observed for A. sativum methanol test extract against Cx. quinquefasciatus. Ethanol extracts of A. sativum have a significant effect on An. funestus (X2 = 7.5, p = 0.02352) and Cx. quinquefasciatus (X2 = 10.833, p = 0.0.0044), whereas aqueous extracts have a significant effect only on An. gambiae s.l. (X2 = 7.0807, p = 0.029. Ethanol extracts of Z. officinale have a significant effect only on the mortality of An. pharoensis (X2 = 7.0807, p = 0.029), but methanol and aqueous extracts have no significant effect against filariasis vectors. In conclusion, A. sativum have a high toxic effect than Z. officinale extract against filariasis vectors in all type of solvents. So using those plant extracts is the best to reduce the risk of the synthetic chemical on nontarget organisms and the environment, in addition to the control of mosquito-borne diseases, but further studies will be conducted to evaluate the toxicity at different stages of the vectors.
Collapse
Affiliation(s)
- Anmut Assemie
- Department of Biology, Wachemo University, P.O. Box 667, Hossana, Ethiopia
| | - Temam Gemeda
- Department of Biotechnology, Wachemo University, PO Box 667, Hossana, Ethiopia
| |
Collapse
|
14
|
Chatterjee S, Bag S, Biswal D, Sarkar Paria D, Bandyopadhyay R, Sarkar B, Mandal A, Dangar TK. Neem-based products as potential eco-friendly mosquito control agents over conventional eco-toxic chemical pesticides-A review. Acta Trop 2023; 240:106858. [PMID: 36750152 DOI: 10.1016/j.actatropica.2023.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Mosquitoes cause serious health hazards for millions of people across the globe by acting as vectors of deadly communicable diseases like malaria, filariasis, dengue and yellow fever. Use of conventional chemical insecticides to control mosquito vectors has led to the development of biological resistance in them along with adverse environmental consequences. In this light, the recent years have witnessed enormous efforts of researchers to develop eco-friendly and cost-effective alternatives with special emphasis on plant-derived mosquitocidal compounds. Neem oil, derived from neem seeds (Azadirachta indica A. Juss, Meliaceae), has been proved to be an excellent candidate against a wide range of vectors of medical and veterinary importance including mosquitoes. It is environment-friendly, and target-specific at the same time. The active ingredients of neem oil include limonoids like azadirachtin A, nimbin, salannin and numerous other substances that are still waiting to be discovered. Of these, azadirachtin has been shown to be very effective and is mainly responsible for its toxic effects. The quality of the neem oil depends on its azadirachtin content which, in turn, depends on its manufacturing process. Neem oil can be used directly or as nanoemulsions or nanoparticles or even in the form of effervescent tablets. When added to natural breeding habitat waters they exert their mosquitocidal effects by acting as ovicides, larvicides, pupicides and/or oviposition repellents. The effects are generated by impairing the physiological pathways of the immature stages of mosquitoes or directly by causing physical deformities that impede their development. Neem oil when used directly has certain disadvantages mainly related to its disintegration under atmospheric conditions rendering it ineffective. However, many of its formulations have been reported to remain stable under environmental conditions retaining its efficiency for a long time. Similarly, neem seed cake has also been found to be effective against the mosquito vectors. The greatest advantage is that the target species do not develop resistance against neem-based products mainly because of the innumerable number of chemicals present in neem and their combinations. This makes neem-based products highly potential yet unexplored candidates of mosquito control agents. The current review helps to elucidate the roles of neem oil and its various derivatives on mosquito vectors of public health concern.
Collapse
Affiliation(s)
- Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Souvik Bag
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Debraj Biswal
- Department of Zoology, Government General Degree College at Mangalkote, Burdwan 713132, West Bengal, India
| | | | | | - Basanta Sarkar
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Abhijit Mandal
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Tushar Kanti Dangar
- Microbiology Laboratory, Division of Crop Production, National Rice Research Institute, Cuttack 753006, Odisha, India
| |
Collapse
|
15
|
Ibrahim SS, Sahu U, Karthik P, Vendan SE. Eugenol nanoemulsion as bio-fumigant: enhanced insecticidal activity against the rice weevil, Sitophilus oryzae adults. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1435-1445. [PMID: 36936125 PMCID: PMC10020412 DOI: 10.1007/s13197-023-05690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/09/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
Nanoemulsion is a promising delivery system for delivering the plant bioactive molecules against insect pests. In this study, we aimed to prepare eugenol based nanoemulsions (EL-NE) by ultrasonication method to investigate its fumigant toxicity against Sitophilus oryzae adults and to analyse the residual characteristics of eugenol bioactive on the treated grains and beetles. In EL-NE preparations, 1:1 ratio of eugenol: Tween 80 combination with 5 min of ultrasonication at frequency of 10 kHz and 12 W power output was determined as optimal. In the optimized nanoemulsions, 19.21 to 42.82 d.nm range of mean droplet size, 0.50 to 0.77 range of polydispersity index and -21.80 to -29.83 mV range of zeta potential values were observed with respect to 2.5 to 10.0% of eugenol concentrations. After 72 h of fumigation, enhanced fumigant toxicities (3.5-11.2 fold) were observed against S. oryzae adults for the optimized EL-NEs compared to eugenol alone. Fumigant toxicity results revealed 14.40 µl/L air of least LC50 value for the 10.0% EL-NE. Persistence of eugenol was more (12.46%) in EL-NE treated wheat grains compared to eugenol alone treatments based on Gas Chromatography-Mass Spectroscopy analysis, which indicates the improved fumigation. This study results suggests EL-NEs as promising nano-biofumigant against the S. oryzae adults for eco-friendly Integrated Pest Management (IPM). Graphical abstract
Collapse
Affiliation(s)
- Samar Sayed Ibrahim
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
- Present Address: Pests and Plant Protection Department, National Research Centre, Cairo, 12622 Egypt
| | - Urvashi Sahu
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
| | - Pothiyappan Karthik
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641 021 India
| | - Subramanian Ezhil Vendan
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
| |
Collapse
|
16
|
What function of nanoparticles is the primary factor for their hyper-toxicity? Adv Colloid Interface Sci 2023; 314:102881. [PMID: 36934512 DOI: 10.1016/j.cis.2023.102881] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Nanomaterials have applications in environmental protection, hygiene, medicine, agriculture, and the food industry due to their enhanced bio-efficacy/toxicity as science and technology have progressed, notably nanotechnology. The extension in the use of nanoparticles in day-to-day products and their excellent efficacy raises worries about safety concerns associated with their use. Therefore, to understand their safety concerns and find the remedy, it is imperative to understand the rationales for their enhanced toxicity at low concentrations to minimize their potential side effects. The worldwide literature quotes different nanoparticle functions responsible for their enhanced bio-efficacy/ toxicity. Since the literature on the comparative toxicity study of nanoparticles of different shapes and sizes having different other physic-chemical properties like surface areas, surface charge, solubility, etc., evident that the nanoparticle's toxicity is not followed the fashion according to their shape, size, surface area, surface charge, solubility, and other Physico-chemical properties. It raises the question then what function of nanoparticle is the primary factor for their hyper toxicity. Why do non-spherical and large-sized nanoparticles show the same or higher toxicity to the same or different cell line or test organism instead of having lower surface area, surface charge, larger size, etc., than their corresponding spherical and smaller-sized nanoparticles? Are these factors a secondary, not primary, factor for nanoparticles hyper-toxicity? If so, what function of nanoparticles is the primary function for their hyper-toxicity? Therefore, in this article, literature related to the comparative toxicity of nanoparticles was thoroughly studied, and a hypothesis is put forth to address the aforesaid question, that the number of atoms/ions/ molecules per nanoparticles is the primary function of nanoparticles toxicity.
Collapse
|
17
|
Gangwar J, Kadanthottu Sebastian J, Puthukulangara Jaison J, Kurian JT. Nano-technological interventions in crop production-a review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:93-107. [PMID: 36733843 PMCID: PMC9886790 DOI: 10.1007/s12298-022-01274-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Agricultural industry is facing huge crisis due to fast changing climate, decreased soil fertility, macro and micronutrient insufficiency, misuse of chemical fertilizers and pesticides, and heavy metal presence in soil. With exponential increase in world's population, food consumption has increased significantly. Maintaining the production to consumption ratio is a significant challenge due to shortage caused by various issues faced by agricultural industry even with the improved agricultural practices. Recent scientific evidence suggests that nanotechnology can positively impact the agriculture sector by reducing the harmful effects of farming operations on human health and nature, as well as improving food productivity and security. Farmers are combining improved agricultural practices like usage of fertilizers, pesticides etc. with nano-based materials to improve the efficiency and productivity of crops. Nano technology is also playing a significant role improving animal health products, food packaging materials, and nanosensors for detecting pathogens, toxins, and heavy metals in soil among others. The nanobased materials have improved the productivity twice with half the resources being utilized. Nanoparticles that are currently in use include titanium dioxide, zinc oxide, silicon oxide, magnesium oxide, gold, and silver used for increasing soil fertility and plant growth. Crop growth, yield, and productivity are improved by controlled release nanofertilizers. In this review we elaborate on the recent developments in the agricultural sector by the usage of nanomaterial based composites which has significantly improved the agricultural sector especially how nanoparticles play an important role in plant growth and soil fertility, in controlling plant diseases by the use of nanopesticides, nanoinsecticides, nanofertilizers, Nanoherbicides, nanobionics, nanobiosensors. The review also highlights the mechanism of migration of nanoparticles in plants and most importantly the effects of nanoparticles in causing plant and soil toxicity.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029 India
| | | | | | - Jissa Theresa Kurian
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029 India
| |
Collapse
|
18
|
Peniche T, Duarte JL, Ferreira RMA, Sidônio IAP, Sarquis RSFR, Sarquis ÍR, Oliveira AEMFM, Cruz RAS, Ferreira IM, Florentino AC, Carvalho JCT, Souto RNP, Fernandes CP. Larvicidal Effect of Hyptis suaveolens (L.) Poit. Essential Oil Nanoemulsion on Culex quinquefasciatus (Diptera: Culicidae). Molecules 2022; 27:molecules27238433. [PMID: 36500534 PMCID: PMC9738304 DOI: 10.3390/molecules27238433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Mosquitoes can be vectors of pathogens and transmit diseases to both animals and humans. Species of the genus Culex are part of the cycle of neglected diseases, especially Culex quinquefasciatus, which is an anthropophilic vector of lymphatic filariasis. Natural products can be an alternative to synthetic insecticides for vector control; however, the main issue is the poor water availability of some compounds from plant origin. In this context, nanoemulsions are kinetic stable delivery systems of great interest for lipophilic substances. The objective of this study was to investigate the larvicidal activity of the Hyptis suaveolens essential oil nanoemulsion on Cx. quinquefasciatus. The essential oil showed a predominance of monoterpenes with retention time (RT) lower than 15 min. The average size diameter of the emulsions (sorbitan monooleate/polysorbate 20) was ≤ 200 nm. The nanoemulsion showed high larvicidal activity in concentrations of 250 and 125 ppm. CL50 values were 102.41 (77.5253−149.14) ppm and 70.8105 (44.5282−109.811) ppm after 24 and 48 h, respectively. The mortality rate in the surfactant control was lower than 9%. Scanning micrograph images showed changes in the larvae’s integument. This study achieved an active nanoemulsion on Cx. quinquefasciatus through a low-energy-input technique and without using potentially toxic organic solvents. Therefore, it expands the scope of possible applications of H. suaveolens essential oil in the production of high-added-value nanosystems for tropical disease vector control.
Collapse
Affiliation(s)
- Taires Peniche
- Post-Graduate Program in Tropical Biodiversity, Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
- Laboratory of Arthropoda, Collegiate of Biology, Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
| | - Jonatas L. Duarte
- Laboratory of Phytopharmaceutical Nanobiotechnology, Collegiate of Pharmacy, Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
| | - Ricardo M. A. Ferreira
- Laboratory of Arthropoda, Collegiate of Biology, Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
| | - Igor A. P. Sidônio
- Laboratory of Phytopharmaceutical Nanobiotechnology, Collegiate of Pharmacy, Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
| | - Rosângela S. F. R. Sarquis
- Laboratory of Pharmaceutical Research, Collegiate of Pharmacy, Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
| | - Ícaro R. Sarquis
- Laboratory of Phytopharmaceutical Nanobiotechnology, Collegiate of Pharmacy, Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
| | - Anna E. M. F. M. Oliveira
- Laboratory of Phytopharmaceutical Nanobiotechnology, Collegiate of Pharmacy, Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
| | - Rodrigo A. S. Cruz
- Laboratory of Phytopharmaceutical Nanobiotechnology, Collegiate of Pharmacy, Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
| | - Irlon M. Ferreira
- Laboratory of Biocatalysis and Chemical Biotransformation, Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
| | - Alexandro C. Florentino
- Graduate Program in Envirionmental Sciences (PPGCA), Laboratory of Ichthyology and Genotoxicity (LIGEN), Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
| | - José C. T. Carvalho
- Laboratory of Pharmaceutical Research, Collegiate of Pharmacy, Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
| | - Raimundo N. P. Souto
- Laboratory of Arthropoda, Collegiate of Biology, Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
| | - Caio P. Fernandes
- Laboratory of Phytopharmaceutical Nanobiotechnology, Collegiate of Pharmacy, Federal University of Amapá, Rodovia Juscelino Kubitschek Km 02, Jardim Marco Zero, Macapá CEP 68903-419, Amapá, Brazil
- Correspondence:
| |
Collapse
|
19
|
Evaluation of larvicidal enhanced activity of sandalwood oil via nano-emulsion against Culex pipiens and Ades aegypti. Saudi J Biol Sci 2022; 29:103455. [PMID: 36187454 PMCID: PMC9523098 DOI: 10.1016/j.sjbs.2022.103455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Mosquito control with essential oils is a trending strategy using aqueous oil nano-emulsions to expand their performance. Sandalwood essential oil and its prepared nano-emulsion used to estimate their larvicidal activities against the 3rd instar larvae of Culex pipiens and Aedes aegypti and their effects on larval tissue detoxifying enzymes. Sandalwood nano-emulsion was characterized by homogeneous, stable, average particles size (195.7 nm), polydispersity index (0.342), and zeta potential (−20.1 mV). Morphologically showed a regular spherical shape in size ranged from 112 to 169 nm that confirmed via scanning electron microscopy. Oil analysis identified sesquiterpene alcohols, mainly santalols, terpenoids, aromatic compounds, fatty acid methyl esters, and phenolic compounds. Larvicidal activities of the oil and its nano-emulsion indicated dose, formulation, and exposure time-related mortality after 24 and 48 h in both species. After 24 h, 100% mortality was detected at 1000 ppm for the nano-emulsion with LC50 of 187.23 and 232.18 ppm and at 1500 ppm for the essential oil with an LC50 of 299.47 and 349.59 ppm against the 3rd larvae Cx. pipiens and Ae. aegypti, respectively. Meanwhile, an enhanced significant effect of the nano-emulsion was observed compared to oil exposure in decreasing total protein content and the activities of alkaline phosphatase and β-esterase enzymes, and increasing α-esterase and glutathione S-transferase activities in larval body tissues. Results demonstrated the enhanced larvicidal potential of sandalwood oil nano-emulsion over that of oil. The effect involved alterations in the detoxifying enzymes based on the existing natural active ingredients against Cx. pipiens and Ae. aegypti larvae.
Collapse
|
20
|
Carvalho APAD, Conte-Junior CA. Nanoencapsulation application to prolong postharvest shelf life. Curr Opin Biotechnol 2022; 78:102825. [PMID: 36332341 DOI: 10.1016/j.copbio.2022.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022]
Abstract
This review offers our opinion on current and future trends regarding nanoencapsulation interventions to extend postharvest shelf life of stored grains, fruits, and vegetables. Herein, we considered two major factors influencing postharvest shelf life for comments: aerobic food spoilage microorganisms and stored pests. Nanoemulsions, edible/active coatings, and nanopackaging loading essential oils as antimicrobial, antioxidant, or pesticide showed promising results in prolonged shelf life at room/cold storage without compromising quality, organoleptic properties, and postharvest physiology. Trends with nanoencapsulation using plant-based pesticides as agrochemical-free methods to keep produce fresh longer were commented as potential candidates for prolonging the shelf life of stored grains and fruits at the postharvest stage. Research with potential large-scale feasibility is intensive, but safety assessment is required and remains little explored.
Collapse
Affiliation(s)
- Anna Paula Azevedo de Carvalho
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941598, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941598, Brazil; Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro RJ 20020-000, Brazil.
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941598, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941598, Brazil; Graduate Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro RJ 20020-000, Brazil; Graduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil.
| |
Collapse
|
21
|
Shi X, Yang K, Song H, Teng Z, Zhang Y, Ding W, Wang A, Tan S, Dong H, Sun S, Hu Y, Guo H. Development and Efficacy Evaluation of a Novel Nano-Emulsion Adjuvant for a Foot-and-Mouth Disease Virus-like Particles Vaccine Based on Squalane. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223934. [PMID: 36432220 PMCID: PMC9698784 DOI: 10.3390/nano12223934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/01/2023]
Abstract
The successful development of foot-and-mouth disease virus-like particles (FMD-VLPs) has opened a new direction for researching a novel subunit vaccine for foot-and-mouth disease (FMD). Therefore, it is urgent to develop an adjuvant that is highly effective and safe to facilitate a better immune response to be pair with the FMD-VLP vaccine. In this research, we prepared a new nano-emulsion adjuvant based on squalane (SNA) containing CpG using the pseudo-ternary phase diagram method and the phase transformation method. The SNA consisted of Span85, Tween60, squalane, polyethene glycol-400 (PEG400) and CpG aqueous solution. The average particle diameter of the SNA was about 95 nm, and it exhibited good resistance to centrifugation, thermal stability, and biocompatibility. Then, SNA was emulsified as an adjuvant to prepare foot-and-mouth disease virus-like particles vaccine, BALB/c mice and guinea pigs were immunized, and we evaluated the immunization effect. The immunization results in mice showed that the SNA-VLPs vaccine significantly increased specific antibody levels in mice within 4 weeks, including higher levels of IgG1 and IgG2a. In addition, it increased the levels of IFN-γ and IL-1β in the immune serum of mice. Meanwhile, guinea pig-specific and neutralizing antibodies were considerably increased within 4 weeks when SNA was used as an adjuvant, thereby facilitating the proliferation of splenic lymphocytes. More importantly, in guinea pigs immunized with one dose of SNA-VLPs, challenged with FMDV 28 days after immunization, the protection rate can reach 83.3%, which is as high as in the ISA-206 control group. In conclusion, the novel squalane nano-emulsion adjuvant is an effective adjuvant for the FMD-VLPs vaccine, indicating a promising adjuvant for the future development of a novel FMD-VLPs vaccine.
Collapse
Affiliation(s)
- Xiaoni Shi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- School of Chemical Engineering, Lanzhou City University, Lanzhou 730070, China
| | - Kun Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Hetao Song
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Weihao Ding
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Aofei Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Shuzhen Tan
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Hu Dong
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| |
Collapse
|
22
|
Iqbal H, Jahan N, Khalil-Ur-Rahman, Jamil S. Formulation and characterisation of Azadirachta indica nanobiopesticides for ecofriendly control of wheat pest Tribolium castaneum and Rhyzopertha dominica. J Microencapsul 2022; 39:638-653. [PMID: 36398734 DOI: 10.1080/02652048.2022.2149870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to formulate the green, sustainable, and ecofriendly nanobiopesticides of Azadirachta indica with enhanced pest control efficacy. Nanoprecipitation method was used for the development of nanobiopesticides. Optimisation was done by response surface methodology. Nanoformulations were characterised by zetasizer, scanning electron microscopy, energy dispersive x-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. Pesticidal potential of nanosuspensions was evaluated by insecticide impregnated filter paper method. Optimised nanobiopesticide showed an average particle size of 275.8 ± 0.95 nm, polydispersity index (PDI) 0.351 ± 0.002, and zeta potential of -33 ± 0.90 mV. Nanobiopesticides exhibited significantly higher mortality rates of 86.81 ± 3.04 and 84.97 ± 2.83% against Tribolium castaneum and Ryzopertha dominica, respectively, as compared to their crude extract. Minor change in particle size from 275.8 ± 0.95 to 298.8 ± 1.00 nm and PDI from 0.351 ± 0.002 to 0.445 ± 0.02 were observed after 3 months of storage at 4 °C. Pesticidal efficacy of A. indica was significantly enhanced by the formulation of its nanobiopesticides.
Collapse
Affiliation(s)
- Humaira Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nazish Jahan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Khalil-Ur-Rahman
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Pakistan
| | - Saba Jamil
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
23
|
Singh IR, Pulikkal AK. Preparation, stability and biological activity of essential oil-based nano emulsions: A comprehensive review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Metayi MH, Abd El-Naby SS, El-Habal NA, Fahmy HH, Abdou MS, Ali B, Abdel-Rheim KH, Abdel-Megeed A. Omani Frankincense nanoemulsion formulation efficacy and its latent effects on biological aspects of the spiny bollworm Earias insulana (Boisd.). Front Physiol 2022; 13:1001136. [PMID: 36277209 PMCID: PMC9583008 DOI: 10.3389/fphys.2022.1001136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Our research shed light on the perspective of formulation technology regarding its responsibility to provide phyto-insecticides that are worthy of research into potential novel applications. There has been an increase in interest in using nanoemulsion as a new formulation in a variety of sectors during the last several decades. Boswellia sacra essential oil (Fam: Burseraceae) from the resin of frankincense trees has been recently proposed as a promising ingredient in a new generation of botanical insecticides. Frankincense nanoemulsion was formulated in 5% ratios comprising frankincense oil, surfactants, and water. A frankincense nanoemulsion was prepared using a high-energy ultra-sonication process and characterized by dynamic light scattering transmission electron microscopy surface tension, viscosity, and zeta potential value. Gas chromatography/mass spectrometry (GC/MS) was used to identify the chemical profiles of frankincense essential oil. Furthermore, insecticidal effects against second instar larvae of the spiny bollworm, Earias insulana, as well as their latent effects on the larvae were studied. In the present study, the formulation was a good nanoemulsion. The surface tension was 53.69, the viscosity was 4.76 cPs, the zeta potential was-10 mV, and the size distribution was 41.30 nm. The polydispersity index (PDI) of the nanoemulsion was found to be 0.26, and the morphology of the frankincense nanoemulsion was visualized in a spherical shape. The main constituents identified in frankincense oil were α-pinene (15.52%); monolinolenin (12.92%); and geranylgeranyl acetate (9.99%). The results showed significant insecticidal activity against the larval stage and considerably decreased the pupation percentage with increasing the volume of the frankincense nanoemulsion. On the other hand, the latent effects of the frankincense nanoemulsion on E. insulana resulted in a higher prolongation of larval and pupal durations as well as a significant reduction in the weight of larvae and pupae of E. insulana. Additionally, frankincense nanoemulsion dramatically influenced the adult emergence percentage. It also caused a significantly lower hatchability percentage compared to the untreated control. The concentrations used and the types of mating combination have a significant effect on the fecundity of E. insulana. This novel frankincense nanoemulsion formulation could be used in strategies to control the spiny bollworm on cotton plants.
Collapse
Affiliation(s)
- Mervat H. Metayi
- Cotton Boll Worm Research Department, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
| | - Shimaa S. Abd El-Naby
- Pesticide Formulation Research Department, Central Agriculture Pesticides Laboratory, Agricultural Research Center, Alexandria, Egypt
| | - Noha A. El-Habal
- Cotton Boll Worm Research Department, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
| | - Heba H. Fahmy
- Pesticide Formulation Research Department, Central Agriculture Pesticides Laboratory, Agricultural Research Center, Alexandria, Egypt
| | - Mona S. Abdou
- Cotton Pesticides Evaluation Research Department, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Khaled H. Abdel-Rheim
- Cereals and Stored Product Insects Research Department, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture (Saba-Basha), Alexandria University, Alexandria, Egypt
- *Correspondence: Ahmed Abdel-Megeed,
| |
Collapse
|
25
|
Lastochkina O, Aliniaeifard S, SeifiKalhor M, Bosacchi M, Maslennikova D, Lubyanova A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. HORTICULTURAE 2022; 8:910. [DOI: 10.3390/horticulturae8100910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Reduction of plant growth, yield and quality due to diverse environmental constrains along with climate change significantly limit the sustainable production of horticultural crops. In this review, we highlight the prospective impacts that are positive challenges for the application of beneficial microbial endophytes, nanomaterials (NMs), exogenous phytohormones strigolactones (SLs) and new breeding techniques (CRISPR), as well as controlled environment horticulture (CEH) using artificial light in sustainable production of horticultural crops. The benefits of such applications are often evaluated by measuring their impact on the metabolic, morphological and biochemical parameters of a variety of cultures, which typically results in higher yields with efficient use of resources when applied in greenhouse or field conditions. Endophytic microbes that promote plant growth play a key role in the adapting of plants to habitat, thereby improving their yield and prolonging their protection from biotic and abiotic stresses. Focusing on quality control, we considered the effects of the applications of microbial endophytes, a novel class of phytohormones SLs, as well as NMs and CEH using artificial light on horticultural commodities. In addition, the genomic editing of plants using CRISPR, including its role in modulating gene expression/transcription factors in improving crop production and tolerance, was also reviewed.
Collapse
|
26
|
Demir E, Kansız S, Doğan M, Topel Ö, Akkoyunlu G, Kandur MY, Turna Demir F. Hazard Assessment of the Effects of Acute and Chronic Exposure to Permethrin, Copper Hydroxide, Acephate, and Validamycin Nanopesticides on the Physiology of Drosophila: Novel Insights into the Cellular Internalization and Biological Effects. Int J Mol Sci 2022; 23:ijms23169121. [PMID: 36012388 PMCID: PMC9408976 DOI: 10.3390/ijms23169121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/23/2022] Open
Abstract
New insights into the interactions between nanopesticides and edible plants are required in order to elucidate their impacts on human health and agriculture. Nanopesticides include formulations consisting of organic/inorganic nanoparticles. Drosophila melanogaster has become a powerful model in genetic research thanks to its genetic similarity to mammals. This project mainly aimed to generate new evidence for the toxic/genotoxic properties of different nanopesticides (a nanoemulsion (permethrin nanopesticides, 20 ± 5 nm), an inorganic nanoparticle as an active ingredient (copper(II) hydroxide [Cu(OH)2] nanopesticides, 15 ± 6 nm), a polymer-based nanopesticide (acephate nanopesticides, 55 ± 25 nm), and an inorganic nanoparticle associated with an organic active ingredient (validamycin nanopesticides, 1177 ± 220 nm)) and their microparticulate forms (i.e., permethrin, copper(II) sulfate pentahydrate (CuSO4·5H2O), acephate, and validamycin) widely used against agricultural pests, while also showing the merits of using Drosophila—a non-target in vivo eukaryotic model organism—in nanogenotoxicology studies. Significant biological effects were noted at the highest doses of permethrin (0.06 and 0.1 mM), permethrin nanopesticides (1 and 2.5 mM), CuSO4·5H2O (1 and 5 mM), acephate and acephate nanopesticides (1 and 5 mM, respectively), and validamycin and validamycin nanopesticides (1 and 2.5 mM, respectively). The results demonstrating the toxic/genotoxic potential of these nanopesticides through their impact on cellular internalization and gene expression represent significant contributions to future nanogenotoxicology studies.
Collapse
Affiliation(s)
- Eşref Demir
- Medical Laboratory Techniques Program, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya Bilim University, Antalya 07190, Turkey
- Correspondence: ; Tel.: +90-242-245-0088; Fax: +90-242-245-0100
| | - Seyithan Kansız
- Faculty of Science, Department of Chemistry, Akdeniz University, Antalya 07070, Turkey
- Faculty of Science, Department of Chemistry, Ankara University, Ankara 07100, Turkey
| | - Mehmet Doğan
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya 07070, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Kırklareli University, Kırklareli 39100, Turkey
| | - Önder Topel
- Faculty of Science, Department of Chemistry, Akdeniz University, Antalya 07070, Turkey
| | - Gökhan Akkoyunlu
- Faculty of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya 07070, Turkey
| | - Muhammed Yusuf Kandur
- Industrial Biotechnology and Systems Biology Research Group, Faculty of Engineering, Department of Bioengineering, Marmara University, İstanbul 34854, Turkey
| | - Fatma Turna Demir
- Medical Laboratory Techniques Program, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya Bilim University, Antalya 07190, Turkey
| |
Collapse
|
27
|
Badr MM, Badawy MEI, Taktak NEM. Preparation, characterization, and antimicrobial activity of cinnamon essential oil and cinnamaldehyde nanoemulsions. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Mai M. Badr
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Mohamad E. I. Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Nehad E. M. Taktak
- Department of Environmental Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
28
|
Ibrahium SM, Aboelhadid SM, Wahba AA, Farghali AA, Miller RJ, Abdel-Baki AAS, Al-Quraishy S. Preparation of geranium oil formulations effective for control of phenotypic resistant cattle tick Rhipicephalus annulatus. Sci Rep 2022; 12:11693. [PMID: 35803943 PMCID: PMC9270397 DOI: 10.1038/s41598-022-14661-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of the present study was to evaluate in vitro and in vivo the acaricidal activity of two forms of geranium (Pelargonium graveolens) (PG). These two forms were the P. graveolens essential oil nanoemulsion (PGN), and the PG in combination with the sesame oil (SO), PGSO). These forms were first evaluated in vitro for their adulticidal, ovicidal, and larvicidal activities against the different stages of acaricide-resistant Rhipicephalus annulatus (Say). Geranium nanoemulsion was prepared and then characterized by UV-Vis spectrophotometer, and zeta droplet size measurement. The results revealed that LC50 of the PG against the adult ticks was attained at concentration of 7.53% while it was decreased to 1.91% and 5.60% for PGSO and PGN, respectively. Also, the LC50 of PGN and PGSO were reached at concentrations of 1.688 and 0.944%, respectively against the larvae while the LC50 of the PG was reached at concentration of 3.435% for. The combination of PGN with PG exhibited non-significant ovicidal effect meanwhile PGSO showed significant ovicidal effect even at the low concentration (2.5%). The PGSO and PGN formulations were applied in a field trial to control the ticks of the naturally infested cattle. PGSO and PGN significantly reduced the tick burden to 74.83% and 87.97%, respectively at 3 weeks post-application with performance better than the deltamethrin (29.88%). In conclusion, the two PG forms can be used as suitable alternatives to control R. annulatus tick and they need further modifications for effective field application.
Collapse
Affiliation(s)
- Samar M Ibrahium
- Department of Parasitology, Animal Health Research Institute, Fayum Branch, Fayum, Egypt.
| | - Shawky M Aboelhadid
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 52611, Egypt
| | - Ahmed A Wahba
- Department of Parasitology, Animal Health Research Institute, Dokki, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Robert J Miller
- Office of National Programs, United States Department of Agriculture Agricultural Research Service, Washington, USA
| | | | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
de Oliveira AC, Simões RC, Lima CAP, da Silva FMA, Nunomura SM, Roque RA, Tadei WP, Nunomura RCS. Essential oil of Piper purusanum C.DC (Piperaceae) and its main sesquiterpenes: biodefensives against malaria and dengue vectors, without lethal effect on non-target aquatic fauna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47242-47253. [PMID: 35179689 DOI: 10.1007/s11356-022-19196-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The mosquito vectors of the genera Aedes and Anopheles present resistance to several commercial insecticides, which are also toxic to non-predator targets. On the other hand, essential oils are a promising source of insecticides. Thus, in this work, the essential oil from the leaves of Piper purusanum was characterized by gas chromatography-based approaches and evaluated as biodefensive against malaria and dengue vectors. The main compounds of P. purusanum essential oil were β-caryophyllene (57.05%), α-humulene (14.50%), and germacrene D (8.20%). The essential oil inhibited egg hatching (7.6 ± 1.5 to 95.6 ± 4.5%), caused larval death (LC50 from 49.84 to 51.60 ppm), and inhibited the action of acetylcholinesterase (IC50 of 2.29 µg/mL), which can be related to the mechanisms of action. On the other hand, the biological activities of β-caryophyllene, α-humulene, and germacrene D were higher than that of essential oil. In addition, these sesquiterpenes and essential oil did not show a lethal effect on Toxorhynchites splendens, Anisops bouvieri, Gambusia affinis, and Diplonychus indicus (LC50 from 2098.80 to 7707.13 ppm), although D. indicus is more sensitive (SI/PSF from 48.56 to 252.02 ppm) to essential oil, representing a natural alternative against these relevant vectors.
Collapse
Affiliation(s)
- André C de Oliveira
- Sample Opening Laboratory and Chemical Testing, Federal University of Amazonas, Manaus, AM, Brazil.
- Malaria and Dengue Laboratory, Coordination of Society, Environment and Health, National Institute of Amazonian Research, Manaus, AM, Brazil.
- Graduate Program in Pharmaceutical Innovation, Federal University of Amazonas, Manaus, AM, 69080-900, Brazil.
| | - Rejane C Simões
- Malaria and Dengue Laboratory, Coordination of Society, Environment and Health, National Institute of Amazonian Research, Manaus, AM, Brazil
- Amazonas Health Surveillance Foundation Dr. Rosemary Costa Pinto, Manaus, AM, Brazil
| | - Carlos A P Lima
- Sample Opening Laboratory and Chemical Testing, Federal University of Amazonas, Manaus, AM, Brazil
| | - Felipe M A da Silva
- Analytical Center, Multidisciplinary Support Center, Federal University of Amazonas, Manaus, AM, Brazil
| | - Sergio M Nunomura
- Amazonian Active Principles Laboratory, Technology and Innovation Coordination, National Institute for Amazonian Research, Manaus, AM, Brazil
| | - Rosemary A Roque
- Malaria and Dengue Laboratory, Coordination of Society, Environment and Health, National Institute of Amazonian Research, Manaus, AM, Brazil
| | - Wanderli P Tadei
- Malaria and Dengue Laboratory, Coordination of Society, Environment and Health, National Institute of Amazonian Research, Manaus, AM, Brazil
| | - Rita C S Nunomura
- Sample Opening Laboratory and Chemical Testing, Federal University of Amazonas, Manaus, AM, Brazil
| |
Collapse
|
30
|
Taktak NEM, Badawy MEI, Awad OM, Abou El-Ela NE. Nanoemulsions containing some plant essential oils as promising formulations against Culex pipiens (L.) larvae and their biochemical studies. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 185:105151. [PMID: 35772840 DOI: 10.1016/j.pestbp.2022.105151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The chemical composition of cypress, lavender, lemon eucalyptus, and tea tree oils has been investigated using gas chromatography/mass spectrometry (GC/MS). These oils were tested for larvicidal activity against Culex pipiens alongside their nanoemulsions (NEs) and conventional emulsifiable concentrates (ECs). Oil-in-water (O/W) NEs preparation was based on a high-energy ultra-sonication technique. The effect of independent variables of preparation on the different outputs was studied using the response surface method to obtain the optimum preparation technique. The droplet sizes of prepared NEs were significantly different (71.67, 104.55, 211.07, and 70.67 for cypress, lavender, lemon eucalyptus, and Tea tree NEs, respectively). The zeta potentials of NEs were recorded to have a high negatively charge (-28.4, -22.2, -23.6, and - 22.3 mV for cypress, lavender, lemon eucalyptus, and tea tree NEs, respectively). The results showed that the tea tree oil has the most significant effect with LC50 = 60.02 and 57.10 mg/L after 24 and 48 h of exposure, respectively. In comparison, cypress oil proved the lowest toxicity with LC50 values of 202.24 and 180.70 mg/L after 24 and 48 h, respectively. However, lavender oil does not show any effect against larvae at tested concentrations. In addition, pure oil exhibited the lowest larvicidal activity. However, the EC of all tested insecticides slightly improved the toxic action against the larvae. While the NEs showed significantly high toxicity compared to the EO and EC. An in vivo assessment of acetylcholine esterase (AChE), adenosine triphosphatase (ATPase), and gamma-aminobutyric acid transaminase (GABA-T) revealed that the NEs exhibited higher activity than the pure oils and ECs. This work describes these oils with potential use against C. pipiens larvae as eco-friendly products.
Collapse
Affiliation(s)
- Nehad E M Taktak
- Department of Environmental Health, High Institute of Public Health, Alexandria University, 165 El-Horreya Ave., 21561-El-Hadara, Alexandria, Egypt.
| | - Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt
| | - Osama M Awad
- Department of Environmental Health, High Institute of Public Health, Alexandria University, 165 El-Horreya Ave., 21561-El-Hadara, Alexandria, Egypt
| | - Nadia E Abou El-Ela
- Department of Environmental Health, High Institute of Public Health, Alexandria University, 165 El-Horreya Ave., 21561-El-Hadara, Alexandria, Egypt
| |
Collapse
|
31
|
Agrawal S, Kumar V, Kumar S, Shahi SK. Plant development and crop protection using phytonanotechnology: A new window for sustainable agriculture. CHEMOSPHERE 2022; 299:134465. [PMID: 35367229 DOI: 10.1016/j.chemosphere.2022.134465] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 05/12/2023]
Abstract
Most developing nations' economies are built on agriculture and most of their citizens rely on it for survival. Global agricultural systems are experiencing tough and unprecedented challenges in the age of changing climate. Every year, the world's population grows, necessitating increased agrarian productivity. As a result, there has been a movement toward utilizing emerging technologies, such as nanotechnology. Nanotechnology with plant systems has inspired great interest in the current scenario in developing areas that come under the umbrella of agriculture and develop environmental remediation strategies. Plant-mediated synthesized nanoparticle (NPs) are eco-friendly, less time consuming, less expensive, and provide long-term product safety. Simultaneously, it provides tools that have the potentiality as "magic bullets" containing nutrients, fungicides, fertilizers, herbicides, or nucleic acids that target specific plant tissues and deliver their payload to the targeting location of the plant to achieve the intended results for environmental monitoring and pollution resistance. In this perspective, the classification and biological activities of different NPs on agroecosystem are focused. Furthermore, absorption, transport, and modification of NPs in plants were thoroughly examined. Some of the most promising new technologies e.g., nanotechnology to increase crop agricultural input efficiency and reduce biotic and abiotic stresses are also discussed. Potential development and implementation challenges were explored, highlighting the importance of using a systems approach when creating suggested nanotechnologies.
Collapse
Affiliation(s)
- Sakshi Agrawal
- Bio-Resource Tech Laboratory, Department of Botany, School of Life Science, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Vineet Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Sunil Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India
| | - Sushil Kumar Shahi
- Bio-Resource Tech Laboratory, Department of Botany, School of Life Science, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
32
|
Sanei-Dehkordi A, Agholi M, Shafiei M, Osanloo M. Promising Larvicidal Efficacy of Solid Lipid Nanoparticles Containing Mentha longifolia L., Mentha pulegium L., and Zataria multiflora Boiss. Essential Oils Against the Main Malaria Vector, Anopheles stephensi Liston. Acta Parasitol 2022; 67:1265-1272. [PMID: 35704149 DOI: 10.1007/s11686-022-00580-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE An attempt was made in the current study to develop a natural mosquito larvicide using nanotechnology. METHODS Solid lipid nanoparticles (SLNs) containing three essential oils were first prepared using the high-pressure homogenizer. Larvicidal effects of essential oils and the SLNs against Anopheles stephensi were then compared. RESULTS The size of SLN containing Mentha longifolia, Mentha pulegium, Zataria multiflora essential oil was obtained as 105 ± 7, 210 ± 4, and 137 ± 8 nm. Their zeta potentials were - 7.8, - 4.7, and - 9.7 mV. Besides, their efficacy with LC50 values of 24.79, 5.11, and 9.19 µg/mL was significantly more potent than that of their un-formulated essential oils with LC50 values of 36.2, 27.55, and 33.33 µg/mL. CONCLUSION SLNs containing M. pulegium with the best efficacy (P < 0.05) could be considered as potent larvicides against other important species of mosquitoes and field trials.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Agholi
- Department of Medical Parasitology and Mycology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahsa Shafiei
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
33
|
Ali SA, Khairy M, Ibrahim AA, Zohry NMH. Black seed and rosemary nanoformulations as green insecticides for the granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). J Food Sci 2022; 87:3095-3106. [PMID: 35638325 DOI: 10.1111/1750-3841.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
The development of nano-insecticides has attracted much interest in the last decade because it has the potential to result in an alternative pest-management strategy and also reduce the risk of chemically based insecticides. Herein, native rosemary (Rosmarinus officinalis) and black seed (Nigella sativa) oils were utilized for preparing their nanoemulsions by spontaneous emulsification method in the presence of tween 80 as a structure-directing agent. The prepared nanoemulsions were explored for granary weevil, Sitophilus granarius (L.), adults control and compared with their oils. Within the typical droplet sizes of 100 and 224 nm, both rosemary and black seed nanoemulsions were found to be physically and thermodynamically stable. The insecticidal activity of the nanoemulsions was higher than that of the crude oils. After 24 h of exposure, the LD50 values of rosemary and black seed nanoemulsions were estimated to be 102.56 and 35.08 µg/g, respectively, compared to 188.95 and 210.09 µg/g of their oils. These results revealed that the droplet size and chemical composition of the nanoemulsion are the significant factors that affect their toxicity. Surprisingly, the nanoemulsions had no effect on seed germination at LD50 or even LD99 . The utilization of such nanoformulations might open up a new avenue for ecofriendly pest control that is not damaging to humans or the environment, as well as a growing agricultural economy. PRACTICAL APPLICATION: The loss of cereals in postharvesting is one of the major challenges in the world because up to 50% of harvested grains might be destroyed. The intensive usage of chemicals caused harmful effects on humans and the environment. Thus, we prepared rosemary and black seed nanoemulsions and applied them for the grain weevil, S. granarius, control. The results showed superior toxicological efficacy without any effects on seed germination compared with their native oils. Such green strategy could be used instead of chemical insecticides to be environmentally safe for animals and humans.
Collapse
Affiliation(s)
- Salwa A Ali
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed Khairy
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | | | - Nasra M H Zohry
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
34
|
Rys M, Miastkowska M, Sikora E, Łętocha A, Krajewska A, Synowiec A. Bio-Herbicidal Potential of Nanoemulsions with Peppermint Oil on Barnyard Grass and Maize. Molecules 2022; 27:molecules27113480. [PMID: 35684420 PMCID: PMC9181968 DOI: 10.3390/molecules27113480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Bio-based nanoemulsions are part of green pest management for sustainable agriculture. This study assessed the physicochemical properties and the herbicidal activities of the peppermint essential oil nanoemulsions (PNs) in concentrations 1.0–10% stabilized by Eco-Polysorbate 80 on germinating seeds and young plants of maize and barnyard grass. Based on the design of experiment (DOE) results, the final nanoemulsion formulations were obtained with 1, 1.5, 2, and 5% of essential oil concentration. Biological analyses were conducted to select the most promising sample for selective control of barnyard grass in maize. Seedlings growing in the presence of PNs displayed an overall inhibition of metabolism, as expressed by the calorimetric analyses, which could result from significant differences in both content and composition of carbohydrates. Concentration–response sub estimation showed that leaf-sprayed concentration of PN causing 10% of maize damage is equal to 2.2%, whereas doses causing 50% and 90% of barnyard grass damage are 1.1% and 1.7%, respectively. Plants sprayed with PN at 5% or 10% concentration caused significant drops in relative water content in leaves and Chlorophyll a fluorescence 72 h after spraying. In summary, peppermint nanoemulsion with Eco-Polysorbate 80 at 2% concentration is a perspective preparation for selective control of barnyard grass in maize. It should be analyzed further in controlled and field conditions.
Collapse
Affiliation(s)
- Magdalena Rys
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland;
| | - Małgorzata Miastkowska
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, 31-155 Krakow, Poland; (M.M.); (E.S.); (A.Ł.)
| | - Elżbieta Sikora
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, 31-155 Krakow, Poland; (M.M.); (E.S.); (A.Ł.)
| | - Anna Łętocha
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, 31-155 Krakow, Poland; (M.M.); (E.S.); (A.Ł.)
| | - Agnieszka Krajewska
- Department of Biotechnology and Food Science, Lodz University of Technology, 90-530 Lodz, Poland;
| | - Agnieszka Synowiec
- Department of Agroecology and Crop Production, The University of Agriculture in Krakow, 31-120 Krakow, Poland
- Correspondence:
| |
Collapse
|
35
|
Sanei-Dehkordi A, Moemenbellah-Fard MD, Saffari M, Zarenezhad E, Osanloo M. Nanoliposomes containing limonene and limonene-rich essential oils as novel larvicides against malaria and filariasis mosquito vectors. BMC Complement Med Ther 2022; 22:140. [PMID: 35590314 PMCID: PMC9118734 DOI: 10.1186/s12906-022-03624-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
Background Mosquito-borne diseases such as malaria and encephalitis are still the cause of several hundred thousand deaths annually. The excessive use of chemical insecticides for transmission control has led to environmental pollution and widespread resistance in mosquitoes. Botanical insecticides' efficacies improvement has thus received considerable attention recently. Methods The larvicidal effects of three essential oils from the Citrus family and limonene (their major ingredient) were first investigated against malaria and filariasis mosquito vectors. An attempt was then made to improve their efficacies by preparing nanoliposomes containing each of them. Results The larvicidal effect of nanoformulated forms was more effective than non-formulated states. Nanoliposomes containing Citrus aurantium essential oil with a particle size of 52 ± 4 nm showed the best larvicidal activity (LC50 and LC90 values) against Anopheles stephensi (6.63 and 12.29 µg/mL) and Culex quinquefasciatus (4.9 and 16.4 µg/mL). Conclusion Due to the green constituents and high efficacy of nanoliposomes containing C. aurantium essential oil, it could be considered for further investigation against other mosquitoes’ populations and field trials.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Djaefar Moemenbellah-Fard
- Research Center for Health Sciences, Department of Biology and Control of Disease Vectors, School of Health, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Saffari
- Department of Pharmaceutics, Scholl of Pharmacy, Islamic Azad University, Tehran, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
36
|
Babu S, Singh R, Yadav D, Rathore SS, Raj R, Avasthe R, Yadav SK, Das A, Yadav V, Yadav B, Shekhawat K, Upadhyay PK, Yadav DK, Singh VK. Nanofertilizers for agricultural and environmental sustainability. CHEMOSPHERE 2022; 292:133451. [PMID: 34973251 DOI: 10.1016/j.chemosphere.2021.133451] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/02/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Indiscriminate use of chemical fertilizers in the agricultural production systems to keep pace with the food and nutritional demand of the galloping population had an adverse impact on ecosystem services and environmental quality. Hence, an alternative mechanism is to be developed to enhance farm production and environmental sustainability. A nanohybrid construct like nanofertilizers (NFs) is an excellent alternative to overcome the negative impact of traditional chemical fertilizers. The NFs provide smart nutrient delivery to the plants and proves their efficacy in terms of crop productivity and environmental sustainability over bulky chemical fertilizers. Plants can absorb NFs by foliage or roots depending upon the application methods and properties of the particles. NFs enhance the biotic and abiotic stresses tolerance in plants. It reduces the production cost and mitigates the environmental footprint. Multitude benefits of the NFs open new vistas towards sustainable agriculture and climate change mitigation. Although supra-optimal doses of NFs have a detrimental effect on crop growth, soil health, and environmental outcomes. The extensive release of NFs into the environment and food chain may pose a risk to human health, hence, need careful assessment. Thus, a thorough review on the role of different NFs and their impact on crop growth, productivity, soil, and environmental quality is required, which would be helpful for the research of sustainable agriculture.
Collapse
Affiliation(s)
- Subhash Babu
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Raghavendra Singh
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208 024, India
| | - Devideen Yadav
- ICAR- Indian Institute of Soil & Water Conservation, Dehradun, Uttarakhand, 248 195, India
| | - Sanjay Singh Rathore
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Rishi Raj
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ravikant Avasthe
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Sikkim, 737 102, India
| | - S K Yadav
- ICAR- Indian Institute of Sugarcane Research, Lucknow, Uttar Pradesh, 226 002, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre, Tripura, 799 210, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, China.
| | - Brijesh Yadav
- ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh, 173213, India
| | - Kapila Shekhawat
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - P K Upadhyay
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Dinesh Kumar Yadav
- ICAR- Indian Institute of Soil Science, Bhopal, Madhya Pradesh, 462038, India
| | - Vinod K Singh
- ICAR-Central Research Institute on Dryland Agriculture, Hyderabad, Telangana, 500 059, India
| |
Collapse
|
37
|
Gupta P, Preet S, Ananya, Singh N. Preparation of Thymus vulgaris (L.) essential oil nanoemulsion and its chitosan encapsulation for controlling mosquito vectors. Sci Rep 2022; 12:4335. [PMID: 35288571 PMCID: PMC8921314 DOI: 10.1038/s41598-022-07676-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/11/2022] [Indexed: 12/03/2022] Open
Abstract
Here, we report a novel comparative assessment of preparation and characterization of thyme oil nanoemulsion and its chitosan encapsulation using high energy approach for the management of three major mosquito species viz., Anopheles stephensi (Liston,1901), Aedes aegypti (Linn., 1762) and Culex tritaeniorhynchus (Giles, 1901). The synthesized formulations were analysed for thermodynamic stability, indicating 1:0.5 (oil: surfactant) ratio to be the most stable of thyme oil nanoemulsion while 1:1 (nanoemulsion: chitosan solution) ratio of its chitosan encapsulation. These were further characterized by dynamic light scattering and transmission electron microscopy which revealed the size and morphology of the droplets which measured 52.18 ± 4.53 nm for thyme oil nanoemulsion and 50.18 ± 2.32 nm for its chitosan encapsulation. All the droplets were well dispersed with distinct flower-shaped nanoemulsion and somewhat mitochondria like chitosan encapsulation. In-vitro release study of thyme essential oil from its nanoemulsion and chitosan encapsulation showed that 91.68% and 73.41% of the total oil concentration in water was released respectively to the environment after 48 h clearly depicting controlled release in the encapsulation. Assessment of insecticidal potential against selected mosquito species revealed that both the nanoemulsion and its chitosan encapsulation were effective on the major mosquito species. Maximum activity of thyme oil nanoemulsion was noticed against C. tritaeniorhynchus (LC50—22.58 ppm) after 24 h of exposure while it was observed that its chitosan encapsulation was most effective on A. stephensi (LC50—18.88 ppm) after 24 h of exposure. Consistent morphological alterations could be noticed in the larvae of mosquito species. Hence, these nanoemulsions and encapsulations could be further tested for their applications against other insect pests in agriculture.
Collapse
|
38
|
Jasrotia P, Nagpal M, Mishra CN, Sharma AK, Kumar S, Kamble U, Bhardwaj AK, Kashyap PL, Kumar S, Singh GP. Nanomaterials for Postharvest Management of Insect Pests: Current State and Future Perspectives. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.811056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Globally, between one quarter and one-third of total grains produced each year are lost during storage mainly through infestation of insect pests. Among the available control options such as chemical and physical techniques, fumigation with aluminum phosphide (AlP) is so far considered the best control strategy against storage insect pests. However, these insect pests are now developing resistance against AIP due to its indiscriminate use due to non-availability of any effective alternative control option. Resistance to AIP among storage insect pests is increasing, and its inhalation has shown adverse effects on animals and human beings. Nanotechnology has opened up a wide range of opportunities in various fields such as agriculture (pesticides, fertilizers, etc.), pharmaceuticals, and electronics. One of the applications of nanotechnology is the usage of nanomaterial-based insecticide formulations for mitigating field and storage insect pests. Several formulations, namely, nanoemulsions, nanosuspensions, controlled release formulations, and solid-based nanopesticides, have been developed with different modes of action and application. The major advantage is their small size which helps in proper spreading on the pest surface, and thus, better action than conventional pesticides is achieved. Besides their minute size, these have no or reduced harmful effects on non-target species. Nanopesticides can therefore provide green and efficient alternatives for the management of insect pests of field and storage. However, an outcry against the utilization of nano-based pesticides is also revealed. It is considered by some that nano-insecticides may also have hazardous effects on humans as well as on the environment. Due to limited available data, nanopesticides have become a double-edged weapon. Therefore, nanomaterials need to be evaluated extensively for their large-scale adoption. In this article, we reviewed the nanoformulations that are developed and have proved effective against the insect pests under postharvest storage of grains.
Collapse
|
39
|
Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153890. [PMID: 35026510 DOI: 10.1016/j.phymed.2021.153890] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/14/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Herbal Nano Medicines (HNMs) are nano-sized medicine containing herbal drugs as extracts, enriched fractions or biomarker constituents. HNMs have certain advantages because of their increased bioavailability and reduced toxicities. There are very few literature reports that address the common challenges of herbal nanoformulations, such as selecting the type/class of nanoformulation for an extract or a phytochemical, selection and optimisation of preparation method and physicochemical parameters. Although researchers have shown more interest in this field in the last decade, there is still an urgent need for systematic analysis of HNMs. PURPOSE This review aims to provide the recent advancement in various herbal nanomedicines like polymeric herbal nanoparticles, solid lipid nanoparticles, phytosomes, nano-micelles, self-nano emulsifying drug delivery system, nanofibers, liposomes, dendrimers, ethosomes, nanoemulsion, nanosuspension, and carbon nanotube; their evaluation parameters, challenges, and opportunities. Additionally, regulatory aspects and future perspectives of herbal nanomedicines are also being covered to some extent. METHODS The scientific data provided in this review article are retrieved by a thorough analysis of numerous research and review articles, textbooks, and patents searched using the electronic search tools like Sci-Finder, ScienceDirect, PubMed, Elsevier, Google Scholar, ACS, Medline Plus and Web of Science. RESULTS In this review, the authors suggested the suitability of nanoformulation for a particular type of extracts or enriched fraction of phytoconstituents based on their solubility and permeability profile (similar to the BCS class of drugs). This review focuses on different strategies for optimising preparation methods for various HNMs to ensure reproducibility in context with all the physicochemical parameters like particle size, surface area, zeta potential, polydispersity index, entrapment efficiency, drug loading, and drug release, along with the consistent therapeutic index. CONCLUSION A combination of herbal medicine with nanotechnology can be an essential tool for the advancement of herbal medicine research with enhanced bioavailability and fewer toxicities. Despite the challenges related to traditional medicine's safe and effective use, there is huge scope for nanotechnology-based herbal medicines. Overall, it is well stabilized that herbal nanomedicines are safer, have higher bioavailability, and have enhanced therapeutic value than conventional herbal and synthetic drugs.
Collapse
Affiliation(s)
- Parusu Kavya Teja
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Jinal Mithiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Abhijeet S Kate
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Khemraj Bairwa
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| | - Siddheshwar K Chauthe
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| |
Collapse
|
40
|
Ishizuka MM, Leandro NSM, Silva JMSD, Santos RRD, Oliveira HFD, Café MB. Atividade da Metilxantina em pó aplicada na cama de frango sobre adultos de Alphitobius diaperinus (Panzer, 1797) (Coleoptera: Tenebrionidae). CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-71794p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Resumo Uma das pragas que mais afetam e comprometem a produção avícola no mundo é o inseto Alphitobius diaperinus, conhecido como cascudinho. Este inseto é vetor de doenças que comprometem não só a produção de frangos como também a saúde humana. Objetivou-se com esse trabalho avaliar a eficácia e determinar a dose adequada de Metilxantina (MTX), inseticida natural extraído da cafeína, para o controle da população adulta de cascudinhos em cama de frango. Foram utilizados 2.500 cascudinhos adultos distribuídos em delineamento inteiramente casualizado, cinco tratamentos, 10 repetições com 50 insetos por repetição. Os tratamentos consistiram de grupo controle e quatro concentrações 14 g/m2, 16 g/m2, 18 g/m2, 20 g/m2 de MTX espalhadas em recipientes plásticos contendo cama de frango reutilizada e ração, alocados em um galpão de frangos de corte a fm de simular a condição de granja. Período experimental foi de 18 dias e realizadas cinco leituras nos dias dois, quatro, seis, 10 e 18. A MTX afetou (P<0,05) a taxa de mortalidade acumulada de cascudinhos, grupos de insetos alojados em caixas tratadas com 16 g/m2 de MTX apresentaram maior mortalidade acumulada (86,6%) ao final do período experimental. Conclui-se que MTX tem ação inseticida sobre adultos de cascudinho, podendo ser utilizada sobre a cama de frango para o controle da população deste inseto em galpões de criação de frangos, a concentração 16 g/MTX/m2 demonstrou maior efetividade.
Collapse
|
41
|
Ishizuka MM, Leandro NSM, Silva JMSD, Santos RRD, Oliveira HFD, Café MB. Activity of powdered methylxanthine applied to poultry litter on adults of Alphitobius diaperinus (Panzer, 1797) (Coleoptera: Tenebrionidae). CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-71794e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract One of the pests that most affect and compromise poultry production worldwide is the insect Alphitobius diaperinus, known as the lesser mealworm. This insect is a vector of diseases that compromise not only chicken production but also human health. This study proposes to examine the efficacy and determine the appropriate rate of methylxanthine (MTX), a natural insecticide extracted from cafeine, for the control of an adult population of lesser mealworms in poultry litter. A total of 2,500 adult mealworms were distributed into five treatments in a completely randomized design using 10 replications with 50 insects per replication. The treatments consisted of a control group and four concentrations of MTX (14, 16, 18, and 20 g/m2) spread in plastic boxes containing reused poultry litter and feed, allocated in a broiler shed, to simulate the farm condition. The experimental period was 18 days, and five readings were performed on days 2, 4, 6, 10, and 18. Methylxanthine affected (P<0.05) the mealworms’ cumulative mortality rate, with the groups of insects housed in boxes treated with 16 g /m2 MTX showing the highest cumulative mortality (86.6%) at the end of the experimental period. In conclusion, MTX has insecticidal action on adults of lesser mealworm and can be used on chicken litter to control the population of this insect in poultry sheds. The MTX concentration of 16 g/m2 showed the greatest effectiveness.
Collapse
|
42
|
Narasimman M, Natesan V, Mayakrishnan V, Rajendran J, Venkatesan A, Kim SJ. Preparation and Optimization of Peppermint (Mentha Pipertia) Essential Oil Nanoemulsion with Effective Herbal Larvicidal, Pupicidal, and Ovicidal Activity against Anopheles Stephensi. Curr Pharm Biotechnol 2021; 23:1367-1376. [PMID: 34911410 DOI: 10.2174/1389201023666211215125621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The Plasmodium parasite is transmitted directly to humans through the Anopheles mosquito bite and causes vector-borne Malaria disease, which leads to the transmission of the disease in Southeast Asia, including India. The problem of persistent toxicity, along with the growing incidence of insect resistance, has led to the use of green pesticides to control the spread of the disease in a cost-effective and environment-friendly manner. Based on this objective, this work investigated the larvicidal, pupicidal, and ovicidal activity of Mentha pipertia using a natural nanoemulsion technique. METHODS GC-MS characterized essential oils of Mentha pipertia leaves were formulated as a nanoemulsion for herbal larvicidal, pupicidal, and ovicidal activities. Size of the nanoemulsion was analyzed by photon correlation spectroscopy. The herbal activities against Anopheles Stephensi of nanoemulsion were evaluated in terms of the lethal concentration for 50% (LC50) and 90% (LC90) to prove low cost, pollution free active effective formulation. RESULTS Chiral, keto, and alcohol groups attached Mentha pipertia leaves essential oil nanoemulsions demonstrated good results in the larvicidal probit analysis, with values of LC50=09.67 ppm and LC90=20.60 ppm. Activity results of the most stable nano formulation with 9.89 nm size showed a significant increase when compared to the bulk. CONCLUSION The nanoemulsion of Mentha pipertia leaves can be a promising eco-friendly widely available, low-cost herbicide against the Anopheles mosquito.
Collapse
Affiliation(s)
- Mathumitha Narasimman
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu. India
| | - Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu. India
| | - Vijay Mayakrishnan
- Department of Zoology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu. India
| | - Jayaprakash Rajendran
- Department of Chemistry, School of Arts and Science, Aarupadai Veedu Campus, Vinayaka Missions Research Foundation (DU), Paiyanoor, Tamilnadu. India
| | - Amalan Venkatesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu. India
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University. Korea
| |
Collapse
|
43
|
Huang X, Lv M, Ma Q, Zhang Y, Xu H. High Value-Added Application of Natural Products in Crop Protection: Semisynthesis and Acaricidal Activity of Limonoid-Type Derivatives and Investigation of Their Biocompatible O/W Nanoemulsions as Agronanopesticide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14488-14500. [PMID: 34842424 DOI: 10.1021/acs.jafc.1c05450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasingly serious resistance of Tetranychus cinnabarinus Boisduval to a wide range of insecticides/acaricides poses a major challenge to their control. The citrus processing industry generates a huge quantity of various wastes that contain many limonoids. To effectively utilize these byproducts and discover more potent green acaricidal molecules as sustainable alternatives for traditional resistant pesticides, various limonoid-type derivatives (halogenated/seven-membered lactam derivatives of obacunone and halogenated/oxime esters/oxime ethers/seven-membered lactam derivatives of limonin) were synthesized based on a diversity-oriented synthetic strategy. The key steric configurations of 10 derivatives were further confirmed by X-ray crystallography. Compound 9m, which displayed greater than 9.7-fold potent acaricidal activity of limonin, was of preeminence. In addition, some interesting structure-activity relationships were observed. Moreover, a biocompatible O/W nanoemulsion delivery system was used to prepare the limonin-based agronanoacaricide, which exhibited pronounced control efficiency against T. cinnabarinus Boisduval in the greenhouse. This systematic investigation will provide valuable information and guidance for future value-added applications of novel eco-friendly natural product-based nanopesticides.
Collapse
Affiliation(s)
- Xiaobo Huang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qianjun Ma
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanyuan Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
44
|
Diallyl Trisulfide, the Antifungal Component of Garlic Essential Oil and the Bioactivity of Its Nanoemulsions Formed by Spontaneous Emulsification. Molecules 2021; 26:molecules26237186. [PMID: 34885768 PMCID: PMC8658937 DOI: 10.3390/molecules26237186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the chemical compounds of garlic essential oil (EO), and determine the antifungal efficacy of garlic EO and its major components, diallyl trisulfide and its nanoemulsions against wood-rotting fungi, Trametes hirsuta and Laetiporus sulphureus. GC-MS analysis revealed that the major constituents of garlic EO were diallyl trisulfide (39.79%), diallyl disulfide (32.91%), and diallyl sulfide (7.02%). In antifungal activity, the IC50 value of garlic EO against T. hirsuta and L. sulphureus were 137.3 and 44.6 μg/mL, respectively. Results from the antifungal tests demonstrated that the three major constituents were shown to have good antifungal activity, in which, diallyl trisulfide was the most effective against T. hirsuta and L. sulphureus, with the IC50 values of 56.1 and 31.6 μg/mL, respectively. The diallyl trisulfide nanoemulsions showed high antifungal efficacy against the examined wood-rotting fungi, and as the amount of diallyl trisulfide in the lipid phase increases, the antifungal efficacy of the nanoemulsions increases. These results showed that the nanoemulsions and normal emulsion of diallyl trisulfide have potential to develop into a natural wood preservative.
Collapse
|
45
|
Bioengineering of neem nano-formulation with adjuvant for better adhesion over applied surface to give long term insect control. Colloids Surf B Biointerfaces 2021; 209:112176. [PMID: 34785423 DOI: 10.1016/j.colsurfb.2021.112176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/24/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022]
Abstract
Although safe and eco-friendly botanical pesticides have been intensively promoted to combat pest attacks in agriculture, but their stability and efficacies remain an issue for their wide acceptability as sustained and effective approaches. The purpose of this work was to develop stable neem oil based nano-emulsion (NE) formulation with enhanced activity employing suitable bio-inspired adjuvant. So, Neem NEs (with and without) natural adjuvants (Cymbopogon citratus and Prosopis juliflora) in different concentrations were prepared and quality parameters dictating kinetic stability, acidity/alkalinity, viscosity, droplet size, zeta potential, surface tension, stability and compatibility were monitored using Viscometer, Zetasizer, Surface Tensiometer, High Performance Liquid Chromatography (HPLC) and Fourier Transform Infrared Spectroscopy (FTIR). Nano-emulsion biosynthesis optimization studies suggested that slightly acidic (5.9-6.5) NE is kinetically stable with no phase separation; creaming or crystallization may be due to botanical adjuvant (lemongrass oil). Findings proved that Prosopis juliflora, acted as bio-polymeric adjuvant to stabilize NE by increasing Brownian motion and weakening the attractive forces with smaller droplets (25-50 nm), low zeta potential (-30 mV) and poly-dispersive index (<0.3). Botanical adjuvant (30%) based NE with optimum viscosity (98.8cPs) can give long term storage stability and improved adhesiveness and wetting with reduced surface tension and contact angle. FT-IR analysis assured azadirachtin's stability and compatibility with adjuvant. With negligible degradation (1.42%) and higher half-life (t1/2) of 492.95 days, natural adjuvant based NE is substantially stable formulation, may be due to presence of glycosidic and phenolics compounds. Neem 20NE (with 30% adjuvant) exhibited remarkable insecticidal activity (91.24%) against whitefly (Bemisia tabaci G.) in brinjal (Solanum melongena) as evidenced by in-vivo assay. Results thus obtained suggest, bio-pesticide formulation may be used as safer alternative to chemical pesticides to minimize pesticide residues and presence of natural adjuvant may improves the stability and efficacy of biopesticides for safe crop protection in organic agriculture and Integrated Pest Management.
Collapse
|
46
|
Deka B, Babu A, Baruah C, Barthakur M. Nanopesticides: A Systematic Review of Their Prospects With Special Reference to Tea Pest Management. Front Nutr 2021; 8:686131. [PMID: 34447773 PMCID: PMC8382848 DOI: 10.3389/fnut.2021.686131] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Tea is a natural beverage made from the tender leaves of the tea plant (Camellia sinensis Kuntze). Being of a perennial and monoculture nature in terms of its cultivation system, it provides a stable micro-climate for various insect pests, which cause substantial loss of crop. With the escalating cost of insect pest management and increasing concern about the adverse effects of the pesticide residues in manufactured tea, there is an urgent need to explore other avenues for pest management strategies. Aim: Integrated pest management (IPM) in tea invites an multidisciplinary approach owing to the high pest diversity in the perennial tea plantation system. In this review, we have highlighted current developments of nanotechnology for crop protection and the prospects of nanoparticles (NPs) in plant protection, emphasizing the control of different major pests of tea plantations. Methods: A literature search was performed using the ScienceDirect, Web of Science, Pubmed, and Google Scholar search engines with the following terms: nanotechnology, nanopesticides, tea, and insect pest. An article search concentrated on developments after 1988. Results: We have described the impact of various pests in tea production and innovative approaches on the use of various biosynthesized and syntheric nanopesticides against specific insect pest targets. Simultaneously, we have provided support for NP-based technology and their different categories that are currently employed for the management of pests in different agro-ecosystems. Besides the broad categories of active ingredients (AI) of synthetic insecticides, pheromones and natural resource-based molecules have pesticidal activity and can also be used with NPs as a carriers as alternatives to traditional pest control agents. Finally, the merits and demerits of incorporating NP-based nanopesticides are also illustrated. Conclusions: Nanopesticides for plant protection is an emerging research field, and it offers new methods to design active ingredients amid nanoscale dimensions. Nanopesticide-based formulations have a potential and bright future for the development of more effective and safer pesticide/biopesticides.
Collapse
Affiliation(s)
- Bhabesh Deka
- North Bengal Regional Research and Development Centre, Nagrakata, India
| | - Azariah Babu
- North Bengal Regional Research and Development Centre, Nagrakata, India
| | - Chittaranjan Baruah
- Postgraduate Department of Zoology, Darrang College (Affiliated to Gauhati University), Tezpur, India
| | - Manash Barthakur
- Department of Zoology, Pub Kamrup College, Baihata Chariali, India
| |
Collapse
|
47
|
Kildaci I, Budama-Kilinc Y, Kecel-Gunduz S, Altuntas E. Linseed Oil Nanoemulsions for treatment of Atopic Dermatitis disease: Formulation, characterization, in vitro and in silico evaluations. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
|
49
|
Corrias F, Melis A, Atzei A, Marceddu S, Dedola F, Sirigu A, Pireddu R, Lai F, Angioni A. Zoxamide accumulation and retention evaluation after nanosuspension technology application in tomato plant. PEST MANAGEMENT SCIENCE 2021; 77:3508-3518. [PMID: 33837628 DOI: 10.1002/ps.6404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/09/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Low water solubility of pesticide requires formulations with high levels of stabilizers and organic solvents. Moreover, only 0.1% of the applied pesticides formulation reaches the target, while 99.9% spreads in the surrounding environment. Therefore, there is the need for more efficient and environmentally sustainable alternatives. RESULTS Zoxamide (ZO) nanosuspension was prepared through a media milling technique by using the stabilizer polysorbate 80. The thin and acicular crystals obtained, showed particle size of 227 nm, polydispersion index of 0.247 and zeta potential of -28 mV. Dimensional data and morphology of ZO nanocrystals alone, on tomato leaves and berries, were confirmed by scanning electron microscopy. The reduction in size for ZO crystals obtained after the milling process increased pesticide water solubility till 39.6 mg L-1 , about 1.6 the solubility obtained with a conventional commercial formulation. Field and dip contamination trials performed on tomato plants showed the nanosuspension's ability to increase ZO deposition and accumulation versus a coarse ZO suspension and commercial formulation, respectively. CONCLUSIONS The nanoformulation proposed, resulted in low cost and was easy to make. Moreover, the organic solvent-free composition together with a low surfactant addition assured a minor environmental impact. Finally, the increased retention and deposition of the fungicide can reduce the amounts of ZO formulation applied to tomatoes. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francesco Corrias
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, Cagliari, Italy
| | - Anna Melis
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, Cagliari, Italy
| | - Alessandro Atzei
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, Cagliari, Italy
| | - Salvatore Marceddu
- Institute of Sciences of Food Production (ISPA-CNR), Baldinca (Sassari), Italy
| | - Fabrizio Dedola
- Agricultural Research Agency of Sardinia (AGRIS), Service of Environmental Studies, Crop Protection and Production Quality, Cagliari, Italy
| | - Antonella Sirigu
- Agricultural Research Agency of Sardinia (AGRIS), Service of Environmental Studies, Crop Protection and Production Quality, Cagliari, Italy
| | - Rosa Pireddu
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, Cagliari, Italy
| | - Francesco Lai
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, Cagliari, Italy
| | - Alberto Angioni
- Department of Life and Environmental Science, Food Toxicology Unit, University of Cagliari, University Campus of Monserrato, Cagliari, Italy
| |
Collapse
|
50
|
Larvicidal activity, aquatic and in vivo toxicity of anacardic acid loaded-zein nanoparticles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|