1
|
Rahila K, Shibu Vardhanan Y. Comparative transcriptome profiling of two pesticides, Acephate and Chlorantraniliprole in non-targeted insect model, Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106023. [PMID: 39084782 DOI: 10.1016/j.pestbp.2024.106023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
Acephate and chlorantraniliprole are two insecticides widely used in agricultural applications. Several studies were focused on the mode of action and related biological and cellular level expressions. However, the sub-lethal dose and related molecular expression level of acephate and chlorantraniliprole have not been evaluated or studied to the same degree. In this study, we investigated the sub-lethal toxicity of acephate and chlorantraniliprole in Drosophila melanogaster. The EC50 value was recorded with high difference, and is found to be 1.9 μg/ml and 0.029 μg/ml respectively for acephate and chlorantraniliprole, the difference is simply because of the different modes of action. The 1/5th EC50 concentration was selected for studying the pesticide induced transcriptomics in D. melanogaster. Both pesticides significantly altered the expression profile of several transcripts which are involved in proteolysis, detoxification, chromosome associated proteins and immune response genes and so on. The effect of both pesticides on D. melanogaster was further explored by screening the genes involved in toxicity, which were analyzed using, GO and KEGG pathways. The results revealed that the sub-lethal exposure of both pesticides caused significant changes in the global gene transcription profiles and each pesticide had their unique mode of alteration in the D. melanogaster.
Collapse
Affiliation(s)
- K Rahila
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Malappuram, Kerala 673 635, India.
| | - Y Shibu Vardhanan
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Malappuram, Kerala 673 635, India.
| |
Collapse
|
2
|
Wu Y, Li J, Zhu J, Zhang Z, Zhang S, Wang M, Hua X. A Rapid and Sensitive Gold Nanoparticle-Based Lateral Flow Immunoassay for Chlorantraniliprole in Agricultural and Environmental Samples. Foods 2024; 13:205. [PMID: 38254506 PMCID: PMC10814772 DOI: 10.3390/foods13020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Chlorantraniliprole (CAP) is a new type of diamide insecticide that is mainly used to control lepidopteran pests. However, it has been proven to be hazardous to nontarget organisms, and the effects of its residues need to be monitored. In this study, five hybridoma cell lines were developed that produced anti-CAP monoclonal antibodies (mAbs), of which the mAb originating from the cell line 5C5B9 showed the highest sensitivity and was used to develop a gold nanoparticle-based lateral flow immunoassay (AuNP-LFIA) for CAP. The visible limit of detection of the AuNP-LFIA was 1.25 ng/mL, and the detection results were obtained in less than 10 min. The AuNP-LFIA showed no cross-reactivity for CAP analogs, except for tetraniliprole (50%) and cyclaniliprole (5%). In the detection of spiked and blind samples, the accuracy and reliability of the AuNP-LFIA were confirmed by a comparison with spiked concentrations and verified by ultra-performance liquid chromatography-tandem mass spectrometry. Thus, this study provides the core reagents for establishing CAP immunoassays and a AuNP-LFIA for the detection of residual CAP.
Collapse
Affiliation(s)
- Yanling Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.L.); (J.Z.); (M.W.)
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Jiao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.L.); (J.Z.); (M.W.)
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Jie Zhu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.L.); (J.Z.); (M.W.)
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhaoxian Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China;
| | - Shuguang Zhang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.L.); (J.Z.); (M.W.)
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.W.); (J.L.); (J.Z.); (M.W.)
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
3
|
Thompson LJ, Stout JC, Stanley DA. Contrasting effects of fungicide and herbicide active ingredients and their formulations on bumblebee learning and behaviour. J Exp Biol 2023; 226:297167. [PMID: 36861783 PMCID: PMC10112909 DOI: 10.1242/jeb.245180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Fungicides and herbicides are two of the most heavily applied pesticide classes in the world, but receive little research attention with regards to their potential impacts on bees. As they are not designed to target insects, the mechanisms behind potential impacts of these pesticides are unclear. It is therefore important to understand their influence at a range of levels, including sublethal impacts on behaviours such as learning. We used the proboscis extension reflex (PER) paradigm to assess how the herbicide glyphosate and the fungicide prothioconazole affect bumblebee olfactory learning. We also assessed responsiveness, and compared the impacts of these active ingredients and their respective commercial formulations (Roundup Biactive and Proline). We found that learning was not impaired by either formulation but, of the bees that displayed evidence of learning, exposure to prothioconazole active ingredient increased learning level in some situations, while exposure to glyphosate active ingredient resulted in bumblebees being less likely to respond to antennal stimulation with sucrose. Our data suggest that fungicides and herbicides may not negatively impact olfactory learning ability when bumblebees are exposed orally to field-realistic doses in a lab setting, but that glyphosate has the potential to cause changes in responsiveness in bees. As we found impacts of active ingredients and not commercial formulations, this suggests that co-formulants may modify impacts of active ingredients in the products tested on olfactory learning without being toxic themselves. More research is needed to understand the mechanisms behind potential impacts of fungicides and herbicides on bees, and to evaluate the implications of behavioural changes caused by glyphosate and prothioconazole for bumblebee fitness.
Collapse
Affiliation(s)
- Linzi J Thompson
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.,Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Jane C Stout
- School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.,Earth Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
4
|
Tang Q, Wang P, Liu H, Jin D, Chen X, Zhu L. Effect of chlorantraniliprole on soil bacterial and fungal diversity and community structure. Heliyon 2023; 9:e13668. [PMID: 36852024 PMCID: PMC9957708 DOI: 10.1016/j.heliyon.2023.e13668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Chlorantraniliprole (CAP) is an insecticide with low toxicity and high efficiency, which is widely used in agriculture in China. However, its potential ecological risks remain unknown. In this study, we investigated the impact of different CAP concentrations on bacterial and fungal communities in soil based on high-throughput sequencing. The results showed that CAP application had no significant effect on soil bacterial and fungal diversity, but altered the bacterial and fungal community structure. In particular, the soil bacterial and fungal community structure in the low CAP concentration treatment group exhibited large variability. Compared with 0 day, the phylum level of bacteria changed at 115 days, and fungi changed at 175 days, indicating that soil microbial community might have significant correlation with CAP degradation in soil. Correlation analysis between soil properties and microbial communities showed that TN, TP, and NO3-N were three key factors that significantly influenced microbial community structure. These results provide basic data for studying the effects of pesticides on ecosystem and potential remediation strategies of polluted soil.
Collapse
Affiliation(s)
- Qian Tang
- Key Laboratory ofAgricultural Product Processing and Quality Control(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
| | - Pingping Wang
- Key Laboratory ofAgricultural Product Processing and Quality Control(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
| | - Huijun Liu
- Key Laboratory ofAgricultural Product Processing and Quality Control(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
- Corresponding author.
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangning Chen
- Key Laboratory ofAgricultural Product Processing and Quality Control(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing, 102206, China
- Corresponding author.
| | - Lifei Zhu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
5
|
Moreira LB, Lima LLR, de Sá Farias E, Carvalho GA. Response of Doru luteipes (Dermaptera: Forficulidae) to insecticides used in maize crop as a function of its life stage and exposure route. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15010-15019. [PMID: 36168013 DOI: 10.1007/s11356-022-23196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to evaluate insecticide toxicity to Doru luteipes (Scudder), a major predator of maize pests. Lethal and sublethal effects were assessed on nymphs and adults exposed to the insecticides through contact (maize leaves) and ingestion (prey eggs) routes. Tested insecticides included a biopesticide (Spodoptera frugiperda multiple nucleopolyhedrovirus, SfMNPV), modern (flubendiamide and metaflumizone), and older neurotoxins (imidacloprid + β-cyfluthrin). The imidacloprid/β-cyfluthrin mix was highly toxic (100% mortality) to the predator, regardless of the exposure route and predator stage. Metaflumizone caused mortality higher than 95% and 45% of nymphs and adults. Flubendiamide and SfMNPV were the least toxic insecticides, not differing from the untreated control in any of the assessed endpoints. Adult tibial length did not differ among treatments. Metaflumizone impaired egg consumption by nymphs and walking distance of adult D. luteipes. Overall, the insecticides caused a more pronounced effect on D. luteipes nymphs than on adults and were more toxic by the contact route. From these findings, flubendiamide and SfMNPV are safer for D. luteipes and should head insecticide choice in integrated pest management programs in maize.
Collapse
Affiliation(s)
- Luciano Bastos Moreira
- Department of Entomology, Universidade Federal de Lavras, PB 3037, Lavras, Minas Gerais, 37200-900, Brazil
| | | | - Elizeu de Sá Farias
- Department of Entomology, Universidade Federal de Lavras, PB 3037, Lavras, Minas Gerais, 37200-900, Brazil
| | - Geraldo Andrade Carvalho
- Department of Entomology, Universidade Federal de Lavras, PB 3037, Lavras, Minas Gerais, 37200-900, Brazil.
| |
Collapse
|
6
|
Cheng C, Hu J. Residue levels of chlorantraniliprole and clothianidin in rice and sugar cane and chronic dietary risk assessment for different populations. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Zhao H, Li G, Cui X, Wang H, Liu Z, Yang Y, Xu B. Review on effects of some insecticides on honey bee health. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105219. [PMID: 36464327 DOI: 10.1016/j.pestbp.2022.105219] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/03/2022] [Accepted: 08/26/2022] [Indexed: 06/17/2023]
Abstract
Insecticides, one of the main agrochemicals, are useful for controlling pests; however, the indiscriminate use of insecticides has led to negative effects on nontarget insects, especially honey bees, which are essential for pollination services. Different classes of insecticides, such as neonicotinoids, pyrethroids, chlorantraniliprole, spinosad, flupyradifurone and sulfoxaflor, not only negatively affect honey bee growth and development but also decrease their foraging activity and pollination services by influencing their olfactory sensation, memory, navigation back to the nest, flight ability, and dance circuits. Honey bees resist the harmful effects of insecticides by coordinating the expression of genes related to immunity, metabolism, and detoxification pathways. To our knowledge, more research has been conducted on the effects of neonicotinoids on honey bee health than those of other insecticides. In this review, we summarize the current knowledge regarding the effects of some insecticides, especially neonicotinoids, on honey bee health. Possible strategies to increase the positive impacts of insecticides on agriculture and reduce their negative effects on honey bees are also discussed.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuewei Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
8
|
da Silva WR, Pereira RC, Mendonça LVP, Peçanha LS, de Sales Abreu LM, Abib PHN, Samuels RI, Picanço MC, Silva GA. Lethal and sublethal effects of insecticides used in the management of Plutella xylostella (Lepidoptera: Plutellidae) on the predator Cycloneda sanguinea L. (Coleoptera: Coccinellidae). PEST MANAGEMENT SCIENCE 2022; 78:4397-4406. [PMID: 35762333 DOI: 10.1002/ps.7060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The application of synthetic insecticides is the main strategy used to reduce the damage caused by the diamondback moth Plutella xylostella in commercial Brassica crops. However, incorrect insecticide use can cause biological and ecological disturbances in agroecosystems. Cycloneda sanguinea is a generalist voracious predator and is distributed widely in cultivated and noncultivated ecosystems. This study investigated the efficiency of four insecticides for the control of P. xylostella and the lethal and sublethal effects of these insecticides on C. sanguinea. RESULTS Spinosad (92% mortality) and chlorfenapyr (76% mortality) were highly toxic to P. xylostela. However, chlorantraniliprole (10% mortality) and methomyl (no mortality) were ineffective against this pest. Chlorantraniliprole was the only insecticide that was highly toxic to C. sanguinea by contact (90% mortality), however, it was nontoxic following the ingestion of chlorantraniliprole-contaminated aphids. Interestingly, ingestion of prey contaminated with methomyl and chlorfenapyr was highly toxic (100% mortality) to C. sanguinea. Spinosad was nontoxic to C. sanguinea via exposure to contaminated surfaces and following ingestion of contaminated prey. However, direct contact of the insects with both methomyl and spinosad significantly affected C. sanguinea flight activity (vertical flight and free-fall flight), whereas chlorfenapyr impacted vertical flight only. CONCLUSION These findings showed that chlorantraniliprole was not only ineffective for the control of P. xylostela, but was also highly toxic to C. sanguinea. The results indicated that spinosad was efficient against P. xylostela and was of low toxicity to C. sanguinea; however, the deleterious effects of this insecticide on flight behavior could result in reduced predatory efficiency. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wanderson Rosa da Silva
- Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Renata Cunha Pereira
- Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Laís Viana Paes Mendonça
- Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Ludimila Simões Peçanha
- Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Letícia Moamad de Sales Abreu
- Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Pedro Henrique Nogueira Abib
- Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Richard Ian Samuels
- Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Gerson Adriano Silva
- Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Costa MA, Farias ES, Passos LC, Carvalho VC, Carvalho GA. Side effects of insecticides applied to cotton on adult Trichogramma pretiosum by three exposure routes. PEST MANAGEMENT SCIENCE 2022; 78:1895-1902. [PMID: 35064632 DOI: 10.1002/ps.6807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) is released in extensive areas cultivated with cotton worldwide, but the use of synthetic insecticides threatens the establishment of augmented populations. Thus, an assessment of insecticides' effects on T. pretiosum is required to establish their compatibility with mass releases of the parasitoid. We studied in the laboratory the impact of insecticides administered through different exposure routes (direct-spraying, ingestion and residue contact) on T. pretiosum. Based on their toxicity, the insecticides were rated into four categories (harmless, slightly harmful, moderately harmful and harmful) as per the International Organization for Biological Control. RESULTS The survival, parasitism ability and emergence of the treated adults and offspring (F1 and F2 ), in addition to the persistence of the toxic effects in semi-field conditions, were assessed. Teflubenzuron did not reduce female survival and caused a lesser impact on T. pretiosum on both direct-spraying and ingestion bioassays. In the residue contact bioassay, teflubenzuron and flupyradifurone were rated as harmless and slightly harmful, respectively. The other active substances (chlorfenapyr, thiodicarb and methomyl) were harmful to the parasitoid by all exposure routes and were persistent (with toxicity duration surpassing 30 days). CONCLUSION From these findings, teflubenzuron is the insecticide most compatible with T. pretiosum releases and should be preferred over the other active substances. Further studies with the harmful insecticides (thiodicarb, chlorfenapyr and methomyl) are required to determine their toxicity under field conditions and confirm their incompatibility with T. pretiosum releases.
Collapse
Affiliation(s)
| | - Elizeu Sá Farias
- Department of Entomology, Universidade Federal de Lavras, Lavras, Brazil
| | - Luis Clepf Passos
- Department of Entomology, Universidade Federal de Lavras, Lavras, Brazil
| | | | | |
Collapse
|
10
|
Haas J, Glaubitz J, Koenig U, Nauen R. A mechanism-based approach unveils metabolic routes potentially mediating chlorantraniliprole synergism in honey bees, Apis mellifera L., by azole fungicides. PEST MANAGEMENT SCIENCE 2022; 78:965-973. [PMID: 34734657 PMCID: PMC9299185 DOI: 10.1002/ps.6706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Almond production in California is an intensively managed agroecosystem dependent on managed pollination by honey bees, Apis mellifera L. A recent laboratory study reported synergism in honey bees between chlorantraniliprole, a common diamide insecticide used in almond orchards, and the fungicide propiconazole. Indeed, there is an emerging body of evidence that honey bee cytochrome P450 monooxygenases of the CYP9Q subfamily are involved in the detoxification of insecticides across a diverse range of chemical classes. The objective of the present study was to unveil the molecular background of the described synergism and to explore the potential role of CYP9Q enzymes in diamide detoxification. RESULTS Our study confirmed the previously reported synergistic potential of propiconazole on chlorantraniliprole in acute contact toxicity bioassays, whereas no synergism was observed for flubendiamide. Fluorescence-based biochemical assays revealed an interaction of chlorantraniliprole, but not flubendiamide, with functionally expressed CYP9Q2 and CYP9Q3. These findings were validated by an increased chlorantraniliprole tolerance of transgenic Drosophila lines expressing CYP9Q2/3, and an analytically confirmed oxidative metabolism of chlorantraniliprole by recombinantly expressed enzymes. Furthermore, we showed that several triazole fungicides used in almond orchards, including propiconazole, were strong nanomolar inhibitors of functionally expressed honey bee CYP9Q2 and CYP9Q3, whereas other fungicides such as iprodione and cyprodinil did not inhibit these enzymes. CONCLUSION Honey bee CYP9Q enzymes are involved in chlorantraniliprole metabolism and inhibited by triazole fungicides possibly leading to synergism in acute contact toxicity bioassays. Our mechanistic approach has the potential to inform tier I honey bee pesticide risk assessment.
Collapse
Affiliation(s)
- Julian Haas
- Institute of Crop Science and Resource Conservation, Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- Bayer AG, Crop Science Division, R&DMonheimGermany
| | - Johannes Glaubitz
- Institute of Crop Science and Resource Conservation, Department of Molecular PhytomedicineUniversity of BonnBonnGermany
| | - Udo Koenig
- Bayer AG, Crop Science Division, R&DMonheimGermany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&DMonheimGermany
| |
Collapse
|
11
|
Aghris S, Alaoui OT, Laghrib F, Farahi A, Bakasse M, Saqrane S, Lahrich S, El Mhammedi M. Extraction and determination of flubendiamide insecticide in food samples: A review. Curr Res Food Sci 2022; 5:401-413. [PMID: 35243353 PMCID: PMC8861570 DOI: 10.1016/j.crfs.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/06/2023] Open
Abstract
Flubendiamide (FBD) is the first commercially available phthalic acid diamide that targets ryanodine receptors (RyRs) in insects, which play a major role in lepidoptera control. However, excessive use of FBD can influence the quality of treated products leading to toxic effects on human health. The availability of rapid and convenient methods for evaluating FBD amount in the environment is necessary. Therefore, analytical methods were developed for the determination of residues of FBD and its metabolite desiodo in different food matrices like tomato, cabbage, pigeon pea, apple, chilli and rice. The current review carries forward methods for FBD residues analysis in foods by using several chromatographic techniques including sample preparation steps. The comparison between the different methods employed for quantitative and qualitative analysis of food quality and safety is also discussed. Liquid chromatography (LC) is the predominant analytical method for assessing the quality of foods treated with FBD. Studies related to LC coupled multichannel detector (Ultraviolet (UV), Mass spectrometry (MS)) are also applied to detect pesticide residues. Extraction and clean up steps are essential to obtain reliable results. Moreover, this review reports the allowed limits of residues for the safety of consuming products treated with FBD.
Collapse
Affiliation(s)
- S. Aghris
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - O. Tahiri Alaoui
- Moulay Ismail University, Laboratory of Physical Chemistry, Materials and Environment, Sciences and Technologies Faculty, Errachidia, Morocco
| | - F. Laghrib
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
- Sidi Mohamed Ben Abdellah University, Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of sciences, Fes, Morocco
| | - A. Farahi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M. Bakasse
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
- Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S. Saqrane
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - S. Lahrich
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M.A. El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| |
Collapse
|
12
|
Peng S, Yang S, Zhang X, Jia J, Chen Q, Lian Y, Wang A, Zeng B, Yang H, Li J, Dan J, Liao J, Zhou S. Analysis of imidacloprid residues in mango, cowpea and water samples based on portable molecular imprinting sensors. PLoS One 2021; 16:e0257042. [PMID: 34473806 PMCID: PMC8412333 DOI: 10.1371/journal.pone.0257042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/21/2021] [Indexed: 01/18/2023] Open
Abstract
Imidacloprid is a neonicotinoid insecticide widely used in the production and cultivation of crops. In recent years, the extensive use of imidacloprid in agricultural production has resulted in large amounts of pesticide residues in agricultural products and the environment. Therefore, it is necessary to establish a rapid, accurate, sensitive and convenient method for detecting imidacloprid pesticide residues to ensure the safety of agricultural products and the environment. To clarify how to use the molecular imprinting method for the electrochemical rapid residue detection of imidacloprid. This paper selected reduced graphene oxide and gold nanoparticles as modifiers modified on screen-printed carbon electrodes (SPCE) chitosan as a functional monomer, and imidacloprid as template molecule to prepare molecularly imprinted polymer, and applied this sensor to the residue detection of imidacloprid. The results showed that the concentration of imidacloprid showed a good linear relationship with the peak response current, and the detection limit of imidacloprid was 0.5 μM, while the sensor had good repeatability and interference resistance. The recoveries of imidacloprid spiked on three samples, mango, cowpea and water, were in the range of 90-110% (relative standard deviation, RSD<5%), which proved the practicality and feasibility of the assay established in this paper. The results of this paper can be used as a basis for the research on the detection of imidacloprid pesticide residues in food or environment.
Collapse
Affiliation(s)
- Sihua Peng
- College of Plant Protection, Hainan University, Hainan, Haikou, China
| | - Shuyan Yang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Xi Zhang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jingjing Jia
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Hainan, Haikou, China
| | - Qiulin Chen
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Yuyang Lian
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Aqiang Wang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Bei Zeng
- College of Plant Protection, Hainan University, Hainan, Haikou, China
| | - Heming Yang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jinlei Li
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| | - Jianguo Dan
- College of Plant Protection, Hainan University, Hainan, Haikou, China
| | - Jianjun Liao
- College of Ecology and Environment, Hainan University, Hainan, Haikou, China
| | - Shihao Zhou
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
13
|
Yin F, Lin Q, Wang X, Li Z, Feng X, Shabbir MZ. The glutathione S-transferase (PxGST2L) may contribute to the detoxification metabolism of chlorantraniliprole in Plutella xylostella(L.). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1007-1016. [PMID: 34110545 PMCID: PMC8295076 DOI: 10.1007/s10646-021-02431-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 05/15/2023]
Abstract
The diamondback moth (Plutella xylostella L.), is an economic pest of cruciferous plants worldwide, which causes great economic loss to cruciferous plants production. However, the pest has developed resistance to insecticides. One of such insecticides is chlorantraniliprole. The study of the mechanisms underlying resistance is key for the effective management of resistance. In this study, a comparative proteomics approach was used to isolate and identify various proteins that differed between chlorantraniliprole-susceptible and -resistant strains of P. xylostella. Eleven proteins were significantly different and were successfully identified by MALDI-TOF-MS. Metabolism-related proteins accounted for the highest proportion among the eleven different proteins. The function of the PxGST2L protein was validated by RNAi. Knockdown of PxGST2L reduced the GST activity and increased the toxicity of chlorantraniliprole to the diamondback moth. The resistance ratio of diamondback moth to chlorantraniliprole was reduced from 1029 to 505. The results indicated that PxGST2L is partly responsible for chlorantraniliprole insecticide resistance in DBM. Our finding contributes to the understanding of the mechanism underlying resistance to chlorantraniliprole in the DBM, to develop effective resistance management tactics.
Collapse
Affiliation(s)
- Fei Yin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Qingsheng Lin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China.
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China.
| | - Xiaoxiang Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Zhenyu Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Xia Feng
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, P.R. China
| | - Muhammad Zeeshan Shabbir
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
| |
Collapse
|
14
|
Barascou L, Brunet JL, Belzunces L, Decourtye A, Henry M, Fourrier J, Le Conte Y, Alaux C. Pesticide risk assessment in honeybees: Toward the use of behavioral and reproductive performances as assessment endpoints. CHEMOSPHERE 2021; 276:130134. [PMID: 33690036 DOI: 10.1016/j.chemosphere.2021.130134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The growing gap between new evidence of pesticide toxicity in honeybees and conventional toxicological assays recommended by regulatory test guidelines emphasizes the need to complement current lethal endpoints with sublethal endpoints. In this context, behavioral and reproductive performances have received growing interest since the 2000s, likely due to their ecological relevance and/or the emergence of new technologies. We review the biological interests and methodological measurements of these predominantly studied endpoints and discuss their possible use in the pesticide risk assessment procedure based on their standardization level, simplicity and ecological relevance. It appears that homing flights and reproduction have great potential for pesticide risk assessment, mainly due to their ecological relevance. If exploratory research studies in ecotoxicology have paved the way toward a better understanding of pesticide toxicity in honeybees, the next objective will then be to translate the most relevant behavioral and reproductive endpoints into regulatory test methods. This will require more comparative studies and improving their ecological relevance. This latter goal may be facilitated by the use of population dynamics models for scaling up the consequences of adverse behavioral and reproductive effects from individuals to colonies.
Collapse
Affiliation(s)
- Lena Barascou
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France.
| | - Jean-Luc Brunet
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France
| | - Luc Belzunces
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France
| | - Axel Decourtye
- UMT PrADE, Avignon, France; ITSAP-Institut de L'abeille, Avignon, France
| | - Mickael Henry
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France
| | - Julie Fourrier
- UMT PrADE, Avignon, France; ITSAP-Institut de L'abeille, Avignon, France
| | - Yves Le Conte
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France
| | - Cedric Alaux
- INRAE, Abeilles et Environnement, Avignon, France; UMT PrADE, Avignon, France.
| |
Collapse
|
15
|
Willis Chan DS, Raine NE. Population decline in a ground-nesting solitary squash bee (Eucera pruinosa) following exposure to a neonicotinoid insecticide treated crop (Cucurbita pepo). Sci Rep 2021; 11:4241. [PMID: 33608633 PMCID: PMC7896084 DOI: 10.1038/s41598-021-83341-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 11/29/2022] Open
Abstract
Insect pollinators are threatened by multiple environmental stressors, including pesticide exposure. Despite being important pollinators, solitary ground-nesting bees are inadequately represented by pesticide risk assessments reliant almost exclusively on honeybee ecotoxicology. Here we evaluate the effects of realistic exposure via squash crops treated with systemic insecticides (Admire-imidacloprid soil application, FarMore FI400-thiamethoxam seed-coating, or Coragen-chlorantraniliprole foliar spray) for a ground-nesting bee species (Hoary squash bee, Eucera pruinosa) in a 3-year semi-field experiment. Hoary squash bees provide essential pollination services to pumpkin and squash crops and commonly nest within cropping areas increasing their risk of pesticide exposure from soil, nectar, and pollen. When exposed to a crop treated at planting with soil-applied imidacloprid, these bees initiated 85% fewer nests, left 5.3 times more pollen unharvested, and produced 89% fewer offspring than untreated controls. No measurable impacts on bees from exposure to squash treated with thiamethoxam as a seed-coating or foliage sprayed with chlorantraniliprole were found. Our results demonstrate important sublethal effects of field-realistic exposure to a soil-applied neonicotinoid (imidacloprid) on bee behaviour and reproductive success. Soil must be considered a potential route of pesticide exposure in risk assessments, and restrictions on soil-applied insecticides may be justified, to mitigate impacts on ground-nesting solitary bee populations and the crop pollination services they provide.
Collapse
Affiliation(s)
- D Susan Willis Chan
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|