1
|
Hu Y, Zhao X, Song Y, Jiang J, Long T, Cong M, Miao Y, Liu Y, Yang Z, Zhu Y, Wang J. Anti-inflammatory and Neuroprotective α-Pyrones from a Marine-Derived Strain of the Fungus Arthrinium arundinis and Their Heterologous Expression. JOURNAL OF NATURAL PRODUCTS 2024; 87:1975-1982. [PMID: 38687877 DOI: 10.1021/acs.jnatprod.4c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Fungal linear polyketides, such as α-pyrones with a 6-alkenyl chain, have been a rich source of biologically active compounds. Two new (1 and 2) and four known (3-6) 6-alkenylpyrone polyketides were isolated from a marine-derived strain of the fungus Arthrinium arundinis. Their structures were determined based on extensive spectroscopic analysis. The biosynthetic gene cluster (alt) for alternapyrones was identified from A. arundinis ZSDS-F3 and validated by heterologous expression in Aspergillus nidulans A1145 ΔSTΔEM, which revealed that the cytochrome P450 monooxygenase Alt2' could convert the methyl group 26-CH3 to a carboxyl group to produce 4 from 3. Another cytochrome P450 monooxygenase, Alt3', catalyzed successive hydroxylation, epoxidation, and oxidation steps to produce 1, 2, 5, and 6 from 4. Alternapyrone G (1) not only suppressed M1 polarization in lipopolysaccharide (LPS)-stimulated BV2 microglia but also stimulated dendrite regeneration and neuronal survival after Aβ treatment, suggesting alternapyrone G may be utilized as a privileged scaffold for Alzheimer's disease drug discovery.
Collapse
Affiliation(s)
- Yiwei Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoyang Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yue Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jiahui Jiang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ting Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Mengjing Cong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yuhua Miao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Sanya Institute of Marine Ecology and Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Zhiyou Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Sanya Institute of Marine Ecology and Engineering, Yazhou Scientific Bay, Sanya 572000, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Sanya Institute of Marine Ecology and Engineering, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
2
|
Pádua MS, Guil-Guerrero JL, Lopes PA. Behaviour Hallmarks in Alzheimer's Disease 5xFAD Mouse Model. Int J Mol Sci 2024; 25:6766. [PMID: 38928472 PMCID: PMC11204382 DOI: 10.3390/ijms25126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The 5xFAD transgenic mouse model widely used in Alzheimer's disease (AD) research recapitulates many AD-related phenotypes with a relatively early onset and aggressive age-dependent progression. Besides developing amyloid peptide deposits alongside neuroinflammation by the age of 2 months, as well as exhibiting neuronal decline by the age of 4 months that intensifies by the age of 9 months, these mice manifest a broad spectrum of behavioural impairments. In this review, we present the extensive repertoire of behavioural dysfunctions in 5xFAD mice, organised into four categories: motor skills, sensory function, learning and memory abilities, and neuropsychiatric-like symptoms. The motor problems, associated with agility and reflex movements, as well as balance and coordination, and skeletal muscle function, typically arise by the time mice reach 9 months of age. The sensory function (such as taste, smell, hearing, and vision) starts to deteriorate when amyloid peptide buildups and neuroinflammation spread into related anatomical structures. The cognitive functions, encompassing learning and memory abilities, such as visual recognition, associative, spatial working, reference learning, and memory show signs of decline from 4 to 6 months of age. Concerning neuropsychiatric-like symptoms, comprising apathy, anxiety and depression, and the willingness for exploratory behaviour, it is believed that motivational changes emerge by approximately 6 months of age. Unfortunately, numerous studies from different laboratories are often contradictory on the conclusions drawn and the identification of onset age, making preclinical studies in rodent models not easily translatable to humans. This variability is likely due to a range of factors associated with animals themselves, housing and husbandry conditions, and experimental settings. In the forthcoming studies, greater clarity in experimental details when conducting behavioural testing in 5xFAD transgenic mice could minimise the inconsistencies and could ensure the reliability and the reproducibility of the results.
Collapse
Affiliation(s)
- Mafalda Soares Pádua
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José L. Guil-Guerrero
- Departamento de Tecnología de Alimentos, Universidad de Almería, 04120 Almería, Spain;
| | - Paula Alexandra Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
3
|
Liu J, Wei AH, Liu TT, Ji XH, Zhang Y, Yan F, Chen MX, Hu JB, Zhou SY, Shi JS, Jin H, Jin F. Icariin ameliorates glycolytic dysfunction in Alzheimer's disease models by activating the Wnt/β-catenin signaling pathway. FEBS J 2024; 291:2221-2241. [PMID: 38400523 DOI: 10.1111/febs.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
It was reported that the Wnt/β-catenin pathway is involved in the regulation of aerobic glycolysis and that brain glycolytic dysfunction results in the development of Alzheimer's disease (AD). Icariin (ICA), an active component extracted from Epimedii Folium, has been reported to produce neuroprotective effects in multiple models of AD, but its underlying mechanism remains to be fully described. We aimed to investigate the protective effects of ICA on animal and cell models of AD and confirm whether the Wnt/β-catenin pathway has functions in the neuroprotective function of ICA. The 3 × Tg-AD mice were treated with ICA. HT22 cells, the Aβ25-35 peptide and Dickkopf-1 (DKK1) agent (a specific inhibitor of the Wnt/β-catenin pathway) were used to further explore the underlying mechanism of ICA that produces anti-AD effects. Behavioral examination, western blotting assay, staining analysis, biochemical test, and lactate dehydrogenase (LDH) assays were applied. We first demonstrated that ICA significantly improved cognitive function and autonomous behavior, reduced neuronal damage, and reversed the protein levels and activities of glycolytic key enzymes, and expression of protein molecules of the canonical Wnt signaling pathway, in 3 × Tg-AD mice back to wild-type levels. Next, we further found that ICA increased cell viability and effectively improved the dysfunctional glycolysis in HT22 cells injured by Aβ25-35. However, when canonical Wnt signaling was inhibited by DKK1, the above effects of ICA on glycolysis were abolished. In summary, ICA exerts neuroprotective effects in 3 × Tg-AD animals and AD cellular models by enhancing the function of glycolysis through activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ju Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
- Department of Hospital Infection Management, People's Hospital of WeiNing County, Bijie, China
| | - Ai-Hong Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ting-Ting Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Xin-Hao Ji
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Ying Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Fei Yan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Mei-Xiang Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jin-Bo Hu
- Department of Clinical Medicine, Zunyi Medical University, China
| | - Shao-Yu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| |
Collapse
|
4
|
Zhang Q, Yan Y. The role of natural flavonoids on neuroinflammation as a therapeutic target for Alzheimer's disease: a narrative review. Neural Regen Res 2023; 18:2582-2591. [PMID: 37449593 DOI: 10.4103/1673-5374.373680] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disease that affects a large proportion of older adult people and is characterized by memory loss, progressive cognitive impairment, and various behavioral disturbances. Although the pathological mechanisms underlying Alzheimer's disease are complex and remain unclear, previous research has identified two widely accepted pathological characteristics: extracellular neuritic plaques containing amyloid beta peptide, and intracellular neurofibrillary tangles containing tau. Furthermore, research has revealed the significant role played by neuroinflammation over recent years. The inflammatory microenvironment mainly consists of microglia, astrocytes, the complement system, chemokines, cytokines, and reactive oxygen intermediates; collectively, these factors can promote the pathological process and aggravate the severity of Alzheimer's disease. Therefore, the development of new drugs that can target neuroinflammation will be a significant step forward for the treatment of Alzheimer's disease. Flavonoids are plant-derived secondary metabolites that possess various bioactivities. Previous research found that multiple natural flavonoids could exert satisfactory treatment effects on the neuroinflammation associated with Alzheimer's disease. In this review, we describe the pathogenesis and neuroinflammatory processes of Alzheimer's disease, and summarize the effects and mechanisms of 13 natural flavonoids (apigenin, luteolin, naringenin, quercetin, morin, kaempferol, fisetin, isoquercitrin, astragalin, rutin, icariin, mangiferin, and anthocyanin) derived from plants or medicinal herbs on neuroinflammation in Alzheimer's disease. As an important resource for the development of novel compounds for the treatment of critical diseases, it is essential that we focus on the exploitation of natural products. In particular, it is vital that we investigate the effects of flavonoids on the neuroinflammation associated with Alzheimer's disease in greater detail.
Collapse
Affiliation(s)
- Qian Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, China
| |
Collapse
|
5
|
Chen C, Tang X, Lan Z, Chen W, Su H, Li W, Li Y, Zhou X, Gao H, Feng X, Guo Y, Yao M, Deng W. GABAergic signaling abnormalities in a novel CLU mutation Alzheimer's disease mouse model. Transl Res 2023; 260:32-45. [PMID: 37211336 DOI: 10.1016/j.trsl.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The CLU rs11136000C mutation (CLUC) is the third most common risk factor for Alzheimer's disease (AD). However, the mechanism by which CLUC leads to abnormal GABAergic signaling in AD is unclear. To address this question, this study establishes the first chimeric mouse model of CLUC AD. Examination of grafted CLUC medial ganglionic eminence progenitors (CLUC hiMGEs) revealed increased GAD65/67 and a high frequency of spontaneous releasing events. CLUC hiMGEs also impaired cognition in chimeric mice and caused AD-related pathologies. The expression of GABA A receptor, subunit alpha 2 (Gabrα2) was higher in chimeric mice. Interestingly, cognitive impairment in chimeric mice was reversed by treatment with pentylenetetrazole, which is a GABA A receptor inhibitor. Taken together, these findings shed light on the pathogenesis of CLUC AD using a novel humanized animal model and suggest sphingolipid signaling over-activation as a potential mechanism of GABAergic signaling disorder.
Collapse
Affiliation(s)
- Chunxia Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China; Department of pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi P. R. China
| | - Xihe Tang
- Department of neurosurgery, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi P. R. China; Department of neurosurgery, Aviation General Hospital, Beijing, P. R. China
| | - Zhaohui Lan
- Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Bio-X Institutes, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Wan Chen
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Hua Su
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, P. R. China
| | - Weidong Li
- Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Bio-X Institutes, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yaoxuan Li
- Department of Neurology, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Xing Zhou
- Department of pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi P. R. China
| | - Hong Gao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China
| | - Xinwei Feng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China
| | - Ying Guo
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China
| | - Meicun Yao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong P. R. China.
| |
Collapse
|
6
|
Kumro J, Tripathi A, Lei Y, Sword J, Callahan P, Terry A, Lu XY, Kirov SA, Pillai A, Blake DT. Chronic basal forebrain activation improves spatial memory, boosts neurotrophin receptor expression, and lowers BACE1 and Aβ42 levels in the cerebral cortex in mice. Cereb Cortex 2023; 33:7627-7641. [PMID: 36939283 PMCID: PMC10267632 DOI: 10.1093/cercor/bhad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
The etiology of Alzheimer's dementia has been hypothesized in terms of basal forebrain cholinergic decline, and in terms of reflecting beta-amyloid neuropathology. To study these different biological elements, we activated the basal forebrain in 5xFAD Alzheimer's model mice and littermates. Mice received 5 months of 1 h per day intermittent stimulation of the basal forebrain, which includes cholinergic projections to the cortical mantle. Then, mice were behaviorally tested followed by tissue analysis. The 5xFAD mice performed worse in water-maze testing than littermates. Stimulated groups learned the water maze better than unstimulated groups. Stimulated groups had 2-3-fold increases in frontal cortex immunoblot measures of the neurotrophin receptors for nerve growth factor and brain-derived neurotrophic factor, and a more than 50% decrease in the expression of amyloid cleavage enzyme BACE1. Stimulation also led to lower Aβ42 in 5xFAD mice. These data support a causal relationship between basal forebrain activation and both neurotrophin activation and reduced Aβ42 generation and accumulation. The observation that basal forebrain activation suppresses Aβ42 accumulation, combined with the known high-affinity antagonism of nicotinic receptors by Aβ42, documents bidirectional antagonism between acetylcholine and Aβ42.
Collapse
Affiliation(s)
- Jacob Kumro
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Ashutosh Tripathi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, United States
| | - Yun Lei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Jeremy Sword
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Patrick Callahan
- Department of Pharmacology/Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Alvin Terry
- Department of Pharmacology/Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Xin-yun Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Sergei A Kirov
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Anilkumar Pillai
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, United States
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30904, United States
| | - David T Blake
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
7
|
Zheng L, Wu S, Jin H, Wu J, Wang X, Cao Y, Zhou Z, Jiang Y, Li L, Yang X, Shen Q, Guo S, Shen Y, Li C, Ji L. Molecular mechanisms and therapeutic potential of icariin in the treatment of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154890. [PMID: 37229892 DOI: 10.1016/j.phymed.2023.154890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Icariin (ICA) is the main active component of Epimedium, a traditional Chinese medicine (TCM), known to enhance cognitive function in Alzheimer's disease (AD). This study aims to investigate and summarize the mechanisms through which ICA treats AD. METHODS The PubMed and CNKI databases were utilized to review the advancements in ICA's role in AD prevention and treatment by analyzing literature published between January 2005 and April 2023. To further illustrate ICA's impact on AD development, tables, and images are included to summarize the relationships between various mechanisms. RESULTS The study reveals that ICA ameliorates cognitive deficits in AD model mice by modulating Aβ via multiple pathways, including BACE-1, NO/cGMP, Wnt/Ca2+, and PI3K/Akt signaling. ICA exhibits neuroprotective properties by inhibiting neuronal apoptosis through the suppression of ER stress in AD mice, potentially linked to NF-κB, MAPK, ERK, and PERK/Eif2α signaling pathways. Moreover, ICA may safeguard neurons by attenuating mitochondrial oxidative stress injury. ICA can also enhance learning, memory, and cognition by improving synaptic structure via regulation of the PSD-95 protein. Furthermore, ICA can mitigate neuroinflammation by inactivating microglial activity through the upregulation of PPARγ, TAK1/IKK/NF-κB, and JNK/p38 MAPK signaling pathways. CONCLUSION This study indicates that ICA possesses multiple beneficial effects in AD treatment. Through the integration of pharmacological and molecular biological research, ICA may emerge as a promising candidate to expedite the advancement of TCM in the clinical management of AD.
Collapse
Affiliation(s)
- Lingyan Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Sichen Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Haichao Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jiaqi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xiaole Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yuxiao Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zhihao Zhou
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yaona Jiang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Linhong Li
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xinyue Yang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Shunyuan Guo
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical, Hangzhou 310014, Zhejiang, China.
| | - Yuejian Shen
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Hangzhou 311106, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China.
| |
Collapse
|
8
|
Qiao J, Wang C, Chen Y, Yu S, Liu Y, Yu S, Jiang L, Jin C, Wang X, Zhang P, Zhao D, Wang J, Liu M. Herbal/Natural Compounds Resist Hallmarks of Brain Aging: From Molecular Mechanisms to Therapeutic Strategies. Antioxidants (Basel) 2023; 12:antiox12040920. [PMID: 37107295 PMCID: PMC10136184 DOI: 10.3390/antiox12040920] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Aging is a complex process of impaired physiological integrity and function, and is associated with increased risk of cardiovascular disease, diabetes, neurodegeneration, and cancer. The cellular environment of the aging brain exhibits perturbed bioenergetics, impaired adaptive neuroplasticity and flexibility, abnormal neuronal network activity, dysregulated neuronal Ca2+ homeostasis, accumulation of oxidatively modified molecules and organelles, and clear signs of inflammation. These changes make the aging brain susceptible to age-related diseases, such as Alzheimer's and Parkinson's diseases. In recent years, unprecedented advances have been made in the study of aging, especially the effects of herbal/natural compounds on evolutionarily conserved genetic pathways and biological processes. Here, we provide a comprehensive review of the aging process and age-related diseases, and we discuss the molecular mechanisms underlying the therapeutic properties of herbal/natural compounds against the hallmarks of brain aging.
Collapse
Affiliation(s)
- Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Chen
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuang Yu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiawen Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
9
|
Sánchez CQ, Schmitt FW, Curdt N, Westhoff AC, Bänfer IWH, Bayer TA, Bouter Y. Search Strategy Analysis of 5xFAD Alzheimer Mice in the Morris Water Maze Reveals Sex- and Age-Specific Spatial Navigation Deficits. Biomedicines 2023; 11:biomedicines11020599. [PMID: 36831135 PMCID: PMC9953202 DOI: 10.3390/biomedicines11020599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Spatial disorientation and navigational impairments are not only some of the first memory deficits in Alzheimer's disease, but are also very disease-specific. In rodents, the Morris Water Maze is used to investigate spatial navigation and memory. Here, we examined the spatial memory in the commonly used 5xFAD Alzheimer mouse model in a sex- and age-dependent manner. Our findings show first spatial learning deficits in 7-month-old female 5xFAD and 12-month-old male 5xFAD mice, respectively. While the assessment of spatial working memory using escape latencies provides a global picture of memory performance, it does not explain how an animal solves a spatial task. Therefore, a detailed analysis of swimming strategies was performed to better understand the behavioral differences between 5xFAD and WT mice. 5xFAD mice used a qualitatively and quantitatively different search strategy pattern than wildtype animals that used more non-spatial strategies and showed allocentric-specific memory deficits. Furthermore, a detailed analysis of swimming strategies revealed allocentric memory deficits in the probe trial in female 3-month-old and male 7-month-old 5xFAD animals before the onset of severe reference memory deficits. Overall, we could demonstrate that spatial navigation deficits in 5xFAD mice are age- and sex-dependent, with female mice being more severely affected. In addition, the implementation of a search strategy classification system allowed an earlier detection of behavioral differences and therefore could be a powerful tool for preclinical drug testing in the 5xFAD model.
Collapse
Affiliation(s)
- Carolina Quintanilla Sánchez
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Franziska W. Schmitt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Nadine Curdt
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Anna Celine Westhoff
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Irina Wanda Helene Bänfer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Thomas A. Bayer
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
| | - Yvonne Bouter
- Department of Psychiatry and Psychotherapy, Division of Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, 37075 Goettingen, Germany
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), 37075 Goettingen, Germany
- Correspondence:
| |
Collapse
|
10
|
You M, Yuan P, Li L, Xu H. HIF-1 signalling pathway was identified as a potential new pathway for Icariin's treatment against Alzheimer's disease based on preclinical evidence and bioinformatics. Front Pharmacol 2022; 13:1066819. [PMID: 36532735 PMCID: PMC9751333 DOI: 10.3389/fphar.2022.1066819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/18/2022] [Indexed: 10/05/2023] Open
Abstract
Aim: Alzheimer's disease (AD) is a neurodegenerative condition that is characterized by the gradual loss of memory and cognitive function. Icariin, which is a natural chemical isolated from Epimedii herba, has been shown to protect against AD. This research examined the potential mechanisms of Icariin's treatment against AD via a comprehensive review of relevant preclinical studies coupled with network pharmacology. Methods: The PubMed, Web of Science, CNKI, WANFANG, and VIP databases were used to identify the relevant studies. The pharmacological characteristics of Icariin were determined using the SwissADME and TCMSP databases. The overlapping targets of Icariin and AD were then utilized to conduct disease oncology (DO) analysis to identify possible hub targets of Icariin in the treatment of AD. The hub targets were then used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the interactions of the targets and Icariin were assessed via molecular docking and molecular dynamics simulation (MDS). Results: According to the literature review, Icariin alleviates cognitive impairment by regulating the expression of Aβ1-42, Aβ1-40, BACE1, tau, hyperphosphorylated tau, and inflammatory mediators. DO analysis revealed 35 AD-related hub targets, and the HIF-1 signalling pathway was ranked first according to the KEGG pathway analysis. Icariin effectively docked with the 35 hub targets and HIF-1α, and the dynamic binding of the HIF-1-Icariin complex within 100 ns indicated that Icariin contributed to the stability of HIF-1α. Conclusion: In conclusion, our research used a literature review and network pharmacology methods to identify the HIF-1 signalling pathway as a potential pathway for Icariin's treatment against AD.
Collapse
Affiliation(s)
| | | | | | - Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
Stekic A, Zeljkovic M, Zaric Kontic M, Mihajlovic K, Adzic M, Stevanovic I, Ninkovic M, Grkovic I, Ilic TV, Nedeljkovic N, Dragic M. Intermittent Theta Burst Stimulation Ameliorates Cognitive Deficit and Attenuates Neuroinflammation via PI3K/Akt/mTOR Signaling Pathway in Alzheimer’s-Like Disease Model. Front Aging Neurosci 2022; 14:889983. [PMID: 35656538 PMCID: PMC9152158 DOI: 10.3389/fnagi.2022.889983] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration implies progressive neuronal loss and neuroinflammation further contributing to pathology progression. It is a feature of many neurological disorders, most common being Alzheimer’s disease (AD). Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive stimulation which modulates excitability of stimulated brain areas through magnetic pulses. Numerous studies indicated beneficial effect of rTMS in several neurological diseases, including AD, however, exact mechanism are yet to be elucidated. We aimed to evaluate the effect of intermittent theta burst stimulation (iTBS), an rTMS paradigm, on behavioral, neurochemical and molecular level in trimethyltin (TMT)-induced Alzheimer’s-like disease model. TMT acts as a neurotoxic agent targeting hippocampus causing cognitive impairment and neuroinflammation, replicating behavioral and molecular aspects of AD. Male Wistar rats were divided into four experimental groups–controls, rats subjected to a single dose of TMT (8 mg/kg), TMT rats subjected to iTBS two times per day for 15 days and TMT sham group. After 3 weeks, we examined exploratory behavior and memory, histopathological and changes on molecular level. TMT-treated rats exhibited severe and cognitive deficit. iTBS-treated animals showed improved cognition. iTBS reduced TMT-induced inflammation and increased anti-inflammatory molecules. We examined PI3K/Akt/mTOR signaling pathway which is involved in regulation of apoptosis, cell growth and learning and memory. We found significant downregulation of phosphorylated forms of Akt and mTOR in TMT-intoxicated animals, which were reverted following iTBS stimulation. Application of iTBS produces beneficial effects on cognition in of rats with TMT-induced hippocampal neurodegeneration and that effect could be mediated via PI3K/Akt/mTOR signaling pathway, which could candidate this protocol as a potential therapeutic approach in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Andjela Stekic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milica Zeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Zaric Kontic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adzic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Milica Ninkovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Ivana Grkovic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Milorad Dragic,
| |
Collapse
|
12
|
O'Leary TP, Brown RE. Visuo-spatial learning and memory impairments in the 5xFAD mouse model of Alzheimer's disease: Effects of age, sex, albinism, and motor impairments. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12794. [PMID: 35238473 PMCID: PMC9744519 DOI: 10.1111/gbb.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022]
Abstract
The 5xFAD mouse model of Alzheimer's disease (AD) rapidly develops AD-related neuro-behavioral pathology. Learning and memory impairments in 5xFAD mice, however, are not always replicated and the size of impairments varies considerably across studies. To examine possible sources of this variability, we analyzed the effects of age, sex, albinism due to background genes (Tyrc , Oca2p ) and motor impairment on learning and memory performance of wild type and 5xFAD mice on the Morris water maze, from 3 to 15 months of age. The 5xFAD mice showed impaired learning at 6-9 months of age, but memory impairments were not detected with the test procedure used in this study. Performance of 5xFAD mice was profoundly impaired at 12-15 months of age, but was accompanied by slower swim speeds than wild-type mice and a frequent failure to locate the escape platform. Overall female mice performed worse than males, and reversal learning impairments in 5xFAD mice were more pronounced in females than males. Albino mice performed worse than pigmented mice, confirming that albinism can impair performance of 5xFAD mice independently of AD-related transgenes. Overall, these results show that 5xFAD mice have impaired learning performance at 6-9 months of age, but learning and memory performance at 12-15 months is confounded with motor impairments. Furthermore, sex and albinism should be controlled to provide an accurate assessment of AD-related transgenes on learning and memory. These results will help reduce variability across pre-clinical experiments with 5xFAD mice, and thus enhance the reliability of studies developing new therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P. O'Leary
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Richard E. Brown
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
13
|
Li LR, Sethi G, Zhang X, Liu CL, Huang Y, Liu Q, Ren BX, Tang FR. The neuroprotective effects of icariin on ageing, various neurological, neuropsychiatric disorders, and brain injury induced by radiation exposure. Aging (Albany NY) 2022; 14:1562-1588. [PMID: 35165207 PMCID: PMC8876913 DOI: 10.18632/aging.203893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Epimedium brevicornum Maxim, a Traditional Chinese Medicine, has been used for the treatment of impotence, sinew and bone disorders, “painful impediment caused by wind-dampness,” numbness, spasms, hypertension, coronary heart disease, menopausal syndrome, bronchitis, and neurasthenia for many years in China. Recent animal experimental studies indicate that icariin, a major bioactive component of epimedium may effectively treat Alzheimer’s disease, cerebral ischemia, depression, Parkinson’s disease, multiple sclerosis, as well as delay ageing. Our recent study also suggested that epimedium extract could exhibit radio-neuro-protective effects and prevent ionizing radiation-induced impairment of neurogenesis. This paper reviewed the pharmacodynamics of icariin in treating different neurodegenerative and neuropsychiatric diseases, ageing, and radiation-induced brain damage. The relevant molecular mechanisms and its anti-neuroinflammatory, anti-apoptotic, anti-oxidant, as well as pro-neurogenesis roles were also discussed.
Collapse
Affiliation(s)
- Ling Rui Li
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xing Zhang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Cui Liu Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Bo Xu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
14
|
Zheng J, Hu S, Wang J, Zhang X, Yuan D, Zhang C, Liu C, Wang T, Zhou Z. Icariin improves brain function decline in aging rats by enhancing neuronal autophagy through the AMPK/mTOR/ULK1 pathway. PHARMACEUTICAL BIOLOGY 2021; 59:183-191. [PMID: 33556283 PMCID: PMC8871627 DOI: 10.1080/13880209.2021.1878238] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CONTEXT Icariin (ICA) is the main active ingredient of Epimedium brevicornu Maxim (Berberidaceae), which is used in the immune, reproductive, neuroendocrine systems, and anti-aging. OBJECTIVE To evaluate the effect of ICA on natural aging rat. MATERIALS AND METHODS 16-month-old Sprague-Dawley (SD) rats were randomly divided into aging, low and high-dose ICA groups (n = 8); 6-month-old rats were taken as the adult control (n = 8). Rats were fed regular feed (aging and adult control) or feed containing ICA (ICA 2 and 6 mg/kg group) for 4 months. HE and Nissl staining were used to assess pathological changes. Western blot was used to test the expression of autophagy (LC3B, p62, Atg5, Beclin1) and p-AMPK, p-mTOR and p-ULK1 (ser 757). Immunofluorescence was used to detect the co-localization of LC3 and neurons. RESULTS ICA improved neuronal degeneration associated with aging and increased the staining of Nissl bodies. Western blot showed that ICA up-regulated autophagy-related proteins LC3B (595%), Beclin1 (73.5%), p-AMPK (464%) protein (p < 0.05 vs. 20 M) in the cortex and hippocampus of aging rats, down-regulated the expression of p62 (56.9%), p-mTOR (53%) and p-ULK1 (ser 757) (65.4%) protein (p < 0.05 vs. 20 M). Immunofluorescence showed that the fluorescence intensity of LC3 decreased in the aging rat brain, but increased and mainly co-localized with neurons after ICA intervention. CONCLUSIONS Further research needs to verify the expression changes of AMPK/mTOR/ULK1 and the improvement effect of ICA in elderly. These results will further accelerate the applications of ICA and the treatment for senescence.
Collapse
Affiliation(s)
- Jie Zheng
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Shanshan Hu
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Jinxin Wang
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Xulan Zhang
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Ding Yuan
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Changcheng Zhang
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Chaoqi Liu
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Ting Wang
- Department of Pharmacy, College of Medicine, New Drug Innovation and Development Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- CONTACT Ting Wang Department of Pharmacy, College of Medicine, New Drug Innovation and Development Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhiyong Zhou
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
- Zhiyong Zhou Medical College of China, Three Gorges University, 8 University Road, Yichang 443002, Hubei, China
| |
Collapse
|
15
|
Chuang Y, Van I, Zhao Y, Xu Y. Icariin ameliorate Alzheimer's disease by influencing SIRT1 and inhibiting Aβ cascade pathogenesis. J Chem Neuroanat 2021; 117:102014. [PMID: 34407393 DOI: 10.1016/j.jchemneu.2021.102014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Of all types of dementia, Alzheimer's disease is the type that has the highest proportion of cases and is the cause of substantial medical and economic burden. The mechanism of Alzheimer's disease is closely associated with the aggregation of amyloid-β protein and causes neurotoxicity and extracellular accumulation in the brain and to intracellular neurofibrillary tangles caused by tau protein hyperphosphorylation in the brain tissue. Previous studies have demonstrated that sirtuin1 downregulation is involved in the pathological mechanism of Alzheimer's disease. The decrease of sirtuin1 level would cause Alzheimer's disease by means of promoting the amyloidogenic pathway to generate amyloid-β species and thereby triggering amyloid-β cascade reaction, such as tau protein hyperphosphorylation, neuron autophagy, neuroinflammation, oxidative stress, and neuron apoptosis. Currently, there is no effective treatment for Alzheimer's disease, it is necessary to develop new treatment strategies. According to the theory of traditional Chinese medicine and based on the mechanism of the disease, tonifying the kidneys is one of the principles for the treatment of Alzheimer's disease and Epimedium is a well-known Chinese medicine for tonifying kidney. Therefore, investigating the influence of the components of Epimedium on the pathological characteristics of Alzheimer's disease may provide a reference for the treatment of Alzheimer's disease in the future. In this article, we summarise the effects and mechanism of icariin, the main ingredient extracted from Epimedium, in ameliorating Alzheimer's disease by regulating sirtuin1 to inhibit amyloid-β protein and improve other amyloid-β cascade pathogenesis.
Collapse
Affiliation(s)
- Yaochen Chuang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China; Kiang Wu Nursing College of Macau, Macao, 999078, China
| | - Iatkio Van
- Kiang Wu Nursing College of Macau, Macao, 999078, China.
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China.
| |
Collapse
|
16
|
Icariin improves cognitive deficits by reducing the deposition of β-amyloid peptide and inhibition of neurons apoptosis in SAMP8 mice. Neuroreport 2021; 31:663-671. [PMID: 32427716 DOI: 10.1097/wnr.0000000000001466] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effective therapeutic drugs for prevent or reverse the pathobiology of Alzheimer's disease (AD) have not been developed. Icariin (ICA), a prenylated flavonol glycoside derived from the traditional Chinese herb Epimedium sagittatum, exerts a variety of pharmacological activities and shows promise in the treatment and prevention of AD. This study investigated the neuroprotective effects of ICA in SAMP8 mice model of aspects of early AD and explored potential underlying mechanisms. Our results showed that intragastric administration of ICA could reverse the learning and memory impairment of SAMP8 mice in the Morris water maze. Western blot of hippocampal specimens revealed that ICA down-regulated the expression of BACE1 to reduce the expression of cytotoxic Aβ1-42. Furthermore, ICA siginificantly increase the Bcl-2/Bax ratio by increasing the expression of anti-apoptotic protein Bcl-2, and decreasing the expression of pro-apoptotic protein Bax, and thus inhibit neurons apoptosis. These findings indicate that ICA could improve cognitive deficits by reducing the deposition of β1-42 and inhibition of neurons apoptosis and provide further evidence for the clinical efficacy of ICA in the treatment of AD.
Collapse
|
17
|
Kiris I, Basar MK, Sahin B, Gurel B, Coskun J, Mroczek T, Baykal AT. Evaluation of the Therapeutic Effect of Lycoramine on Alzheimer's Disease in Mouse Model. Curr Med Chem 2021; 28:3449-3473. [PMID: 33200692 DOI: 10.2174/0929867327999201116193126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease is one of the leading health problems characterized by the accumulation of Aβ and hyperphosphorylated tau that account for the senile plaque formations causing extensive cognitive decline. Many of the clinical diagnoses of Alzheimer's disease are made in the late stages, when the pathological changes have already progressed. OBJECTIVE The objective of this study is to evaluate the promising therapeutic effects of a natural compound, lycoramine, which has been shown to have therapeutic potential in several studies and to understand its mechanism of action on the molecular level via differential protein expression analyses. METHODS Lycoramine and galantamine, an FDA approved drug used in the treatment of mild to moderate AD, were administered to 12 month-old 5xFAD mice. Effects of the compounds were investigated by Morris water maze, immunohistochemistry and label- free differential protein expression analyses. RESULTS Here we demonstrated the reversal of cognitive decline via behavioral testing and the clearance of Aβ plaques. Proteomics analysis provided in-depth information on the statistically significant protein perturbations in the cortex, hippocampus and cerebellum sections to hypothesize the possible clearance mechanisms of the plaque formation and the molecular mechanism of the reversal of cognitive decline in a transgenic mouse model. Bioinformatics analyses showed altered molecular pathways that can be linked with the reversal of cognitive decline observed after lycoramine administration but not with galantamine. CONCLUSION Lycoramine shows therapeutic potential to halt and reverse cognitive decline at the late stages of disease progression, and holds great promise for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Irem Kiris
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Karayel Basar
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Busra Gurel
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Julide Coskun
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Tomasz Mroczek
- Department of Pharmacognosy, Medical University of Lublin, Lublin, Poland
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
18
|
Jin X, Guo JL, Wang L, Zhong X, Yao WF, Gao H, Liu MY. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatments of Alzheimer's disease: A comprehensive review. Eur J Med Chem 2021; 218:113401. [PMID: 33831779 DOI: 10.1016/j.ejmech.2021.113401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by neuronal loss and cognitive impairment that harshly affect the elderly individuals. Currently, the available anti-AD pharmacological approaches are purely symptomatic to alleviate AD symptoms, and the curative effects of novel anti-AD drugs focused on Aβ target are disappointing. Hence, there is a tremendous need to adjust AD therapeutic targets and discover novel anti-AD agents. In AD, mitochondrial dysfunction gradually triggers neuronal death from different aspects and worsens the occurrence and progress of AD. Consequently, it has been proposed that the intervention of impaired mitochondria represents an attractive breakthrough point for AD treatments. Due to chemical diversity, poly-pharmacological activities, few adverse effects and multiple targeting, natural products (NPs) have been identified as a valuable treasure for drug discovery and development. Multiple lines of studies have scientifically proven that NPs display ameliorative benefits in AD treatment in relation to mitochondrial dysfunction. This review surveys the complicated implications for mitochondrial dysregulation and AD, and then summarizes the potentials of NPs and their underlying molecular mechanisms against AD via reducing or improving mitochondrial dysfunction. It is expected that this work may open the window to speed up the development of innovative anti-AD drugs originated from NPs and improve upcoming AD therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jia-Ling Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
19
|
Locci A, Orellana H, Rodriguez G, Gottliebson M, McClarty B, Dominguez S, Keszycki R, Dong H. Comparison of memory, affective behavior, and neuropathology in APP NLGF knock-in mice to 5xFAD and APP/PS1 mice. Behav Brain Res 2021; 404:113192. [PMID: 33607163 DOI: 10.1016/j.bbr.2021.113192] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 02/08/2023]
Abstract
Transgenic mouse models of Aβ amyloidosis generated by knock-in of a humanized Aβ sequence can offer some advantages over the transgenic models that overexpress amyloid precursor protein (APP). However, systematic comparison of memory, behavioral, and neuropathological phenotypes between these models has not been well documented. In this study, we compared memory and affective behavior in APPNLGF mice, an APP knock-in model, to two widely used mouse models of Alzheimer's disease, 5xFAD and APP/PS1 mice, at 10 months of age. We found that, despite similar deficits in working memory, object recognition, and social recognition memory, APPNLGF and 5xFAD mice but not APP/PS1 mice show compelling anxiety- and depressive-like behavior, and exhibited a marked impairment of social interaction. We quantified corticolimbic Aβ plaques, which were lowest in APPNLGF, intermediate in APP/PS1, and highest in 5xFAD mice. Interestingly, analysis of plaque size revealed that plaques were largest in APP/PS1 mice, intermediate in 5xFAD mice, and smallest in APPNLGF mice. Finally, we observed a significantly higher percentage of the area occupied by plaques in both 5xFAD and APP/PS1 relative to APPNLGF mice. Overall, our findings suggest that the severity of Aβ neuropathology is not directly correlated with memory and affective behavior impairments between these three transgenic mouse models. Additionally, APPNLGF may represent a valid mouse model for studying AD comorbid with anxiety and depression.
Collapse
Affiliation(s)
- Andrea Locci
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Hector Orellana
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Meredith Gottliebson
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bryan McClarty
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sky Dominguez
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rachel Keszycki
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
20
|
Hole KL, Williams RJ. Flavonoids as an Intervention for Alzheimer's Disease: Progress and Hurdles Towards Defining a Mechanism of Action. Brain Plast 2021; 6:167-192. [PMID: 33782649 PMCID: PMC7990465 DOI: 10.3233/bpl-200098] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Attempts to develop a disease modifying intervention for Alzheimer's disease (AD) through targeting amyloid β (Aβ) have so far been unsuccessful. There is, therefore, a need for novel therapeutics against alternative targets coupled with approaches which may be suitable for early and sustained use likely required for AD prevention. Numerous in vitro and in vivo studies have shown that flavonoids can act within processes and pathways relevant to AD, such as Aβ and tau pathology, increases in BDNF, inflammation, oxidative stress and neurogenesis. However, the therapeutic development of flavonoids has been hindered by an ongoing lack of clear mechanistic data that fully takes into consideration metabolism and bioavailability of flavonoids in vivo. With a focus on studies that incorporate these considerations into their experimental design, this review will evaluate the evidence for developing specific flavonoids as therapeutics for AD. Given the current lack of success of anti-Aβ targeting therapeutics, particular attention will be given to flavonoid-mediated regulation of tau phosphorylation and aggregation, where there is a comparable lack of study. Reflecting on this evidence, the obstacles that prevent therapeutic development of flavonoids will be examined. Finally, the significance of recent advances in flavonoid metabolomics, modifications and influence of the microbiome on the therapeutic capacity of flavonoids in AD are explored. By highlighting the potential of flavonoids to target multiple aspects of AD pathology, as well as considering the hurdles, this review aims to promote the efficient and effective identification of flavonoid-based approaches that have potential as therapeutic interventions for AD.
Collapse
Affiliation(s)
- Katriona L. Hole
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| | - Robert J. Williams
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
21
|
Kakinen A, Javed I, Davis TP, Ke PC. In vitro and in vivo models for anti-amyloidosis nanomedicines. NANOSCALE HORIZONS 2021; 6:95-119. [PMID: 33438715 DOI: 10.1039/d0nh00548g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amyloid diseases are global epidemics characterized by the accumulative deposits of cross-beta amyloid fibrils and plaques. Despite decades of intensive research, few solutions are available for the diagnosis, treatment, and prevention of these debilitating diseases. Since the early work on the interaction of human β2-microglobulin and nanoparticles by Linse et al. in 2007, the field of amyloidosis inhibition has gradually evolved into a new frontier in nanomedicine offering numerous interdisciplinary research opportunities, especially for materials, chemistry and biophysics. In this review we summarise, for the first time, the in vitro and in vivo models employed thus far in the field of anti-amyloidosis nanomedicines. Based on this systematic summary, we bring forth the notion that, due to the complex and often overlapping physiopathologies of amyloid diseases, there is a crucial need for the appropriate use of in vitro and in vivo models for validating novel anti-amyloidosis nanomedicines, and there is a crucial need for the development of new animal models that reflect the behavioural, symptomatic and cross-talk hallmarks of amyloid diseases such as Alzheimer's (AD), Parkinson's (PD) diseases and type 2 diabetes (T2DM).
Collapse
Affiliation(s)
- Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
22
|
Zhao J, Shi Q, Tian H, Li Y, Liu Y, Xu Z, Robert A, Liu Q, Meunier B. TDMQ20, a Specific Copper Chelator, Reduces Memory Impairments in Alzheimer's Disease Mouse Models. ACS Chem Neurosci 2021; 12:140-149. [PMID: 33322892 DOI: 10.1021/acschemneuro.0c00621] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Besides targeting amyloid or tau metabolisms, regulation of redox metal ions is a recognized therapeutic target for Alzheimer's disease (AD). Based on the bioinorganic chemistry of copper, we designed specific chelators of copper(II) (TDMQs) insight to regulate copper homeostasis in the brain and to inhibit the deleterious oxidative stress catalyzed by copper-amyloid complexes. An oral treatment by TDMQ20 was able to fully reverse the cognitive and behavioral impairment in three different murine models, two nontransgenic models mimicking the early stage of AD and a transgenic model representing a more advanced stage of AD. To our knowledge, such a comparative study using the same molecule has never been performed. Regular C57BL/6 mice received a single injection of human Cu-Aβ1-42 in the lateral ventricles (icv-CuAβ) or in the hippocampus (hippo-CuAβ). In both cases, mice developed a cognitive impairment similar to that of transgenic 5XFAD mice. Oral administration of TDMQ20 to icv-CuAβ or hippo-CuAβ mice within a 16-day period resulted in a significant improvement of the cognitive status. The 3-month treatment of transgenic 5XFAD mice with TDMQ20 also resulted in behavioral improvements. The consistent positive pharmacological results obtained using these different AD models correlate well with previously obtained physicochemical data of TDMQ20. The short-term novel object recognition (NOR) test was found particularly relevant to evaluate the rescue of declarative memory impairment. TDMQ20 was also able to reduce the oxidative stress in the mouse cortex. Due to its reliability and facile use, the hippo-CuAβ model can be considered as a robust nontransgenic model to evaluate the activity of potential drugs on the early stages of memory deficits.
Collapse
Affiliation(s)
- Jie Zhao
- College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qihui Shi
- College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Hongda Tian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China
| | - Youzhi Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China
| | - Zhen Xu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), 205 route de Narbonne, 31077 Toulouse, cedex 4, France
| | - Qiong Liu
- College of Life Sciences & Oceanography, Shenzhen University, 1066 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, P. R. China
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), 205 route de Narbonne, 31077 Toulouse, cedex 4, France
| |
Collapse
|
23
|
Gurel B, Cansev M, Koc C, Ocalan B, Cakir A, Aydin S, Kahveci N, Ulus IH, Sahin B, Basar MK, Baykal AT. Proteomics Analysis of CA1 Region of the Hippocampus in Pre-, Progression and Pathological Stages in a Mouse Model of the Alzheimer's Disease. Curr Alzheimer Res 2020; 16:613-621. [PMID: 31362689 DOI: 10.2174/1567205016666190730155926] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/15/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND CA1 subregion of the hippocampal formation is one of the primarily affected structures in AD, yet not much is known about proteome alterations in the extracellular milieu of this region. OBJECTIVE In this study, we aimed to identify the protein expression alterations throughout the pre-pathological, progression and pathological stages of AD mouse model. METHODS The CA1 region perfusates were collected by in-vivo intracerebral push-pull perfusion from transgenic 5XFAD mice and their non-transgenic littermates at 3, 6 and 12 wereβmonths of age. Morris water maze test and immunohistochemistry staining of A performed to determine the stages of the disease in this mouse model. The protein expression differences were analyzed by label-free shotgun proteomics analysis. RESULTS A total of 251, 213 and 238 proteins were identified in samples obtained from CA1 regions of mice at 3, 6 and 12 months of age, respectively. Of these, 68, 41 and 33 proteins showed statistical significance. Pathway analysis based on the unique and common proteins within the groups revealed that several pathways are dysregulated during different stages of AD. The alterations in glucose and lipid metabolisms respectively in pre-pathologic and progression stages of the disease, lead to imbalances in ROS production via diminished SOD level and impairment of neuronal integrity. CONCLUSION We conclude that CA1 region-specific proteomic analysis of hippocampal degeneration may be useful in identifying the earliest as well as progressional changes that are associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Busra Gurel
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mehmet Cansev
- Department of Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Cansu Koc
- Department of Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Busra Ocalan
- Department of Physiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Aysen Cakir
- Department of Physiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Sami Aydin
- Department of Pharmacology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Nevzat Kahveci
- Department of Physiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Ismail Hakki Ulus
- Department of Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed R&D Laboratory, Istanbul, Turkey
| | - Merve Karayel Basar
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
24
|
Li Y, Yang Q, Yu Y. A Network Pharmacological Approach to Investigate the Mechanism of Action of Active Ingredients of Epimedii Herba and Their Potential Targets in Treatment of Alzheimer's Disease. Med Sci Monit 2020; 26:e926295. [PMID: 32980851 PMCID: PMC7528617 DOI: 10.12659/msm.926295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Epimedii Herba is a traditional Chinese herbal medicine used to treat central nervous system diseases such as Alzheimer’s disease in China. However, the pharmacological mechanism is unclear. To investigate the mechanisms of Epimedii Herba in the treatment of Alzheimer’s disease, we assessed effective compounds, corresponding targets, and related pathways of Epimedii Herba in the treatment of Alzheimer’s disease based on network pharmacology. Material/Methods The active components and targets of Epimedii Herba were obtained through the TCMSP database and the DrugBank database. The DisGeNET database and GeneCards database were used to search for Alzheimer’s disease targets. The common targets of components and disease were obtained by Wayne diagram. Gene ontology (GO) analysis and enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed using the DAVID database. The component-target-pathway interaction network model was constructed using Cytoscape software. Auto Duck Vina software was used for molecular docking to analyze the affinity of the key ingredients and the main targets. Results We screened 17 active ingredients and 27 key targets of Epimedii Herba in the treatment of Alzheimer’s disease, which were related to the HIF-1 signaling pathway, TNF signaling pathway, PI3K-Akt signaling pathway, NF-κB signaling pathway, VEGF signaling pathway, and sphingolipid signaling pathway. Conclusions Based on network pharmacology, the multi-component, multi-target, and multi-pathway characteristics of Epimedii Herba in the treatment of Alzheimer’s disease were explored. Our results provide new ideas for future pharmacological and experimental research on Epimedii Herba in the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Qin Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Yang Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China (mainland)
| |
Collapse
|
25
|
Jankowska A, Wesołowska A, Pawłowski M, Chłoń-Rzepa G. Multifunctional Ligands Targeting Phosphodiesterase as the Future Strategy for the Symptomatic and Disease-Modifying Treatment of Alzheimer’s Disease. Curr Med Chem 2020; 27:5351-5373. [DOI: 10.2174/0929867326666190620095623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder characterized by cognitive
impairments such as memory loss, decline in language skills, and disorientation that affects
over 46 million people worldwide. Patients with AD also suffer from behavioral and psychological
symptoms of dementia that deteriorate their quality of life and lead to premature death. Currently
available drugs provide modest symptomatic relief but do not reduce pathological hallmarks (senile
plaques and neurofibrillary tangles) and neuroinflammation, both of which are integral parts of dementia.
A large body of evidence indicates that impaired signaling pathways of cyclic-3′,5′-
Adenosine Monophosphate (cAMP) and cyclic-3′,5′-guanosine Monophosphate (cGMP) may contribute
to the development and progression of AD. In addition, Phosphodiesterase (PDE) inhibitors,
commonly known as cAMP and/or cGMP modulators, were found to be involved in the phosphorylation
of tau; aggregation of amyloid beta; neuroinflammation; and regulation of cognition, mood,
and emotion processing. The purpose of this review was to update the most recent reports on the
development of novel multifunctional ligands targeting PDE as potential drugs for both symptomatic
and disease-modifying therapy of AD. This review collected the chemical structures of representative
multifunctional ligands, results of experimental in vitro and in vivo pharmacological studies,
and current opinions regarding the potential utility of these compounds for the comprehensive
therapy of AD. Finally, the multiparameter predictions of drugability of the representative compounds
were calculated and discussed.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
26
|
Jo DS, Park NY, Cho DH. Peroxisome quality control and dysregulated lipid metabolism in neurodegenerative diseases. Exp Mol Med 2020; 52:1486-1495. [PMID: 32917959 PMCID: PMC8080768 DOI: 10.1038/s12276-020-00503-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
In recent decades, the role of the peroxisome in physiology and disease conditions has become increasingly important. Together with the mitochondria and other cellular organelles, peroxisomes support key metabolic platforms for the oxidation of various fatty acids and regulate redox conditions. In addition, peroxisomes contribute to the biosynthesis of essential lipid molecules, such as bile acid, cholesterol, docosahexaenoic acid, and plasmalogen. Therefore, the quality control mechanisms that regulate peroxisome biogenesis and degradation are important for cellular homeostasis. Current evidence indicates that peroxisomal function is often reduced or dysregulated in various human disease conditions, such as neurodegenerative diseases. Here, we review the recent progress that has been made toward understanding the quality control systems that regulate peroxisomes and their pathological implications. Systematic studies of cellular organelles called peroxisomes are needed to determine their influence on the progression of neurodegenerative diseases. Peroxisomes play vital roles in biological processes including the metabolism of lipids and reactive oxygen species, and the synthesis of key molecules, including bile acid and cholesterol. Disruption to peroxisome activity has been linked to metabolic disorders, cancers and neurodegenerative conditions. Dong-Hyung Cho at Kyungpook National University in Daegu, South Korea, and coworkers reviewed current understanding of peroxisome regulation, with a particular focus on brain disorders. The quantity and activity of peroxisomes alter according to environmental and stress cues. The brain is lipid-rich, and even small changes in fatty acid composition may influence neuronal function. Changes in fatty acid metabolism are found in early stage Alzheimer’s and Parkinson’s diseases, but whether peroxisome disruption is responsible requires clarification.
Collapse
Affiliation(s)
- Doo Sin Jo
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Hyung Cho
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea. .,School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
27
|
Kuboyama T, Yang X, Tohda C. Natural Medicines and Their Underlying Mechanisms of Prevention and Recovery from Amyloid Β-Induced Axonal Degeneration in Alzheimer's Disease. Int J Mol Sci 2020; 21:E4665. [PMID: 32630004 PMCID: PMC7369795 DOI: 10.3390/ijms21134665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 01/26/2023] Open
Abstract
In Alzheimer's disease (AD), amyloid β (Aβ) induces axonal degeneration, neuronal network disruption, and memory impairment. Although many candidate drugs to reduce Aβ have been clinically investigated, they failed to recover the memory function in AD patients. Reportedly, Aβ deposition occurred before the onset of AD. Once neuronal networks were disrupted by Aβ, they could hardly be recovered. Therefore, we speculated that only removal of Aβ was not enough for AD therapy, and prevention and recovery from neuronal network disruption were also needed. This review describes the challenges related to the condition of axons for AD therapy. We established novel in vitro models of Aβ-induced axonal degeneration. Using these models, we found that several traditional medicines and their constituents prevented or helped recover from Aβ-induced axonal degeneration. These drugs also prevented or helped recover from memory impairment in in vivo models of AD. One of these drugs ameliorated memory decline in AD patients in a clinical study. These results indicate that prevention and recovery from axonal degeneration are possible strategies for AD therapy.
Collapse
Affiliation(s)
- Tomoharu Kuboyama
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; (T.K.); (X.Y.)
- Laboratory of Pharmacognosy, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Ximeng Yang
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; (T.K.); (X.Y.)
| | - Chihiro Tohda
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; (T.K.); (X.Y.)
| |
Collapse
|
28
|
Zou X, Feng X, Fu Y, Zheng Y, Ma M, Wang C, Zhang Y. Icariin Attenuates Amyloid-β (Aβ)-Induced Neuronal Insulin Resistance Through PTEN Downregulation. Front Pharmacol 2020; 11:880. [PMID: 32581820 PMCID: PMC7296100 DOI: 10.3389/fphar.2020.00880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
Neuronal insulin resistance is implicated in neurodegenerative diseases. Icariin has been reported to improve insulin resistance in skeletal muscle cells and to restore impaired hypothalamic insulin signaling in the rats with chronic unpredictable mild stress. In addition, icariin can exert the neuroprotective effects in the mouse models of neurodegenerative diseases. However, the molecular mechanisms by which icariin affects neuronal insulin resistance are poorly understood. In the present study, amyloid-β (Aβ) was used to induce insulin resistance in human neuroblastoma SK-N-MC cells. Insulin sensitivity was evaluated by measuring insulin-stimulated Akt T308 phosphorylation and glucose uptake. We found that the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) mediated Aβ-induced insulin resistance. Icariin treatment markedly reduced Aβ-enhanced PTEN protein levels, leading to an improvement in Aβ-induced insulin resistance. Accordingly, PTEN overexpression obviously abolished the protective effects of icariin on Aβ-induced insulin resistance. Furthermore, icariin activated proteasome activity. The proteasome inhibitor MG132 attenuated the effects of icariin on PTEN protein levels. Taken together, these results suggest that icariin protects SK-N-MC cells against Aβ-induced insulin resistance by activating the proteasome-dependent degradation of PTEN. These findings provide an experimental background for the identification of novel molecular targets of icariin, which may help in the development of alternative therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaomei Zou
- Neurology Center, The Second People's Hospital of Jingzhou City, Jingzhou, China
| | - Xiyao Feng
- 2018 Clinical Medicine, Hubei University of Medicine, Shiyan, China
| | - Yalin Fu
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yuyang Zheng
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Mingke Ma
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Changhua Wang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Yemin Zhang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
29
|
SPON1 Can Reduce Amyloid Beta and Reverse Cognitive Impairment and Memory Dysfunction in Alzheimer's Disease Mouse Model. Cells 2020; 9:cells9051275. [PMID: 32455709 PMCID: PMC7290723 DOI: 10.3390/cells9051275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a complex, age-related neurodegenerative disease that is the most common form of dementia. However, the cure for AD has not yet been founded. The accumulation of amyloid beta (Aβ) is considered to be a hallmark of AD. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), also known as beta secretase is the initiating enzyme in the amyloidogenic pathway. Blocking BACE1 could reduce the amount of Aβ, but this would also prohibit the other functions of BACE1 in brain physiological activity. SPONDIN1 (SPON1) is known to bind to the BACE1 binding site of the amyloid precursor protein (APP) and blocks the initiating amyloidogenesis. Here, we show the effect of SPON1 in Aβ reduction in vitro in neural cells and in an in vivo AD mouse model. We engineered mouse induced neural stem cells (iNSCs) to express Spon1. iNSCs harboring mouse Spon1 secreted SPON1 protein and reduced the quantity of Aβ when co-cultured with Aβ-secreting Neuro 2a cells. The human SPON1 gene itself also reduced Aβ in HEK 293T cells expressing the human APP transgene with AD-linked mutations through lentiviral-mediated delivery. We also demonstrated that injecting SPON1 reduced the amount of Aβ and ameliorated cognitive dysfunction and memory impairment in 5xFAD mice expressing human APP and PSEN1 transgenes with five AD-linked mutations.
Collapse
|
30
|
Ma L, Yang C, Zheng J, Chen Y, Xiao Y, Huang K. Non-polyphenolic natural inhibitors of amyloid aggregation. Eur J Med Chem 2020; 192:112197. [PMID: 32172082 DOI: 10.1016/j.ejmech.2020.112197] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Protein misfolding diseases (PMDs) are chronic and progressive, with no effective therapy so far. Aggregation and misfolding of amyloidogenic proteins are closely associated with the onset and progression of PMDs, such as amyloid-β (Aβ) in Alzheimer's disease, α-Synuclein (α-Syn) in Parkinson's disease and human islet amyloid polypeptide (hIAPP) in type 2 diabetes. Inhibiting toxic aggregation of amyloidogenic proteins is regarded as a promising therapeutic approach in PMDs. The past decade has witnessed the rapid progresses of this field, dozens of inhibitors have been screened and verified in vitro and in vivo, demonstrating inhibitory effects against the aggregation and misfolding of amyloidogenic proteins, together with beneficial effects. Natural products are major sources of small molecule amyloid inhibitors, a number of natural derived compounds have been identified with great bioactivities and translational prospects. Here, we review the non-polyphenolic natural inhibitors that potentially applicable for PMDs treatment, along with their working mechanisms. Future directions are proposed for the development and clinical applications of these inhibitors.
Collapse
Affiliation(s)
- Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yushuo Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430035, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
31
|
Icariin Ameliorates Amyloid Pathologies by Maintaining Homeostasis of Autophagic Systems in Aβ1–42-Injected Rats. Neurochem Res 2019; 44:2708-2722. [DOI: 10.1007/s11064-019-02889-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
32
|
Icariin improves the cognitive function of APP/PS1 mice via suppressing endoplasmic reticulum stress. Life Sci 2019; 234:116739. [DOI: 10.1016/j.lfs.2019.116739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022]
|
33
|
Commins S, Kirby BP. The complexities of behavioural assessment in neurodegenerative disorders: A focus on Alzheimer’s disease. Pharmacol Res 2019; 147:104363. [DOI: 10.1016/j.phrs.2019.104363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023]
|
34
|
Brown ES, Bice C, Putnam WC, Leff R, Kulikova A, Nakamura A, Ivleva EI, Enkevort EV, Holmes T, Miingi N. Human Safety and Pharmacokinetics Study of Orally Administered Icariin: Randomized, Double-Blind, Placebo-Controlled Trial. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19856789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Preclinical literature suggests that icariin, a flavonoid found in Epimedium, may have potential for medical and psychiatric conditions. The objective of this study was to examine the safety, tolerability, and pharmacokinetics of orally administered icariin at doses of 100 to 1,680 mg/day in 24 healthy adult participants. Cognition, mood, and side effects were assessed over 5 days. Multiple blood samples were obtained over 24 hours to assess bioavailability and pharmacokinetics. Data were analyzed using a Wilcoxon signed rank test and Mann-Whitney U test. At all doses, either very low or undetectable blood levels of icariin were observed, demonstrating the low bioavailability of the oral formulation and preventing a determination of pharmacokinetic properties. No significant between-group differences were observed on side effect scales, either by self-report, or on cognitive assessments. A statistically significant, but not clinically significant, increase in self-reported depressive symptom severity was observed with icariin relative to placebo. Tolerability of icariin was good except at the highest dose. Two participants receiving 1,680 mg of icariin discontinued the study drug due to gastrointestinal symptoms. Bioavailability of oral icariin appears to be low at all doses tested. Although icariin appears generally to have a favorable tolerability profile, the highest doses may be associated with gastrointestinal distress. Different drug formulation and delivery method may be needed to assess the pharmacokinetic profile of icariin adequately.
Collapse
Affiliation(s)
- E. Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Collette Bice
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William C. Putnam
- Department of Pharmacy Practice, School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Richard Leff
- Department of Pharmacy Practice, School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Alexandra Kulikova
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alyson Nakamura
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elena I. Ivleva
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Erin Van Enkevort
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Traci Holmes
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nyokabi Miingi
- Department of Pharmacy Practice, School of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX, USA
| |
Collapse
|
35
|
Kim DH, Jang YS, Jeon WK, Han JS. Assessment of Cognitive Phenotyping in Inbred, Genetically Modified Mice, and Transgenic Mouse Models of Alzheimer's Disease. Exp Neurobiol 2019; 28:146-157. [PMID: 31138986 PMCID: PMC6526110 DOI: 10.5607/en.2019.28.2.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Abstract
Genetically modified mouse models are being used predominantly to understand brain functions and diseases. Well-designed and controlled behavioral analyses of genetically modified mice have successfully led to the identification of gene functions, understanding of brain diseases, and development of treatments. Recently, complex and higher cognitive functions have been examined in mice with genetic mutations. Therefore, research strategies for cognitive phenotyping should be sophisticated and evolve to convey the exact meaning of the findings and provide robust translational tools for testing hypotheses and developing treatments. This review addresses issues of experimental design and discusses studies that have examined cognitive function using mouse strain differences, genetically modified mice, and transgenic mice for Alzheimer's disease.
Collapse
Affiliation(s)
- Dong-Hee Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Yoon-Sun Jang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
36
|
Angeloni C, Barbalace MC, Hrelia S. Icariin and Its Metabolites as Potential Protective Phytochemicals Against Alzheimer's Disease. Front Pharmacol 2019; 10:271. [PMID: 30941046 PMCID: PMC6433697 DOI: 10.3389/fphar.2019.00271] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/04/2019] [Indexed: 01/14/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder affecting more than 35 million people worldwide. As the prevalence of AD is dramatically rising, there is an earnest need for the identification of effective therapies. Available drug treatments only target the symptoms and do not halt the progression of this disorder; thus, the use of natural compounds has been proposed as an alternative intervention strategy. Icariin, a prenylated flavonoid, has several therapeutic effects, including osteoporosis prevention, sexual dysfunction amelioration, immune system modulation, and improvement of cardiovascular function. Substantial studies indicate that icariin may be beneficial to AD by reducing the production of extracellular amyloid plaques and intracellular neurofibrillary tangles and inhibiting phosphodiesterase-5 activity. Moreover, increasing evidence has indicated that icariin exerts a protective role in AD also by limiting inflammation, oxidative stress and reducing potential risk factors for AD such as atherosclerosis. This mini-review discusses the multiple potential mechanisms of action of icariin on the pathobiology of AD including explanation regarding its bioavailability, metabolism and pharmacokinetic.
Collapse
Affiliation(s)
| | | | - Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Zhao C, Zhang C, Xing Z, Ahmad Z, Li JS, Chang MW. Pharmacological effects of natural Ganoderma and its extracts on neurological diseases: A comprehensive review. Int J Biol Macromol 2019; 121:1160-1178. [DOI: 10.1016/j.ijbiomac.2018.10.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/06/2018] [Accepted: 10/14/2018] [Indexed: 01/13/2023]
|
38
|
Li H, Zhang X, Zhu X, Qi X, Lin K, Cheng L. The Effects of Icariin on Enhancing Motor Recovery Through Attenuating Pro-inflammatory Factors and Oxidative Stress via Mitochondrial Apoptotic Pathway in the Mice Model of Spinal Cord Injury. Front Physiol 2018; 9:1617. [PMID: 30505282 PMCID: PMC6250845 DOI: 10.3389/fphys.2018.01617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a severe medical problem leading to crucial life change. Icariin (ICA) is a natural flavonoid compound extracted from the Chinese herb Epimedium brevicornum which has neuroprotective effects. But little is known about the relationship between ICA and SCI. We hypothesized ICA may enhance motor recovery through attenuating inflammation, oxidative stress and mitochondrial dysfunction. Mice were randomly assigned to sham, SCI, ICA 20 μmol/kg (low dose) and ICA 50 μmol/kg (high dose) groups. And Behavioral, biochemical, molecular biological, immunofluorescent and histological assays were performed. First, ICA enhanced motor recovery greatly at 14, 28, and 42 days and protected spinal cord tissues especially in the high dose group. Meanwhile, ICA decreased the production of interleukin-1 beta, tumor necrosis factor-alpha and inducible nitric oxide synthase at 24 h and 3 days after SCI. The level of mitochondrial reduced glutathione, superoxide dismutase, adenosine triphosphate (ATP), Na+-K+-ATPase, mitochondrial membrane potential, state III respiration rate and the respiratory control ratio were also significantly increased, while malondialdehyde level and Ca2+ concentration were decreased by ICA. Furthermore, ICA decreased the expression of mitochondrial apoptotic proteins at 3 days after SCI. More importantly, transferase UTP nick end labeling (TUNEL) and Nissl staining implied that ICA at a high dose inhibited the neuronal apoptosis after SCI. Our research indicated that early and continuous treatment of ICA at a high dose significantly enhanced motor recovery after SCI through inhibiting pro-inflammatory factors, oxidative stress and neuronal apoptosis via mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Haotian Li
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai, China
| | - Xinran Zhang
- School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Xu Zhu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai, China
| | - Xi Qi
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai, China
| | - Kaili Lin
- School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai, China
| |
Collapse
|
39
|
Grant RA, Wong AA, Fertan E, Brown RE. Whisker exploration behaviours in the 5xFAD mouse are affected by sex and retinal degeneration. GENES BRAIN AND BEHAVIOR 2018; 19:e12532. [DOI: 10.1111/gbb.12532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Robyn A. Grant
- Division of Biology and Conservation EcologyManchester Metropolitan University Manchester UK
| | - Aimee A. Wong
- Department of Psychology and NeuroscienceDalhousie University Halifax Nova Scotia Canada
| | - Emre Fertan
- Department of Psychology and NeuroscienceDalhousie University Halifax Nova Scotia Canada
| | - Richard E. Brown
- Department of Psychology and NeuroscienceDalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
40
|
Qiao C, Ye W, Li S, Wang H, Ding X. Icariin modulates mitochondrial function and apoptosis in high glucose-induced glomerular podocytes through G protein-coupled estrogen receptors. Mol Cell Endocrinol 2018; 473:146-155. [PMID: 29373840 DOI: 10.1016/j.mce.2018.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
Podocyte apoptosis in glomerular lesions has been found to have a dominant role in the progression of diabetic nephropathy. The present research aimed to explore the beneficial effect of icariin on diabetic podocytes by interfering in the process of apoptosis. Podocyte apoptosis was significantly exacerbated after high glucose treatment, with the level of reactive oxygen species (ROS) increasing simultaneously. Here, we demonstrated that icariin, which is a G protein-coupled estrogen receptor 1 (GPER) agonist, inhibited podocyte apoptosis by reducing ROS, maintaining the integrity of mitochondrial membranes. Moreover, the stabilization of mitochondria by icariin was reversed when GPER was knocked down in podocytes. Meanwhile, icariin inhibited the caspase cascade in podocyte apoptosis by promoting Bcl-2 expression and mitochondrial translocation. The above findings at least partly elucidated the mechanism by which icariin stabilized podocytes by inducing the mitochondrial Bcl-2 translocation and therefore preventing downstream apoptosis.
Collapse
Affiliation(s)
- Chen Qiao
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China
| | - Wenjuan Ye
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China
| | - Sai Li
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China
| | - Hui Wang
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China
| | - Xuansheng Ding
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, 211198, China.
| |
Collapse
|
41
|
Icariin Improves Cognitive Impairment after Traumatic Brain Injury by Enhancing Hippocampal Acetylation. Chin J Integr Med 2018; 24:366-371. [PMID: 29327125 DOI: 10.1007/s11655-018-2823-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To examine the effect of icariin (ICA) on the cognitive impairment induced by traumatic brain injury (TBI) in mice and the underlying mechanisms related to changes in hippocampal acetylation level. METHODS The modifified free-fall method was used to establish the TBI mouse model. Mice with post-TBI cognitive impairment were randomly divided into 3 groups using the randomised block method (n=7): TBI (vehicle-treated), low-dose (75 mg/kg) and high-dose (150 mg/kg) of ICA groups. An additional sham-operated group (vehicle-treated) was employed. The vehicle or ICA was administrated by gavage for 28 consecutive days. The Morris water maze (MWM) test was conducted. Acetylcholine (ACh) content, mRNA and protein levels of choline acetyltransferase (ChAT), and protein levels of acetylated H3 (Ac-H3) and Ac-H4 were detected in the hippocampus. RESULTS Compared with the sham-operated group, the MWM performance, hippocampal ACh content, mRNA and protein levels of ChAT, and protein levels of Ac-H3 and Ac-H4 were signifificantly decreased in the TBI group (P<0.05). High-dose of ICA signifificantly ameliorated the TBI-induced weak MWM performance, increased hippocampal ACh content, and mRNA and protein levels of ChAT, as well as Ac-H3 protein level compared with the TBI group (P<0.05). CONCLUSION ICA improved post-TBI cognitive impairment in mice by enhancing hippocampal acetylation, which improved hippocampal cholinergic function and ultimately improved cognition.
Collapse
|
42
|
Kuboyama T, Hirotsu K, Arai T, Yamasaki H, Tohda C. Polygalae Radix Extract Prevents Axonal Degeneration and Memory Deficits in a Transgenic Mouse Model of Alzheimer's Disease. Front Pharmacol 2017; 8:805. [PMID: 29184495 PMCID: PMC5694549 DOI: 10.3389/fphar.2017.00805] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/25/2017] [Indexed: 11/13/2022] Open
Abstract
Memory impairments in Alzheimer's disease (AD) occur due to degenerated axons and disrupted neural networks. Since only limited recovery is possible after the destruction of neural networks, preventing axonal degeneration during the early stages of disease progression is necessary to prevent AD. Polygalae Radix (roots of Polygala tenuifolia; PR) is a traditional herbal medicine used for sedation and amnesia. In this study, we aimed to clarify and analyze the preventive effects of PR against memory deficits in a transgenic AD mouse model, 5XFAD. 5XFAD mice demonstrated memory deficits at the age of 5 months. Thus, the water extract of Polygalae Radix (PR extract) was orally administered to 4-month-old 5XFAD mice that did not show signs of memory impairment. After consecutive administrations for 56 days, the PR extract prevented cognitive deficit and axon degeneration associated with the accumulation of amyloid β (Aβ) plaques in the perirhinal cortex of the 5XFAD mice. PR extract did not influence the formation of Aβ plaques in the brain of the 5XFAD mice. In cultured neurons, the PR extract prevented axonal growth cone collapse and axonal atrophy induced by Aβ. Additionally, it prevented Aβ-induced endocytosis at the growth cone of cultured neurons. Our previous study reported that endocytosis inhibition was enough to prevent Aβ-induced growth cone collapse, axonal degeneration, and memory impairments. Therefore, the PR extract possibly prevented axonal degeneration and memory impairment by inhibiting endocytosis. PR is the first preventive drug candidate for AD that inhibits endocytosis in neurons.
Collapse
Affiliation(s)
- Tomoharu Kuboyama
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Keisuke Hirotsu
- R&D Center, Kobayashi Pharmaceutical Co., Ltd., Ibaraki, Japan
| | - Tetsuya Arai
- R&D Center, Kobayashi Pharmaceutical Co., Ltd., Ibaraki, Japan
| | - Hiroo Yamasaki
- R&D Center, Kobayashi Pharmaceutical Co., Ltd., Ibaraki, Japan
| | - Chihiro Tohda
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
43
|
Son M, Oh S, Park H, Ahn H, Choi J, Kim H, Lee HS, Lee S, Park HJ, Kim SU, Lee B, Byun K. Protection against RAGE-mediated neuronal cell death by sRAGE-secreting human mesenchymal stem cells in 5xFAD transgenic mouse model. Brain Behav Immun 2017; 66:347-358. [PMID: 28760504 DOI: 10.1016/j.bbi.2017.07.158] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022] Open
Abstract
Alzheimer's disease (AD), which is the most commonly encountered neurodegenerative disease, causes synaptic dysfunction and neuronal loss due to various pathological processes that include tau abnormality and amyloid beta (Aβ) accumulation. Aβ stimulates the secretion and the synthesis of Receptor for Advanced Glycation End products (RAGE) ligand by activating microglial cells, and has been reported to cause neuronal cell death in Aβ1-42 treated rats and in mice with neurotoxin-induced Parkinson's disease. The soluble form of RAGE (sRAGE) is known to reduce inflammation, and to decrease microglial cell activation and Aβ deposition, and thus, it protects from neuronal cell death in AD. However, sRAGE protein has too a short half-life for therapeutic purposes. We developed sRAGE-secreting umbilical cord derived mesenchymal stem cells (sRAGE-MSCs) to enhance the inhibitory effects of sRAGE on Aβ deposition and to reduce the secretion and synthesis of RAGE ligands in 5xFAD mice. In addition, these cells improved the viability of injected MSCs, and enhanced the protective effects of sRAGE by inhibiting the binding of RAGE and RAGE ligands in 5xFAD mice. These findings suggest sRAGE protein from sRAGE-MSCs has better protection against neuronal cell death than sRAGE protein or single MSC treatment by inhibiting the RAGE cell death cascade and RAGE-induce inflammation.
Collapse
Affiliation(s)
- Myeongjoo Son
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, Republic of Korea; Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Hyunjin Park
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, Republic of Korea; Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Hyosang Ahn
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, Republic of Korea; Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Junwon Choi
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, Republic of Korea; Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Hyungho Kim
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Hye Sun Lee
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Sojung Lee
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, Republic of Korea; Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Hye-Jeong Park
- Department of Biochemistry and Cell Biology, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung U Kim
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Bonghee Lee
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, Republic of Korea; Center for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
| | - Kyunghee Byun
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, Republic of Korea; Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
44
|
Tai LM, Balu D, Avila-Munoz E, Abdullah L, Thomas R, Collins N, Valencia-Olvera AC, LaDu MJ. EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer's disease. J Lipid Res 2017; 58:1733-1755. [PMID: 28389477 PMCID: PMC5580905 DOI: 10.1194/jlr.r076315] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/06/2017] [Indexed: 01/12/2023] Open
Abstract
Identified in 1993, APOE4 is the greatest genetic risk factor for sporadic Alzheimer's disease (AD), increasing risk up to 15-fold compared with APOE3, with APOE2 decreasing AD risk. However, the functional effects of APOE4 on AD pathology remain unclear and, in some cases, controversial. In vivo progress to understand how the human (h)-APOE genotypes affect AD pathology has been limited by the lack of a tractable familial AD-transgenic (FAD-Tg) mouse model expressing h-APOE rather than mouse (m)-APOE. The disparity between m- and h-apoE is relevant for virtually every AD-relevant pathway, including amyloid-β (Aβ) deposition and clearance, neuroinflammation, tau pathology, neural plasticity and cerebrovascular deficits. EFAD mice were designed as a temporally useful preclinical FAD-Tg-mouse model expressing the h-APOE genotypes for identifying mechanisms underlying APOE-modulated symptoms of AD pathology. From their first description in 2012, EFAD mice have enabled critical basic and therapeutic research. Here we review insights gleaned from the EFAD mice and summarize future directions.
Collapse
Affiliation(s)
- Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Evangelina Avila-Munoz
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Riya Thomas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Nicole Collins
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612.
| |
Collapse
|
45
|
Intranasal telmisartan ameliorates brain pathology in five familial Alzheimer's disease mice. Brain Behav Immun 2017; 64:80-90. [PMID: 28385651 DOI: 10.1016/j.bbi.2017.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/09/2017] [Accepted: 04/01/2017] [Indexed: 11/23/2022] Open
Abstract
The renin-angiotensin system (RAS) is a major circulative system engaged in homeostasis modulation. Angiotensin II (Ang II) serves as its main effector hormone upon binding to its primary receptor, Ang II receptor type 1 (AT1R). It is well established that an intrinsic independent brain RAS exists. Abnormal AT1R activation both in the periphery and in the brain probably contributes to the development of Alzheimer's disease (AD) pathology that is characterized, among others, by brain inflammation. Moreover, treatment with drugs that block AT1R (AT1R blockers, ARBs) ameliorates most of the clinical risk factors leading to AD. Previously we showed that short period of intranasal treatment with telmisartan (a brain penetrating ARB) reduced brain inflammation and ameliorated amyloid burden (a component of Alzheimer's plaques) in AD transgenic mouse model. In the present study, we aimed to examine the long-term effect of intranasally administrated telmisartan on brain inflammation features including microglial activation, astrogliosis, neuronal loss and hippocampus-dependent cognition in five-familial AD mouse model (5XFAD). Five month of intranasal treatment with telmisartan significantly reduced amyloid burden in the cortex and hippocampus of 5XFAD mice as compared with the vehicle-treated 5XFAD group. Similar effects were also observed for CD11b staining, which is a marker for microglial accumulation. Telmisartan also significantly reduced astrogliosis and neuronal loss in the cortex of 5XFAD mice compared with the vehicle-treated group. Improved spatial acquisition of the 5XFAD mice following long-term intranasal administration of telmisartan was also observed. Taken together, our data suggest a significant role for AT1R blockage in mediating neuronal loss and cognitive behavior, possibly through regulation of amyloid burden and glial inflammation.
Collapse
|
46
|
Cho JH, Jung JY, Lee BJ, Lee K, Park JW, Bu Y. Epimedii Herba: A Promising Herbal Medicine for Neuroplasticity. Phytother Res 2017; 31:838-848. [PMID: 28382688 DOI: 10.1002/ptr.5807] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 01/21/2023]
Abstract
Epimedii Herba (EH) is an herbal medicine originating from several plants of the genus Epimedium. It is a major therapeutic option for kidney yang deficiency syndrome, which is closely related to androgen hormones and also has been used to treat hemiplegia following a stroke in traditional medicine of Korea and PR China. To date, many clinical and basic researches of EH have shown the activities on functional recovery from brain diseases. Recently, neuroplasticity, which is the spontaneous reaction of the brain in response to diseases, has been shown to accelerate functional recovery. In addition, androgen hormones including testosterone are known to be the representative of neuroplasticity factors in the brain recovery processes. In this review, we described the neuro-pharmacological activities of EH, focusing on neuroplasticity. Thirty-three kinds of papers from MEDLINE/PubMed, EMBASE, and CNKI were identified and analyzed. We categorized the results into five types based on neuroplasticity mechanisms and presented the definition of each category and briefly described the results of these papers. Altogether, we can suggest that neuroplasticity is a novel viewpoint for guiding future brain research of EH and provide the evidence for the development of new clinical applications using EH in the treatment of brain diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jae-Heung Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Young Jung
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Beom-Joon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Kyungjin Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Woo Park
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Youngmin Bu
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
47
|
Deng Y, Long L, Wang K, Zhou J, Zeng L, He L, Gong Q. Icariside II, a Broad-Spectrum Anti-cancer Agent, Reverses Beta-Amyloid-Induced Cognitive Impairment through Reducing Inflammation and Apoptosis in Rats. Front Pharmacol 2017; 8:39. [PMID: 28210222 PMCID: PMC5288340 DOI: 10.3389/fphar.2017.00039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/18/2017] [Indexed: 01/07/2023] Open
Abstract
Beta-amyloid (Aβ) deposition, associated neuronal apoptosis and neuroinflammation are considered as the important factors which lead to cognitive deficits in Alzheimer's disease (AD). Icariside II (ICS II), an active flavonoid compound derived from Epimedium brevicornum Maxim, has been extensively used to treat erectile dysfunction, osteoporosis and dementia in traditional Chinese medicine. Recently, ICS II attracts great interest due to its broad-spectrum anti-cancer property. ICS II shows an anti-inflammatory potential both in cancer treatment and cerebral ischemia-reperfusion. It is not yet clear whether the anti-inflammatory effect of ICS II could delay progression of AD. Therefore, the current study aimed to investigate the effects of ICS II on the behavioral deficits, Aβ levels, neuroinflammatory responses and apoptosis in Aβ25-35-treated rats. We found that bilateral hippocampal injection of Aβ25-35 induced cognitive impairment, neuronal damage, along with increase of Aβ, inflammation and apoptosis in hippocampus of rats. However, treatment with ICS II 20 mg/kg could improve the cognitive deficits, ameliorate neuronal death, and reduce the levels of Aβ in the hippocampus. Furthermore, ICS II could suppress microglial and astrocytic activation, inhibit expression of IL-1β, TNF-α, COX-2, and iNOS mRNA and protein, and attenuate the Aβ induced Bax/Bcl-2 ratio elevation and caspase-3 activation. In conclusion, these results showed that ICS II could reverse Aβ-induced cognitive deficits, possibly via the inhibition of neuroinflammation and apoptosis, which suggested a potential protective effect of ICS II on AD.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Long Long
- Department of Pharmacy, Zunyi Medical UniversityGuizhou, China
| | - Keke Wang
- Zunyi Medical and Pharmaceutical CollegeGuizhou, China
| | - Jiayin Zhou
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Lingrong Zeng
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Lianzi He
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| | - Qihai Gong
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical UniversityGuizhou, China
| |
Collapse
|
48
|
Tohda C. New Age Therapy for Alzheimer's Disease by Neuronal Network Reconstruction. Biol Pharm Bull 2017; 39:1569-1575. [PMID: 27725432 DOI: 10.1248/bpb.b16-00438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a recognized incurable neurodegenerative disorder. Clinically prescribed medicines for AD are expected to bring about only slight symptomatic improvement or a delay of its progression. Another strategy, amyloid β (Aβ) lowing agents, has not been successful at memory improvement. We have hypothesized that an improvement in cognitive function requires the construction of neuronal networks, including neurite regeneration and synapse formation; therefore, we have been exploring candidates for radical anti-AD drugs that can restore Aβ-induced neurite atrophy and memory impairment. Our studies found several promising drug candidates that may improve memory dysfunction in AD model mice. The main activity of these drugs is the restoration of damaged axons. Focusing on candidates based on the recovery of neurite atrophy in vitro certainly leads to positive effects on memory improvement also in vivo. This suggests that neuronal network reconstruction may importantly relate to functional recovery in the brain. When identifying the signaling mechanisms of exogenous compounds like natural medicine-derived constituents, molecules directly activated by the compound are hard to be identified. However, the drug affinity responsive target stability (DARTS) analysis may pave the way to an approach to determine the initial molecule of the signaling pathway. Exploring new drug candidates and clarifying their signaling pathways directly relating to neuronal network reconstruction may provide promising therapeutic strategies with which to overcome AD.
Collapse
Affiliation(s)
- Chihiro Tohda
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of Toyama
| |
Collapse
|
49
|
Effect of Chinese Herbal Medicine on Alzheimer's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:29-56. [DOI: 10.1016/bs.irn.2017.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Xu Q, Fan W, Ye SF, Cong YB, Qin W, Chen SY, Cai J. Cistanche tubulosa Protects Dopaminergic Neurons through Regulation of Apoptosis and Glial Cell-Derived Neurotrophic Factor: in vivo and in vitro. Front Aging Neurosci 2016; 8:295. [PMID: 28018211 PMCID: PMC5159610 DOI: 10.3389/fnagi.2016.00295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 11/21/2016] [Indexed: 11/30/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease with the pathological hallmark of reduced nigrostriatal dopamine. In traditional Chinese medicine (TCM) clinical practice, the nanopowder of Cistanche tubulosa has therapeutic effects on PD. To identify the therapeutic mechanism, this study tested the protective effect of different doses of MPP+-induced toxicity in MES23.5 cells using the MTT assay and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice (vehicles). Immunohistochemistry was used to assess cytomorphology and tyrosine hydroxylase (TH) expression. Behavioral tests in vehicles, high performance liquid chromatography (HPLC) tests in dopamine, immunohistochemistry and western blot analysis were used to detect the expression of TH, glial cell line-derived neurotrophic factor (GDNF) and its receptors. Our results demonstrated that the C. tubulosa nanopowder improved the viability of MPP+-treated cells, increased TH expression and reduced the number of apoptotic cells. It also increased Bcl2 protein expression and suppressed Bax protein expression in MPP+-treated cells in a dose-dependent manner. In addition, C. tubulosa nanopowder improved the behavioral deficits in vehicle mice, reduced the stationary duration of swimming, enhanced the ability for spontaneous activity and increased the expression of GDNF, the GDNF family receptor alpha (GFRα1) and Ret in cells of the substantia nigra (SN). Furthermore, the protein expression of GDNF, GFRα1 and Ret increased after treatment with different doses of C. tubulosa nanopowder, with a significant difference between the high-dose and vehicle groups. The protein expression of Bcl2 and Bax were similar in the in vivo and in vitro, which suggested that C. tubulosa nanopowder has anti-apoptotic effects in neurons.
Collapse
Affiliation(s)
- Qian Xu
- Institute of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine Fuzhou, China
| | - Wen Fan
- Department of Internal Medicine, Xiamen Hai Cang Hospital Xiamen, China
| | - Shui-Fen Ye
- Department of Geratology, Longyan First Hospital Longyan, China
| | - Yi-Bo Cong
- Institute of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine Fuzhou, China
| | - Wei Qin
- Institute of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine Fuzhou, China
| | - Shi-Ya Chen
- Institute of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine Fuzhou, China
| | - Jing Cai
- Institute of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine Fuzhou, China
| |
Collapse
|