1
|
Kang R, Li R, Mjengi J, Abbas Z, Song Y, Zhang L. A tiny sample rapid visual detection technology for imidacloprid resistance in Aphis gossypii by CRISPR/Cas12a. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175712. [PMID: 39181260 DOI: 10.1016/j.scitotenv.2024.175712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Insecticide resistance monitoring is essential for guiding chemical pest control and resistance management policies. Currently, rapid and effective technology for monitoring the resistance of tiny insects in the field is absent. Aphis gossypii Glover is a typical tiny insect, and one of the most frequently reported insecticide-resistant pests. In this study, we established a novel CRISPR/Cas12a-based rapid visual detection approach for detecting the V62I and R81T mutations in the β1 subunit of the nAChR in A. gossypii, to reflect target-site resistance to imidacloprid. Based on the nAChR β1 subunit gene in A. gossypii, the V62I/R81T-specific RPA primers and crRNAs were designed, and the ratio of 10 μM/2 μM/10 μM for ssDNA/Cas12a/crRNA was selected as the optimal dosage for the CRISPR reaction, ensuring that Cas12a only accurately recognizes imidacloprid-resistance templates. Our data show that the field populations of resistant insects possessing V62I and R81T mutations to imidacloprid can be accurately identified within one hour using the RPA-CRISPR/Cas12a detection approach under visible blue light at 440-460 nm. The protocol for RPA-CRISPR detection necessitates a single less than 2 mm specimen of A. gossypii tissues to perform RPA-CRISPR detection, and the process only requires a container at 37 °C and a portable blue light at 440-460 nm. Our research represents the first application of RPA-CRISPR technology in insecticide resistance detection, offers a new method for the resistance monitoring of A. gossypii or other tiny insects, helps delay the development of resistance to imidacloprid, improves the sustainability of chemical control, and provides theoretical guidance for managing pest resistance.
Collapse
Affiliation(s)
- Rujing Kang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ren Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Juma Mjengi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zohair Abbas
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yihong Song
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Li D, Chen L, Cai X, Qi Y, Lu Y. Comparative Population Biology and Related Gene Expression in the Beta-Cypermethrin-Resistant Strains of Bactrocera dorsalis (Hendel). INSECTS 2024; 15:569. [PMID: 39194774 DOI: 10.3390/insects15080569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Diptera and Lepidoptera species have the highest levels of insecticide resistance, and the mechanism of drug resistance has been studied in detoxification metabolism genes such as P450, GST, EST, and ABC. Since Bactrocera dorsalis are resistant to a variety of chemicals, the pattern and mechanism of resistance in Bactrocera dorsalis have been investigated from a variety of aspects such as detoxification metabolism genes, detoxification enzymes, intestinal symbiotic bacteria, and synergists in the world. In this study, 51 species and 149 detoxification metabolism genes were annotated in the Suppression Subtractive Hybridization (SSH) library, and 12 candidate genes related to beta-cypermethrin resistance were screened and quantitatively expressed in this library. Two genes were found to be upregulated in the egg stage, three genes in the larval stage, one gene in the pupal stage, and five genes in the adult stage, and four genes were found to be upregulated in the midgut and the malacca ducts in the midgut. The expression of cyp6g1, cyp6a22, GST-Epsilon9, and Trypsin-4 genes was upregulated in resistant strains, with the most obvious upregulation occurring in the midgut and the Malpighian tubules. These results provide new insights into the study of pesticide resistance in quarantine insects.
Collapse
Affiliation(s)
- Doudou Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Langjie Chen
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xinyan Cai
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yixiang Qi
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yongyue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Tang H, Liu X, Wang S, Wang Y, Bai L, Peng X, Chen M. A relaxin receptor gene RpGPCR41 is involved in the resistance of Rhopalosiphum padi to pyrethroids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105894. [PMID: 38685221 DOI: 10.1016/j.pestbp.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Rhopalosiphum padi is a global pest that poses a significant threat to wheat crops and has developed resistance to various insecticides. G protein-coupled receptors (GPCRs), known for their crucial role in signaling and biological processes across insect species, have recently gained attention as a potential target for insecticides. GPCR has the potential to contribute to insect resistance through the regulation of P450 gene expression. However, GPCRs in R. padi remained unexplored until this study. We identified a total of 102 GPCRs in R. padi, including 81 receptors from family A, 10 receptors from family B, 8 receptors from family C, and 3 receptors from family D. Among these GPCR genes, 16 were up-regulated in both lambda-cyhalothrin and bifenthrin-resistant strains of R. padi (LC-R and BIF-R). A relaxin receptor gene, RpGPCR41, showed the highest up-regulated expression in both the resistant strains, with a significant increase of 14.3-fold and 22.7-fold compared to the susceptible strain (SS). RNA interference (RNAi) experiments targeting the relaxin receptor significantly increase the mortality of R. padi when exposed to the LC50 concentration of lambda-cyhalothrin and bifenthrin. The expression levels of five P450 genes (RpCYP6CY8, RpCYP6DC1, RpCYP380B1, RpCYP4CH2, and RpCYP4C1) were significantly down-regulated following knockdown of RpGPCR41 in LC-R and BIF-R strains. Our results highlight the involvement of GPCR gene overexpression in the resistance of R. padi to pyrethroids, providing valuable insights into the mechanisms underlying aphid resistance and a potential target for aphid control.
Collapse
Affiliation(s)
- Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yixuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingling Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Liu X, Wang S, Tang H, Li M, Gao P, Peng X, Chen M. Uridine Diphosphate-Glycosyltransferase RpUGT344D38 Contributes to λ-Cyhalothrin Resistance in Rhopalosiphum padi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5165-5175. [PMID: 38437009 DOI: 10.1021/acs.jafc.3c08403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Uridine diphosphate-glycosyltransferase (UGT) is a key phase II enzyme in the insect detoxification system. Pyrethroids are commonly used to control the destructive wheat aphid Rhopalosiphum padi. In this study, we found a highly expressed UGT gene, RpUGT344D38, in both λ-cyhalothrin (LCR)- and bifenthrin (BTR)-resistant strains of R. padi. After exposure to λ-cyhalothrin and bifenthrin, the expression levels of RpUGT344D38 were significantly increased in the resistant strains. Knockdown of RpUGT344D38 did not affect the resistance of BTR, but it did significantly increase the susceptibility of LCR aphids to λ-cyhalothrin. Molecular docking analysis demonstrated that RpUGT344D38 had a stable binding interaction with both bifenthrin and λ-cyhalothrin. The recombinant RpUGT344D38 was able to metabolize 50% of λ-cyhalothrin. This study provides a comprehensive analysis of the role of RpUGT344D38 in the resistance of R. padi to bifenthrin and λ-cyhalothrin, contributing to a better understanding of aphid resistance to pyrethroids.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengtian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ping Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Jouraku A, Tomizawa Y, Watanabe K, Yamada K, Kuwazaki S, Aizawa M, Toda S, Sonoda S. Evolutionary origin and distribution of amino acid mutations associated with resistance to sodium channel modulators in onion thrips, Thrips tabaci. Sci Rep 2024; 14:3792. [PMID: 38360913 PMCID: PMC10869772 DOI: 10.1038/s41598-024-54443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
In onion thrips Thrips tabaci, reduced sensitivity of the sodium channel caused by several sodium channel mutations have been correlated with pyrethroid resistance. For this study, using mitochondrial cytochrome c oxidase subunit I gene sequences, we examined the phylogenetic relation among a total of 52 thelytokous and arrhenotokous strains with different genotypes of the sodium channel mutations. Then, we used flow cytometry to estimate their ploidy. Results showed that the strains are divisible into three groups: diploid thelytoky, triploid thelytoky, and diploid arrhenotoky. Using 23 whole genome resequencing data obtained from 20 strains out of 52, we examined their genetic relation further using principal component analysis, admixture analysis, and a fixation index. Results showed that diploid and triploid thelytokous groups are further classifiable into two based on the sodium channel mutations harbored by the respective group members (strains). The greatest genetic divergence was observed between thelytokous and arrhenotokous groups with a pair of T929I and K1774N. Nevertheless, they shared a genomic region with virtually no polymorphism around the sodium channel gene loci, suggesting a hard selective sweep. Based on these findings, we discuss the evolutionary origin and distribution of the sodium channel mutations in T. tabaci.
Collapse
Affiliation(s)
- Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yui Tomizawa
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Kazuki Watanabe
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Kiyoshi Yamada
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Seigo Kuwazaki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Misato Aizawa
- Seisan Regional Agricultural Extension Center, Mitoyo, Kagawa, 769-1503, Japan
| | - Satoshi Toda
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima, 739-2494, Japan
| | - Shoji Sonoda
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan.
| |
Collapse
|
6
|
Tang HC, Zhou YR, Zuo JF, Wang YX, Piñero JC, Peng X, Chen MH. Voltage-gated sodium channel gene mutation and P450 gene expression are associated with the resistance of Aphis spiraecola Patch (Hemiptera: Aphididae) to lambda-cyhalothrin. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:49-56. [PMID: 38180110 DOI: 10.1017/s0007485323000603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Aphis spiraecola Patch is one of the most economically important tree fruit pests worldwide. The pyrethroid insecticide lambda-cyhalothrin is commonly used to control A. spiraecola. In this 2-year study, we quantified the resistance level of A. spiraecola to lambda-cyhalothrin in different regions of the Shaanxi province, China. The results showed that A. spiraecola had reached extremely high resistance levels with a 174-fold resistance ratio (RR) found in the Xunyi region. In addition, we compared the enzymatic activity and expression level of P450 genes among eight A. spiraecola populations. The P450 activity of A. spiraecola was significantly increased in five regions (Xunyi, Liquan, Fengxiang, Luochuan, and Xinping) compared to susceptible strain (SS). The expression levels of CYP6CY7, CYP6CY14, CYP6CY22, P4504C1-like, P4506a13, CYP4CZ1, CYP380C47, and CYP4CJ2 genes were significantly increased under lambda-cyhalothrin treatment and in the resistant field populations. A L1014F mutation in the sodium channel gene was found and the mutation rate was positively correlated with the LC50 of lambda-cyhalothrin. In conclusion, the levels of lambda-cyhalothrin resistance of A. spiraecola field populations were associated with P450s and L1014F mutations. Our combined findings provide evidence on the resistance mechanism of A. spiraecola to lambda-cyhalothrin and give a theoretical basis for rational and effective control of this pest species.
Collapse
Affiliation(s)
- Hong-Cheng Tang
- Department of Entomology, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Lab Plant Protect Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yu-Rong Zhou
- Department of Entomology, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Lab Plant Protect Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun-Feng Zuo
- Department of Entomology, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Lab Plant Protect Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi-Xuan Wang
- Department of Entomology, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Lab Plant Protect Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jaime C Piñero
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
| | - Xiong Peng
- Department of Entomology, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Lab Plant Protect Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mao-Hua Chen
- Department of Entomology, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Lab Plant Protect Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
7
|
Gao P, Tan JJ, Su S, Wang SJ, Peng X, Chen MH. Overexpression of the Chemosensory Protein CSP7 Gene Contributed to Lambda-Cyhalothrin Resistance in the Bird Cherry-Oat Aphid Rhopalosiphum padi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37922215 DOI: 10.1021/acs.jafc.3c05100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Lambda-cyhalothrin is one of the most important pyrethroids used for controlling wheat aphids. Extensive spraying of lambda-cyhalothrin has led to the development of high resistance to this pyrethroid inRhopalosiphum padi. The mechanisms of resistance are complex and not fully understood. In this study, we found that a laboratory-selected strain of R. padi showed extremely high resistance to lambda-cyhalothrin and cross-resistance to bifenthrin and deltamethrin. The expression level of RpCSP7 was significantly elevated in the resistant strain compared to that in the susceptible strain. Knockdown of RpCSP7 increased the susceptibility of R. padi to lambda-cyhalothrin, whereas the susceptibility to bifenthrin and deltamethrin was not significantly changed. The recombinant RpCSP7 displayed a high affinity for lambda-cyhalothrin but no affinities to bifenthrin and deltamethrin. These findings suggest that the overexpression of RpCSP7 contributes to the resistance of R. padi to lambda-cyhalothrin. This study provides valuable insights into CSP-mediated insecticide resistance in insects.
Collapse
Affiliation(s)
- Ping Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun-Jie Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sha Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Su-Ji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mao-Hua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
8
|
Riebenbauer K, Purkhauser K, Walochnik J, Urban N, Weber PB, Stamm T, Handisurya A. Detection of a knockdown mutation in the voltage-sensitive sodium channel associated with permethrin tolerance in Sarcoptes scabiei var. hominis mites. J Eur Acad Dermatol Venereol 2023; 37:2355-2361. [PMID: 37356045 DOI: 10.1111/jdv.19288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Increasing evidence has sparked a debate on the loss of sensitivity of scabies mites to conventional permethrin therapy. Mutations in the voltage-sensitive sodium channels (VSSC) were associated with knockdown resistance (kdr) in many arthropods, but have never been identified in Sarcoptes scabiei variatio (var.) hominis mites. OBJECTIVES To identify factors contributing to therapy failure. METHODS Sixty-seven mites were collected from 64 scabies-infested patients in Vienna, Austria, of whom 85.9% were refractory to prior permethrin-based treatments, and genotyped for the presence of nucleotide polymorphisms in Domain II of the VSSC, known to be associated with kdr. Information regarding previous antiscabietic therapies, decontamination procedures and possible re-infestations by contacts as well as the response to re-imposed therapies were obtained. RESULTS Sequence alignment comparisons revealed previously unidentified mutations in the coding region of Domain II of the VSSC. A novel A1663T transversion was detected in 97.0% of the mites, resulting in a non-synonymous substitution from methionine to leucine, M918L, a mutation known to confer kdr in other arthropods. In addition, a synonymous G1659A transition was identified in one mite, which otherwise showed a nucleotide sequence identical to the wild-type reference. No major inconsistencies were observed within the previous therapeutic and decontamination procedures, which could have accounted for the observed non-responsiveness to permethrin-based therapies. Subsequent cure of infestation was achieved in 65.6% of the participants, predominantly by combination therapies with topical permethrin and systemic ivermectin. However, in 14.6% of the cured cases, permethrin monotherapy sufficed for eradication of scabies, albeit in some cases prolonged exposure was necessary. CONCLUSIONS The kdr-associated M918L mutation in the VSSC gene has now emerged in S. scabiei var. hominis mites. Hence, loss of sensitivity to permethrin due to kdr-type resistance may be more prevalent than anticipated and may be decisive for the therapy responsiveness of scabies-infested patients.
Collapse
Affiliation(s)
- K Riebenbauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - K Purkhauser
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - J Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - N Urban
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - P B Weber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - T Stamm
- Center for Medical Data Science, Institute of Outcomes Research, Medical University of Vienna & Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - A Handisurya
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Liu L, Wang S, Zuo J, Zhang X, Peng X, Wang K, Chen M. Characterization and fitness cost of bifenthrin resistance in Rhopalosiphum padi (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1795-1803. [PMID: 37478406 DOI: 10.1093/jee/toad143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Rhopalosiphum padi is an important global wheat pest. The pyrethroid insecticide bifenthrin is widely used in the control R. padi. We explored the resistance potential, cross-resistance, adaptive costs, and resistance mechanism of R. padi to bifenthrin using a bifenthrin-resistant strain (Rp-BIF) established in laboratory. The Rp-BIF strain developed extremely high resistance against bifenthrin (1033.036-fold). Cross-resistance analyses showed that the Rp-BIF strain had an extremely high level of cross-resistance to deltamethrin (974.483-fold), moderate levels of cross-resistance to chlorfenapyr (34.051-fold), isoprocarb (27.415-fold), imidacloprid (14.819-fold), and thiamethoxam (11.228-fold), whereas negative cross-resistance was observed to chlorpyrifos (0.379-fold). The enzymatic activity results suggested that P450 played an important role in bifenthrin resistance. A super-kdr mutation (M918L) of voltage-gated sodium channel (VGSC) was found in the bifenthrin-resistant individuals. When compared with the susceptible strain (Rp-SS), the Rp-BIF strain was significantly inferior in multiple life table parameters, exhibiting a relative fitness of 0.69. Our toxicological and biochemical studies indicated that multiple mechanisms of resistance might be involved in the resistance trait. Our results provide insight into the bifenthrin resistance of R. padi and can contribute to improve management of bifenthrin-resistant R. padi in the field.
Collapse
Affiliation(s)
- Lang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junfeng Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaohe Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
10
|
Gul H, Haq IU, Güncan A, Ullah F, Desneux N, Liu X. Laboratory-Induced Bifenthrin, Flonicamid, and Thiamethoxam Resistance and Fitness Costs in Rhopalosiphum padi. TOXICS 2023; 11:806. [PMID: 37888656 PMCID: PMC10610738 DOI: 10.3390/toxics11100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
The bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae) is one of the most economically important pests of wheat crops worldwide. Thiamethoxam, bifenthrin, and flonicamid are extensively used insecticides for controlling this key pest. However, the indiscriminate use of chemical insecticides has led to the development of resistance in insects. In this study, we assessed the development of selection-induced resistance to bifenthrin, flonicamid, and thiamethoxam under controlled laboratory conditions. Additionally, we employed the age-stage, two-sex life table method to examine the fitness of R. padi. After ten generations of selection, bifenthrin-, flonicamid-, and thiamethoxam-resistant strains of R. padi were developed with resistance levels of 34.46, 31.97, and 26.46-fold, respectively. The life table analysis revealed a significant decrease in adult longevity and fecundity in these resistant strains compared to susceptible strain. Furthermore, the key demographic parameters such as net reproductive rate (R0) and reproductive days exhibited a significant reduction in all resistant strains, while the intrinsic rate of increase (r) and finite rate of increase (λ) were decreased only in resistant strains to bifenthrin and thiamethoxam. Taken together, these findings provide a comprehensive understanding of laboratory-induced insecticide resistance evolution and the associated fitness costs in R. padi. This knowledge could help to design resistance management strategies against this particular pest of wheat.
Collapse
Affiliation(s)
- Hina Gul
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
- Insect Pest Management Program, Institute of Plant and Environmental Protection, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | - Ihsan ul Haq
- Insect Pest Management Program, Institute of Plant and Environmental Protection, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | - Ali Güncan
- Department of Plant Protection, Faculty of Agriculture, Ordu University, 52200 Ordu, Türkiye;
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Nicolas Desneux
- INRAE, Université Côte d’Azur, CNRS, UMR ISA, 06000 Nice, France
| | - Xiaoxia Liu
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
11
|
Wang S, Liu X, Tang H, Li M, Gao P, Peng X, Chen M. UGT2B13 and UGT2C1 are involved in lambda-cyhalothrin resistance in Rhopalosiphum padi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105528. [PMID: 37532337 DOI: 10.1016/j.pestbp.2023.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
Uridine diphosphate-glucuronosyltransferases (UGTs) are major multifunctional detoxification phase II enzymes involved in the metabolic detoxification of xenobiotics. However, their roles in insecticides resistance are still unclear. In this study, we identified two UGTs genes (UGT2B13 and UGT2C1) in Rhopalosiphum padi, a serious insect pest of wheat worldwide. Bioassays results showed that the resistance ratio of R. padi resistance strain (LC-R) to lambda-cyhalothrin (LC) was 2963.8 fold. The roles of UGT2B13 and UGT2C1 in lambda-cyhalothrin resistance were evaluated. Results indicated that the UGTs contents were significantly increased in the LC resistant strain of R. padi. UGT2B13 and UGT2C1 were significantly overexpressed in the LC-R strain. Transcription levels of UGT2B13 and UGT2C1 were relatively higher in the gut of LC-R strain. RNA interference (RNAi) of UGT2B13 or UGT2C1 significantly decreased the UGTs contents of the LC-R aphids and increased mortality of R. padi exposure to the LC50 concentration of LC. This study provides a new view that UGTs are involved in LC resistance of R. padi. The findings will promote further work to detailed the functions of UGTs in the metabolism resistance of insects to insecticides.
Collapse
Affiliation(s)
- Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengtian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ping Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China..
| |
Collapse
|
12
|
Bass C, Nauen R. The molecular mechanisms of insecticide resistance in aphid crop pests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103937. [PMID: 37023831 DOI: 10.1016/j.ibmb.2023.103937] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 05/05/2023]
Abstract
Aphids are a group of hemipteran insects that include some of the world's most economically important agricultural pests. The control of pest aphids has relied heavily on the use of chemical insecticides, however, the evolution of resistance poses a serious threat to their sustainable control. Over 1000 cases of resistance have now been documented for aphids involving a remarkable diversity of mechanisms that, individually or in combination, allow the toxic effect of insecticides to be avoided or overcome. In addition to its applied importance as a growing threat to human food security, insecticide resistance in aphids also offers an exceptional opportunity to study evolution under strong selection and gain insight into the genetic variation fuelling rapid adaptation. In this review we summarise the biochemical and molecular mechanisms underlying resistance in the most economically important aphid pests worldwide and the insights study of this topic has provided on the genomic architecture of adaptive traits.
Collapse
Affiliation(s)
- Chris Bass
- Faculty of Environment, Science and Economy, University of Exeter, Penryn, Cornwall, United Kingdom.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, Monheim, Germany.
| |
Collapse
|
13
|
Gao P, Zhang S, Tan J, Li X, Chen M. Chemosensory proteins are associated with thiamethoxam tolerance in bird cherry-oat aphid Rhopalosiphum padi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105393. [PMID: 37105631 DOI: 10.1016/j.pestbp.2023.105393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Rhopalosiphum padi (L.) is an important cosmopolitan pest of cereal crops. Thiamethoxam is widely used for control R. padi in some regions. Chemosensory proteins (CSPs) are a class of transporter proteins in arthropods which play a key role in various physiological processes including response to insecticide exposure. However, the role of R. padi CSPs (RpCSPs) in insecticide binding and susceptibility has not been well clarified. In this study, we found that the expression levels of RpCSP1, RpCSP4, RpCSP5, RpCSP7, RpCSP10 were dramatically upregulated after exposure to thiamethoxam. Suppression of RpCSP4 and RpCSP5 transcription by RNA interference significantly enhanced the susceptibility of R. padi to thiamethoxam. Molecular docking and fluorescence competitive binding showed that RpCSP4 and RpCSP5 had high binding affinity with thiamethoxam. The present results prove that RpCSP4 and RpCSP5 are related to insecticide resistance through high binding affinity to reduce the toxicity of insecticide.
Collapse
Affiliation(s)
- Ping Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siqian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Junjie Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinghao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
14
|
Tomanović Ž, Kavallieratos NG, Ye Z, Nika EP, Petrović A, Vollhardt IMG, Vorburger C. Cereal Aphid Parasitoids in Europe (Hymenoptera: Braconidae: Aphidiinae): Taxonomy, Biodiversity, and Ecology. INSECTS 2022; 13:1142. [PMID: 36555052 PMCID: PMC9785021 DOI: 10.3390/insects13121142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Cereals are very common and widespread crops in Europe. Aphids are a diverse group of herbivorous pests on cereals and one of the most important limiting factors of cereal production. Here, we present an overview of knowledge about the taxonomy, biodiversity, and ecology of cereal aphid parasitoids in Europe, an important group of natural enemies contributing to cereal aphid control. We review the knowledge obtained from the integrative taxonomy of 26 cereal aphid primary parasitoid species, including two allochthonous species (Lysiphlebus testaceipes and Trioxys sunnysidensis) and two recently described species (Lipolexis labialis and Paralipsis brachycaudi). We further review 28 hyperparasitoid species belonging to three hymenopteran superfamilies and four families (Ceraphronoidea: Megaspillidae; Chalcidoidea: Pteromalidae, Encyrtidae; Cynipoidea: Figitidae). We also compile knowledge on the presence of secondary endosymbionts in cereal aphids, as these are expected to influence the community composition and biocontrol efficiency of cereal aphid parasitoids. To study aphid-parasitoid-hyperparasitoid food webs more effectively, we present two kinds of DNA-based approach: (i) diagnostic PCR (mainly multiplex PCR), and (ii) DNA sequence-based methods. Finally, we also review the effects of landscape complexity on the different trophic levels in the food webs of cereal aphids and their associated parasitoids, as well as the impacts of agricultural practices and environmental variation.
Collapse
Affiliation(s)
- Željko Tomanović
- Faculty of Biology, Institute of Zoology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Zhengpei Ye
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China
| | - Erifili P. Nika
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Andjeljko Petrović
- Faculty of Biology, Institute of Zoology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia
| | - Ines M. G. Vollhardt
- Agroecology, Department of Crop Science, Georg-August University Göttingen, Grisebachstrasse 6, 37077 Göttingen, Germany
| | - Christoph Vorburger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
15
|
Van den Eynde R, De Keukelaere L, Landschoot S, Pycke B, Claeys J, Smets S, Van Leeuwen T, Haesaert G. Spatio-temporal Influences on Cereal Aphid (Hemiptera: Aphididae) Population Dynamics and the Incidence of Barley Yellow Dwarf Virus. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1020-1029. [PMID: 35866497 DOI: 10.1093/ee/nvac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 06/15/2023]
Abstract
Problems with aphids in small grain cereals, either direct by feeding, or indirect by transmission of Barley Yellow Dwarf Virus, are expected to increase due to climate change and a recent ban on neonicotinoid seed treatments by the European Union. Moreover, insecticide resistance against pyrethroid insecticides is reported at multiple locations throughout the world. Therefore, a better understanding of cereal aphid population dynamics and increased attention towards an integrated pest management is needed. In this study, cereal aphids were monitored on 193 maize and small grain cereal fields throughout Flanders, Belgium. The population dynamics and species distribution were observed throughout the year and the effects of spatio-temporal variables were explored. A significant negative effect was found of grassland in a 1,000 m radius and a positive effect of grain maize in a 3,000 m radius around a small grain cereals field on the maximum infestation rate with aphids in autumn within this field. In a 3,000 m and 5,000 m radius, a significant positive effect of grain maize and a significant negative effect of other small grain cereals was found on the maximum infestation rate during the whole growing season within this field. The mean daily average temperature from 118 to 19 d before sowing had a significant positive effect on the maximum infestation rate in autumn. Mean precipitation, wind speed, and humidity from 52 to 26, 46 to 23, and 107 to 13 d before sowing respectively, had a significant negative effect on the maximum infestation rate in autumn.
Collapse
Affiliation(s)
- Renik Van den Eynde
- Experimental Farm Bottelare, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Bottelare, Belgium
| | - Laura De Keukelaere
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sofie Landschoot
- Experimental Farm Bottelare, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Bottelare, Belgium
| | - Bart Pycke
- Experimental Farm Bottelare, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Bottelare, Belgium
| | | | | | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Geert Haesaert
- Experimental Farm Bottelare, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Bottelare, Belgium
| |
Collapse
|
16
|
Valmorbida I, Hohenstein JD, Coates BS, Bevilaqua JG, Menger J, Hodgson EW, Koch RL, O'Neal ME. Association of voltage-gated sodium channel mutations with field-evolved pyrethroid resistant phenotypes in soybean aphid and genetic markers for their detection. Sci Rep 2022; 12:12020. [PMID: 35835854 PMCID: PMC9283502 DOI: 10.1038/s41598-022-16366-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
The frequent use of insecticides to manage soybean aphids, Aphis glycines (Hemiptera: Aphididae), in the United States has contributed to field-evolved resistance. Pyrethroid-resistant aphids have nonsynonymous mutations in the voltage-gated sodium channel (vgsc). We identified a leucine to phenylalanine mutation at position 1014 (L1014F) and a methionine to isoleucine mutation (M918I) of the A. glycines vgsc, both suspected of conferring knockdown resistance (kdr) to lambda-cyhalothrin. We developed molecular markers to identify these mutations in insecticide-resistant aphids. We determined that A. glycines which survived exposure to a diagnostic concentration of lambda-cyhalothrin and bifenthrin via glass-vial bioassays had these mutations, and showed significant changes in the resistance allele frequency between samples collected before and after field application of lambda-cyhalothrin. Thus, a strong association was revealed between aphids with L1014F and M918I vgsc mutations and survival following exposure to pyrethroids. Specifically, the highest survival was observed for aphids with the kdr (L1014F) and heterozygote super-kdr (L1014F + M918I) genotypes following laboratory bioassays and in-field application of lambda-cyhalothrin. These genetic markers could be used as a diagnostic tool for detecting insecticide-resistant A. glycines and monitoring the geographic distribution of pyrethroid resistance. We discuss how generating these types of data could improve our efforts to mitigate the effects of pyrethroid resistance on crop production.
Collapse
Affiliation(s)
| | | | - Brad S Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Júlia G Bevilaqua
- Department of Crop Protection, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - James Menger
- Department of Entomology, University of Minnesota, Saint Paul, MN, USA
| | - Erin W Hodgson
- Department of Entomology, Iowa State University, Ames, IA, USA
| | - Robert L Koch
- Department of Entomology, University of Minnesota, Saint Paul, MN, USA
| | | |
Collapse
|
17
|
Wang K, Zhao J, Han Z, Chen M. Comparative transcriptome and RNA interference reveal CYP6DC1 and CYP380C47 related to lambda-cyhalothrin resistance in Rhopalosiphum padi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105088. [PMID: 35430059 DOI: 10.1016/j.pestbp.2022.105088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The bird-cherry-oat aphid, Rhopalosiphum padi, is a serious agricultural pest of Triticeae crops, and pyrethroids are the most widely used chemical pesticides for the control of the aphid. Our previous studies found that some R. padi field populations have developed resistance against pyrethroids; an M918L target-site mutation of the voltage gated sodium channel was present in the pyrethroid resistant individuals, while the high-level resistance to lambda-cyhalothrin revealed the presence of other mechanisms in the pest. Here, we conducted genome-wide transcriptional analysis for the lambda-cyhalothrin susceptible (SS) and resistant (LC-RR) strains of R. padi. Results indicated that 2457 genes were differently expressed between the SS and LC-RR strains. In the LC-RR, a total of 1265 and 1192 genes were up- and down-regulated, respectively. KEGG analysis implicated enrichment of P450 involved in insecticide metabolic pathways in the resistant transcriptome. qRT-PCR results confirmed that two P450 genes (CYP6DC1 and CYP380C47) were significantly overexpressed in the LC-RR individuals. Furthermore, RNA interference (RNAi) of CYP6DC1 or CYP380C47 significantly increased mortality of R. padi exposure to lambda-cyhalothrin. These results suggest that the overexpression of CYP6DC1 and CYP380C47 contributed to the lambda-cyhalothrin resistance in the pest. This study provides knowledge for further analyzing the molecular mechanism of resistance to pyrethroids in R. padi.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Junning Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaojun Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
18
|
Jones RAC, Sharman M, Trębicki P, Maina S, Congdon BS. Virus Diseases of Cereal and Oilseed Crops in Australia: Current Position and Future Challenges. Viruses 2021; 13:2051. [PMID: 34696481 PMCID: PMC8539440 DOI: 10.3390/v13102051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/22/2022] Open
Abstract
This review summarizes research on virus diseases of cereals and oilseeds in Australia since the 1950s. All viruses known to infect the diverse range of cereal and oilseed crops grown in the continent's temperate, Mediterranean, subtropical and tropical cropping regions are included. Viruses that occur commonly and have potential to cause the greatest seed yield and quality losses are described in detail, focusing on their biology, epidemiology and management. These are: barley yellow dwarf virus, cereal yellow dwarf virus and wheat streak mosaic virus in wheat, barley, oats, triticale and rye; Johnsongrass mosaic virus in sorghum, maize, sweet corn and pearl millet; turnip yellows virus and turnip mosaic virus in canola and Indian mustard; tobacco streak virus in sunflower; and cotton bunchy top virus in cotton. The currently less important viruses covered number nine infecting nine cereal crops and 14 infecting eight oilseed crops (none recorded for rice or linseed). Brief background information on the scope of the Australian cereal and oilseed industries, virus epidemiology and management and yield loss quantification is provided. Major future threats to managing virus diseases effectively include damaging viruses and virus vector species spreading from elsewhere, the increasing spectrum of insecticide resistance in insect and mite vectors, resistance-breaking virus strains, changes in epidemiology, virus and vectors impacts arising from climate instability and extreme weather events, and insufficient industry awareness of virus diseases. The pressing need for more resources to focus on addressing these threats is emphasized and recommendations over future research priorities provided.
Collapse
Affiliation(s)
- Roger A. C. Jones
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Murray Sharman
- Queensland Department of Agriculture and Fisheries, Ecosciences Precinct, P.O. Box 267, Brisbane, QLD 4001, Australia;
| | - Piotr Trębicki
- Grains Innovation Park, Agriculture Victoria, Department of Jobs, Precincts and Regions, Horsham, VIC 3400, Australia; (P.T.); (S.M.)
| | - Solomon Maina
- Grains Innovation Park, Agriculture Victoria, Department of Jobs, Precincts and Regions, Horsham, VIC 3400, Australia; (P.T.); (S.M.)
| | - Benjamin S. Congdon
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia;
| |
Collapse
|
19
|
Wang K, Zhao JN, Bai JY, Shang YZ, Zhang SQ, Hou YF, Chen MH, Han ZJ. Pyrethroid Resistance and Fitness Cost Conferred by the super-kdr Mutation M918L in Rhopalosiphum padi (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1789-1795. [PMID: 34137856 DOI: 10.1093/jee/toab117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Pyrethroid insecticides have been widely utilized for insect pest control. Target-site resistance is one of the major mechanisms explaining pest resistance to pyrethroids. This study quantified pyrethroid resistance and fitness cost conferred by the voltage-gated sodium channel (VGSC) M918L mutation in Rhopalosiphum padi. Six s-kdr-SS and six s-kdr-RS parthenogenetic lineages were established from the same field population and were reared in the laboratory without exposure to pesticides for more than one year. Enzyme activity analysis demonstrated that metabolic resistance had no impact on these lineages. Bioassays showed that the M918L mutation strongly affected pyrethroid efficiency, conferring moderate resistance to bifenthrin (type I) (39.0-fold) and high resistance to lambda-cyhalothrin (type II) (194.7-fold). Compared with the life table of s-kdr-SS lineages, s-kdr-RS lineages exhibited a relative fitness cost with significant decreases in longevity and fecundity. Meanwhile, competitive fitness was measured by blending various ratios of s-kdr-SS and s-kdr-SS aphids. The results indicated that M918L-mediated resistance showed a significant fitness cost in the presence of wild aphids without insecticide pressure. The fitness cost strongly correlated with the initial resistance allele frequency. This work characterized the novel s-kdr M918L mutation in R. padi, defined its function in resistance to different types of pyrethroids, and documented that the M918L-mediated resistance has a significant fitness cost.
Collapse
Affiliation(s)
- Kang Wang
- Nanjing Agricultural University, Nanjing, Jiangsu, China
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Jun Ning Zhao
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Jiao Yang Bai
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Yun Zhu Shang
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Si Qian Zhang
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Yi Fan Hou
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Mao Hua Chen
- Northwest A&F University, State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, China
| | - Zhao Jun Han
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Peng X, Wang S, Huang L, Su S, Chen M. Characterization of Rhopalosiphum padi takeout-like genes and their role in insecticide susceptibility. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104725. [PMID: 33357548 DOI: 10.1016/j.pestbp.2020.104725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 10/10/2020] [Indexed: 06/12/2023]
Abstract
Due to the extensive use of chemical insecticides, the field populations of Rhopalosiphum padi, a serious wheat pest worldwide, have developed resistance to insecticides. Therefore, deep understanding of the mechanisms of the aphid's physiological response to insecticides would be of importance for the management of insecticide resistance in pests. Takeout belongs to a protein superfamily found exclusively in insects. Previous research showed that the takeout gene had various functions in insect physiology and behavior. However, few studies have explored the functions of takeout in insect insecticide susceptibility. The susceptibility of R. padi to imidacloprid and beta-cypermethrin was tested. Thirteen takeout-like genes were identified based on the genome database of R. padi. The number of exons was variable in these takeout-like genes, and nine highly conserved amino acids (two Cysteine, two Proline, four Glycine and one Aspartic acid) were identified. Expression levels of takeout-like-2, takeout-like-3, takeout-like-5, takeout-like-8, takeout-like-10 and takeout-like-11 were significantly increased after imidacloprid treatment; seven genes (takeout-like-1, takeout-like-2, takeout-like-5, takeout-like-6, takeout-like-7, takeout-like-8 and takeout-like-11) tended to be upregulated after beta-cypermethrin treatment. RNA interference results showed that the mortalities of R. padi injected with dsTOL-2, dsTOL-5, dsTOL-8, dsTOL-10 and dsTOL-11 were significantly increased after exposure to imidacloprid in comparison with control (injection of dsGFP). Under two sublethal concentrations of beta-cypermethrin, the silencing of takeout-like-2, takeout-like-5 and takeout-like-11 significantly increased the mortalities of R. padi. These results provide evidence for the involvement of takeout-like genes in insecticide susceptibility of R. padi, which improves our understanding the determinant of insecticide susceptibility.
Collapse
Affiliation(s)
- Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lei Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sha Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|