1
|
Xue H, Yan M, Zhu X, Wang L, Chen L, Luo J, Cui J, Gao X. AgoArmet and AgoC002: key effector proteins in cotton aphids host adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1500834. [PMID: 39670273 PMCID: PMC11634620 DOI: 10.3389/fpls.2024.1500834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024]
Abstract
Aphids are insects that feed on phloem and introduce effector proteins into plant cells through saliva. These effector proteins are key in regulating host plant defense and enhancing aphid host adaptation. We identified these salivary proteins in the cotton aphids genome and named them AgoArmet and AgoC002. Multiple sequence alignment, protein structure analysis, and phylogenetic analysis of these proteins with related proteins from other insects showed that AgoArmet and Armet of Aphis craccivora have high sequence identity (97%) and belong to the same evolutionary branch and that AgoC002 shares the highest sequence identity (80%) and closest evolutionary relationship with C002 of Aphis glyceins. Expression profiling of AgoArmet and AgoC002 showed that they were most highly expressed in cotton aphids during the adult-3d period. Cotton aphids transferred to zucchini leaves resulted in a significant increase in the expression of AgoArmet and AgoC002 within 48h. To investigate the functions of AgoArmet and AgoC002, we decreased the expression of these genes in cotton using virus-induced gene silencing (VIGS), which ultimately led to a 38% and 26% decrease in cotton aphids fecundity, respectively. Moreover, the reduction in AgoC002 expression resulted in a significant (24%) reduction in body weight. Taken together, our findings demonstrate that AgoArmet and AgoC002 are key effector proteins involved in cotton aphids feeding and host adaptation.
Collapse
Affiliation(s)
- Hui Xue
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengjie Yan
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiangzhen Zhu
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lizhen Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junyu Luo
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueke Gao
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Pan SX, Qu C, Liu Y, Shi Z, Lu XX, Yang ZK, Huang XB, Li W, Li XS, Zhou ZX, Chen C, Luo C, Qin YG, Yang XL. Sustainable Natural Resources for Aphid Management: β-Ionone and Its Derivatives as Promising Ecofriendly Botanical-Based Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22035-22044. [PMID: 39316709 DOI: 10.1021/acs.jafc.4c04053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
β-Ionone, sustainably derived from Petunia hybrida as a natural bioresource, was identified as a lead compound for integrated aphid management. A series of β-ionone derivatives containing ester groups were designed and synthesized for the purpose of discovering renewable botanical-based products. The odorant-binding protein (OBP) binding test indicated that β-ionone and its derivatives displayed binding affinities with Acyrthosiphon pisum OBP9 (ApisOBP9) and Harmonia axyridis OBP15 (HaxyOBP15). Bioactivity assays revealed that most β-ionone derivatives exhibited a higher repellent activity than that of β-ionone. β-Ionone and derivatives 4g and 4l displayed attractiveness to H. axyridis. Specifically, 4g was a highly promising derivative, possessing good repellent activity against A. pisum and attractiveness to H. axyridis. Molecular dynamics simulations revealed that integrating the hydrophobic ester group into the β-ionone framework strengthened the van der Waals interactions of 4g with ApisOBP9/HaxyOBP15, improving the binding affinity with OBPs and producing higher push-pull activity than β-ionone; 4g also had low toxicity toward nontarget organisms. Thus, 4g is a potential ecofriendly, botanical-based option for aphid management.
Collapse
Affiliation(s)
- Shi-Xiang Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Yan Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Zhuo Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Xing-Xing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Zhao-Kai Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Xiao-Bo Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Wan Li
- College of Pharmacy, Hebei University, Baoding 071002, P. R. China
| | - Xue-Sheng Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, Guangxi Province 530004, P. R. China
| | - Zheng-Xin Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Chen Chen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Yao-Guo Qin
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Xin-Ling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
3
|
Yan B, Gong C, Qian Y, Zhang Z, Liu X, Yuan H, Cheng Z. Preparation and insecticidal performance of 1,8-cineole/cellulose acetate electrospun fibrous membranes. Int J Biol Macromol 2024; 278:134942. [PMID: 39173804 DOI: 10.1016/j.ijbiomac.2024.134942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Plant essential oils and their components have broad application prospects as substitutes for chemical pesticides. However, the burst release and persistence time need to be optimized. In this study, 1,8-cineole (1,8-CIN) was embedded in degradable cellulose acetate (CA) by electrospinning to achieve sustained release. The results showed that the sustained-release membrane had good morphology and thermal stability. The release test showed that the deficiency of the explosive release of 1,8-CIN improved after encapsulation, and 21.74 % of the drug remained after 42 days. In the application test, the fiber membrane could kill the test insects in a short period of time and affect the behavior choices of the test insects. It affected the growth and oviposition of the test insects and reduced adult longevity by 13.64 % and oviposition by 23.35 %. This study can improve the utilization rate of pesticides, alleviate environmental pressure, and provide new ideas for pest control.
Collapse
Affiliation(s)
- Bin Yan
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Changchun 130118, China
| | - Chunsong Gong
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yinjie Qian
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Changchun 130118, China
| | - Zhongkai Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xing Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Haibin Yuan
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Changchun 130118, China.
| |
Collapse
|
4
|
Qian J, Zhu C, Li J, Yang Y, Gu D, Liao Y, Zeng L, Yang Z. The Circadian Clock Gene PHYTOCLOCK1 Mediates the Diurnal Emission of the Anti-Insect Volatile Benzyl Nitrile from Damaged Tea ( Camellia sinensis) Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13284-13296. [PMID: 38808775 DOI: 10.1021/acs.jafc.4c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Benzyl nitrile from tea plants attacked by various pests displays a diurnal pattern, which may be closely regulated by the endogenous circadian clock. However, the molecular mechanism by the circadian clock of tea plants that regulates the biosynthesis and release of volatiles remains unclear. In this study, the circadian clock gene CsPCL1 can activate both the expression of the benzyl nitrile biosynthesis-related gene CsCYP79 and the jasmonic acid signaling-related transcription factor CsMYC2 involved in upregulating CsCYP79 gene, thereby resulting in the accumulation and release of benzyl nitrile. Therefore, the anti-insect function of benzyl nitrile was explored in the laboratory. The application of slow-release beads of benzyl nitrile in tea plantations significantly reduced the number of tea geometrids and had positive effects on the yield of fresh tea leaves. These findings reveal the potential utility of herbivore-induced plant volatiles for the green control of pests in tea plantations.
Collapse
Affiliation(s)
- Jiajia Qian
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Chen Zhu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Jianlong Li
- Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, No. 6 Dafeng Road, Tianhe District, Guangzhou 510640, China
| | - Yuhua Yang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Dachuan Gu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yinyin Liao
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Kansman JT, Jaramillo JL, Ali JG, Hermann SL. Chemical ecology in conservation biocontrol: new perspectives for plant protection. TRENDS IN PLANT SCIENCE 2023; 28:1166-1177. [PMID: 37271617 DOI: 10.1016/j.tplants.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
Threats to food security require novel sustainable agriculture practices to manage insect pests. One strategy is conservation biological control (CBC), which relies on pest control services provided by local populations of arthropod natural enemies. Research has explored manipulative use of chemical information from plants and insects that act as attractant cues for natural enemies (predators and parasitoids) and repellents of pests. In this review, we reflect on past strategies using chemical ecology in CBC, such as herbivore-induced plant volatiles and the push-pull technique, and propose future directions, including leveraging induced plant defenses in crop plants, repellent insect-based signaling, and genetically engineered crops. Further, we discuss how climate change may disrupt CBC and stress the importance of context dependency and yield outcomes.
Collapse
Affiliation(s)
- Jessica T Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Jorge L Jaramillo
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Jared G Ali
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Sara L Hermann
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Alotaibi NJ, Alsufyani T, M’sakni NH, Almalki MA, Alghamdi EM, Spiteller D. Rapid Identification of Aphid Species by Headspace GC-MS and Discriminant Analysis. INSECTS 2023; 14:589. [PMID: 37504595 PMCID: PMC10380428 DOI: 10.3390/insects14070589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Aphids are a ubiquitous group of pests in agriculture that cause serious losses. For sustainable aphid identification, it is necessary to develop a precise and fast aphid identification tool. A new simple chemotaxonomy approach to rapidly identify aphids was implemented. The method was calibrated in comparison to the established phylogenetic analysis. For chemotaxonomic analysis, aphids were crushed, their headspace compounds were collected through closed-loop stripping (CLS) and analysed using gas chromatography-mass spectrometry (GC-MS). GC-MS data were then subjected to a discriminant analysis using CAP12.exe software, which identified key biomarkers that distinguish aphid species. A dichotomous key taking into account the presence and absence of a set of species-specific biomarkers was derived from the discriminant analysis which enabled rapid and reliable identification of aphid species. As the method overcomes the limits of morphological identification, it works with aphids at all life stages and in both genders. Thus, our method enables entomologists to assign aphids to growth stages and identify the life history of the investigated aphids, i.e., the food plant(s) they fed on. Our experiments clearly showed that the method could be used as a software to automatically identify aphids.
Collapse
Affiliation(s)
- Noura J. Alotaibi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Taghreed Alsufyani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.H.M.); (M.A.A.)
| | - Nour Houda M’sakni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.H.M.); (M.A.A.)
| | - Mona A. Almalki
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.H.M.); (M.A.A.)
| | - Eman M. Alghamdi
- Chemistry Department, Faculty of Science, King AbdulAziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
| | - Dieter Spiteller
- Chemical Ecology/Biological Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany;
| |
Collapse
|
7
|
Thomas G, Rusman Q, Morrison WR, Magalhães DM, Dowell JA, Ngumbi E, Osei-Owusu J, Kansman J, Gaffke A, Pagadala Damodaram KJ, Kim SJ, Tabanca N. Deciphering Plant-Insect-Microorganism Signals for Sustainable Crop Production. Biomolecules 2023; 13:997. [PMID: 37371577 PMCID: PMC10295935 DOI: 10.3390/biom13060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides less effective. Alternative sustainable crop protection tools should therefore be considered. Semiochemicals are signalling molecules produced by organisms, including plants, microbes, and animals, which cause behavioural or developmental changes in receiving organisms. Manipulating semiochemicals could provide a more sustainable approach to the management of insect pests and pathogens across crops. Here, we review the role of semiochemicals in the interaction between plants, insects and microbes, including examples of how they have been applied to agricultural systems. We highlight future research priorities to be considered for semiochemicals to be credible alternatives to the application of chemical pesticides.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland;
| | - William R. Morrison
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA;
| | - Diego M. Magalhães
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Jordan A. Dowell
- Department of Plant Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA;
| | - Esther Ngumbi
- Department of Entomology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA;
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya EY0329-2478, Ghana;
| | - Jessica Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Alexander Gaffke
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Medical, Agricultural, and Veterinary Entomology, 6383 Mahan Dr., Tallahassee, FL 32308, USA;
| | | | - Seong Jong Kim
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Natural Products Utilization Research Unit, University, MS 38677, USA;
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158, USA
| |
Collapse
|
8
|
Yang ZK, Qu C, Pan SX, Liu Y, Shi Z, Luo C, Qin YG, Yang XL. Aphid-repellent, ladybug-attraction activities, and binding mechanism of methyl salicylate derivatives containing geraniol moiety. PEST MANAGEMENT SCIENCE 2023; 79:760-770. [PMID: 36259292 DOI: 10.1002/ps.7245] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Aphids have been mainly controlled by traditional chemical insecticides, resulting in unamiable risk to the environment over the last decades. Push-pull strategy is regarded as a promising eco-friendly approach for aphid management through repelling aphid away and attracting their natural enemy. Methyl salicylate (MeSA), one of typical HIPVs (herbivore-induced plant volatiles), can repel aphids and attract ladybugs. Our previous studies discovered a new lead compound 3e, a salicylate-substituted carboxyl (E)-β-farnesene derivative that had effective aphid-repellent activity. However, whether 3e has attractive activity to ladybug like MeSA is unknown. Meanwhile, to discover a new derivative for both deterring aphid and recruiting ladybug is meaningful for green control of aphids. RESULTS Through the structural optimization of 3e, 14 new derivatives were designed and synthesized. Among them, compounds 4e and 4i had good aphid (Acyrthosiphon pisum) repellent activity, and compounds 3e, 4e and 4i had significant ladybug (Harmonia axyridis) attractive activity to males. Particularly, 4i exhibited manifest attractive effect on the females as well. Binding mechanism showed that 4i not only bound effectively with the aphid (Acyrthosiphon pisum) target ApisOBP9 thanks to its multiple hydrophobic interactions and hydrogen-bond, but also had strong binding affinity with ladybug target HaxyOBP15 due to the suitable steric space. Additionally, 4i displayed low toxicity to bee Apis mellifera. CONCLUSION Compound 3e does exhibit attractive activity to male ladybug as MeSA. However, the new derivative 4i, with both pleasant aphid-repellent and ladybug-attraction activities, can be considered as a novel potential push-pull candidate for aphid control in sustainable agriculture. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhao-Kai Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
| | - Shi-Xiang Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Yan Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Zhuo Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
| | - Yao-Guo Qin
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin-Ling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
9
|
Functional analysis of odorant-binding proteins for the parasitic host location to implicate convergent evolution between the grain aphid and its parasitoid Aphidius gifuensis. Int J Biol Macromol 2023; 226:510-524. [PMID: 36509203 DOI: 10.1016/j.ijbiomac.2022.12.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
(E)-β-farnesene (EBF) is a typical and ecologically important infochemical in tri-trophic level interactions among plant-aphid-natural enemies. However, the molecular mechanisms by which parasitoids recognize and utilize EBF are unclear. In this study, we functionally characterized 8 AgifOBPs in Aphidifus gifuensis, one dominant endo-parasitoid of wheat aphid as well as peach aphid in China. Among which, AgifOBP6 was the only OBP upregulated by various doses of EBF, and it showed a strong binding affinity to EBF in vitro. The lack of homology between AgifOBP6 and EBF-binding proteins from aphids or from other aphid natural enemies supported that this was a convergent evolution among insects from different orders driven by EBF. Molecular docking of AgifOBP6 with EBF revealed key interacting residues and hydrophobic forces as the main forces. AgifOBP6 is widely expressed among various antennal sensilla. Furthermore, two bioassays indicated that trace EBF may promote the biological control efficiency of A. gifuensis, especially on winged aphids. In summary, this study reveals an OBP (AgifOBP6) that may play a leading role in aphid alarm pheromone detection by parasitoids and offers a new perspective on aphid biological control by using EBF. These results will improve our understanding of tri-trophic level interactions among plant-aphid-natural enemies.
Collapse
|
10
|
Zhan Y, Wang J, Kong X, Liu Y. Perception and kairomonal response of the coccinellid predator ( Harmonia axyridis) to the fall armyworm ( Spodoptera frugiperda) sex pheromone. Front Physiol 2023; 14:1167174. [PMID: 37101702 PMCID: PMC10123280 DOI: 10.3389/fphys.2023.1167174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Pheromone cues released from hosts or prey are of crucial importance to natural enemies for prey and habitat location. The use of herbivorous insect sex pheromones has long been considered as a potential pest control alternative that is non-toxic and harmless to beneficials. We hypothesized that Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), a major predatory coccinellid beetle of the devastating migratory pest Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), could perceive and use the sex pheromone of S. frugiperda to locate its habitat. Here we tested the electrophysiological and behavioral responses of H. axyridis to the two components Z7-12:Ac and Z9-14:Ac of S. frugiperda sex pheromone by using electroantennography (EAG) and Y-tube bioassay. The 3D modeling of H. axyridis odorant-binding proteins (HaxyOBPs) and molecular docking were also performed. The results showed that both female and male H. axyridis exhibited significantly higher electrophysiological and behavioral responses to Z9-14:Ac at the concentrations of 0.001, 0.01, and 0.1 μg/μL, while no significant electrophysiological and behavioral responses of H. axyridis were observed to Z7-12:Ac. The blend of Z7-12:Ac and Z9-14:Ac at the ratio of 1:100 had a significant attraction to both male and female H. axyridis at the concentrations of 0.01 and 0.1 μg/μL based on electrophysiological and behavioral assays, but no significant behavioral responses were observed at the ratios of 1:9. According to the 3D modeling of HaxyOBPs and molecular docking, HaxyOBP12 has a good affinity with Z9-14:Ac. Z9-14:Ac is bound to the HaxyOBP12 by hydrogen bonding and hydrophobic interactions. However, there were no credible docking results between HaxyOBPs and Z7-12:Ac. Our findings revealed that H. axyridis can perceive Z9-14:Ac and could use it as a chemical cue to locate prey habitat. We speculated that Z7-12:Ac, which showed some antagonistic effect toward the response of H. axyridis to Z9-14:Ac, could improve the adaptability of S. frugiperda in the presence of predators. This study provides new insights into the application of pheromones to manipulate natural enemy behavior for pest control.
Collapse
|
11
|
Xiao D, Liu J, Liu Y, Wang Y, Zhan Y, Liu Y. Exogenous Application of a Plant Elicitor Induces Volatile Emission in Wheat and Enhances the Attraction of an Aphid Parasitoid Aphidius gifuensis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3496. [PMID: 36559606 PMCID: PMC9785975 DOI: 10.3390/plants11243496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
It is well known that plant elicitors can induce plant defense against pests. The herbivore-induced plant volatile (HIPV) methyl salicylate (MeSA), as a signaling hormone involved in plant pathogen defense, is used to recruit natural enemies to protect wheat and other crops. However, the defense mechanism remains largely unknown. Here, the headspace volatiles of wheat plants were collected and analyzed by gas chromatography-mass spectrometry (GC-MS), gas chromatography with electroantennographic detection (GC-EAD) and principal component analysis (PCA). The results showed that exogenous application of MeSA induced qualitative and quantitative changes in the volatiles emitted from wheat plants, and these changes were mainly related to Carveol, Linalool, m-Diethyl-benzene, p-Cymene, Nonanal, D-limonene and 6-methyl-5-Hepten-2-one. Then, the electroantennogram (EAG) and Y-tube bioassay were performed to test the physiological and behavioral responses of Aphidius gifuensis Ashmesd to the active volatile compounds (p-Cymene, m-Diethyl-benzene, Carveol) that identified by using GC-EAD. The female A. gifuensis showed strong physiological responses to 1 μg/μL p-Cymene and 1 μg/μL m-Diethyl-benzene. Moreover, a mixture blend was more attractive to female A. gifuensis than a single compound. These findings suggested that MeSA could induce wheat plant indirect defense against wheat aphids through attracting parasitoid in the wheat agro-ecosystem.
Collapse
Affiliation(s)
- Dianzhao Xiao
- College of Plant Protection, Shandong Agricultural University, No. 61 Daizong Road, Taian 271018, China
| | - Jiahui Liu
- College of Plant Protection, Shandong Agricultural University, No. 61 Daizong Road, Taian 271018, China
- Department of Functional and Evolutionary Entomology, University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Yulong Liu
- College of Plant Protection, Shandong Agricultural University, No. 61 Daizong Road, Taian 271018, China
| | - Yiwei Wang
- College of Plant Protection, Shandong Agricultural University, No. 61 Daizong Road, Taian 271018, China
| | - Yidi Zhan
- College of Plant Protection, Shandong Agricultural University, No. 61 Daizong Road, Taian 271018, China
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, No. 61 Daizong Road, Taian 271018, China
| |
Collapse
|
12
|
Screening and Evaluation for Antixenosis Resistance in Wheat Accessions and Varieties to Grain Aphid, Sitobion miscanthi (Takahashi) (Hemiptera: Aphididae). PLANTS 2022; 11:plants11081094. [PMID: 35448823 PMCID: PMC9031254 DOI: 10.3390/plants11081094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/28/2022]
Abstract
The grain aphid, Sitobion miscanthi causes serious damage by removing nutritional content from wheat plants and transmitting viral diseases. The use of resistant wheat cultivars is an effective method of aphid management. To identify S. miscanthi resistant cultivars, preliminary antixenosis resistance screening was conducted on 112 Ethiopian and 21 Chinese wheat accessions and varieties along with bioassay to test for further antixenosis resistance, identification of aphid feeding behavior using electrical penetration graph (EPG), and imaging of leaf trichome densities using a 3D microscope. According to antixenosis resistance screening, one highly-resistant, 25 moderately-resistant, and 38 slightly-resistant wheat cultivars to S. miscanthi were identified. Aphid choice tests showed that Luxuan266, 243726, and 213312 were the least preferred after 12, 24, 48, and 72 h of S. miscanthi release. Longer duration of Np, longer time to first probe, and shorter duration of E2 waveforms were recorded in Lunxuan266, 243726, and 213312 than in Beijing 837. The trichome density on adaxial and abaxial leaf surfaces of Lunxuan266, 243726 and 213312 was significantly higher than on those of Beijing 837. We concluded that Lunxuan266, 243726, and 213312 were antixenosis resistant to S. miscanthi based on the choice test, EPG results, and leaf trichome densities.
Collapse
|
13
|
Tang R, Wen Q, Li M, Zhang W, Wang Z, Yang J. Recent Advances in the Biosynthesis of Farnesene Using Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15468-15483. [PMID: 34905684 DOI: 10.1021/acs.jafc.1c06022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Farnesene, as an important sesquiterpene isoprenoid polymer of acetyl-CoA, is a renewable feedstock for diesel fuel, polymers, and cosmetics. It has been widely applied in agriculture, medicine, energy, and other fields. In recent years, farnesene biosynthesis is considered a green and economical approach because of its mild reaction conditions, low environmental pollution, and sustainability. Metabolic engineering has been widely applied to construct cell factories for farnesene biosynthesis. In this paper, the research progress, common problems, and strategies of farnesene biosynthesis are reviewed. They are mainly described from the perspectives of the current status of farnesene biosynthesis in different host cells, optimization of the metabolic pathway for farnesene biosynthesis, and key enzymes for farnesene biosynthesis. Furthermore, the challenges and prospects for future farnesene biosynthesis are discussed.
Collapse
Affiliation(s)
- Ruohao Tang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Qifeng Wen
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Meijie Li
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Wei Zhang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Zhaobao Wang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center of Qingdao Agricultural University. Qingdao, Shandong 266109, People's Republic of China
- Shandong Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|
14
|
Zhan Y, Zhao L, Zhao X, Liu J, Francis F, Liu Y. Terpene Synthase Gene OtLIS Confers Wheat Resistance to Sitobion avenae by Regulating Linalool Emission. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13734-13743. [PMID: 34779195 DOI: 10.1021/acs.jafc.1c05978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sitobion avenae (Fabricius) is a major insect pest of wheat worldwide that reduces crop yield and quality annually. Few germplasm resources with resistant genes to aphids have been identified and characterized. Here, octoploid Trititrigia, a species used in wheat distant hybridization breeding, was found to be repellent to S. avenae after 2 year field investigations and associated with physiological and behavioral assays. Linalool monoterpene was identified to accumulate dominantly in plants in response to S. avenae infestation. We cloned the resistance gene OtLIS by assembling the transcriptome of aphid-infested or healthy octoploid Trititrigia. Functional characterization analysis indicated that OtLIS encoded a terpene synthase and conferred resistance to S. avenae by linalool emission before and after aphid feeding. Our study suggests that the octoploid Trititrigia with the aphid-resistant gene OtLIS may have potential as a target resource for further breeding aphid-resistant wheat cultivars.
Collapse
Affiliation(s)
- Yidi Zhan
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian, Shandong 271018, China
| | - Lei Zhao
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian, Shandong 271018, China
| | - Xiaojing Zhao
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian, Shandong 271018, China
| | - Jiahui Liu
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian, Shandong 271018, China
- Functional and Evolutionary Entomology, Terra, Gembloux Agro-Bio Tech, Liege University, Passage des Deportes 2, 5030 Gembloux, Belgium
| | - Frederic Francis
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian, Shandong 271018, China
- Functional and Evolutionary Entomology, Terra, Gembloux Agro-Bio Tech, Liege University, Passage des Deportes 2, 5030 Gembloux, Belgium
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, No. 61, Daizong Road, Taian, Shandong 271018, China
| |
Collapse
|