1
|
Werner M, Brinkhofer J, Hammermüller L, Heim T, Pham TL, Huber J, Klein C, Thomas F. Peptide Boronic Acids by Late-Stage Hydroboration on the Solid Phase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400640. [PMID: 38810019 PMCID: PMC11267286 DOI: 10.1002/advs.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Organoboron compounds have a wide range of applications in numerous research fields, and methods to incorporate them in biomolecules are much sought after. Here, on-resin chemical syntheses of aliphatic and vinylogous peptide boronic acids are presented by transition metal-catalyzed late-stage hydroboration of alkene and alkyne groups in peptides and peptoids, for example on allyl- and propargylglycine residues, using readily available chemicals. These methods yield peptide boronic acids with much shorter linkers than previously reported on-resin methods. Furthermore, the methods are regio- and stereoselective, compatible with all canonical amino acid residues and can be applied to short, long, and in part even "difficult" peptide sequences. In a feasibility study, the protected peptide vinylboronic acids are further derivatized by the Petasis reaction using salicylaldehyde derivatives. The ability of the obtained peptide boronic acids to reversibly bind to carbohydrates is demonstrated in a catch-release model experiment using a fluorescently labeled peptide boronic acid on cross-linked dextran beads. In summary, this highlights the potential of the target compounds for drug discovery, glycan-specific target recognition, controlled release, and diagnostics.
Collapse
Affiliation(s)
- Marius Werner
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Medicinal ChemistryInstitute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Julian Brinkhofer
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Leon Hammermüller
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Thomas Heim
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Truc Lam Pham
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Jonas Huber
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Christian Klein
- Medicinal ChemistryInstitute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Franziska Thomas
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
2
|
Cambuli VM, Baroni MG. Intelligent Insulin vs. Artificial Intelligence for Type 1 Diabetes: Will the Real Winner Please Stand Up? Int J Mol Sci 2023; 24:13139. [PMID: 37685946 PMCID: PMC10488097 DOI: 10.3390/ijms241713139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Research in the treatment of type 1 diabetes has been addressed into two main areas: the development of "intelligent insulins" capable of auto-regulating their own levels according to glucose concentrations, or the exploitation of artificial intelligence (AI) and its learning capacity, to provide decision support systems to improve automated insulin therapy. This review aims to provide a synthetic overview of the current state of these two research areas, providing an outline of the latest development in the search for "intelligent insulins," and the results of new and promising advances in the use of artificial intelligence to regulate automated insulin infusion and glucose control. The future of insulin treatment in type 1 diabetes appears promising with AI, with research nearly reaching the possibility of finally having a "closed-loop" artificial pancreas.
Collapse
Affiliation(s)
- Valentina Maria Cambuli
- Diabetology and Metabolic Diseaseas, San Michele Hospital, ARNAS Giuseppe Brotzu, 09121 Cagliari, Italy;
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
3
|
Jarosinski MA, Chen YS, Varas N, Dhayalan B, Chatterjee D, Weiss MA. New Horizons: Next-Generation Insulin Analogues: Structural Principles and Clinical Goals. J Clin Endocrinol Metab 2022; 107:909-928. [PMID: 34850005 PMCID: PMC8947325 DOI: 10.1210/clinem/dgab849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/19/2022]
Abstract
Design of "first-generation" insulin analogues over the past 3 decades has provided pharmaceutical formulations with tailored pharmacokinetic (PK) and pharmacodynamic (PD) properties. Application of a molecular tool kit-integrating protein sequence, chemical modification, and formulation-has thus led to improved prandial and basal formulations for the treatment of diabetes mellitus. Although PK/PD changes were modest in relation to prior formulations of human and animal insulins, significant clinical advantages in efficacy (mean glycemia) and safety (rates of hypoglycemia) were obtained. Continuing innovation is providing further improvements to achieve ultrarapid and ultrabasal analogue formulations in an effort to reduce glycemic variability and optimize time in range. Beyond such PK/PD metrics, next-generation insulin analogues seek to exploit therapeutic mechanisms: glucose-responsive ("smart") analogues, pathway-specific ("biased") analogues, and organ-targeted analogues. Smart insulin analogues and delivery systems promise to mitigate hypoglycemic risk, a critical barrier to glycemic control, whereas biased and organ-targeted insulin analogues may better recapitulate physiologic hormonal regulation. In each therapeutic class considerations of cost and stability will affect use and global distribution. This review highlights structural principles underlying next-generation design efforts, their respective biological rationale, and potential clinical applications.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Lin NP, Zheng N, Purushottam L, Zhang YW, Chou DHC. Synthesis and Characterization of Phenylboronic Acid-Modified Insulin With Glucose-Dependent Solubility. Front Chem 2022; 10:859133. [PMID: 35372263 PMCID: PMC8965884 DOI: 10.3389/fchem.2022.859133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Glucose-responsive insulin represents a promising approach to regulate blood glucose levels. We previously showed that attaching two fluorophenylboronic acid (FPBA) residues to the C-terminal B chain of insulin glargine led to glucose-dependent solubility. Herein, we demonstrated that relocating FPBA from B chain to A chain increased the baseline solubility without affecting its potency. Furthermore, increasing the number of FPBA groups led to increased glucose-dependent solubility.
Collapse
Affiliation(s)
- Nai-Pin Lin
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Stanford, CA, United States,Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Nan Zheng
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Landa Purushottam
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Stanford, CA, United States
| | - Yi Wolf Zhang
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Stanford, CA, United States,Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Stanford, CA, United States,Department of Biochemistry, University of Utah, Salt Lake City, UT, United States,*Correspondence: Danny Hung-Chieh Chou,
| |
Collapse
|
5
|
Kikuchi H, Nakamura Y, Inoue C, Nojiri S, Koita M, Kojima M, Koyama H, Miki R, Seki T, Egawa Y. Hydrogen Peroxide-Triggered Conversion of Boronic Acid-Appended Insulin into Insulin and Its Application as a Glucose-Responsive Insulin Formulation. Mol Pharm 2021; 18:4224-4230. [PMID: 34623822 DOI: 10.1021/acs.molpharmaceut.1c00760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
p-Boronophenylmethoxycarbonyl (BPmoc) is a protecting group for amines that is removable by treatment with hydrogen peroxide (H2O2). We prepared BPmoc-modified insulin (BPmoc-Ins) and subcutaneously injected the formulation into diabetic rats. The results demonstrated that BPmoc effectively sealed the blood glucose (Glc)-lowering effects of Ins. Conversely, coinjection of BPmoc-Ins and Glc oxidase (GOx) resulted in reduced blood Glc levels, indicating that Ins was generated from BPmoc-Ins through the following reactions: oxidation of endogenous Glc by GOx; production of H2O2 accompanied by Glc oxidation; removal of BPmoc residues by H2O2. These results show the potential of BPmoc-Ins for a Glc-responsive Ins release system.
Collapse
Affiliation(s)
- Hinako Kikuchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Yuki Nakamura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Chika Inoue
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Sayaka Nojiri
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Miho Koita
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Minori Kojima
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Hiroki Koyama
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Ryotaro Miki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Toshinobu Seki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Yuya Egawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| |
Collapse
|
6
|
Jarosinski MA, Dhayalan B, Chen YS, Chatterjee D, Varas N, Weiss MA. Structural principles of insulin formulation and analog design: A century of innovation. Mol Metab 2021; 52:101325. [PMID: 34428558 PMCID: PMC8513154 DOI: 10.1016/j.molmet.2021.101325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The discovery of insulin in 1921 and its near-immediate clinical use initiated a century of innovation. Advances extended across a broad front, from the stabilization of animal insulin formulations to the frontiers of synthetic peptide chemistry, and in turn, from the advent of recombinant DNA manufacturing to structure-based protein analog design. In each case, a creative interplay was observed between pharmaceutical applications and then-emerging principles of protein science; indeed, translational objectives contributed to a growing molecular understanding of protein structure, aggregation and misfolding. SCOPE OF REVIEW Pioneering crystallographic analyses-beginning with Hodgkin's solving of the 2-Zn insulin hexamer-elucidated general features of protein self-assembly, including zinc coordination and the allosteric transmission of conformational change. Crystallization of insulin was exploited both as a step in manufacturing and as a means of obtaining protracted action. Forty years ago, the confluence of recombinant human insulin with techniques for site-directed mutagenesis initiated the present era of insulin analogs. Variant or modified insulins were developed that exhibit improved prandial or basal pharmacokinetic (PK) properties. Encouraged by clinical trials demonstrating the long-term importance of glycemic control, regimens based on such analogs sought to resemble daily patterns of endogenous β-cell secretion more closely, ideally with reduced risk of hypoglycemia. MAJOR CONCLUSIONS Next-generation insulin analog design seeks to explore new frontiers, including glucose-responsive insulins, organ-selective analogs and biased agonists tailored to address yet-unmet clinical needs. In the coming decade, we envision ever more powerful scientific synergies at the interface of structural biology, molecular physiology and therapeutics.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA; Department of Chemistry, Indiana University, Bloomington, 47405, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA.
| |
Collapse
|
7
|
Jarosinski MA, Dhayalan B, Rege N, Chatterjee D, Weiss MA. 'Smart' insulin-delivery technologies and intrinsic glucose-responsive insulin analogues. Diabetologia 2021; 64:1016-1029. [PMID: 33710398 PMCID: PMC8158166 DOI: 10.1007/s00125-021-05422-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Insulin replacement therapy for diabetes mellitus seeks to minimise excursions in blood glucose concentration above or below the therapeutic range (hyper- or hypoglycaemia). To mitigate acute and chronic risks of such excursions, glucose-responsive insulin-delivery technologies have long been sought for clinical application in type 1 and long-standing type 2 diabetes mellitus. Such 'smart' systems or insulin analogues seek to provide hormonal activity proportional to blood glucose levels without external monitoring. This review highlights three broad strategies to co-optimise mean glycaemic control and time in range: (1) coupling of continuous glucose monitoring (CGM) to delivery devices (algorithm-based 'closed-loop' systems); (2) glucose-responsive polymer encapsulation of insulin; and (3) mechanism-based hormone modifications. Innovations span control algorithms for CGM-based insulin-delivery systems, glucose-responsive polymer matrices, bio-inspired design based on insulin's conformational switch mechanism upon insulin receptor engagement, and glucose-responsive modifications of new insulin analogues. In each case, innovations in insulin chemistry and formulation may enhance clinical outcomes. Prospects are discussed for intrinsic glucose-responsive insulin analogues containing a reversible switch (regulating bioavailability or conformation) that can be activated by glucose at high concentrations.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nischay Rege
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Abstract
The pancreatic peptide hormone insulin, first discovered exactly 100 years ago, is essential for glycemic control and is used as a therapeutic for the treatment of type 1 and, increasingly, type 2 diabetes. With a worsening global diabetes epidemic and its significant health budget imposition, there is a great demand for new analogues possessing improved physical and functional properties. However, the chemical synthesis of insulin's intricate 51-amino acid, two-chain, three-disulfide bond structure, together with the poor physicochemical properties of both the individual chains and the hormone itself, has long represented a major challenge to organic chemists. This review provides a timely overview of the past efforts to chemically assemble this fascinating hormone using an array of strategies to enable both correct folding of the two chains and selective formation of disulfide bonds. These methods not only have contributed to general peptide synthesis chemistry and enabled access to the greatly growing numbers of insulin-like and cystine-rich peptides but also, today, enable the production of insulin at the synthetic efficiency levels of recombinant DNA expression methods. They have led to the production of a myriad of novel analogues with optimized structural and functional features and of the feasibility for their industrial manufacture.
Collapse
|
9
|
Mannerstedt K, Mishra NK, Engholm E, Lundh M, Madsen CS, Pedersen PJ, Le-Huu P, Pedersen SL, Buch-Månson N, Borgström B, Brimert T, Fink LN, Fosgerau K, Vrang N, Jensen KJ. An Aldehyde Responsive, Cleavable Linker for Glucose Responsive Insulins. Chemistry 2021; 27:3166-3176. [PMID: 33169429 DOI: 10.1002/chem.202004878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 12/30/2022]
Abstract
A glucose responsive insulin (GRI) that responds to changes in blood glucose concentrations has remained an elusive goal. Here we describe the development of glucose cleavable linkers based on hydrazone and thiazolidine structures. We developed linkers with low levels of spontaneous hydrolysis but increased level of hydrolysis with rising concentrations of glucose, which demonstrated their glucose responsiveness in vitro. Lipidated hydrazones and thiazolidines were conjugated to the LysB29 side-chain of HI by pH-controlled acylations providing GRIs with glucose responsiveness confirmed in vitro for thiazolidines. Clamp studies showed increased glucose infusion at hyperglycemic conditions for one GRI indicative of a true glucose response. The glucose responsive cleavable linker in these GRIs allow changes in glucose levels to drive the release of active insulin from a circulating depot. We have demonstrated an unprecedented, chemically responsive linker concept for biopharmaceuticals.
Collapse
Affiliation(s)
| | - Narendra Kumar Mishra
- Gubra ApS, Hørsholm Kongevej, 11B, 2970, Hørsholm, Denmark.,Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Ebbe Engholm
- Gubra ApS, Hørsholm Kongevej, 11B, 2970, Hørsholm, Denmark.,Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Morten Lundh
- Gubra ApS, Hørsholm Kongevej, 11B, 2970, Hørsholm, Denmark
| | | | | | - Priska Le-Huu
- Gubra ApS, Hørsholm Kongevej, 11B, 2970, Hørsholm, Denmark
| | | | | | - Björn Borgström
- Red Glead Discovery AB, Scheelevägen 17, 22363, Lund, Sweden
| | - Thomas Brimert
- Red Glead Discovery AB, Scheelevägen 17, 22363, Lund, Sweden
| | - Lisbeth N Fink
- Gubra ApS, Hørsholm Kongevej, 11B, 2970, Hørsholm, Denmark
| | - Keld Fosgerau
- Gubra ApS, Hørsholm Kongevej, 11B, 2970, Hørsholm, Denmark
| | - Niels Vrang
- Gubra ApS, Hørsholm Kongevej, 11B, 2970, Hørsholm, Denmark
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| |
Collapse
|
10
|
Wang Z, Wang J, Kahkoska AR, Buse JB, Gu Z. Developing Insulin Delivery Devices with Glucose Responsiveness. Trends Pharmacol Sci 2021; 42:31-44. [PMID: 33250274 PMCID: PMC7758938 DOI: 10.1016/j.tips.2020.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022]
Abstract
Individuals with type 1 and advanced type 2 diabetes require daily insulin therapy to maintain blood glucose levels in normoglycemic ranges to prevent associated morbidity and mortality. Optimal insulin delivery should offer both precise dosing in response to real-time blood glucose levels as well as a feasible and low-burden administration route to promote long-term adherence. A series of glucose-responsive insulin delivery mechanisms and devices have been reported to increase patient compliance while mitigating the risk of hypoglycemia. This review discusses currently available insulin delivery devices, overviews recent developments towards the generation of glucose-responsive delivery systems, and provides commentary on the opportunities and barriers ahead regarding the integration and translation of current glucose-responsive insulin delivery designs.
Collapse
Affiliation(s)
- Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | - Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA; College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Anna R Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA; College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
11
|
Affiliation(s)
- Simeon I Taylor
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
12
|
Wang J, Wang Z, Yu J, Kahkoska AR, Buse JB, Gu Z. Glucose-Responsive Insulin and Delivery Systems: Innovation and Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902004. [PMID: 31423670 PMCID: PMC7141789 DOI: 10.1002/adma.201902004] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/09/2019] [Indexed: 05/18/2023]
Abstract
Type 1 and advanced type 2 diabetes treatment involves daily injections or continuous infusion of exogenous insulin aimed at regulating blood glucose levels in the normoglycemic range. However, current options for insulin therapy are limited by the risk of hypoglycemia and are associated with suboptimal glycemic control outcomes. Therefore, a range of glucose-responsive components that can undergo changes in conformation or show alterations in intermolecular binding capability in response to glucose stimulation has been studied for ultimate integration into closed-loop insulin delivery or "smart insulin" systems. Here, an overview of the evolution and recent progress in the development of molecular approaches for glucose-responsive insulin delivery systems, a rapidly growing subfield of precision medicine, is presented. Three central glucose-responsive moieties, including glucose oxidase, phenylboronic acid, and glucose-binding molecules are examined in detail. Future opportunities and challenges regarding translation are also discussed.
Collapse
Affiliation(s)
- Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | | | - Anna R. Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - John B. Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Zenomics Inc., Durham, NC 27709, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Fischer A, Lilienthal S, Vázquez-González M, Fadeev M, Sohn YS, Nechushtai R, Willner I. Triggered Release of Loads from Microcapsule-in-Microcapsule Hydrogel Microcarriers: En-Route to an "Artificial Pancreas". J Am Chem Soc 2020; 142:4223-4234. [PMID: 32031792 PMCID: PMC7467680 DOI: 10.1021/jacs.9b11847] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 12/19/2022]
Abstract
A method to assemble stimuli-responsive nucleic acid-based hydrogel-stabilized microcapsule-in-microcapsule systems is introduced. An inner aqueous compartment stabilized by a stimuli-responsive hydrogel-layer (∼150 nm) provides the inner microcapsule (diameter ∼2.5 μm). The inner microcapsule is separated from an outer aqueous compartment stabilized by an outer stimuli-responsive hydrogel layer (thickness of ∼150 nm) that yields the microcapsule-in-microcapsule system. Different loads, e.g., tetramethyl rhodamine-dextran (TMR-D) and CdSe/ZnS quantum dots (QDs), are loaded in the inner and outer aqueous compartments. The hydrogel layers exist in a higher stiffness state that prevents inter-reservoir or leakage of the loads from the respective aqueous compartments. Subjecting the inner hydrogel layer to Zn2+-ions and/or the outer hydrogel layer to acidic pH or crown ether leads to the triggered separation of the bridging units associated with the respective hydrogel layers. This results in the hydrogel layers of lower stiffness allowing either the mixing of the loads occupying the two aqueous compartments, the guided release of the load from the outer aqueous compartment, or the release of the loads from the two aqueous compartments. In addition, a pH-responsive microcapsule-in-microcapsule system is loaded with glucose oxidase (GOx) in the inner aqueous compartment and insulin in the outer aqueous compartment. Glucose permeates across the two hydrogel layers resulting in the GOx catalyzed aerobic oxidation of glucose to gluconic acid. The acidification of the microcapsule-in-microcapsule system leads to the triggered unlocking of the outer, pH-responsive hydrogel layer and to the release of insulin. The pH-stimulated release of insulin is controlled by the concentration of glucose. While at normal glucose levels, the release of insulin is practically prohibited, the dose-controlled release of insulin in the entire diabetic range is demonstrated. Also, switchable ON/OFF release of insulin is achieved highlighting an autonomous glucose-responsive microdevice operating as an "artificial pancreas" for the release of insulin.
Collapse
Affiliation(s)
- Amit Fischer
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sivan Lilienthal
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Margarita Vázquez-González
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
14
|
VandenBerg MA, Webber MJ. Biologically Inspired and Chemically Derived Methods for Glucose-Responsive Insulin Therapy. Adv Healthc Mater 2019; 8:e1801466. [PMID: 30605265 DOI: 10.1002/adhm.201801466] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The controlled delivery of therapeutics in a manner responsive to physiological indicators has promise in realizing new therapeutic approaches to combat disease. This approach is especially relevant in the context of diabetes. Natural fluctuations in blood glucose seen in the healthy state, complete with peaks and troughs, are poorly regulated as a result of detrimental production or ineffective signaling of the insulin hormone. While several manifestations of diabetes are treated with regularly administered exogenous insulin, the present standard of care results in suboptimal glycemic management that poorly recreates natural hormone control, leading to long-term instability and a significantly increased risk for secondary health complications. New synthetic technologies that make insulin available only when needed, and at the exact dose required, have been explored under the broad vision of realizing a "fully synthetic pancreas." Yet, many challenges remain to realizing a technology that is appropriately responsive, safe, and well integrated into a manageable routine. Herein, many of the approaches explored thus far to sense physiological blood glucose and elicit response through the release of therapeutic insulin are summarized. The approaches point to a new, autonomous approach to managing diabetes with biomimetic therapy.
Collapse
Affiliation(s)
- Michael A. VandenBerg
- Department of Chemical & Biomolecular EngineeringUniversity of Notre Dame 205 McCourtney Hall Notre Dame IN 46556 USA
| | - Matthew J. Webber
- Department of Chemical & Biomolecular EngineeringUniversity of Notre Dame 205 McCourtney Hall Notre Dame IN 46556 USA
| |
Collapse
|
15
|
Glucose-responsive insulin by molecular and physical design. Nat Chem 2019; 9:937-943. [PMID: 28937662 DOI: 10.1038/nchem.2857] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
The concept of a glucose-responsive insulin (GRI) has been a recent objective of diabetes technology. The idea behind the GRI is to create a therapeutic that modulates its potency, concentration or dosing relative to a patient's dynamic glucose concentration, thereby approximating aspects of a normally functioning pancreas. From the perspective of the medicinal chemist, the GRI is also important as a generalized model of a potentially new generation of therapeutics that adjust potency in response to a critical therapeutic marker. The aim of this Perspective is to highlight emerging concepts, including mathematical modelling and the molecular engineering of insulin itself and its potency, towards a viable GRI. We briefly outline some of the most important recent progress toward this goal and also provide a forward-looking viewpoint, which asks if there are new approaches that could spur innovation in this area as well as to encourage synthetic chemists and chemical engineers to address the challenges and promises offered by this therapeutic approach.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The complexity of modern insulin-based therapy for type I and type II diabetes mellitus and the risks associated with excursions in blood-glucose concentration (hyperglycemia and hypoglycemia) have motivated the development of 'smart insulin' technologies (glucose-responsive insulin, GRI). Such analogs or delivery systems are entities that provide insulin activity proportional to the glycemic state of the patient without external monitoring by the patient or healthcare provider. The present review describes the relevant historical background to modern GRI technologies and highlights three distinct approaches: coupling of continuous glucose monitoring (CGM) to deliver devices (algorithm-based 'closed-loop' systems), glucose-responsive polymer encapsulation of insulin, and molecular modification of insulin itself. RECENT FINDINGS Recent advances in GRI research utilizing each of the three approaches are illustrated; these include newly developed algorithms for CGM-based insulin delivery systems, glucose-sensitive modifications of existing clinical analogs, newly developed hypoxia-sensitive polymer matrices, and polymer-encapsulated, stem-cell-derived pancreatic β cells. SUMMARY Although GRI technologies have yet to be perfected, the recent advances across several scientific disciplines that are described in this review have provided a path towards their clinical implementation.
Collapse
Affiliation(s)
- Nischay K. Rege
- Department of Biochemistry and Medical Scientist Training Program, Case Western Reserve University
| | | | - Michael A. Weiss
- Chairman of Institute for Therapeutic Protein Design, Departments of Biomedical Engineering, Biochemistry, and Medicine
| |
Collapse
|
17
|
Xie J, Lu Y, Wang W, Zhu H, Wang Z, Cao Z. Simple Protein Modification Using Zwitterionic Polymer to Mitigate the Bioactivity Loss of Conjugated Insulin. Adv Healthc Mater 2017; 6. [PMID: 28337855 DOI: 10.1002/adhm.201601428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/28/2017] [Indexed: 12/17/2022]
Abstract
Polymer-protein conjugation has been extensively explored toward a better protein drug with improved pharmacokinetics. However, a major problem with polymer-protein conjugation is that the polymers drastically reduce the bioactivity of the modified protein. There is no perfect solution to prevent the bioactivity loss, no matter the polymer is conjugated in a non-site specific way, or a more complex site-specific procedure. Here the authors report for the first time that when zwitterionic carboxybetaine polymer (PCB) is conjugated to insulin through simple conventional coupling chemistry. The resulting PCB-insulin does not show a significant reduction of in vitro bioactivity. The obtained PCB-insulin shows two significant advantages as a novel pharmaceutical agent. First, its therapeutic performance is remarkable. For PCB-insulin, there is a 24% increase of in vivo pharmacological activity of lowering blood glucose compared with native insulin. Such uncommonly seen increase has rarely been reported and is expected to be due to both the improved pharmacokinetics and retained bioactivity of PCB-insulin. Second, the production is simple from manufacturing standpoints. Conjugation procedure involves only one-step coupling reaction without complex site-specific linkage technique. The synthesized PCB-insulin conjugates do not require chromatographic separation to purify and obtain particular isoforms.
Collapse
Affiliation(s)
- Jinbing Xie
- Department of Chemical Engineering and Materials Science; Wayne State University; Detroit MA 48202 USA
| | - Yang Lu
- Department of Chemical Engineering and Materials Science; Wayne State University; Detroit MA 48202 USA
| | - Wei Wang
- Department of Chemical Engineering and Materials Science; Wayne State University; Detroit MA 48202 USA
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science; Wayne State University; Detroit MA 48202 USA
| | - Zhigang Wang
- Department of Chemical Engineering and Materials Science; Wayne State University; Detroit MA 48202 USA
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science; Wayne State University; Detroit MA 48202 USA
| |
Collapse
|
18
|
Abstract
A grand challenge in the field of "smart" drug delivery has been the quest to create formulations that can sense glucose and respond by delivering an appropriate dose of insulin. This approach, referred to as the "fully synthetic pancreas", envisions closed-loop insulin therapy. The strategies for incorporating glucose sensing into formulations can be broadly categorized into three subsets: enzymatic sensing, natural glucose-binding proteins and synthetic molecular recognition. Here, we highlight some examples of each of these approaches. The challenges remaining en route to the realization of closed-loop insulin therapy are substantial, and include improved response time, more authentic fidelity in glycemic control, improved biocompatibility for delivery materials and assurance of both safety and efficacy. The ubiquitous existence of glucose, combined with the unstable and toxic properties of insulin, further compound efforts towards the generation of a fully synthetic pancreas. However, given the growing incidence of both type-1 and type-2 diabetes, there is significant potential impact from the realization of such an approach on improving therapeutic management of the disease.
Collapse
Affiliation(s)
- Matthew J Webber
- a David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge , MA , USA .,b Department of Anesthesiology , Boston Children's Hospital , Boston , MA , USA
| | - Daniel G Anderson
- a David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge , MA , USA .,b Department of Anesthesiology , Boston Children's Hospital , Boston , MA , USA .,c Department of Chemical Engineering .,d Institute for Medical Engineering and Science , and.,e Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
19
|
Webber MJ, Anderson DG, Langer R. Engineering Synthetically Modified Insulin for Glucose-Responsive Diabetes Therapy. Expert Rev Endocrinol Metab 2015; 10:483-489. [PMID: 27570535 PMCID: PMC4999256 DOI: 10.1586/17446651.2015.1071187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Though a suite of different insulin variants have been used clinically to provide greater control over pharmacokinetics, no clinically used insulin can tune its potency and/or bioavailability in a glucose-dependent manner. In order to improve therapy for diabetic patients, a vision has been the development of autonomous closed-loop approaches. Toward this goal, insulin has been synthetically modified with glucose-sensing groups or groups that can compete with free glucose for binding to glucose-binding proteins and evaluated in pre-clinical models. Specifically, it was demonstrated that site-specific modification of insulin with phenylboronic acid can result in glucose-responsive activity, leading to faster recovery in diabetic mice following a glucose challenge but with less observed hypoglycemia in healthy mice. This strategy, along with several others being pursued, holds promise to improve the fidelity in glycemic control with routine insulin therapy.
Collapse
Affiliation(s)
- Matthew J. Webber
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge MA 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge MA 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Mandal D, Mandal SK, Ghosh M, Das PK. Phenylboronic Acid Appended Pyrene-Based Low-Molecular-Weight Injectable Hydrogel: Glucose-Stimulated Insulin Release. Chemistry 2015; 21:12042-52. [DOI: 10.1002/chem.201501170] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/14/2015] [Indexed: 01/15/2023]
|
21
|
Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc Natl Acad Sci U S A 2015; 112:2401-6. [PMID: 25675515 DOI: 10.1073/pnas.1424684112] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Since its discovery and isolation, exogenous insulin has dramatically changed the outlook for patients with diabetes. However, even when patients strictly follow an insulin regimen, serious complications can result as patients experience both hyperglycemic and hypoglycemic states. Several chemically or genetically modified insulins have been developed that tune the pharmacokinetics of insulin activity for personalized therapy. Here, we demonstrate a strategy for the chemical modification of insulin intended to promote both long-lasting and glucose-responsive activity through the incorporation of an aliphatic domain to facilitate hydrophobic interactions, as well as a phenylboronic acid for glucose sensing. These synthetic insulin derivatives enable rapid reversal of blood glucose in a diabetic mouse model following glucose challenge, with some derivatives responding to repeated glucose challenges over a 13-h period. The best-performing insulin derivative provides glucose control that is superior to native insulin, with responsiveness to glucose challenge improved over a clinically used long-acting insulin derivative. Moreover, continuous glucose monitoring reveals responsiveness matching that of a healthy pancreas. This synthetic approach to insulin modification could afford both long-term and glucose-mediated insulin activity, thereby reducing the number of administrations and improving the fidelity of glycemic control for insulin therapy. The described work is to our knowledge the first demonstration of a glucose-binding modified insulin molecule with glucose-responsive activity verified in vivo.
Collapse
|
22
|
Yuan W, Li L, Zou H. Thermo- and glucose-responsive micelles self-assembled from phenylborate ester-containing brush block copolymer for controlled release of insulin at physiological pH. RSC Adv 2015. [DOI: 10.1039/c5ra16701a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The micelles present temperature- and glucose-responses, and can achieve the controlled release of insulin by altering temperature and glucose concentration.
Collapse
Affiliation(s)
- Weizhong Yuan
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Materials of Ministry of Education
- Tongji University
- People's Republic of China
| | - Lulin Li
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Materials of Ministry of Education
- Tongji University
- People's Republic of China
| | - Hui Zou
- School of Materials Science and Engineering
- Key Laboratory of Advanced Civil Materials of Ministry of Education
- Tongji University
- People's Republic of China
| |
Collapse
|
23
|
Yao Y, Zhao L, Yang J, Yang J. Glucose-Responsive Vehicles Containing Phenylborate Ester for Controlled Insulin Release at Neutral pH. Biomacromolecules 2012; 13:1837-44. [DOI: 10.1021/bm3003286] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan Yao
- State Key Laboratory of Chemical
Resource, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liyuan Zhao
- State Key Laboratory of Chemical
Resource, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junjiao Yang
- College of Science, Beijing University of Chemical Technology, Beijing
100029, China
| | - Jing Yang
- State Key Laboratory of Chemical
Resource, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
24
|
Wu Q, Wang L, Yu H, Chen Z. The synthesis and responsive properties of novel glucose-responsive microgels. POLYMER SCIENCE SERIES A 2012. [DOI: 10.1134/s0965545x12030091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Wu Q, Wang L, Yu H, Wang J, Chen Z. Organization of glucose-responsive systems and their properties. Chem Rev 2011; 111:7855-75. [PMID: 21902252 DOI: 10.1021/cr200027j] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qian Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
|
27
|
B Crumpton J, Zhang W, L Santos W. Facile analysis and sequencing of linear and branched peptide boronic acids by MALDI mass spectrometry. Anal Chem 2011; 83:3548-54. [PMID: 21449540 DOI: 10.1021/ac2002565] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interest in peptides incorporating boronic acid moieties is increasing due to their potential as therapeutics/diagnostics for a variety of diseases such as cancer. The utility of peptide boronic acids may be expanded with access to vast libraries that can be deconvoluted rapidly and economically. Unfortunately, current detection protocols using mass spectrometry are laborious and confounded by boronic acid trimerization, which requires time-consuming analysis of dehydration products. These issues are exacerbated when the peptide sequence is unknown, as with de novo sequencing, and especially when multiple boronic acid moieties are present. Thus, a rapid, reliable, and simple method for peptide identification is of utmost importance. Herein, we report the identification and sequencing of linear and branched peptide boronic acids containing up to five boronic acid groups by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Protocols for preparation of pinacol boronic esters were adapted for efficient MALDI analysis of peptides. Additionally, a novel peptide boronic acid detection strategy was developed in which 2,5-dihydroxybenzoic acid (DHB) served as both matrix and derivatizing agent in a convenient, in situ, on-plate esterification. Finally, we demonstrate that DHB-modified peptide boronic acids from a single bead can be analyzed by MALDI-MSMS analysis, validating our approach for the identification and sequencing of branched peptide boronic acid libraries.
Collapse
Affiliation(s)
- Jason B Crumpton
- Department of Chemistry, Virginia Tech, Blacksburg, 24061, United States
| | | | | |
Collapse
|
28
|
|
29
|
Ravaine V, Ancla C, Catargi B. Chemically controlled closed-loop insulin delivery. J Control Release 2008; 132:2-11. [DOI: 10.1016/j.jconrel.2008.08.009] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
|
30
|
de Kort M, Gianotten B, Wisse J, Bos E, Eppink M, Mattaar E, Vogel G, Dokter W, Honing M, Vonsovic S, Smit MJ, Wijkmans J, van Boeckel C. Conjugation of ATIII-Binding Pentasaccharides to Extend the Half-Life of Proteins: Long-Acting Insulin. ChemMedChem 2008; 3:1189-93. [DOI: 10.1002/cmdc.200800053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Li X, Pennington J, Stobaugh JF, Schöneich C. Synthesis of sulfonamide- and sulfonyl-phenylboronic acid-modified silica phases for boronate affinity chromatography at physiological pH. Anal Biochem 2007; 372:227-36. [PMID: 17945176 DOI: 10.1016/j.ab.2007.09.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 09/01/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
Abstract
Two new types of boronate affinity solid phases were synthesized and characterized. The materials were prepared by silylation of porous silica gel with monochlorosilane derivatives containing synthetic sulfonyl- and sulfonamide-substituted phenylboronic acids. The new solid phases were evaluated for boronate affinity chromatography with aryl and alkyl cis-diol compounds and were found to be suitable for the retention of cis-diols under acidic conditions. Significant correlations between the retention factor (K) and the pH of the mobile phase demonstrate that the binding of cis-diols to the solid phases is best rationalized by chelation. Based on the lower pKa, caused by the electron-withdrawing effects of the sulfonyl and sulfonamide groups, these media display an enhanced affinity for cis-diols as compared with unsubstituted phenylboronic acid. Using isocratic elution, a mixture of various biologically relevant l-tyrosines, l-DOPA, and several catecholamines were resolved with a mobile phase composed of 0.05M phosphate buffer (pH 5.5). Mono-, di-, and triphosphates of adenosine were also separated at pH 6.0. Hence, the new boronate solid phase offers efficient affinity separation and purification of cis-diol-containing molecules under rather mild pH conditions.
Collapse
Affiliation(s)
- Xiaobao Li
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
32
|
Duggan PJ, Offermann DA. The Preparation of Solid-Supported Peptide Boronic Acids Derived from 4-Borono-L-phenylalanine and their Affinity for Alizarin. Aust J Chem 2007. [DOI: 10.1071/ch07143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A library of solid-supported pentapeptide diboronic acids, a ‘lysine series’ and an ‘arginine series’, has been efficiently prepared using N-Fmoc-4-pinacolatoborono-l-phenylalanine and standard solid phase peptide synthesis methods. A technique for measuring the affinity of the chromophoric diol, alizarin, to the solid-supported peptide boronic acids has been developed. Considerable variation in alizarin binding strengths, both within and between arginine and lysine series was observed, with association constants in the range 200–1100 M–1 being recorded. The selective binding characteristics of these boronic acid–peptide hybrids suggest their potential use in carbohydrate sensors and cell-specific diagnostics and therapeutics.
Collapse
|
33
|
Abstract
Biopolymer therapeutics are likely to be the next generation of medicines, and nucleic acids are among the most important of these potential drugs. The challenges of delivering genes are formidable and advanced biomimetic materials are expected to be required. Polymers that can respond to changes in temperature and pH are good candidates for gene delivery vehicles, as the stimulus response can be used to alter their interactions with the drug payload. In this review, the chemistries underlying these responsive polymers are considered, and the possible mechanisms by which nucleic acids, primarily DNA, can be protected during transit and released at target sites are outlined. Sophisticated multicomponent polymers are being developed, with functionalities designed to overcome the barriers to gene delivery at both the systemic and local level; key examples are highlighted. The extension of these materials to yet more advanced therapies, such as cell delivery and regenerative medicine, is outlined as an emerging technology for the future.
Collapse
Affiliation(s)
- Cameron Alexander
- The School of Pharmacy, Boots Science Building, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|