1
|
Martini F, Jijakli MH, Gontier E, Muchembled J, Fauconnier ML. Harnessing Plant's Arsenal: Essential Oils as Promising Tools for Sustainable Management of Potato Late Blight Disease Caused by Phytophthora infestans-A Comprehensive Review. Molecules 2023; 28:7302. [PMID: 37959721 PMCID: PMC10650712 DOI: 10.3390/molecules28217302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Potato late blight disease is caused by the oomycete Phytophthora infestans and is listed as one of the most severe phytopathologies on Earth. The current environmental issues require new methods of pest management. For that reason, plant secondary metabolites and, in particular, essential oils (EOs) have demonstrated promising potential as pesticide alternatives. This review presents the up-to-date work accomplished using EOs against P. infestans at various experimental scales, from in vitro to in vivo. Additionally, some cellular mechanisms of action on Phytophthora spp., especially towards cell membranes, are also presented for a better understanding of anti-oomycete activities. Finally, some challenges and constraints encountered for the development of EOs-based biopesticides are highlighted.
Collapse
Affiliation(s)
- Florian Martini
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - M. Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| | - Eric Gontier
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - Jérôme Muchembled
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| |
Collapse
|
2
|
Qiao L, Lan C, Capriotti L, Ah-Fong A, Nino Sanchez J, Hamby R, Heller J, Zhao H, Glass NL, Judelson HS, Mezzetti B, Niu D, Jin H. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1756-1768. [PMID: 33774895 DOI: 10.1101/2021.02.01.429265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 05/21/2023]
Abstract
Recent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray-Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non-pathogenic fungi, and an oomycete pathogen. We observed efficient double-stranded RNA (dsRNA) uptake in the fungal plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Aspergillus niger and Verticillium dahliae, but no uptake in Colletotrichum gloeosporioides, and weak uptake in a beneficial fungus, Trichoderma virens. For the oomycete plant pathogen, Phytophthora infestans, RNA uptake was limited and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence-related genes in pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen's RNA uptake efficiency.
Collapse
Affiliation(s)
- Lulu Qiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Chi Lan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - Luca Capriotti
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Audrey Ah-Fong
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Jonatan Nino Sanchez
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Rachael Hamby
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Jens Heller
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Howard S Judelson
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Bruno Mezzetti
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, China
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| |
Collapse
|
3
|
Qiao L, Lan C, Capriotti L, Ah‐Fong A, Nino Sanchez J, Hamby R, Heller J, Zhao H, Glass NL, Judelson HS, Mezzetti B, Niu D, Jin H. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1756-1768. [PMID: 33774895 PMCID: PMC8428832 DOI: 10.1111/pbi.13589] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 05/20/2023]
Abstract
Recent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray-Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non-pathogenic fungi, and an oomycete pathogen. We observed efficient double-stranded RNA (dsRNA) uptake in the fungal plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Aspergillus niger and Verticillium dahliae, but no uptake in Colletotrichum gloeosporioides, and weak uptake in a beneficial fungus, Trichoderma virens. For the oomycete plant pathogen, Phytophthora infestans, RNA uptake was limited and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence-related genes in pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen's RNA uptake efficiency.
Collapse
Affiliation(s)
- Lulu Qiao
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Chi Lan
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Luca Capriotti
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
- Department of Agricultural, Food and Environmental SciencesMarche Polytechnic UniversityAnconaItaly
| | - Audrey Ah‐Fong
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Jonatan Nino Sanchez
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Rachael Hamby
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Jens Heller
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
- Environmental Genomics and Systems Biology DivisionThe Lawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Hongwei Zhao
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - N. Louise Glass
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
- Environmental Genomics and Systems Biology DivisionThe Lawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Howard S. Judelson
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Bruno Mezzetti
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
- Department of Agricultural, Food and Environmental SciencesMarche Polytechnic UniversityAnconaItaly
| | - Dongdong Niu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| | - Hailing Jin
- Department of Microbiology & Plant PathologyCenter for Plant Cell BiologyInstitute for Integrative Genome BiologyUniversity of CaliforniaRiversideCAUSA
| |
Collapse
|
4
|
Pirc K, Hodnik V, Snoj T, Lenarčič T, Caserman S, Podobnik M, Böhm H, Albert I, Kotar A, Plavec J, Borišek J, Damuzzo M, Magistrato A, Brus B, Sosič I, Gobec S, Nürnberger T, Anderluh G. Nep1-like proteins as a target for plant pathogen control. PLoS Pathog 2021; 17:e1009477. [PMID: 33857257 PMCID: PMC8078777 DOI: 10.1371/journal.ppat.1009477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/27/2021] [Accepted: 03/14/2021] [Indexed: 11/19/2022] Open
Abstract
The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), which critically contribute to the virulence and spread of the disease. NLPs are cytotoxic to eudicot plants, as they disturb the plant plasma membrane by binding to specific plant membrane sphingolipid receptors. Their pivotal role in plant infection and broad taxonomic distribution makes NLPs a promising target for the development of novel phytopharmaceutical compounds. To identify compounds that bind to NLPs from the oomycetes Pythium aphanidermatum and Phytophthora parasitica, a library of 587 small molecules, most of which are commercially unavailable, was screened by surface plasmon resonance. Importantly, compounds that exhibited the highest affinity to NLPs were also found to inhibit NLP-mediated necrosis in tobacco leaves and Phytophthora infestans growth on potato leaves. Saturation transfer difference-nuclear magnetic resonance and molecular modelling of the most promising compound, anthranilic acid derivative, confirmed stable binding to the NLP protein, which resulted in decreased necrotic activity and reduced ion leakage from tobacco leaves. We, therefore, confirmed that NLPs are an appealing target for the development of novel phytopharmaceutical agents and strategies, which aim to directly interfere with the function of these major microbial virulence factors. The compounds identified in this study represent lead structures for further optimization and antimicrobial product development.
Collapse
Affiliation(s)
- Katja Pirc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tea Lenarčič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Hannah Böhm
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Isabell Albert
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Anita Kotar
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Ljubljana, Slovenia
| | - Jure Borišek
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Martina Damuzzo
- CNR-IOM-Democritos at International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- CNR-IOM-Democritos at International School for Advanced Studies (SISSA), Trieste, Italy
| | - Boris Brus
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Tübingen, Germany
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
5
|
Ahmad TAEAL. Advanced Methods in Controlling Late Blight Disease in Potatoes. MITIGATING ENVIRONMENTAL STRESSES FOR AGRICULTURAL SUSTAINABILITY IN EGYPT 2021:289-310. [DOI: 10.1007/978-3-030-64323-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Tani S, Nishio N, Kai K, Hagiwara D, Ogata Y, Tojo M, Sumitani JI, Judelson HS, Kawaguchi T. Chemical genetic approach using β-rubromycin reveals that a RIO kinase-like protein is involved in morphological development in Phytophthora infestans. Sci Rep 2020; 10:22326. [PMID: 33339950 PMCID: PMC7749174 DOI: 10.1038/s41598-020-79326-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/08/2020] [Indexed: 11/10/2022] Open
Abstract
To characterize the molecular mechanisms underlying life-stage transitions in Phytophthora infestans, we initiated a chemical genetics approach by screening for a stage-specific inhibitor of morphological development from microbial culture extracts prepared mostly from actinomycetes from soil in Japan. Of the more than 700 extracts, one consistently inhibited Ph. infestans cyst germination. Purification and identification of the active compound by ESI–MS, 1H-NMR, and 13C-NMR identified β-rubromycin as the inhibitor of cyst germination (IC50 = 19.8 μg/L); β-rubromycin did not inhibit growth on rye media, sporangium formation, zoospore release, cyst formation, or appressorium formation in Ph. infestans. Further analyses revealed that β-rubromycin inhibited the germination of cysts and oospores in Pythium aphanidermatum. A chemical genetic approach revealed that β-rubromycin stimulated the expression of RIO kinase-like gene (PITG_04584) by 60-fold in Ph. infestans. Genetic analyses revealed that PITG_04584, which lacks close non-oomycete relatives, was involved in zoosporogenesis, cyst germination, and appressorium formation in Ph. infestans. These data imply that further functional analyses of PITG_04584 may contribute to new methods to suppress diseases caused by oomycetes.
Collapse
Affiliation(s)
- Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan.
| | - Naotaka Nishio
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiyuki Ogata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Motoaki Tojo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Jun-Ichi Sumitani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| |
Collapse
|
7
|
Genus-level change in aggressiveness with continuous invasions: a phylogenetically-informed Bayesian quantile regression. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Khademi M, Varasteh-Shams M, Nazarian-Firouzabadi F, Ismaili A. New Recombinant Antimicrobial Peptides Confer Resistance to Fungal Pathogens in Tobacco Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1236. [PMID: 32903611 PMCID: PMC7438598 DOI: 10.3389/fpls.2020.01236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/28/2020] [Indexed: 05/21/2023]
Abstract
Antimicrobial peptides have been long known to confer resistance to plant pathogens. In this study, new recombinant peptides constructed from a dermaseptin B1 (DrsB1) peptide fused to a chitin-binding domain (CBD) from Avr4 protein, were used for Agrobacterium tumefaciens-mediated transformation of tobacco plants. Polymerase chain reaction (PCR), semi-quantitative RT-PCR, and western blotting analysis demonstrated the incorporation and expression of transgenes in tobacco genome and transgenic plants, respectively. In vitro experiments with recombinant peptides extracted from transgenic plants demonstrated a significant (P<0.01) inhibitory effect on the growth and development of plant pathogens. The DrsB1-CBD recombinant peptide had the highest antifungal activity against fungal pathogens. The expression of the recombinant peptides greatly protected transgenic plants from Alternaria alternata, Alternaria solani, Fusarium oxysporum, and Fusarium solani fungi, in comparison to Pythium sp. and Pythium aphanidermatum. Expression of new recombinant peptides resulted in a delay in the colonization of fungi and appearance of fungal disease symptoms from 6 days to more than 7 weeks. Scanning electron microscopy images revealed that the structure of the fungal mycelia appeared segmented, cling together, and crushed following the antimicrobial activity of the recombinant peptides. Greenhouse bioassay analysis showed that transgenic plants were more resistant to Fusarium and Pythium infections as compared with the control plants. Due to the high antimicrobial activity of the recombinant peptides against plant pathogens and novelty of recombinant peptides, this report shows the feasibility of this approach to generate disease resistance transgenic plants.
Collapse
|
9
|
Characterization of Phytophthora infestans resistance to mefenoxam using FTIR spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:308-14. [DOI: 10.1016/j.jphotobiol.2014.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/06/2014] [Accepted: 10/11/2014] [Indexed: 11/21/2022]
|
10
|
Han M, Liu G, Li JP, Govers F, Zhu XQ, Shen CY, Guo LY. Phytophthora infestans field isolates from Gansu province, China are genetically highly diverse and show a high frequency of self fertility. J Eukaryot Microbiol 2012. [PMID: 23194320 DOI: 10.1111/jeu.12010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genetic diversity of 85 isolates of Phytophthora infestans collected in 2007 from Gansu province in China was determined and compared with 21 isolates collected before 2004. Among them, 70 belonged to the A1 mating type and 15 were self-fertile (SF). The mitochondrial DNA haplotypes revealed both Ia (25%) and IIa (75%) haplotypes. Metalaxyl resistance occurred with high frequency (54%) in Gansu. Simple sequence repeat (SSR) genotyping revealed 26 genotypes (13 from the Tianshui region) among the 85 isolates, and 18 genotypes among the 21 isolates collected before 2004, without overlap in genotypes detected in the two groups. Cluster analysis showed clear subdivisions within the different mating type isolates. Among Gansu's isolates, Nei's and Shannon's diversity indices were highest in isolates collected in Tianshui where both A1 and SF isolates were found. Analysis of molecular variance of isolates from Gansu indicated that 51% and 49% of the variance was explained by within-area and among-area variance, respectively. The results suggest that the occurrence of SF isolates increases the risk of sexual reproduction, the formation of oospore as initial inocula in the field, and affects the genotypic diversity in the population.
Collapse
Affiliation(s)
- Miao Han
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Fernández MB, Pagano MR, Daleo GR, Guevara MG. Hydrophobic proteins secreted into the apoplast may contribute to resistance against Phytophthora infestans in potato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:59-66. [PMID: 22902798 DOI: 10.1016/j.plaphy.2012.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/23/2012] [Indexed: 05/20/2023]
Abstract
During plant-pathogen interaction, oomycetes secrete effectors into the plant apoplast where they interact with host resistance proteins, which are accumulated after wounding or infection. Previous studies showed that the expression profile of pathogenesis related proteins is proportional to the resistance of different cultivars toward Phytophthora infestans infection. The aim of this work was to analyze the expression pattern of apoplastic hydrophobic proteins (AHPs), after 24 h of wounding or infection, in tubers from two potato cultivars with different resistance to P. infestans, Spunta (susceptible) and Innovator (resistant). Intercellular washing fluid (IWF) was extracted from tubers and chromatographed into a PepRPC™ HR5-5 column in FPLC eluted with a linear gradient of 75% acetonitrile. Then, AHPs were analyzed by SDS-PAGE and identified by MALDI-TOF-MS. Innovator cv. showed a higher basal AHP content compared to Spunta cv. In the latter, infection induced accumulation of patatins and protease inhibitors (PIs), whereas in Innovator cv. no changes in PIs accumulation were observed. In response to P. infestans infection, lipoxygenase, enolase, annexin p34 and glutarredoxin/cyclophilin were accumulated in both cultivars. These results suggest that the AHPs content may be related to the protection against the oomycete and with the degree of potato resistance to pathogens. Additionally, a considerable number of the proteins putatively identified lacked the signal peptide and, being SecretomeP positive, suggest unconventional protein secretion.
Collapse
Affiliation(s)
- María Belén Fernández
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina.
| | | | | | | |
Collapse
|
12
|
Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review. Appl Microbiol Biotechnol 2012; 96:37-48. [DOI: 10.1007/s00253-012-4282-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
|
13
|
Chen L, Zhu S, Lu X, Pang Z, Cai M, Liu X. Assessing the risk that Phytophthora melonis can develop a point mutation (V1109L) in CesA3 conferring resistance to carboxylic acid amide fungicides. PLoS One 2012; 7:e42069. [PMID: 22848705 PMCID: PMC3407118 DOI: 10.1371/journal.pone.0042069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 07/02/2012] [Indexed: 11/19/2022] Open
Abstract
The risk that the plant pathogen Phytophthora melonis develops resistance to carboxylic acid amide (CAA) fungicides was determined by measuring baseline sensitivities of field isolates, generating resistant mutants, and measuring the fitness of the resistant mutants. The baseline sensitivities of 80 isolates to flumorph, dimethomorph and iprovalicarb were described by unimodal curves, with mean EC(50) values of 0.986 (±0.245), 0.284 (±0.060) and 0.327 (±0.068) µg/ml, respectively. Seven isolates with different genetic background (as indicated by RAPD markers) were selected to generate CAA-resistance. Fifty-five resistant mutants were obtained from three out of seven isolates by spontaneous selection and UV-mutagenesis with frequencies of 1×10(-7) and 1×10(-6), respectively. CAA-resistance was stable for all mutants. The resistance factors of these mutants ranged from 7 to 601. The compound fitness index (CFI = mycelial growth × zoospore production × pathogenicity) was often lower for the CAA-resistant isolates than for wild-type isolates, suggesting that the risk of P. melonis developing resistance to CAA fungicides is low to moderate. Among the CAA-resistant isolates, a negative correlation between EC(50) values was found for iprovalicarb vs. flumorph and for iprovalicarb vs. dimethomorph. Comparison of the full-length cellulose synthase 3 (CesA3) between wild-type and CAA-resistant isolates revealed only one point mutation at codon position 1109: a valine residue (codon GTG in wild-type isolates) was converted to leucine (codon CTG in resistant mutants). This represents a novel point mutation with respect to mutations in CesA3 conferring resistance to CAA fungicides. Based on this mutation, an efficient allelic-specific PCR (AS-PCR) method was developed for rapid detection of CAA-resistance in P. melonis populations.
Collapse
Affiliation(s)
- Lei Chen
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Shusheng Zhu
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiaohong Lu
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Zhili Pang
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Meng Cai
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. PLANT PHYSIOLOGY 2007; 143:364-77. [PMID: 17085509 PMCID: PMC1761951 DOI: 10.1104/pp.106.090050] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 10/24/2006] [Indexed: 05/12/2023]
Abstract
There is emerging evidence that the proteolytic machinery of plants plays important roles in defense against pathogens. The oomycete pathogen Phytophthora infestans, the agent of the devastating late blight disease of tomato (Lycopersicon esculentum) and potato (Solanum tuberosum), has evolved an arsenal of protease inhibitors to overcome the action of host proteases. Previously, we described a family of 14 Kazal-like extracellular serine protease inhibitors from P. infestans. Among these, EPI1 and EPI10 bind and inhibit the pathogenesis-related (PR) P69B subtilisin-like serine protease of tomato. Here, we describe EPIC1 to EPIC4, a new family of P. infestans secreted proteins with similarity to cystatin-like protease inhibitor domains. Among these, the epiC1 and epiC2 genes lacked orthologs in Phytophthora sojae and Phytophthora ramorum, were relatively fast-evolving within P. infestans, and were up-regulated during infection of tomato, suggesting a role during P. infestans-host interactions. Biochemical functional analyses revealed that EPIC2B interacts with and inhibits a novel papain-like extracellular cysteine protease, termed Phytophthora Inhibited Protease 1 (PIP1). Characterization of PIP1 revealed that it is a PR protein closely related to Rcr3, a tomato apoplastic cysteine protease that functions in fungal resistance. Altogether, this and earlier studies suggest that interplay between host proteases of diverse catalytic families and pathogen inhibitors is a general defense-counterdefense process in plant-pathogen interactions.
Collapse
Affiliation(s)
- Miaoying Tian
- Department of Plant Pathology , The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| | | | | | | | | | | |
Collapse
|
15
|
Andreu AB, Guevara MG, Wolski EA, Daleo GR, Caldiz DO. Enhancement of natural disease resistance in potatoes by chemicals. PEST MANAGEMENT SCIENCE 2006; 62:162-70. [PMID: 16408317 DOI: 10.1002/ps.1142] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The mechanism involved in systemic acquired resistance (SAR) can be non-specifically induced in susceptible plants. In response to pathogens, plants' natural defence mechanisms include the production of lignin and phytoalexins and the induction of plant enzymes. The aim of this research was to study the induction of SAR mediated by the chemical activator DL-3-aminobutyric acid (BABA) and the fungicide fosetyl-aluminium in potato cultivars with different levels of resistance against Phytophthora infestans (Mont) de Bary. To study the chemical induction of the resistance, the foliage of several potato cultivars was sprayed with BABA, fosetyl-aluminium or water (as a control treatment). After 3 days the foliage was inoculated with P. infestans. Seven days after inoculation, development of disease symptoms in the foliage was assessed. In postharvest tuber samples, evidence for enhancement of the defence response was evaluated by measuring the protein content of several hydrolytic enzymes as well as the phenol and phytoalexin content. The highest level of protection against late blight was observed when the chemicals were applied at early stages of crop development. An increase in resistance to late blight was also detected in tubers after harvest. There was also an increase in the protein level of beta-1,3-glucanase and aspartic protease as well as in the phenol and phytoalexin content of potato tuber discs obtained from postharvest tubers of treated plants. Thus the protective effect seemed to persist throughout the whole crop cycle. This treatment may offer the possibility of controlling both foliage and tuber blight and could have a major impact in reducing over-winter survival of P. infestans in tubers.
Collapse
Affiliation(s)
- Adriana B Andreu
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Funes 3250, 7600 Mar del Plata, Argentina.
| | | | | | | | | |
Collapse
|
16
|
Soylu EM, Soylu S, Kurt S. Antimicrobial Activities of the Essential Oils of Various Plants against Tomato Late Blight Disease Agent Phytophthora infestans. Mycopathologia 2006; 161:119-28. [PMID: 16463095 DOI: 10.1007/s11046-005-0206-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to find an alternative to synthetic fungicides currently used in the control of devastating oomycete pathogen Phytophthora infestans, causal agent of late blight disease of tomato. Antifungal activities of essential oils obtained from aerial parts of aromatic plants such as oregano (Origanum syriacum var. bevanii), thyme (Thymbra spicata subsp. spicata), lavender (Lavandula stoechas subsp. stoechas), rosemary (Rosmarinus officinalis), fennel (Foeniculum vulgare), and laurel (Laurus nobilis), were investigated against P. infestans. Both contact and volatile phase effects of different concentrations of the essential oils used were determined by using two in vitro methods. Chemical compositions of the essential oils were also determined by GC-MS analysis. Major compounds found in essential oils of thyme, oregano, rosemary, lavender, fennel and laurel were carvacrol (37.9%), carvacrol (79.8), borneol (20.4%), camphor (20.2%), anethole (82.8%) and 1,8-cineole (35.5%), respectively. All essential oils were found to inhibit the growth of P. infestans in a dose-dependent manner. Volatile phase effect of oregano and thyme oils at 0.3 microg/ml air was found to completely inhibit the growth of P. infestans. Complete growth inhibition of pathogen by essential oil of fennel, rosemary, lavender and laurel was, however, observed at 0.4-2.0 microg/ml air concentrations. For the determination of the contact phase effects of the tested essential oils, oregano, thyme and fennel oils at 6.4 microg/ml were found to inhibit the growth of P. infestans completely. Essential oils of rosemary, lavender and laurel were inhibitory at relatively higher concentrations (12.8, 25.6, 51.2 microg/ml respectively). Volatile phase effects of essential oils were consistently found to be more effective on fungal growth than contact phase effect. Sporangial production was also inhibited by the essential oil tested. Light and scanning electron microscopic (SEM) observation on pathogen hyphae, exposed to both volatile and contact phase of oil, revealed considerable morphological alterations in hyphae such as cytoplasmic coagulation, vacuolations, hyphal shrivelling and protoplast leakage.
Collapse
Affiliation(s)
- E Mine Soylu
- Department of Plant Protection, Faculty of Agriculture, Mustafa Kemal University, 31034, Antakya-Hatay, Turkey.
| | | | | |
Collapse
|
17
|
Osusky M, Osuska L, Kay W, Misra S. Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:711-22. [PMID: 15947906 DOI: 10.1007/s00122-005-2056-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 04/25/2005] [Indexed: 05/02/2023]
Abstract
Dermaseptin B1 is a potent cationic antimicrobial peptide found in skin secretions of the arboreal frog Phyllomedusa bicolor. A synthetic derivative of dermaseptin B1, MsrA2 (N-Met-dermaseptin B1), elicited strong antimicrobial activities against various phytopathogenic fungi and bacteria in vitro. To assess its potential for plant protection, MsrA2 was expressed at low levels (1-5 microg/g of fresh tissue) in the transgenic potato (Solanum tuberosum L.) cv. Desiree. Stringent challenges of these transgenic potato plants with a variety of highly virulent fungal phytopathogens--Alternaria, Cercospora, Fusarium, Phytophthora, Pythium, Rhizoctonia and Verticillium species--and with the bacterial pathogen Erwinia carotovora demonstrated that the plants had an unusually broad-spectrum and powerful resistance to infection. MsrA2 profoundly protected both plants and tubers from diseases such as late blight, dry rot and pink rot and markedly extended the storage life of tubers. Due to these properties in planta, MsrA2 is proposed as an ideal antimicrobial peptide candidate to significantly increase resistance to phytopathogens and improve quality in a variety of crops worldwide with the potential to obviate fungicides and facilitate storage under difficult conditions.
Collapse
Affiliation(s)
- Milan Osusky
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | | | |
Collapse
|
18
|
Kamoun S, Smart CD. Late Blight of Potato and Tomato in the Genomics Era. PLANT DISEASE 2005; 89:692-699. [PMID: 30791237 DOI: 10.1094/pd-89-0692] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
19
|
Tian M, Benedetti B, Kamoun S. A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. PLANT PHYSIOLOGY 2005; 138:1785-93. [PMID: 15980196 PMCID: PMC1176446 DOI: 10.1104/pp.105.061226] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 04/22/2005] [Accepted: 04/22/2005] [Indexed: 05/03/2023]
Abstract
The plant apoplast forms a protease-rich environment in which proteases are integral components of the plant defense response. Plant pathogenic oomycetes, such as the potato (Solanum tuberosum) and tomato (Lycopersicon esculentum) pathogen Phytophthora infestans, secrete a diverse family of serine protease inhibitors of the Kazal family. Among these, the two-domain EPI1 protein was shown to inhibit and interact with the pathogenesis-related protein P69B subtilase of tomato and was implicated in counter-defense. Here, we describe and functionally characterize a second extracellular protease inhibitor, EPI10, from P. infestans. EPI10 contains three Kazal-like domains, one of which was predicted to be an efficient inhibitor of subtilisin A by an additivity-based sequence to reactivity algorithm (Laskowski algorithm). The epi10 gene was up-regulated during infection of tomato, suggesting a potential role during pathogenesis. Recombinant EPI10 specifically inhibited subtilisin A among the major serine proteases, and inhibited and interacted with P69B subtilase of tomato. The finding that P. infestans evolved two distinct and structurally divergent protease inhibitors to target the same plant protease suggests that inhibition of P69B could be an important infection mechanism for this pathogen.
Collapse
Affiliation(s)
- Miaoying Tian
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| | | | | |
Collapse
|
20
|
Whisson SC, Avrova AO, Lavrova O, Pritchard L. Families of short interspersed elements in the genome of the oomycete plant pathogen, Phytophthora infestans. Fungal Genet Biol 2005; 42:351-65. [PMID: 15749054 DOI: 10.1016/j.fgb.2005.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 12/06/2004] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
The first known families of tRNA-related short interspersed elements (SINEs) in the oomycetes were identified by exploiting the genomic DNA sequence resources for the potato late blight pathogen, Phytophthora infestans. Fifteen families of tRNA-related SINEs, as well as predicted tRNAs, and other possible RNA polymerase III-transcribed sequences were identified. The size of individual elements ranges from 101 to 392 bp, representing sequences present from low (1) to highly abundant (over 2000) copy number in the P. infestans genome, based on quantitative PCR analysis. Putative short direct repeat sequences (6-14 bp) flanking the elements were also identified for eight of the SINEs. Predicted SINEs were named in a series prefixed infSINE (for infestans-SINE). Two SINEs were apparently present as multimers of tRNA-related units; four copies of a related unit for infSINEr, and two unrelated units for infSINEz. Two SINEs, infSINEh and infSINEi, were typically located within 400 bp of each other. These were also the only two elements identified as being actively transcribed in the mycelial stage of P. infestans by RT-PCR. It is possible that infSINEh and infSINEi represent active retrotransposons in P. infestans. Based on the quantitative PCR estimates of copy number for all of the elements identified, tRNA-related SINEs were estimated to comprise 0.3% of the 250 Mb P. infestans genome. InfSINE-related sequences were found to occur in species throughout the genus Phytophthora. However, seven elements were shown to be exclusive to P. infestans.
Collapse
Affiliation(s)
- Stephen C Whisson
- Plant-Pathogen Interactions Program, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK.
| | | | | | | |
Collapse
|
21
|
Liu Z, Bos JIB, Armstrong M, Whisson SC, da Cunha L, Torto-Alalibo T, Win J, Avrova AO, Wright F, Birch PRJ, Kamoun S. Patterns of diversifying selection in the phytotoxin-like scr74 gene family of Phytophthora infestans. Mol Biol Evol 2004; 22:659-72. [PMID: 15548752 DOI: 10.1093/molbev/msi049] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phytophthora infestans, the organism responsible for the Irish famine, causes late blight, a re-emerging disease of potato and tomato. Little is known about the molecular evolution of P. infestans genes. To identify candidate effector genes (virulence or avirulence genes) that may have co-evolved with the host, we mined expressed sequence tag (EST) data from infection stages of P. infestans for secreted and potentially polymorphic genes. This led to the identification of scr74, a gene that encodes a predicted 74-amino acid secreted cysteine-rich protein with similarity to the Phytophthora cactorum phytotoxin PcF. The expression of scr74 was upregulated approximately 60-fold 2 to 4 days after inoculation of tomato and was also significantly induced during early stages of colonization of potato. The scr74 gene was found to belong to a highly polymorphic gene family within P. infestans with 21 different sequences identified. Using the approximate and maximum likelihood (ML) methods, we found that diversifying selection likely caused the extensive polymorphism observed within the scr74 gene family. Pairwise comparisons of 17 scr74 sequences revealed elevated ratios of nonsynonymous to synonymous nucleotide-substitution rates, particularly in the mature region of the proteins. Using ML, all 21 polymorphic amino acid sites were identified to be under diversifying selection. Of these 21 amino acids, 19 are located in the mature protein region, suggesting that selection may have acted on the functional portions of the proteins. Further investigation of gene copy number and organization revealed that the scr74 gene family comprises at least three copies located in a region of no more than 300 kb of the P. infestans genome. We found evidence that recombination contributed to sequence divergence within at least one gene locus. These results led us to propose an evolutionary model that involves gene duplication and recombination, followed by functional divergence of scr74 genes. This study provides support for using diversifying selection as a criterion for identifying candidate effector genes from sequence databases.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tian M, Huitema E, Da Cunha L, Torto-Alalibo T, Kamoun S. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J Biol Chem 2004; 279:26370-7. [PMID: 15096512 DOI: 10.1074/jbc.m400941200] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oomycetes form one of several lineages within the eukaryotes that independently evolved a parasitic lifestyle and consequently are thought to have developed alternative mechanisms of pathogenicity. The oomycete Phytophthora infestans causes late blight, a ravaging disease of potato and tomato. Little is known about processes associated with P. infestans pathogenesis, particularly the suppression of host defense responses. We describe and functionally characterize an extracellular protease inhibitor, EPI1, from P. infestans. EPI1 contains two domains with significant similarity to the Kazal family of serine protease inhibitors. Database searches suggested that Kazal-like proteins are mainly restricted to animals and apicomplexan parasites but appear to be widespread and diverse in the oomycetes. Recombinant EPI1 specifically inhibited subtilisin A among major serine proteases and inhibited and interacted with the pathogenesis-related P69B subtilisin-like serine protease of tomato in intercellular fluids. The epi1 and P69B genes were coordinately expressed and up-regulated during infection of tomato by P. infestans. Inhibition of tomato proteases by EPI1 could form a novel type of defense-counterdefense mechanism between plants and microbial pathogens. In addition, this study points to a common virulence strategy between the oomycete plant pathogen P. infestans and several mammalian parasites, such as the apicomplexan Toxoplasma gondii.
Collapse
Affiliation(s)
- Miaoying Tian
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA
| | | | | | | | | |
Collapse
|
23
|
Bos JIB, Armstrong M, Whisson SC, Torto TA, Ochwo M, Birch PRJ, Kamoun S. Intraspecific comparative genomics to identify avirulence genes from Phytophthora. THE NEW PHYTOLOGIST 2003; 159:63-72. [PMID: 33873680 DOI: 10.1046/j.1469-8137.2003.00801.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Members of the oomycete genus Phytophthora cause some of the most devastating plant diseases in the world and are arguably the most destructive pathogens of dicot plants. Phytophthora research has entered the genomics era. Current genomic resources include expressed sequence tags from a variety of developmental and infection stages, as well as sequences of selected regions of Phytophthora genomes. Genomics promise to impact upon our understanding of the molecular basis of infection by Phytophthora, for example, by facilitating the isolation of genes encoding effector molecules with a role in virulence and avirulence. Based on prevalent models of plant-pathogen coevolution, some of these effectors, notably those with avirulence functions, are predicted to exhibit significant sequence variation within populations of the pathogen. This and other features were used to identify candidate avirulence genes from sequence databases. Here, we describe a strategy that combines data mining with intraspecific comparative genomics and functional analyses for the identification of novel avirulence genes from Phytophthora. This approach provides a rapid and efficient alternative to classical positional cloning strategies for identifying avirulence genes that match known resistance genes. In addition, this approach has the potential to uncover 'orphan' avirulence genes for which corresponding resistance genes have not previously been characterized.
Collapse
Affiliation(s)
- Jorunn I B Bos
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Miles Armstrong
- Plant Pathogen Interaction Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Stephen C Whisson
- Plant Pathogen Interaction Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Trudy A Torto
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Mildred Ochwo
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Paul R J Birch
- Plant Pathogen Interaction Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Sophien Kamoun
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| |
Collapse
|
24
|
Si-Ammour A, Mauch-Mani B, Mauch F. Quantification of induced resistance against Phytophthora species expressing GFP as a vital marker: beta-aminobutyric acid but not BTH protects potato and Arabidopsis from infection. MOLECULAR PLANT PATHOLOGY 2003; 4:237-248. [PMID: 20569384 DOI: 10.1046/j.1364-3703.2003.00168.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Induced resistance was studied in the model pathosystem Arabidopsis-Phytophthora brassicae (formerly P. porri) in comparison with the agronomically important late blight disease of potato caused by Phytophthora infestans. For the quantification of disease progress, both Phytophthora species were transformed with the vector p34GFN carrying the selectable marker gene neomycine phosphotransferase (nptII) and the reporter gene green fluorescent protein (gfp). Eighty five per cent of the transformants of P. brassicae and P. infestans constitutively expressed GFP at high levels at all developmental stages both in vitro and in planta. Transformants with high GFP expression and normal in vitro growth and virulence were selected to quantify pathogen growth by measuring the in planta emitted GFP fluorescence. This non-destructive monitoring of the infection process was applied to analyse the efficacy of two chemical inducers of disease resistance, a functional SA-analogue, benzothiadiazole (BTH), and beta-aminobutyric acid (BABA) which is involved in priming mechanisms of unknown nature. BABA pre-treatment (300 microm) via soil drench applied 24 h before inoculation completely protected the susceptible Arabidopsis accession Landsberg erecta (Ler) from infection with P. brassicae. A similar treatment with BTH (330 microm) did not induce resistance. Spraying the susceptible potato cultivar Bintje with BABA (1 mm) 2 days before inoculation resulted in a phenocopy of the incompatible interaction shown by the resistant potato cultivar Matilda while BTH (1.5 mm) did not protect Bintje from severe infection. Thus, in both pathosystems, the mechanisms of induced resistance appeared to be similar, suggesting that the Arabidopsis-P. brassicae pathosystem is a promising model for the molecular analysis of induced resistance mechanisms of potato against the late blight disease.
Collapse
Affiliation(s)
- Azeddine Si-Ammour
- University of Fribourg, Department of Biology, Pérolles, 1700 Fribourg, Switzerland
| | | | | |
Collapse
|
25
|
Affiliation(s)
- Sophien Kamoun
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA.
| |
Collapse
|