1
|
Chang Y, Xu W, Wang S, Zhu M, Ru Y, Xu Z, Chen G, Li Y. Characterization of Four Carboxylesterases Involved in Detoxification of β-Cypermethrin, λ-Cyhalothrin, and Malathion in Helicoverpa armigera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39508741 DOI: 10.1021/acs.jafc.4c07451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a globally devastating pest and has evolved with varying levels of resistance to a broader spectrum of insecticides. CarEs are major enzymes involved in insecticide detoxification and metabolic resistance. Four CarE genes were identified and cloned from H. armigera, and the expression pattern analyses indicated that they were predominantly expressed in the detoxifying tissues and larval feeding periods. The insecticide inductive assays further suggested that these CarE genes with expressions were significantly upregulated after beta-cypermethrin, lambda-cyhalothrin, malathion, and chlorpyrifos exposures. The purified recombinant proteins of both CarE016B and CarE016C by bacterial expression exhibited significantly higher catalytic efficiency toward α-naphthyl acetate and also showed relatively stronger binding with both β-cypermethrin and λ-cyhalothrin compared to the CarE006C and CarE015A. In vitro metabolism assay with HPLC suggests that CarE016B and CarE016C have the ability to metabolize β-cypermethrin, λ-cyhalothrin, and malathion with varying hydrolase activities. GC-MS/MS analysis identified 3-phenoxybenzaldehyde (3-PBAld) as the metabolite of both β-cypermethrin and λ-cyhalothrin. Homology modeling and molecular docking analyses further indicate that these three types of insecticides could be anchored into the active pocket of both CarEs. Collectively, these results demonstrate that both CarE016B and CarE016C play a critical role in the detoxification of pyrethroid and organophosphate insecticides in H. armigera. This study provides the foundations for a comprehensive understanding of the role of the CarEs family in insecticide detoxification and resistance in H. armigera.
Collapse
Affiliation(s)
- Yongmei Chang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Weihuan Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengyao Zhu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanan Ru
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhiheng Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guangyou Chen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongqiang Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Xu L, Liu H, Li B, Li G, Liu R, Li D. SlCarE054 in Spodoptera litura (Lepidoptera: Noctuidae) showed direct metabolic activity to β-cypermethrin with stereoselectivity. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:482-490. [PMID: 38708572 DOI: 10.1017/s0007485324000282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Carboxylesterases (CarEs) is an important detoxification enzyme system in phase Ⅰ participating in insecticides resistance. In our previous study, SlCarE054, a CarEs gene from lepidoptera class, was screened out to be upregulated in a pyrethroids and organophosphates resistant population. Its overexpression was verified in two field-collected populations of Spodoptera litura (Lepidoptera: Noctuidae) resistant to pyrethroids and organophosphates by qRT-PCR. Spatiotemporal expression results showed that SlCarE054 was highly expressed in the pupae stage and the digestive tissue midgut. To further explore its role in pyrethroids and organophosphates resistance, its metabolism activity to insecticides was determined by UPLC. Its recombinant protein showed significant metabolism activity to cyhalothrin and fenvalerate, but not to phoxim or chlorpyrifos. The metabolic activity of SlCarE054 to β-cypermethrin showed stereoselectivity, with higher metabolic activity to θ-cypermethrin than the enantiomer α-cypermethrin. The metabolite of β-cypermethrin was identified as 3-phenoxybenzaldehyde. Further modelling and docking analysis indicated that β-cypermethrin, cyhalothrin and fenvalerate could bind with the catalytic triad of the 3D structure of SlCarE054. The interaction of β-cypermethrin with SlCarE054 also showed the lowest binding energy. Our work provides evidence that SlCarE054 play roles in β-cypermethrin resistance in S. litura.
Collapse
Affiliation(s)
- Li Xu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hongyu Liu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bo Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Guangling Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dongzhi Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
3
|
Zhang X, Zhang R, Yu M, Liu R, Liu N, Teng H, Pei Y, Hu Z, Zuo Y. Identification and detection of the V1848I indoxacarb resistance mutation in the beet armyworm, Spodoptera exigua. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105991. [PMID: 39084768 DOI: 10.1016/j.pestbp.2024.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024]
Abstract
Indoxacarb is a pivotal insecticide used worldwide to manage Spodoptera exigua, a devastating agricultural pest. This active compound plays a crucial role in resistance management strategies due to its distinctive mode of action. A field population of S. exigua (SH23) from Shanghai, China, exhibited significantly reduced susceptibility to indoxacarb, with a resistance ratio of 113.84-fold in biological assays. Following two rounds of laboratory screening with indoxacarb, the resistance of the new strain (SH23-S2) escalated steeply to 876.15-fold. Genetic analyses of both the SH23 and SH23-S2 strains demonstrated autosomal inheritance and incompletely dominant resistance patterns. Synergist assays indicated a minor role of detoxification enzymes (glutathione s-transferases and cytochrome P450) of SH23-S2 strain in this resistance, implicating target-site resistance as the primary mechanism. To explore the impact of target-site resistance, segment 1-6 of domain IV (IVS1-6) of the sodium channel in S. exigua was cloned, and the sequences from susceptible and indoxacarb-resistant S. exigua were compared. The V1848I mutation, linked to indoxacarb resistance in Plutella xylostella, Tuta absoluta and Liriomyza trifolii, was identified and strongly associated with the indoxacarb-resistant phenotype in the S. exigua SH23-S2 strain, whereas the F1845Y mutation was not detected. Furthermore, a molecular test for the V1848I mutation in field populations was created using an allele-specific PCR (AS-PCR). The discovery of indoxacarb resistance mutation and the creation of diagnostic tool will enable the early detection of indoxacarb resistance, which will facilitate the implementation of targeted resistance management strategies, ultimately delaying the proliferation of resistance.
Collapse
Affiliation(s)
- Xianxia Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Ruiming Zhang
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Mengqi Yu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Rui Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Naijing Liu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haiyuan Teng
- Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yakun Pei
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Zhaonong Hu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China.
| | - Yayun Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China.
| |
Collapse
|
4
|
Guo Z, Ma H, Tang J, Wu M, He S, Wan H, Li J, Ma K. Chlorantraniliprole Resistance in Spodoptera frugiperda: Resistance Monitoring, Resistance Risk, and Resistance Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39038437 DOI: 10.1021/acs.jafc.4c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Spodoptera frugiperda is a significant global pest, and chlorantraniliprole (CAP) is extensively used in China for its control. Understanding CAP resistance in S. frugiperda is crucial for effective management of this pest. Field populations exhibited varying degrees of resistance to CAP (RR = 1.74-5.60-fold). After 10 generations of selection, the CAP-resistant strain developed over 10-fold resistance, with a realized heritability (h2) of 0.10. Genetic analysis reveals inheritance patterns as autosomal, incomplete recessive, and monofactorial. The CAP-resistant strain showed limited cross-resistance to lufenuron and tetrachlorantraniliprole, negative cross-resistance to spinetoram, and no observed cross-resistance to other insecticides. Biochemical analysis suggested that P450-mediated detoxification is the primary resistance mechanism, with 26 genes overexpressed in the CAP-resistant strain. Additionally, the knockdown of CYP4L13, CYP6B39, CYP6B40, and CYP4G74 significantly increased the sensitivity of the resistant larvae to CAP. These findings highlight the resistance risk of CAP in S. frugiperda and emphasize the crucial role of P450 enzymes in resistance.
Collapse
Affiliation(s)
- Zhimin Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huina Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiahui Tang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mengyan Wu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shun He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hu Wan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jianhong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kangsheng Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
5
|
Jiang B, Wang W, Yao Y, Zhang H, Zhang Y, Sun Y. Behavioral and Transcriptomic Analyses in the Indoxacarb Response of a Non-Target Damselfly Species. INSECTS 2024; 15:367. [PMID: 38786923 PMCID: PMC11121952 DOI: 10.3390/insects15050367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Ischnura senegalensis, which widely spreads in paddy fields, has the potential to be used as a natural predator of insect pests. However, the application of insecticides in the field could pose a threat to the survival of I. senegalensis. Among these pesticides, indoxacarb, an oxadiazine insecticide, is renowned for its broad-spectrum efficacy against numerous insect pests. In this study, we examined the toxicity of indoxacarb towards the larvae of I. senegalensis. Behavioral experiments and transcriptome analyses were conducted under indoxacarb treatments. Results revealed that indoxacarb induced abnormal body gestures and significant locomotory impairments, which could ultimately reduce the survival rate of the larvae in their natural habitat. Moreover, transcriptome analyses indicated that genes related to muscle function were significantly affected. Interestingly, at lower concentrations of indoxacarb (0.004 mg/L), the larvae seem to detoxify the indoxacarb with the aid of the cytochrome P450 gene. However, under higher concentrations (0.4 mg/L), the sensory abilities of the larvae were significantly diminished, and they were unable to degrade the toxicity of indoxacarb. Our study underscores the importance of carefully evaluating the impact of insecticides on non-target predatory insects before their widespread application.
Collapse
Affiliation(s)
- Bin Jiang
- Provincial Key Laboratory for Conservation and Utilization of Important Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.W.); (Y.Y.); (H.Z.); (Y.Z.)
| | | | | | | | | | - Yang Sun
- Provincial Key Laboratory for Conservation and Utilization of Important Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (W.W.); (Y.Y.); (H.Z.); (Y.Z.)
| |
Collapse
|
6
|
Jing TX, Jiang SD, Tang XP, Guo PY, Wang L, Wang JJ, Wei DD. Overexpression of an Integument Esterase Gene LbEST-inte4 Infers the Malathion Detoxification in Liposcelis bostrychophila (Psocoptera: Liposcelididae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11221-11229. [PMID: 38703356 DOI: 10.1021/acs.jafc.4c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Liposcelis bostrychophila, commonly known as booklouse, is an important stored-product pest worldwide. Studies have demonstrated that booklices have developed resistance to several insecticides. In this study, an integument esterase gene, LbEST-inte4, with upregulated expression, was characterized in L. bostrychophila. Knockdown of LbEST-inte4 resulted in a substantial increase in the booklice susceptibility to malathion. Overexpression of LbEST-inte4 in Drosophila melanogaster significantly enhanced its malathion tolerance. Molecular modeling and docking analysis suggested potential interactions between LbEST-inte4 and malathion. When overexpressed LbEST-inte4 in Sf9 cells, a notable elevation in esterase activity and malathion tolerance was observed. HPLC analysis indicated that the LbEST-inte4 enzyme could effectively degrade malathion. Taken together, the upregulated LbEST-inte4 appears to contribute to malathion tolerance in L. bostrychophila by facilitating the depletion of malathion. This study elucidates the molecular mechanism underlying malathion detoxification and provides the foundations for the development of effective prevention and control measures against psocids.
Collapse
Affiliation(s)
- Tian-Xing Jing
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Shi-Die Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xin-Ping Tang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Peng-Yu Guo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
7
|
Tang J, Zhang Q, Qu C, Su Q, Luo C, Wang R. Knockdown of one cytochrome P450 gene CYP6DW4 increases the susceptibility of Bemisia tabaci to dimpropyridaz, a novel pyridazine pyrazolecarboxamide insecticide. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105888. [PMID: 38685219 DOI: 10.1016/j.pestbp.2024.105888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 05/02/2024]
Abstract
Bemisia tabaci is a formidable insect pest worldwide, and it exhibits significant resistance to various insecticides. Dimpropyridaz is a novel pyridazine pyrazolecarboxamide insecticide used against sucking insect pests, but there is little information regarding its metabolic detoxification in arthropods or cross-resistance with other insecticides. In this study, we found that dimpropyridaz shows no cross-resistance with three other popular insecticides, namely abamectin, cyantraniliprole, and flupyradifurone. After treatment of B. tabaci adults with a high dose of dimpropyridaz, higher cytochrome P450 monooxygenase (P450) activity was detected in the survivors, and the expression of the P450 gene CYP6DW4 was highly induced. Cloning and characterization of the full-length amino acid sequence of CYP6DW4 indicated that it contains conserved domains typical of P450 genes, phylogenetic analysis revealed that it was closely related to a B. tabaci protein, CYP6DW3, known to be involved in detoxification of imidacloprid. Silencing of CYP6DW4 by feeding insects with dsRNA significantly increased the susceptibility of B. tabaci to dimpropyridaz. In addition, homology modeling and molecular docking analyses showed the stable binding of dimpropyridaz to CYP6DW4, with binding free energy of -6.65 kcal/mol. Our findings indicate that CYP6DW4 plays an important role in detoxification of dimpropyridaz and possibly promotes development of resistance in B. tabaci.
Collapse
Affiliation(s)
- Juan Tang
- College of Agriculture, Yangtze University, Jingzhou 434000, China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Qinghe Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Qi Su
- College of Agriculture, Yangtze University, Jingzhou 434000, China.
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| |
Collapse
|
8
|
Kaur H, Rode S, Lonare S, Demiwal P, Narasimhappa P, Arun E, Kumar R, Das J, Ramamurthy PC, Sircar D, Sharma AK. Heterologous expression, biochemical characterization and prospects for insecticide biosensing potential of carboxylesterase Ha006a from Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105844. [PMID: 38582571 DOI: 10.1016/j.pestbp.2024.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/08/2024]
Abstract
Enzymes have attracted considerable scientific attention for their crucial role in detoxifying a wide range of harmful compounds. In today's global context, the extensive use of insecticides has emerged as a significant threat to the environment, sparking substantial concern. Insects, including economically important pests like Helicoverpa armigera, have developed resistance to conventional pest control methods through enzymes like carboxyl/cholinesterases. This study specifically focuses on a notable carboxyl/cholinesterase enzyme from Helicoverpa armigera (Ha006a), with the goal of harnessing its potential to combat environmental toxins. A total of six insecticides belonging to two different classes displayed varying inhibitory responses towards Ha006a, thereby rendering it effective in detoxifying a broader spectrum of insecticides. The significance of this research lies in discovering the bioremediation property of Ha006a, as it hydrolyzes synthetic pyrethroids (fenvalerate, λ-cyhalothrin and deltamethrin) and sequesters organophosphate (paraoxon ethyl, profenofos, and chlorpyrifos) insecticides. Additionally, the interaction studies between organophosphate insecticides and Ha006a helped in the fabrication of a novel electroanalytical sensor using a modified carbon paste electrode (MCPE). This sensor boasts impressive sensitivity, with detection limits of 0.019 μM, 0.15 μM, and 0.025 μM for paraoxon ethyl, profenofos, and chlorpyrifos, respectively. This study provides a comprehensive biochemical and biophysical characterization of the purified esterase Ha006a, showcasing its potential to remediate different classes of insecticides.
Collapse
Affiliation(s)
- Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sapna Lonare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pratibha Demiwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pavithra Narasimhappa
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore 560012, India
| | - Etisha Arun
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; Division of Crop Improvement, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur 440010, Maharashtra, India
| | - Joy Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; Division of Crop Improvement, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur 440010, Maharashtra, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore 560012, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
9
|
Zhang C, Li Y, Qiu T, Wang Y, Wang H, Wang K, Dai W. Functional Characterization of CYP6QE1 and CYP6FV21 in Resistance to λ-Cyhalothrin and Imidacloprid in Bradysia odoriphaga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2925-2934. [PMID: 38291565 DOI: 10.1021/acs.jafc.3c08807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cytochrome P450 monooxygenases (P450s) belong to a family of metabolic enzymes that are involved in the detoxification of insecticides. In this study, our bioassay results showed that a field-collected population of Bradysia odoriphaga displayed a moderate resistance to λ-cyhalothrin and imidacloprid. Compared to susceptible population, CYP6QE1 and CYP6FV21 were significantly overexpressed in the field population. The expression of CYP6QE1 and CYP6FV21 was more abundant in the third and fourth larval stages, and CYP6QE1 and CYP6FV21 were most highly expressed in the midgut and Malpighian tubules. Exposure to λ-cyhalothrin and imidacloprid significantly increased the expression levels of CYP6QE1 and CYP6FV21. Furthermore, the silencing of CYP6QE1 and CYP6FV21 significantly increased the susceptibility of B. odoriphaga larvae to λ-cyhalothrin and imidacloprid. The overexpression of CYP6QE1 and CYP6FV21 significantly enhanced the tolerance of transgenic Drosophila melanogaster lines to λ-cyhalothrin and imidacloprid. In addition, molecular docking revealed that these two P450 proteins have strong binding affinity toward λ-cyhalothrin and imidacloprid insecticides. Taken together, these results indicate that the overexpression of CYP6QE1 and CYP6FV21 is responsible for resistance to λ-cyhalothrin and imidacloprid in B. odoriphaga.
Collapse
Affiliation(s)
- Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Qiu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaihua Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Li W, Yang W, Shi Y, Yang X, Liu S, Liao X, Shi L. Comprehensive analysis of the overexpressed cytochrome P450-based insecticide resistance mechanism in Spodoptera litura. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132605. [PMID: 37748309 DOI: 10.1016/j.jhazmat.2023.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Cytochrome P450s play critical roles in the metabolic resistance of insecticides in insects. Previous findings showed that enhanced P450 activity was an important mechanism mediating indoxacarb resistance, and multiple P450 genes were upregulated in indoxacarb resistant strains of Spodoptera litura. However, the functions of these P450 genes in insecticide resistance remain unknown. Here, the P450 inhibitor PBO effectively decreased the resistance of S. litura to indoxacarb. Ten upregulated P450 genes were characterized, all of which were overexpressed in response to indoxacarb induction. Knockdown of nine P450 genes decreased cell viability against indoxacarb, and further silencing of three genes (CYP339A1, CYP340G2, CYP321A19) in larvae enhanced the sensitivity to indoxacarb. Transgenic overexpression of these three genes increased resistance to indoxacarb in Drosophila melanogaster. Moreover, molecular modeling and docking predicted that these three P450 proteins could bind tightly to indoxacarb and N-decarbomethoxylated metabolite (DCJW). Interestingly, these three P450 genes may also mediate cross-resistance to chlorantraniliprole, λ-cyhalothrin and imidacloprid. Additionally, heterologous expression and metabolic assays confirmed that three recombinant P450s could effectively metabolize indoxacarb and DCJW. This study strongly demonstrates that multiple overexpressed mitochondrial and microsomal P450 genes were involved in insecticide resistance in S. litura.
Collapse
Affiliation(s)
- Wenlin Li
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wen Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiyu Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuangqing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiaolan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
11
|
Bird LJ, Walker PW, Drynan LJ. Frequency and diversity of indoxacarb resistance in Australian Helicoverpa armigera (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:2154-2165. [PMID: 37827530 DOI: 10.1093/jee/toad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Annual indoxacarb resistance in Helicoverpa armigera (Hübner) populations collected from various crops in Australia was monitored between 2013 and 2023. Resistance frequency determined by F2 screening using a predetermined discriminating dose of indoxacarb, was lowest in the 2013-2014 and 2015-2016 seasons at 0.0164 and 0.0246, respectively. Resistance then increased significantly to a ten-year high of 0.0869 in 2018-2019 but declined to 0.0557 in 2019-2020 during a severe drought, remaining relatively stable thereafter to 2023. Indoxacarb resistance was first detected in H. armigera collected from maize in the Gwydir valley, New South Wales, in 2013 (strain GY7-39). In 2017, a second indoxacarb resistant H. armigera strain (UN1U3-10) was isolated from a population collected in chickpeas in the Liverpool Plains, New South Wales. Indoxacarb resistance of this strain was characterized to evaluate its potential to compromise the ongoing effectiveness of insecticide resistance management strategies in Australian farming systems. Survival at the discriminating dose of indoxacarb in UN1U3-10 was 28.9, 52.6, 86.7, and 92.9% in the F2, F3, F4, and F5, respectively. Following introgression with a susceptible strain and reselection with the discriminating dose of indoxacarb, the resistance ratio of UN1U3-10 was approximately 800-fold. Resistance was autosomal, incompletely dominant and conferred by more than 1 locus. While indoxacarb resistance in UN1U3-10 did not confer to emamectin benzoate or spinetoram and there was no evidence of major cross-resistance to the Bt toxins Cry1A, Cry2A or Vip3A, there was 5-fold reduced sensitivity to chlorantraniliprole. Indoxacarb resistance was suppressed by approximately 10-fold by PBO with no synergism by TPP or DEM, suggesting the involvement of cytochrome P450 enzymes. A stability analysis indicated a fitness cost may be associated with the genes that confer resistance in the UN1U3-10 strain. The potential risk for diverse indoxacarb resistance in the Australian H. armigera population is discussed.
Collapse
Affiliation(s)
- Lisa J Bird
- NSW Department of Primary Industries, Tamworth Agricultural Institute, Marsden Park Road, Calala, NSW 2340, Australia
| | - Paul W Walker
- NSW Department of Primary Industries, Tamworth Agricultural Institute, Marsden Park Road, Calala, NSW 2340, Australia
| | - Linda J Drynan
- NSW Department of Primary Industries, Australian Cotton Research Institute, Locked Bag 1000, Narrabri, NSW 2390, Australia
| |
Collapse
|
12
|
Yang X, Hafeez M, Chen HY, Li WT, Ren RJ, Luo YS, Abdellah YAY, Wang RL. DIMBOA-induced gene expression, activity profiles of detoxification enzymes, multi-resistance mechanisms, and increased resistance to indoxacarb in tobacco cutworm, Spodoptera litura (Fabricius). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115669. [PMID: 37944464 DOI: 10.1016/j.ecoenv.2023.115669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is one of the most destructive insect pests owned strong resistance to different insecticides. Indoxacarb as a novel oxadiazine insecticide becomes the main pesticide against S. litura. DIMBOA [2,4-dihydroxy-7-methoxy-2 H-1,4-benz-oxazin-3(4 H)-one] is involved in important chemical defense processes in corn plants. However, the insects' adaptation mechanism to insecticides when exposed to defensive allelochemicals in their host plants remains unclear. Here, we assessed multi-resistance, and resistance mechanisms based on S. litura life history traits. After 18 generations of selection, indoxacarb resistance was increased by 61.95-fold (Ind-Sel) and 86.06-fold (Dim-Sel) as compared to the Lab-Sus. Also, DIMBOA-pretreated larvae developed high resistance to beta-cypermethrin, chlorpyrifos, phoxim, chlorantraniliprole, and emamectin benzoate. Meanwhile, indoxacarb (LC50) was applied to detect its impact on thirty-eight detoxification-related genes expression. The transcripts of SlituCOE073, SlituCOE009, SlituCOE074, and SlituCOE111 as well as SlGSTs5, SlGSTu1, and SlGSTe13 were considerably raised in the Ind-Sel strain. Among the twenty-three P450s, CYP6AE68, CYP321B1, CYP6B50, CYP9A39, CYP4L10, and CYP4S9v1 transcripts denoted significantly higher levels in the Ind-Sel strain, suggesting that CarEs, GSTs and P450s genes may be engaged in indoxacarb resistance. These outcomes further highlighted the importance of detoxification enzymes for S. litura gene expression and their role in responses to insecticides and pest management approaches.
Collapse
Affiliation(s)
- Xi Yang
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Hafeez
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA; USDA-ARS Horticultural Crops Research Unit, 3420 NW Orchard Avenue, Corvallis, OR 97330, USA
| | - Hong-Yu Chen
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Wan-Ting Li
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Rong-Jie Ren
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Sen Luo
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yousif Abdelrahman Yousif Abdellah
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Rui-Long Wang
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Yang XY, Yang W, Zhao H, Wang BJ, Shi Y, Wang MY, Liu SQ, Liao XL, Shi L. Functional analysis of UDP-glycosyltransferase genes conferring indoxacarb resistance in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105589. [PMID: 37945240 DOI: 10.1016/j.pestbp.2023.105589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 11/12/2023]
Abstract
UDP-glycosyltransferase (UGT) is the major detoxification enzymes of phase II involved in xenobiotics metabolism, which potentially mediates the formation of insect resistance. Previous transcriptome sequencing studies have found that several UGT genes were upregulated in indoxacarb resistant strains of Spodoptera litura, but whether these UGT genes were involved in indoxacarb resistance and their functions in resistance were unclear. In this study, the UGTs inhibitor, 5-nitrouracil, enhanced the toxicity of indoxacarb against S. litura, preliminarily suggesting that UGTs were participated in indoxacarb resistance. Two UGT genes, UGT33J17 and UGT41D10 were upregulated in the resistant strains and could be induced by indoxacarb. Alignment of UGT protein sequences revealed two conserved donor-binding regions with several key residues that interact with catalytic sites and sugar donors. Further molecular modeling and docking analysis indicated that two UGT proteins were able to stably bind indoxacarb and N-decarbomethoxylated metabolite (DCJW). Furthermore, knockdown of UGT33J17 and UGT41D10 decreased viability of Spli-221 cells and enhanced susceptibility of larvae to indoxacarb. Transgenic overexpression of these genes reduced the toxicity of indoxacarb in Drosophila melanogaster. This work revealed that upregulation of UGT genes significantly contributes to indoxacarb resistance in S. litura, and is of great significance for the development of integrated and sustainable management strategies for resistant pests in the field.
Collapse
Affiliation(s)
- Xi-Yu Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wen Yang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hui Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Bing-Jie Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yao Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Meng-Yu Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuang-Qing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiao-Lan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| | - Li Shi
- College of Plant Protection, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
14
|
Li J, Jin L, Lv Y, Ding Y, Yan K, Zhang H, Pan Y, Shang Q. Inducible Cytochrome P450s in the Fat Body and Malpighian Tubules of the Polyphagous Pests of Spodoptera litura Confer Xenobiotic Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14517-14526. [PMID: 37773746 DOI: 10.1021/acs.jafc.3c04865] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Cytochrome P450 plays vital roles in detoxifying xenobiotics. In this study, SlCYP340A and SlCYP340L expression in the Spodoptera litura fat body and SlCYP332A1, SlCYP6AB12, SlCYP6AB58, SlCYP6AB59, and SlCYP6AN4 expression in the Malpighian tubules were significantly upregulated after cyantraniliprole exposure, and SlCYP6AB58 and SlCYP6AB59 expression levels were simultaneously increased in the Malpighian tubules after gossypol treatment. Drosophila ectopically expressing candidate P450 genes showed that SlCYP332A1, SlCYP6AB12, SlCYP6AB59, SlCYP6AN4, and SlCYP340A conferred cyantraniliprole tolerance. The overexpression of SlCYP6AB58 and SlCYP6AB59 in Drosophila increased the number of eggs laid under the gossypol treatment. Moreover, the knockdown of SlCYP332A1, SlCYP6AB12, SlCYP6AB59, SlCYP6AN4, and SlCYP340A increased S. litura mortality under the cyantraniliprole treatment. Homology modeling and molecular docking results suggested that candidate P450 has the potential to bind with cyantraniliprole. These results indicate that the CYP3 and CYP4 genes participate in cyantraniliprole detoxification and that SlCYP6AB59 may be simultaneously involved in the gossypol tolerance of S. litura.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Long Jin
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Hang Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
15
|
Wang W, Su Y, Liu X, Qi R, Li F, Li B, Sun H. Low concentration of indoxacarb interferes with the growth and development of silkworm by damaging the structure of midgut cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105567. [PMID: 37666598 DOI: 10.1016/j.pestbp.2023.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023]
Abstract
As an important economic insect, Bombyx mori plays an essential role in the development of the agricultural economy. Indoxacarb, a novel sodium channel blocker insecticide, has been widely used for the control of various pests in agriculture and forestry, and its environmental pollution caused by flight control operations has seriously affected the safe production of sericulture in recent years. However, the lethal toxicity and adverse effects of indoxacarb on silkworm remain largely unknown. In this study, the toxicity of indoxacarb on the 5th instar larvae of silkworm was determined, with an LC50 (72 h) of 2.07 mg/L. Short-term exposure (24 h) to a low concentration of indoxacarb (1/2 LC50) showed significantly reduced body weight and survival rate of silkworm larvae. In addition, indoxacarb also led to decreased cocoon weight and cocoon shell weight, but had no significant effects on pupation, adult eclosion, and oviposition. Histopathological and ultrastructural analysis indicated that indoxacarb could severely damage the structure of the midgut epithelial cells, and lead to physiological impairment of the midgut. A total of 3883 differentially expressed genes (DEGs) were identified by midgut transcriptome sequencing and functionally annotated using GO and KEGG. Furthermore, the transcription level and enzyme activity of the detoxification related genes were determined, and our results suggested that esterases (ESTs) might play a major role in metabolism of indoxacarb in the midgut of B. mori. Future studies to examine the detoxification or biotransformation function of candidate genes will greatly enhance our understanding of indoxacarb metabolism in B. mori. The results of this study provide a theoretical basis for elucidating the mechanism of toxic effects of indoxacarb on silkworm by interfering with the normal physiological functions of the midgut.
Collapse
Affiliation(s)
- Wanwan Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yue Su
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xinyue Liu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Ruinan Qi
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
16
|
Du M, Yin Z, Xu K, Huang Y, Xu Y, Wen W, Zhang Z, Xu H, Wu X. Integrated mass spectrometry imaging and metabolomics reveals sublethal effects of indoxacarb on the red fire ant Solenopsis invicta. PEST MANAGEMENT SCIENCE 2023; 79:3122-3132. [PMID: 37013793 DOI: 10.1002/ps.7489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Indoxacarb, representing an efficient insecticide, is normally made into a bait to spread the poison among red fire ants so that it can be widely applied in the prevention and control of Solenopsis invicta. However, the potential toxicity mechanism of S. invicta in response to indoxacarb remains to be explored. In this study, we integrated mass spectrometry imaging (MSI) and untargeted metabolomics methods to reveal disturbed metabolic expression levels and spatial distribution within the whole-body tissue of S. invicta treated with indoxacarb. RESULTS Metabolomics results showed a significantly altered level of metabolites after indoxacarb treatment, such as carbohydrates, amino acids and pyrimidine and derivatives. Additionally, the spatial distribution and regulation of several crucial metabolites resulting from the metabolic pathway and lipids can be visualized using label-free MSI methods. Specifically, xylitol, aspartate, and uracil were distributed throughout the whole body of S. invicta, while sucrose-6'-phosphate and glycerol were mainly distributed in the abdomen of S. invicta, and thymine was distributed in the head and chest of S. invicta. Taken together, the integrated MSI and metabolomics results indicated that the toxicity mechanism of indoxacarb in S. invicta is closely associated with the disturbance in several key metabolic pathways, such as pyrimidine metabolism, aspartate metabolism, pentose and glucuronate interconversions, and inhibited energy synthesis. CONCLUSION Collectively, these findings provide a new perspective for the understanding of toxicity assessment between targeted organisms S. invicta and pesticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingyi Du
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
- Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kaijie Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yudi Huang
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yizhu Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Wenlin Wen
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xinzhou Wu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Pan X, Ding JH, Zhao SQ, Shi HC, Miao WL, Wu FA, Sheng S, Zhou WH. Identification and functional study of detoxification-related genes in response to tolfenpyrad stress in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105503. [PMID: 37532323 DOI: 10.1016/j.pestbp.2023.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023]
Abstract
Glyphodes pyloalis Walker (G. pyloalis) is a common destructive mulberry pest. Due to the long-term and frequent use of insecticides, it has developed tolerance to commonly used insecticides. Tolfenpyrad (TFP) is a novel pyrazole heterocyclic insecticide. In order to understand the TFP detoxification mechanism of G. pyloalis larvae, we first estimated the LC30 dose of TFP for 3rd instar G. pyloalis larvae. Next, we identified genes that were differentially expressed in 3rd instar G. pyloalis larvae treated with TFP compared to the control group by transcriptome sequencing. In total, 86,949,569 and 67,442,028 clean reads were obtained from TFP-treated and control G. pyloalis larvae, respectively. A total of 5588 differentially expressed genes (DEGs) were identified in TFP-treated and control G. pyloalis larvae, of which 3084 genes were upregulated and 2504 genes were downregulated. We analyzed the expression of 43 candidate detoxification enzyme genes associated with insecticide tolerance using qPCR. According to the spatiotemporal expression pattern of DEGs, we found that CYP6ABE1, CYP333A36 and GST-epsilon8 were highly expressed in the midgut, while CarEs14 was strongly expressed in haemolymph. Furthermore, we successfully knocked down these genes by RNA interference. After silencing CYP6ABE1 and CYP333A36, bioassay showed that the mortality rate of TFP-treated G. pyloalis larvae was significantly higher compared to the control group. This study provides a theoretical foundation for understanding the sensitivity of G. pyloalis to TFP and establish the basis for the effective and green management of this pest.
Collapse
Affiliation(s)
- Xin Pan
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Jian-Hao Ding
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shuai-Qi Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Hui-Cong Shi
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Wang-Long Miao
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China.
| | - Wei-Hong Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212100 Zhenjiang, China.
| |
Collapse
|
18
|
Li J, Jia Y, Zhang D, Li Z, Zhang S, Liu X. Molecular identification of carboxylesterase genes and their potential roles in the insecticides susceptibility of Grapholita molesta. INSECT MOLECULAR BIOLOGY 2023; 32:305-315. [PMID: 36661850 DOI: 10.1111/imb.12831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/16/2023] [Indexed: 05/15/2023]
Abstract
Grapholita molesta is one of the most damaging pests worldwide in stone and pome fruits. Application of chemical pesticides is still the main method to control this pest, which results in resistance to several types of insecticides. Carboxylesterase (CarE) is one of the important enzymes involved in the detoxification metabolism and tolerance of xenobiotics and insecticides. However, the roles of CarEs in insecticides susceptibility of G. molesta are still unclear. In the present study, the enzyme activity of CarEs and the mRNA expression of six CarE genes were consistently elevated after treatment with three insecticides (emamectin benzoate, lambda-cyhalothrin, and chlorantraniliprole). According to spatio-temporal expression profiles, six CarE genes expressed differently in different developmental stages, and highly expressed in some detoxification metabolic organs. RNAi-mediated knockdown of these six CarE genes indicated that the susceptibility of G. molesta to all these three insecticides were obviously raised after GmCarE9, GmCarE14, GmCarE16, and GmCarE22 knockdown, respectively. Overall, these results demonstrated that GmCarE9, GmCarE14, GmCarE16, and GmCarE22 play a role in the susceptibility of G. molesta to emamectin benzoate, lambda-cyhalothrin, and chlorantraniliprole treatment. This study expands our understanding of CarEs in insects, that the same CarE gene could participate in the susceptibility to different insecticides.
Collapse
Affiliation(s)
- Jianying Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Yujie Jia
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Dongyue Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
19
|
Li Z, Chen M, Bai W, Zhang S, Meng L, Dou W, Wang J, Yuan G. Identification, expression profiles and involvement in insecticides tolerance and detoxification of carboxylesterase genes in Bactrocera dorsalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105443. [PMID: 37248012 DOI: 10.1016/j.pestbp.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023]
Abstract
Carboxylesterases (CarEs) are a multifunctional superfamily of enzymes and play an important role in detoxification of various insecticides in insects. The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive agricultural pests and has developed different degrees of resistance to organophosphates in field. However, the involvement of BdCarEs in tolerance or resistance to other alternative insecticides are still unclear. In the present study, 33 BdCarEs genes were identified based on the genome database of B. dorsalis. Phylogenetic analysis demonstrated that they were classified into nine clades, with abundance of α-esterases. Meanwhile, the sequence characterization and the chromosome distribution were also analyzed. The spatiotemporal expression analysis of BdCarEs genes suggested that the diversity of potential function in different physiological processes. With the exception of BdCarE21, all BdCarEs genes responded to at least one insecticide exposure, and BdCarE20 was found to be up-regulated after exposure to all five tested insecticides individually. Eight BdCarEs genes were overexpressed in MR strain when compared to that in SS strain. Subsequently, knockdown the expression of representative BdCarEs genes significantly increased the susceptibility of the oriental fruit fly to corresponding insecticides, which indicated that the tested BdCarEs genes contributed to one or multiple insecticide detoxification. These findings provide valuable insights into the potential role in respond to tolerance or resistance to insecticides with different mode of action, and will facilitate development of efficiency management strategy for B. dorsalis.
Collapse
Affiliation(s)
- Zhenyu Li
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Mengling Chen
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Wenjie Bai
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Shuxia Zhang
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Liwei Meng
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Guorui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Yang F, Li Y, Gao M, Xia Q, Wang Q, Tang M, Zhou X, Guo H, Xiao Q, Sun L. Comparative expression profiles of carboxylesterase orthologous CXE14 in two closely related tea geometrid species, Ectropis obliqua Prout and Ectropis grisescens Warren. Front Physiol 2023; 14:1194997. [PMID: 37293262 PMCID: PMC10244532 DOI: 10.3389/fphys.2023.1194997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
Insect carboxylesterases (CXEs) can be expressed in multiple tissues and play crucial roles in detoxifying xenobiotic insecticides and degrading olfactory cues. Therefore, they have been considered as an important target for development of eco-friendly insect pest management strategies. Despite extensive investigation in most insect species, limited information on CXEs in sibling moth species is currently available. The Ectropis obliqua Prout and Ectropis grisescens Warren are two closely related tea geometrid species, which share the same host of tea plant but differ in geographical distribution, sex pheromone composition, and symbiotic bacteria abundance, providing an excellent mode species for studies of functional diversity of orthologous CXEs. In this study, we focused on EoblCXE14 due to its previously reported non-chemosensory organs-biased expression. First, the EoblCXE14 orthologous gene EgriCXE14 was cloned and sequence characteristics analysis showed that they share a conserved motif and phylogenetic relationship. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to compare the expression profiles between two Ectropis spp. The results showed that EoblCXE14 was predominately expressed in E. obliqua larvae, whereas EgriCXE14 was abundant in E. grisescens at multiple developmental stages. Interestingly, both orthologous CXEs were highly expressed in larval midgut, but the expression level of EoblCXE14 in E. obliqua midgut was significantly higher than that of EgriCXE14 in E. grisescens midgut. In addition, the potential effect of symbiotic bacteria Wolbachia on the CXE14 was examined. This study is the first to provide comparative expression profiles of orthologous CXE genes in two sibling geometrid moth species and the results will help further elucidate CXEs functions and identify a potential target for tea geometrid pest control.
Collapse
Affiliation(s)
- Fengshui Yang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yujie Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang, China
| | - Mengyuan Gao
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang, China
| | - Qing Xia
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qian Wang
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Meijun Tang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaogui Zhou
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Huawei Guo
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Xiao
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
21
|
Li J, Lv Y, Liu Y, Bi R, Pan Y, Shang Q. Inducible Gut-Specific Carboxylesterase SlCOE030 in Polyphagous Pests of Spodoptera litura Conferring Tolerance between Nicotine and Cyantraniliprole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4281-4291. [PMID: 36877657 DOI: 10.1021/acs.jafc.3c00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Insecticides tolerance in herbivorous arthropods is associated with preadaptation to host plant allelochemicals. However, how plant secondary metabolites activate detoxifying metabolic genes to develop tolerance remains unclear. Herein, the tolerance of Spodoptera litura larvae to cyantraniliprole was increased after nicotine exposure. An S. litura α esterase, SlCOE030, was predominantly expressed in the midgut and induced after exposure to cyantraniliprole, nicotine, and cyantraniliprole plus nicotine. Drosophila melanogaster with ectopically overexpressed SlCOE030 enhanced cyantraniliprole and nicotine tolerance by 4.91- and 2.12-fold, respectively. Compared to UAS-SlCOE030 and Esg-GAL4 lines, the Esg > SlCOE030 line laid more eggs after nicotine exposure. SlCOE030 knockdown decreased the sensitivity of nicotine-treated S. litura larvae to cyantraniliprole. Metabolism assays indicated that recombinant SlCOE030 protein metabolizes cyantraniliprole. Homology modeling and molecular docking analysis demonstrated that SlCOE030 exhibits effective affinities for cyantraniliprole and nicotine. Thus, insect CarEs may result in the development of cross-tolerance between synthetic insecticides and plant secondary metabolites.
Collapse
Affiliation(s)
- Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Yajing Liu
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Rui Bi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
22
|
Chen L, Song J, Wang J, Ye M, Deng Q, Wu X, Wu X, Ren B. Effects of Methyl Jasmonate Fumigation on the Growth and Detoxification Ability of Spodoptera litura to Xanthotoxin. INSECTS 2023; 14:145. [PMID: 36835714 PMCID: PMC9966746 DOI: 10.3390/insects14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Methyl jasmonate (MeJA) is a volatile substance derived from jasmonic acid (JA), and it responds to interbiotic and abiotic stresses by participating in interplant communication. Despite its function in interplant communication, the specific role of MeJA in insect defense responses is poorly understood. In this study, we found that carboxylesterase (CarE) activities, glutathione-S-transferase (GSTs) activities, and cytochrome mono-oxygenases (P450s) content increased more after the feeding of diets containing xanthotoxin, while larvae exposed to MeJA fumigation also showed higher enzyme activity in a dose-dependent manner: lower and medium concentrations of MeJA induced higher detoxification enzyme activities than higher concentrations of MeJA. Moreover, MeJA improved the growth of larvae fed on the control diet without toxins and diets with lower concentrations of xanthotoxin (0.05%); however, MeJA could not protect the larvae against higher concentrations of xanthotoxin (0.1%, 0.2%). In summary, we demonstrated that MeJA is effective at inducing S. litura defense response, but the enhanced detoxifying ability could not overcome the strong toxins.
Collapse
Affiliation(s)
- Lina Chen
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Jia Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jun Wang
- Guiyang Plant Protection and Quarantine Station, Guiyang 550081, China
| | - Mao Ye
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Qianqian Deng
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Xiaobao Wu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Xiaoyi Wu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| | - Bing Ren
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550005, China
| |
Collapse
|
23
|
Hafeez M, Li X, Ullah F, Zhang Z, Zhang J, Huang J, Chen L, Siddiqui JA, Ren X, Zhou S, Imran M, Assiri MA, Zalucki MP, Lou Y, Lu Y. Characterization of Indoxacarb Resistance in the Fall Armyworm: Selection, Inheritance, Cross-Resistance, Possible Biochemical Mechanisms, and Fitness Costs. BIOLOGY 2022; 11:biology11121718. [PMID: 36552228 PMCID: PMC9774702 DOI: 10.3390/biology11121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a voracious insect pest that is difficult to control due to resistance to insecticides and Bt proteins. We assessed cross-resistance, resistance mechanism, and fitness costs based on the life history traits of S. frugiperda. We established an S. frugiperda strain selected for resistance to indoxacarb (Ind-SEL) from a field-collected population and an unselected strain, Ind-UNSEL. Results indicated that after 24 generations of selection, the resistance to indoxacarb was increased by 472.67-fold as compared to the Ind-UNSEL. There was high cross-resistance to deltamethrin (31.23-fold) with very low or negligible cross-resistance to chlorantraniliprole, emamectin benzoate, and/or methoxyfenozide in the Ind-SEL population. Butoxide synergist increased susceptibility to indoxacarb, indicating that P450 enzymes may be involved in indoxacarb resistance. Significantly longer developmental time of larvae extended pupal duration, shorter adult longevity, and lower fecundity were observed in Ind-SEL as compared with the Ind-UNSEL population. The Net reproductive rate (R0) was the only growth parameter that differs between crosses of Ind-SEL♂ × Ind-UNSEL♀ (176 ± 46) and Ind-SEL♀ × Ind-UNSEL♂ (328 ± 57). On the other hand, all population growth parameters differ between Ind-SEL and Ind-UNSEL strains. Our work contributes to the growing body of research that demonstrates the importance of strain genetics in fitness cost experiments and helps resistance management programs make decisions.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100083, China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, Lishui 323000, China
| | - Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang 550025, China
| | - Xiaoyun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuxing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Myron P. Zalucki
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.L.); (Y.L.)
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (Y.L.); (Y.L.)
| |
Collapse
|
24
|
Lv Y, Li J, Yan K, Ding Y, Gao X, Bi R, Zhang H, Pan Y, Shang Q. Functional characterization of ABC transporters mediates multiple neonicotinoid resistance in a field population of Aphis gossypii Glover. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105264. [PMID: 36464369 DOI: 10.1016/j.pestbp.2022.105264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
The ATP-binding cassette (ABC) transporters C and G subfamilies have been reported to be involved in insecticide detoxification, with most studies showing increased gene transcript levels in response to insecticide exposure. Our previous studies have suggested that ABCC and G transporters participate in cyantraniliprole and thiamethoxam resistance of Aphis gossypii. In this study, we focused on the potential roles of the ABCC and G transporters of an A. gossypii field population (SDR) in neonicotinoid detoxification. The results of leaf dip bioassays showed 629.17- and 346.82-fold greater resistance to thiamethoxam and imidacloprid in the SDR strain, respectively, than in the susceptible strain (SS). Verapamil, an ABC inhibitor, was used for synergism bioassays, and the results showed synergistic effects with thiamethoxam, with synergistic ratios (SRs) of 2.07 and 6.68 in the SS and SDR strains, respectively. In addition to thiamethoxam, verapamil increased imidacloprid toxicity by 1.68- and 1.62-fold in the SS and SDR strains respectively. Then, the expression levels of several ABCC and G transporters were analyzed in different treatments. We found that the transcript levels of AgABCG4, AgABCG17, AgABCG26, AgMRP8 and AgMRP12 were higher in the SDR strain than in the SS strain. The mRNA expression of AgABCG4, AgABCG7, AgABCG13, AgABCG17, AgABCG26, AgMRP8 and AgMRP12 in the SDR strain was increased after thiamethoxam and imidacloprid exposure. The results of transgenic Drosophila melanogaster bioassays suggested that overexpression of AgABCG4, AgABCG7, AgABCG13, AgABCG17, AgABCG26, AgMRP8 and AgMRP12 in transgenic flies was sufficient to confer thiamethoxam and imidacloprid resistance, and AgABCG4, AgABCG7, AgABCG13, AgABCG26 and AgMRP12 may be related to α-cypermethrin cross-resistance with weak effects. In addition, the knockdown of AgABCG4, AgABCG13, AgABCG26, AgMRP8 and AgMRP12, and the knockdown of AgABCG7 and AgABCG26 increased thiamethoxam and imidacloprid mortality in the SDR strain, respectively. Our results suggest that changes in the expression levels of ABCC and G transporters may contribute to neonicotinoid detoxification in the SDR strain, and provide a foundation for clarify the potential roles of ABCC and G transporters in insecticide resistance.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Rui Bi
- College of Plant Science, Jilin Agricultural University, Changchun 130118, PR China
| | - Hang Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
25
|
Wang R, Gao B, Zhang Q, Zhang Z, Li Y, Yang Q, Zhang M, Li W, Luo C. Acylsugar protection of Nicotiana benthamiana confers mortality and transgenerational fitness costs in Spodoptera litura. FRONTIERS IN PLANT SCIENCE 2022; 13:993279. [PMID: 36119595 PMCID: PMC9478178 DOI: 10.3389/fpls.2022.993279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Acylsugars are secondary metabolites that are produced in the trichomes of some solanaceous species and can help control several herbivorous insect pests. Previously, knockout mutations (asat2 mutants) were shown to significantly reduce the acylsugar content of Nicotiana benthamiana, and significantly improve the fitness of six generalist insect herbivores. The current study compared the significant mortality and fitness costs in Spodoptera litura conferred by acylsugar protection of N. benthamiana (wild-type plants) compared to S. litura strains reared in acylsugar-deficient plants with depleted acylsugar biosynthesis. Acylsugar protection prolonged the developmental duration and decreased viability in the larval stages. Further, the fecundity of females and the hatching rate of eggs significantly decreased under acylsugar protection. For F1 offspring, acylsugar protection still exerted significant negative effects on larval survival rate and fecundity per female. The net reproductive rate and relative fitness of the S. litura strain were strongly affected by acylsugar. Altogether, these results indicate that acylsugar could contribute to plant protection due to toxicity to pests, diffused availability, and low environmental persistence. This could represent a complementary and alternative strategy to control populations of insect pests.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bingli Gao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qinghe Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ziyi Zhang
- College of Agriculture and Forestry Technology, Hebei North University, Zhangjiakou, China
| | - Yunyi Li
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Qingyi Yang
- College of Agriculture and Forestry Technology, Hebei North University, Zhangjiakou, China
| | - Mi Zhang
- College of Agriculture and Forestry Technology, Hebei North University, Zhangjiakou, China
| | - Wenxiang Li
- College of Agriculture and Forestry Technology, Hebei North University, Zhangjiakou, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
26
|
de Freitas STF, Rodrigues ARDS, Ataídes ACC, de Oliveira Menino GC, de Faria GS, Vitorino LC, Silva FG, Dyszy FH. Inhibitory effects of Serjania erecta on the development of Chrysodeixis includens. Sci Rep 2022; 12:14702. [PMID: 36038763 PMCID: PMC9424230 DOI: 10.1038/s41598-022-19126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The soybean looper, Chrysodeixis includens, is a primary soybean pest that reduces crop productivity. This work examined control of C. includens populations with methanolic extract of Serjania erecta, a native Cerrado plant, while minimizing risks to pollinators, natural enemies and the environment. Serjania erecta specimens were collected, identified, and subjected to methanol extraction. Bioassays were performed using newly hatched and second-instar caterpillars and different extract concentrations on the diet surface to obtain IC50 values. Two replicates, containing 10 caterpillars, were established in triplicate. The IC50 values were 4.15 and 6.24 mg of extract mL−1 for first-instar and second-instar caterpillars, respectively. These growth inhibition results informed the extract concentrations assessed in subsequent development inhibition assays, in which the pupal weight was higher under the control than under the treatments. Extract treatments increased the duration of the larval, pupal and total development. The potential of different concentrations of S. erecta extract to inhibit the enzymes carboxylesterases was also evaluated. Carboxylesterases activity decreased by 41.96 and 43.43% at 7.8 and 15.6 μg mL−1 extract, respectively. At 31.3 μg mL−1 extract, enzymatic activity was not detected. Overall, S. erecta leaf methanolic extract showed inhibitory potential against carboxylesterases.
Collapse
Affiliation(s)
- Samylla Tassia Ferreira de Freitas
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Agna Rita Dos Santos Rodrigues
- Instituto Federal de Sergipe (Campus Itabaiana), Avenida Padre Airton Gonçalves Lima, 1140 São Cristóvão, Itabaiana, 49500-543, Brazil
| | - Ana Cláudia Cardoso Ataídes
- Programa de Pós-Graduação em Agroquímica, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Gisele Cristina de Oliveira Menino
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Giselle Santos de Faria
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Luciana Cristina Vitorino
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil. .,Instituto Federal Goiano - Campus Rio Verde, Rodovia Sul Goiana, Zona Rural, s/n, Rio Verde, GO, 75901-970, Brasil.
| | - Fabiano Guimarães Silva
- Programa de Pós-Graduação em Ciências Agrárias, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Fábio Henrique Dyszy
- Programa de Pós-Graduação em Biodiversidade e Conservação, Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano, Campus Rio Verde), Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| |
Collapse
|
27
|
Xiao T, Lu K. Functional characterization of CYP6AE subfamily P450s associated with pyrethroid detoxification in Spodoptera litura. Int J Biol Macromol 2022; 219:452-462. [DOI: 10.1016/j.ijbiomac.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/05/2022]
|
28
|
Lu K, Li Y, Xiao T, Sun Z. The metabolic resistance of Nilaparvata lugens to chlorpyrifos is mainly driven by the carboxylesterase CarE17. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113738. [PMID: 35679727 DOI: 10.1016/j.ecoenv.2022.113738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between - 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens.
Collapse
Affiliation(s)
- Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yimin Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
29
|
Li R, Zhu B, Hu XP, Shi XY, Qi LL, Liang P, Gao XW. Overexpression of PxαE14 Contributing to Detoxification of Multiple Insecticides in Plutella xylostella (L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5794-5804. [PMID: 35510781 DOI: 10.1021/acs.jafc.2c01867] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The diamondback moth, Plutella xylostella (L.), has evolved with varying degrees of resistance to almost all major classes of insecticides and has become the most resistant pest worldwide. The multiresistance to different types of insecticides has been frequently reported in P. xylostella, but little is known about the mechanism. In this study, a carboxylesterase (CarE) gene, PxαE14, was found significantly overexpressed in a field-evolved multiresistant P. xylostella population and can be dramatically induced by eight of nine tested insecticides. Results of the real-time quantitative polymerase chain reaction (RT-qPCR) showed that PxαE14 was predominantly expressed in the midgut and malpighian tubule of larvae. Knockdown of PxαE14 dramatically increased the susceptibility of the larvae to β-cypermethrin, bifenthrin, chlorpyrifos, fenvalerate, malathion, and phoxim, while overexpression of PxαE14 in Drosophila melanogaster increased the tolerance of the fruit flies to these insecticides obviously. More importantly, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay showed that the recombinant PxαE14 expressed in Escherichia coli exhibited metabolic activity against the six insecticides. The homology modeling, molecular docking, and molecular dynamics simulation analyses showed that these six insecticides could stably bind to PxαE14. Taken together, these results demonstrate that constitutive and inductive overexpression of PxαE14 contributes to detoxification of multiple insecticides involved in multiresistance in P. xylostella. Our findings provide evidence for understanding the molecular mechanisms underlying the multiresistance in insect pests.
Collapse
Affiliation(s)
- Ran Li
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Bin Zhu
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xue-Ping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xue-Yan Shi
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Lin-Lu Qi
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Pei Liang
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xi-Wu Gao
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|