1
|
Shen Y, He Y, Pan Y, Liu L, Liu Y, Jia J. Role and mechanisms of autophagy, ferroptosis, and pyroptosis in sepsis-induced acute lung injury. Front Pharmacol 2024; 15:1415145. [PMID: 39161900 PMCID: PMC11330786 DOI: 10.3389/fphar.2024.1415145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI) is a major cause of death among patients with sepsis in intensive care units. By analyzing a model of sepsis-induced ALI using lipopolysaccharide (LPS) and cecal ligation and puncture (CLP), treatment methods and strategies to protect against ALI were discussed, which could provide an experimental basis for the clinical treatment of sepsis-induced ALI. Recent studies have found that an imbalance in autophagy, ferroptosis, and pyroptosis is a key mechanism that triggers sepsis-induced ALI, and regulating these death mechanisms can improve lung injuries caused by LPS or CLP. This article summarized and reviewed the mechanisms and regulatory networks of autophagy, ferroptosis, and pyroptosis and their important roles in the process of LPS/CLP-induced ALI in sepsis, discusses the possible targeted drugs of the above mechanisms and their effects, describes their dilemma and prospects, and provides new perspectives for the future treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Yao Shen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yingying He
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Ying Pan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yulin Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Wei J, Leng L, Sui Y, Song S, Owusu FB, Li X, Cao Y, Li P, Wang H, Li R, Yang W, Gao X, Wang Q. Phenolic acids from Prunella vulgaris alleviate cardiac remodeling following myocardial infarction partially by suppressing NLRP3 activation. Phytother Res 2024; 38:384-399. [PMID: 37992723 DOI: 10.1002/ptr.8024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 11/24/2023]
Abstract
Acute myocardial infarction (MI) is one of the leading causes of mortality around the world. Prunella vulgaris (Xia-Ku-Cao in Chinese) is used in traditional Chinese medicine practice for the treatment of cardiovascular diseases. However, its active ingredients and mechanisms of action on cardiac remodeling following MI remain unknown. In this study, we investigated the cardioprotective effect of P. vulgaris on MI rat models. MI rats were treated with aqueous extract of P. vulgaris or phenolic acids from P. vulgaris, including caffeic acid, ursolic acid or rosmarinic acid, 1 day after surgery and continued for the following 28 days. Then the cardioprotective effect, such as cardiac function, inflammatory status, and fibrosis areas were evaluated. RNA-sequencing (RNA-seq) analysis, real-time polymerase chain reaction (PCR), western blotting, and ELISA were used to explore the underlying mechanism. In addition, ultra-high performance liquid chromatography/mass spectrometer analysis was used to identify the chemicals from P. vulgaris. THP-1NLRP3-GFP cells were used to confirm the inhibitory effect of P. vulgaris and phenolic acids on the expression and activity of NLRP3. We found that P. vulgaris significantly improved cardiac function and reduced infarct size. Meanwhile, P. vulgaris protected cardiomyocyte against apoptosis, evidenced by increasing the expression of anti-apoptosis protein Bcl-2 in the heart and decreasing lactate dehydrogenase (LDH) levels in serum. Results from RNA-seq revealed that the therapeutic effect of P. vulgaris might relate to NLRP3-mediated inflammatory response. Results from real-time PCR and western blotting confirmed that P. vulgaris suppressed NLRP3 expression in MI heart. We also found that P. vulgaris suppressed NLRP3 expression and the secretion of HMGB1, IL-1β, and IL-18 in THP-1NLRP3-GFP cells. Further studies indicated that the active components of P. vulgaris were three phenolic acids, those were caffeic acid, ursolic acid, and rosmarinic acid. These phenolic acids inhibited LPS-induced NLRP3 expression and activity in THP-1 cells, and improved cardiac function, suppressed inflammatory aggregation and fibrosis in MI rat models. In conclusion, our study demonstrated that P. vulgaris and phenolic acids from P. vulgaris, including caffeic acid, ursolic acid, and rosmarinic acid, could improve cardiac function and protect cardiomyocytes from ischemia injury during MI. The mechanism was partially related to inhibiting NLRP3 activation.
Collapse
Affiliation(s)
- Jinna Wei
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Lab of Pharmacological Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin, China
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Lab of Pharmacological Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Yunchan Sui
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaofei Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Felix Boahen Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Yu Cao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peijie Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongda Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiqiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Wenzhi Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Lab of Pharmacological Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Xiumei Gao
- Key Lab of Pharmacological Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Lab of Pharmacological Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- Endocrinology Department, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Usmani J, Khan T, Ahmad R, Sharma M. Potential role of herbal medicines as a novel approach in sepsis treatment. Biomed Pharmacother 2021; 144:112337. [PMID: 34688080 DOI: 10.1016/j.biopha.2021.112337] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/09/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
The growing number of deaths related to sepsis has become a major concern for past few years. Sepsis is a complex pathological reactions that is explained by series of host response to microbial insult. The resulted systemic reactions are manifested by early appearance of proinflammatory cytokines leading to hyperinflammatory phase which is followed by septic shock and death of the patient. The present study has revealed that antibiotics are not self-sufficient to control the complex mechanism of sepsis. Moreover prolonged and unnecessary administration of antibiotics may lead to antibiotic resistance to pathogens. In addition to this, immunosuppressive medications are selective and have targeted approach to certain study population. Drugs from herbal origin have shown to possess a mammoth of immunomodulatory potential by suppressing proinflammatory and anti-inflammatory cytokines exhibiting no or minimal unwanted secondary responses. Concomitantly, herbal plants tend to modulate oxidative stress level and haematological imbalance during inflammatory diseased conditions. Natural compounds have gained much attention for the treatment of several clinical complications. Considering the promising responses of medicinal plants with less/no side effects and easy procurement, comprehensive research on herbal plants to treat sepsis should be contemplated.
Collapse
Affiliation(s)
- Juveria Usmani
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| | - Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| | - Razi Ahmad
- Department of Pharmacology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi 110019, India.
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Wyganowska-Swiatkowska M, Nohawica M, Grocholewicz K, Nowak G. Influence of Herbal Medicines on HMGB1 Release, SARS-CoV-2 Viral Attachment, Acute Respiratory Failure, and Sepsis. A Literature Review. Int J Mol Sci 2020; 21:E4639. [PMID: 32629817 PMCID: PMC7370028 DOI: 10.3390/ijms21134639] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
By attaching to the angiotensin converting enzyme 2 (ACE2) protein on lung and intestinal cells, Sudden Acute Respiratory Syndrome (SARS-CoV-2) can cause respiratory and homeostatic difficulties leading to sepsis. The progression from acute respiratory failure to sepsis has been correlated with the release of high-mobility group box 1 protein (HMGB1). Lack of effective conventional treatment of this septic state has spiked an interest in alternative medicine. This review of herbal extracts has identified multiple candidates which can target the release of HMGB1 and potentially reduce mortality by preventing progression from respiratory distress to sepsis. Some of the identified mixtures have also been shown to interfere with viral attachment. Due to the wide variability in chemical superstructure of the components of assorted herbal extracts, common motifs have been identified. Looking at the most active compounds in each extract it becomes evident that as a group, phenolic compounds have a broad enzyme inhibiting function. They have been shown to act against the priming of SARS-CoV-2 attachment proteins by host and viral enzymes, and the release of HMGB1 by host immune cells. An argument for the value in a nonspecific inhibitory action has been drawn. Hopefully these findings can drive future drug development and clinical procedures.
Collapse
Affiliation(s)
- Marzena Wyganowska-Swiatkowska
- Chair of Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Bukowska 70, 60-812 Poznan, Poland;
| | - Michal Nohawica
- Chair of Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Bukowska 70, 60-812 Poznan, Poland;
| | - Katarzyna Grocholewicz
- Department of Interdisciplinary Dentistry, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland;
| | - Gerard Nowak
- Department of Medicinal and Cosmetic Natural Products, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznan, Poland;
| |
Collapse
|
5
|
Zhang Z, Zhou Y, Lin Y, Li Y, Xia B, Lin L, Liao D. GC-MS-based metabolomics research on the anti-hyperlipidaemic activity of Prunella vulgaris L. polysaccharides. Int J Biol Macromol 2020; 159:461-473. [PMID: 32387363 DOI: 10.1016/j.ijbiomac.2020.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022]
Abstract
Prunella vulgaris polysaccharides (PVPs) have a variety of biological activities, but the mechanism and extent of their anti-hyperlipidaemic effect remain unclear. In vitro, PVPs had a significant inhibitory effect on angiotensin (Ang II)-induced vascular smooth muscle cell (VSMC) proliferation. A metabolomics approach based on gas chromatography-mass spectrometry (GC-MS) and chemometrics was established in this study to evaluate the anti-hyperlipidaemic activity of PVPs in a high-fat Sprague-Dawley rat model. In vivo, PVPs could significantly reduce the weight gain and the increases in serum total cholesterol (TC), low-density lipoprotein (LDL)-C and non-high-density lipoprotein (HDL)-C levels observed in rats fed a high-fat diet; they could also significantly increase serum GSH-Px activity, reduce the content of MDA and TNF-α and decrease abdominal fat volume in rats. Furthermore, PVPs exerted a repairing effect on morphological and structural damage in liver tissue cells in hyperlipidaemic rats fed a high-fat diet. PVPs improved lipid metabolism disorder in rats. Alanine, threonine, succinic acid, proline, inositol and arachidonic acid levels in the serum were considered potential biomarkers involved in amino acid, glucose, energy and lipid metabolism. Therefore, PVPs may interfere with hyperlipidaemia through anti-lipid peroxidation effects, attenuation of inflammation and regulation of glucose, amino acid, energy and lipid metabolism.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamin Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Prima Drug Research Center Co., Ltd., Changsha 410311, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Duanfang Liao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; Collaborative Innovation Center for the Protection and Utilization of Chinese Herbal Medicine Resources in Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
6
|
Wang SJ, Wang XH, Dai YY, Ma MH, Rahman K, Nian H, Zhang H. Prunella vulgaris: A Comprehensive Review of Chemical Constituents, Pharmacological Effects and Clinical Applications. Curr Pharm Des 2020; 25:359-369. [PMID: 30864498 DOI: 10.2174/1381612825666190313121608] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Prunella vulgaris (PV) is a perennial herb belonging to the Labiate family and is widely distributed in the northeastern Asian countries such as Korea, Japan, and China. It is reported to display diverse biological activities including anti-microbial, anti-cancer, and anti-inflammation as determined by in vitro or in vivo studies. So far, about 200 compounds have been isolated from PV plant and a majority of these have been characterized mainly as triterpenoids, sterols and flavonoids, followed by coumarins, phenylpropanoids, polysaccharides and volatile oils. This review summarizes and analyzes the current knowledge on the chemical constituents, pharmacological activities, mechanisms of action and clinical applications of the PV plant including its potential as a future medicinal plant. Although some of the chemical constituents of the PV plant and their mechanisms of action have been investigated, the biological activities of many of these remain unknown and further clinical trials are required to further enhance its reputation as a medicinal plant.
Collapse
Affiliation(s)
- Su-Juan Wang
- Pharmaceutical Center of Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.,Department of Drug Preparation, Hospital of TCM and Hui Nationality Medicine, Ningxia Medical University, Ningxia 751100, China
| | - Xiao-He Wang
- Pharmaceutical Center of Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yuan-Yuan Dai
- Pharmaceutical Center of Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ming-Hua Ma
- Department of Pharmacy, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, England, United Kingdom
| | - Hua Nian
- Pharmaceutical Center of Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
7
|
Targeting Inflammation by Flavonoids: Novel Therapeutic Strategy for Metabolic Disorders. Int J Mol Sci 2019; 20:ijms20194957. [PMID: 31597283 PMCID: PMC6801776 DOI: 10.3390/ijms20194957] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect inflammation-mediated disorders. The available clinical modalities do not effectively address the underlying diseases but rather relieve the symptoms. Therefore, novel targeted agents have the potential to normalize the metabolic system and, thus, provide meaningful therapy to the underlying disorder. In this connection, polyphenols, the well-known and extensively studied phytochemical moieties, were evaluated for their effective role in the restoration of metabolism via various mechanistic signaling pathways. The various flavonoids that we observed in this comprehensive review interfere with the metabolic events that induce inflammation. The mechanisms via which the polyphenols, in particular flavonoids, act provide a promising treatment option for inflammatory disorders. However, detailed clinical studies of such molecules are required to decide their clinical fate.
Collapse
|
8
|
Choi HS, Park JA, Hwang JS, Ham SA, Yoo T, Lee WJ, Paek KS, Shin HC, Lee CH, Seo HG. A Dalbergia odorifera extract improves the survival of endotoxemia model mice by inhibiting HMGB1 release. Altern Ther Health Med 2017; 17:212. [PMID: 28403838 PMCID: PMC5389052 DOI: 10.1186/s12906-017-1725-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/05/2017] [Indexed: 01/14/2023]
Abstract
Background Dalbergia odorifera T. Chen (Leguminosae) is an indigenous medicinal herb that is widely used as a popular remedy in northern and eastern Asia. However, the cellular mechanisms underlying the biological activity of D. odorifera are not fully elucidated. Methods Anti-inflammatory effect of D. odorifera extract (DOE) was determined through intraperitoneal injection in a mouse model of endotoxemia induced by lipopolysaccharide (LPS). RAW 264.7 cells, a murine macrophage, were also treated with LPS to generate a cellular model of inflammation, and investigated the anti-inflammatory activity and underlying mechanisms of DOE and its constituent isoliquiritigenin. Results DOE dose-dependently inhibited LPS-induced release of high mobility group box 1 (HMGB1), a late proinflammatory cytokine, and decreased cytosolic translocation of HMGB1 in RAW264.7 cells. This inhibitory effect of DOE on HMGB1 release was observed in cells treated with DOE before or after LPS treatment, suggesting that DOE is effective for both treatment and prevention. In addition, DOE significantly inhibited LPS-induced formation of nitric oxide (NO) and expression of inducible NO synthase (iNOS) in a dose-dependent manner. These effects of DOE were accompanied by suppression of HMGB1 release triggered by LPS, suggesting a possible mechanism by which DOE modulates HMGB1 release through NO signaling. Isoriquiritigenin, a constituent of DOE, also attenuated LPS-triggered NO formation and HMGB1 release in RAW264.7 cells, indicating that isoriquiritigenin is an indexing molecule for the anti-inflammatory properties of DOE. Furthermore, c-Jun N-terminal kinase, but not extracellular signal-regulated kinase and p38, mediated DOE-dependent inhibition of HMGB1 release and NO/iNOS induction in RAW 264.7 cells exposed to LPS. Notably, administration of DOE ameliorated survival rates in a mouse model of endotoxemia induced by LPS, where decreased level of circulating HMGB1 was observed. Conclusion These results suggest that DOE confers resistance to LPS-triggered inflammation through NO-mediated inhibitory effects on HMGB1 release.
Collapse
|
9
|
Bai Y, Xia B, Xie W, Zhou Y, Xie J, Li H, Liao D, Lin L, Li C. Phytochemistry and pharmacological activities of the genus Prunella. Food Chem 2016; 204:483-496. [PMID: 26988527 DOI: 10.1016/j.foodchem.2016.02.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/01/2016] [Accepted: 02/08/2016] [Indexed: 12/20/2022]
Abstract
Prunella is a genus of perennial herbaceous plants in the Labiatae family. There are approximately 15 species worldwide, distributed widely in the temperate regions and tropical mountains of Europe and Asia. In the genus Prunella, P. vulgaris is the most studied, following a several thousand-year history as a traditional antipyretic and antidotal Chinese herb. Furthermore, since ancient times, P. vulgaris has been widely used as a cool tea ingredient and consumed as a vegetable. The genus Prunella contains triterpenoids and their saponins, phenolic acids, sterols and associated glycosides, flavonoids, organic acids, volatile oil and saccharides. Modern pharmacological studies have revealed that Prunella possess antiviral, antibacterial, anti-inflammatory, immunoregulatory, anti-oxidative, anti-tumor, antihypertensive and hypoglycemic functions. The active components related to these functions are mainly triterpenoids, phenolic acids, flavonoids and polysaccharides. This review mainly summarizes recent advances in traditional usage, chemical components and pharmacological functions.
Collapse
Affiliation(s)
- Yubing Bai
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenjian Xie
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamin Zhou
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiachi Xie
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongquan Li
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Duanfang Liao
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
10
|
|
11
|
Ambegaokar SS, Kolson DL. Heme oxygenase-1 dysregulation in the brain: implications for HIV-associated neurocognitive disorders. Curr HIV Res 2015; 12:174-88. [PMID: 24862327 PMCID: PMC4155834 DOI: 10.2174/1570162x12666140526122709] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 12/17/2022]
Abstract
Heme oxygenase-1 (HO-1) is a highly inducible and ubiquitous cellular enzyme that subserves cytoprotective responses to toxic insults, including inflammation and oxidative stress. In neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and multiple sclerosis, HO-1 expression is increased, presumably reflecting an endogenous neuroprotective response against ongoing cellular injury. In contrast, we have found that in human immunodeficiency virus (HIV) infection of the brain, which is also associated with inflammation, oxidative stress and neurodegeneration, HO-1 expression is decreased, likely reflecting a unique role for HO-1 deficiency in neurodegeneration pathways activated by HIV infection. We have also shown that HO-1 expression is significantly suppressed by HIV replication in cultured macrophages which represent the primary cellular reservoir for HIV in the brain. HO-1 deficiency is associated with release of neurotoxic levels of glutamate from both HIV-infected and immune-activated macrophages; this glutamate-mediated neurotoxicity is suppressed by pharmacological induction of HO-1 expression in the macrophages. Thus, HO-1 induction could be a therapeutic strategy for neuroprotection against HIV infection and other neuroinflammatory brain diseases. Here, we review various stimuli and signaling pathways regulating HO-1 expression in macrophages, which could promote neuronal survival through HO-1-modulation of endogenous antioxidant and immune modulatory pathways, thus limiting the oxidative stress that can promote HIV disease progression in the CNS. The use of pharmacological inducers of endogenous HO-1 expression as potential adjunctive neuroprotective therapeutics in HIV infection is also discussed.
Collapse
Affiliation(s)
| | - Dennis L Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 280 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Novel Mechanisms of Herbal Therapies for Inhibiting HMGB1 Secretion or Action. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:456305. [PMID: 25821489 PMCID: PMC4363608 DOI: 10.1155/2015/456305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/24/2014] [Accepted: 10/01/2014] [Indexed: 12/11/2022]
Abstract
High mobility group box 1 (HMGB1) is an evolutionarily conserved protein and is constitutively expressed in virtually all types of cells. In response to microbial infections, HMGB1 is secreted from activated immune cells to orchestrate rigorous inflammatory responses. Here we review the distinct mechanisms by which several herbal components inhibit HMGB1 action or secretion, such as by modulating inflammasome activation, autophagic degradation, or endocytic uptake. In light of the reciprocal interactions between these cellular processes, it is possible to develop more effective combinational herbal therapies for the clinical management of inflammatory diseases.
Collapse
|
13
|
Kim KS, Cui X, Lee DS, Ko W, Sohn JH, Yim JH, An RB, Kim YC, Oh H. Inhibitory effects of benzaldehyde derivatives from the marine fungus Eurotium sp. SF-5989 on inflammatory mediators via the induction of heme oxygenase-1 in lipopolysaccharide-stimulated RAW264.7 macrophages. Int J Mol Sci 2014; 15:23749-65. [PMID: 25535073 PMCID: PMC4284790 DOI: 10.3390/ijms151223749] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 12/30/2022] Open
Abstract
Two benzaldehyde derivatives, flavoglaucin (1) and isotetrahydro-auroglaucin (2), were isolated from the marine fungus Eurotium sp. SF-5989 through bioassay- and 1H NMR-guided investigation. In this study, we evaluated the anti-inflammatory effects of these compounds in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We demonstrated that compounds 1 and 2 markedly inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production by suppressing inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression without affecting cell viability. We also demonstrated that the compounds reduced the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Furthermore, compounds 1 and 2 inhibited LPS-induced nuclear factor-κB (NF-κB) activation by suppressing phosphorylation of IkappaB (IκB). These results indicated that the anti-inflammatory effects of these benzaldehyde derivatives in LPS-stimulated RAW264.7 macrophages were due to the inactivation of the NF-κB pathway. In addition, compounds 1 and 2 induced heme oxygenase-1 (HO-1) expression through the nuclear transcription factor-E2-related factor 2 (Nrf2) translocation. The inhibitory effects of compounds 1 and 2 on the production of pro-inflammatory mediators and on NF-κB binding activity were reversed by HO-1 inhibitor tin protoporphyrin (SnPP). Thus, the anti-inflammatory effects of compounds 1 and 2 also correlated with their ability of inducing HO-1 expression.
Collapse
Affiliation(s)
- Kyoung-Su Kim
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Xiang Cui
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Dong-Sung Lee
- Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Korea.
| | - Wonmin Ko
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan 617-736, Korea.
| | - Joung Han Yim
- Korea Polar Research Institute, KORDI, 7-50 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea.
| | - Ren-Bo An
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, 977 Gongyuan Road, Yanji 133002, China.
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
| |
Collapse
|
14
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
15
|
Metabolism-mediated drug interaction potential of HS-23, a new herbal drug for the treatment of sepsis in human hepatocytes and liver microsomes. Arch Pharm Res 2014; 38:171-7. [DOI: 10.1007/s12272-014-0453-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/13/2014] [Indexed: 01/04/2023]
|
16
|
Itoh T, Koketsu M, Yokota N, Touho S, Ando M, Tsukamasa Y. Reduced scytonemin isolated from Nostoc commune suppresses LPS/IFNγ-induced NO production in murine macrophage RAW264 cells by inducing hemeoxygenase-1 expression via the Nrf2/ARE pathway. Food Chem Toxicol 2014; 69:330-8. [DOI: 10.1016/j.fct.2014.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/17/2022]
|
17
|
Lu B, Wang C, Wang M, Li W, Chen F, Tracey KJ, Wang H. Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev Clin Immunol 2014; 10:713-27. [PMID: 24746113 DOI: 10.1586/1744666x.2014.909730] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
High mobility group box 1 (HMGB1) is an evolutionarily conserved protein, and is constitutively expressed in virtually all types of cells. Infection and injury converge on common inflammatory responses that are mediated by HMGB1 secreted from immunologically activated immune cells or passively released from pathologically damaged cells. Herein we review the emerging molecular mechanisms underlying the regulation of pathogen-associated molecular patterns (PAMPs)-induced HMGB1 secretion, and summarize many HMGB1-targeting therapeutic strategies for the treatment of infection- and injury-elicited inflammatory diseases. It may well be possible to develop strategies that specifically attenuate damage-associated molecular patterns (DAMPs)-mediated inflammatory responses without compromising the PAMPs-mediated innate immunity for the clinical management of infection- and injury-elicited inflammatory diseases.
Collapse
Affiliation(s)
- Ben Lu
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | | | | | | | | | | | | |
Collapse
|
18
|
Anuranjani, Bala M. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - implication in modification of radiation damage. Redox Biol 2014; 2:832-46. [PMID: 25009785 PMCID: PMC4085347 DOI: 10.1016/j.redox.2014.02.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022] Open
Abstract
Whole body exposure to low linear energy transfer (LET) ionizing radiations (IRs) damages vital intracellular bio-molecules leading to multiple cellular and tissue injuries as well as pathophysiologies such as inflammation, immunosuppression etc. Nearly 70% of damage is caused indirectly by radiolysis of intracellular water leading to formation of reactive oxygen species (ROS) and free radicals and producing a state of oxidative stress. The damage is also caused by direct ionization of biomolecules. The type of radiation injuries is dependent on the absorbed radiation dose. Sub-lethal IR dose produces more of DNA base damages, whereas higher doses produce more DNA single strand break (SSBs), and double strand breaks (DSBs). The Nrf2-ARE pathway is an important oxidative stress regulating pathway. The DNA DSBs repair regulated by MRN complex, immunomodulation and inflammation regulated by HMGB1 and various types of cytokines are some of the key pathways which interact with each other in a complex manner and modify the radiation response. Because the majority of radiation damage is via oxidative stress, it is essential to gain in depth understanding of the mechanisms of Nrf2-ARE pathway and understand its interactions with MRN complex, HMGB1 and cytokines to increase our understanding on the radiation responses. Such information is of tremendous help in development of medical radiation countermeasures, radioprotective drugs and therapeutics. Till date no approved and safe countermeasure is available for human use. This study reviews the Nrf2-ARE pathway and its crosstalk with MRN-complex, HMGB1 and cytokines (TNF-a, IL-6, IFN-? etc.). An attempt is also made to review the modification of some of these pathways in presence of selected antioxidant radioprotective compounds or herbal extracts. Exposure to low linear energy transfer (LET) ionizing radiation (IR) causes intracellular oxidative stress and activate the Nrf2-ARE antioxidant pathway. Irradiation also causes inflammation and DNA damage which affect other pathways related to MRN complex and HMGB1 proteins. The antioxidant Keap1-Nrf2-ARE pathway most importantly regulates intracellular oxidative stress. The interaction of Keap1-Nrf2-ARE pathway with HMGB1 regulated inflammation; MRN complex regulated DNA repair is reviewed.
Collapse
Key Words
- .OH, hydroxyl radical
- AP1, activator protein-1
- ARE, antioxidant response element
- ATM, ataxia telangiectasia mutagenesis
- Bcl-2, B cell lymphoma-2 protein
- CBP, CREB-binding protein
- Chk-2, checkpoint kinase-2 protein
- DAMP, death associated molecular pattern
- DDR, DNA damage response
- DGR, double glycine repeats
- DSB, double strands break
- FGF, fibroblast growth factor
- FGF2, fibroblast growth factor-2
- GM-CSF, granulocytes macrophages colony stimulating factor
- GPx, glutathione peroxidase
- GSH, glutathione (reduced)
- GSK-3ß, glycogen synthase kinase 3 beta
- HMGB1
- HMGB1, high mobility group Box 1
- HR, homologous recombination
- IR, ionizing radiation
- Keap1, Kelch like ECH associated protein 1
- LET, linear energy transfer
- MDA, malondialdehyde
- MIP, macrophages inflammatory proteins
- MRN complex
- MRN, Mre11, Rad50 and Nbs1 subunits
- MRP, multidrug resistance protein
- NADPH, nicotinamide adenine dinucleotide phosphate
- NES, nuclear export sequence
- NHEJ, non-homologous end joining
- NLS, nuclear localization sequence
- Nrf2-ARE pathway
- PKC, protein kinase C
- RAGE, receptor for advance glycation end products
- RIF, radiation induced foci
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- Radio-modification
- SOD, superoxide dismutase
- SSBs, single strand DNA breaks
- TRAIL, TNF related apoptosis inducing ligand
- TWEAK
- TWEAK, tumour necrosis factor weak inducer of apoptosis
- VEGF, vascular endothelial growth factor
- VSMC, vascular smooth muscle cells
- bFGF, basal fibroblast growth factor
- t-BHQ, tert butyl hydroquinone
Collapse
Affiliation(s)
- Anuranjani
- Radiation Biology Department, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi -110054, India
| | - Madhu Bala
- Radiation Biology Department, Institute of Nuclear Medicine and Allied Sciences, Brig SK Mazumdar Marg, Delhi -110054, India
| |
Collapse
|
19
|
Abstract
INTRODUCTION Sepsis refers to the host's deleterious and non-resolving systemic inflammatory response to microbial infections and represents the leading cause of death in the intensive care unit. The pathogenesis of sepsis is complex, but partly mediated by a newly identified alarmin molecule, the high mobility group box 1 (HMGB1). AREAS COVERED Here we review the evidence that support extracellular HMGB1 as a late mediator of experimental sepsis with a wider therapeutic window and discuss the therapeutic potential of HMGB1-neutralizing antibodies and small molecule inhibitors (herbal components) in experimental sepsis. EXPERT OPINION It will be important to evaluate the efficacy of HMGB1-targeting strategies for the clinical management of human sepsis in the future.
Collapse
Affiliation(s)
- Haichao Wang
- The Feinstein Institute for Medical Research and North Shore University Hospital, The Hofstra North Shore - LIJ School of Medicine, Laboratory of Emergency Medicine, North Shore-LIJ Health System , 350 Community Drive, Manhasset, NY 11030 , USA +1 516 562 2823 ; +1 516 562 1022 ;
| | | | | |
Collapse
|
20
|
Wang G, Han D, Zhang Y, Xie X, Wu Y, Li S, Li M. A novel hypothesis: up-regulation of HO-1 by activation of PPARγ inhibits HMGB1-RAGE signaling pathway and ameliorates the development of ALI/ARDS. J Thorac Dis 2013; 5:706-10. [PMID: 24255785 DOI: 10.3978/j.issn.2072-1439.2013.08.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/27/2013] [Indexed: 01/11/2023]
Abstract
Suppression of inflammation in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) by activation of peroxisome proliferator-activated receptor (PPAR)-γ has been well demonstrated in animal model studies. However, the molecular mechanisms underlying this effect remain largely unknown. The induction of heme oxygenase-1 (HO-1) exerts antioxidant, anti-apoptotic, and immunomodulatory functions in various situations. Recent studies have indicated that activation of PPARγ induces expression of HO-1, suggesting that HO-1 is a downstream target of PPARγ. Meanwhile, study has shown that activation of PPARγ ameliorates inflammatory response of cells by inhibiting high mobility group box 1 (HMGB1) release. In pulmonary system, binding of HMGB1 to its receptor for advanced glycation end-products (RAGE) triggers the production of pro-inflammatory cytokines, chemokines, adhesion molecules and reactive oxygen species, promoting the development of ALI/ARDS. Based on the recent findings that induction of HO-1 protects tissues and cells from extracellular stress by reducing HMGB1 production, we propose the hypothesis that HO-1 may mediate the protective effects of PPARγ on inhibition of HMGB1-RAGE signaling pathway to attenuate the development of ALI/ARDS.
Collapse
Affiliation(s)
- Guizuo Wang
- Department of Respiratory Medicine, the Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
NF-κB-targeted anti-inflammatory activity of Prunella vulgaris var. lilacina in macrophages RAW 264.7. Int J Mol Sci 2013; 14:21489-503. [PMID: 24177568 PMCID: PMC3856017 DOI: 10.3390/ijms141121489] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/29/2013] [Accepted: 10/23/2013] [Indexed: 11/17/2022] Open
Abstract
Prunella vulgaris var. lilacina, a herbal medicine, has long been used in Korea for the treatment of sore throat, and to alleviate fever and accelerate wound healing. Although the therapeutic effect of P. vulgaris var. lilacina is likely associated with anti-inflammatory activity, the precise underlying mechanisms are largely unknown. Here, we sought to elucidate the possible mechanisms of the anti-inflammatory activity. We have investigated the anti-inflammatory activity of the various solvent fractions (hexane, butanol, chloroform and water) from the ethanol extract of P. vulgaris var. lilacina in activated macrophages. The hexane fraction exhibited higher anti-inflammatory activities, inducing inhibition of nitric oxide and prostaglandin E2 production as well as inducible nitric oxide synthase, cyclooxygenase-2, and tumor necrosis factor-α mRNA expression in response to lipopolysaccharide stimulation. Moreover, the hexane fraction from P. vulgaris var. lilacina significantly inhibited the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the nuclear translocation of the NF-κB p50 and p65 subunits. These results indicate that P. vulgaris var. lilacina has an anti-inflammatory capacity in vitro, suggesting that it could be a potential source of natural anti-inflammatory agents.
Collapse
|
22
|
Yang Y, Nan H, Wang G, Yang W, Xu J. Comparative Determination of the Volatile Components ofPrunella vulgarisL. from Different Geographical Origins by Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.782551] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Kim N, Hwangbo C, Lee S, Lee JH. Eupatolide inhibits PDGF-induced proliferation and migration of aortic smooth muscle cells through ROS-dependent heme oxygenase-1 induction. Phytother Res 2013; 27:1700-7. [PMID: 23297002 DOI: 10.1002/ptr.4924] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 12/30/2022]
Abstract
The abnormal proliferation and migration of vascular smooth muscle cell (VSMC) contributes importantly to the pathogenesis of atherosclerosis and restenosis. Here, we investigated the effects of eupatolide (EuTL), a sesquiterpene lactone isolated from the medicinal plant Inula britannica, on platelet-derived growth factor (PDGF)-induced proliferation and migration of primary rat aortic smooth muscle cells (RASMCs), as well as its underlying mechanisms. EuTL remarkably inhibited PDGF-induced proliferation and migration of RASMCs. Treatment of RASMCs with EuTL induced both protein and mRNA expression of heme oxygenase-1 (HO-1). SB203580 (a p38 inhibitor), SP600125 (a JNK inhibitor), U0126 (a MEK inhibitor) and LY294002 (a PI3K inhibitor) did not suppress EuTL-induced HO-1 expression; however, N-acetylcysteine (NAC, an antioxidant) blocked EuTL-induced HO-1 expression. Moreover, treatment of RASMCs with EuTL increased reactive oxygen species (ROS) accumulation and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2); however, this translocation was also inhibited by NAC. NAC or inhibition of HO-1 significantly attenuated the inhibitory effects of EuTL on PDGF-induced proliferation and migration of RASMCs. Taken together, these findings suggest that EuTL could suppress PDGF-induced proliferation and migration of VSMCs through HO-1 induction via ROS-Nrf2 pathway and may be a potential HO-1 inducer for preventing or treating vascular diseases.
Collapse
Affiliation(s)
- Namho Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 200-701, Republic of Korea
| | | | | | | |
Collapse
|
24
|
Park EJ, Kim YM, Park SW, Kim HJ, Lee JH, Lee DU, Chang KC. Induction of HO-1 through p38 MAPK/Nrf2 signaling pathway by ethanol extract of Inula helenium L. reduces inflammation in LPS-activated RAW 264.7 cells and CLP-induced septic mice. Food Chem Toxicol 2013; 55:386-95. [PMID: 23298677 DOI: 10.1016/j.fct.2012.12.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 12/29/2022]
Abstract
High mobility group box 1 (HMGB1) plays a crucial mediator in the pathogenesis of many inflammatory diseases. We recently proposed that heme oxygenase-1 (HO-1) negatively regulates HMGB1 in inflammatory conditions. We investigated whether ethanol extract of Inula helenium L. (EIH) activates p38 MAPK/Nrf2/HO-1 pathways in RAW264.7 cells and reduces inflammation in CLP-induced septic mice. EIH induced expression of HO-1 protein in a time- and concentration-dependent manner. EIH significantly diminished HO-1 expression in siNrf2 RNA-transfected cells. As expected, the inhibited expression of iNOS/NO, COX-2/PGE2, HMGB1 release by EIH in LPS-activated RAW264.7 cells was significantly reversed by siHO-1RNA transfection. Furthermore, EIH not only inhibited NF-κB luciferase activity, phosphorylation of IκBα in LPS-activated cells but also significantly suppressed expression of adhesion molecules (ICAM-1 and VCAM-1) in TNF-α activated human umbilical vein endothelial cells. The induction of HO-1 by EIH was inhibited by SB203580 but not by SP600125, PD98059, nor LY294002. Most importantly, administration of EIH significantly reduced not only increase in blood HMGB1, ALT, AST, BUN, creatinine levels but also decrease macrophage infiltrate in the liver of septic mice, which were reversed by ZnPPIX, a HO-1 inhibitor. We concluded that EIH has anti-inflammatory effect via the induction of p38 MAPK-dependent HO-1 signaling pathway.
Collapse
Affiliation(s)
- Eun Jung Park
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 660-290, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Wurtele ES, Chappell J, Jones AD, Celiz MD, Ransom N, Hur M, Rizshsky L, Crispin M, Dixon P, Liu J, P Widrlechner M, Nikolau BJ. Medicinal plants: a public resource for metabolomics and hypothesis development. Metabolites 2012; 2:1031-59. [PMID: 24957774 PMCID: PMC3901233 DOI: 10.3390/metabo2041031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 11/16/2022] Open
Abstract
Specialized compounds from photosynthetic organisms serve as rich resources for drug development. From aspirin to atropine, plant-derived natural products have had a profound impact on human health. Technological advances provide new opportunities to access these natural products in a metabolic context. Here, we describe a database and platform for storing, visualizing and statistically analyzing metabolomics data from fourteen medicinal plant species. The metabolomes and associated transcriptomes (RNAseq) for each plant species, gathered from up to twenty tissue/organ samples that have experienced varied growth conditions and developmental histories, were analyzed in parallel. Three case studies illustrate different ways that the data can be integrally used to generate testable hypotheses concerning the biochemistry, phylogeny and natural product diversity of medicinal plants. Deep metabolomics analysis of Camptotheca acuminata exemplifies how such data can be used to inform metabolic understanding of natural product chemical diversity and begin to formulate hypotheses about their biogenesis. Metabolomics data from Prunella vulgaris, a species that contains a wide range ofantioxidant, antiviral, tumoricidal and anti-inflammatory constituents, provide a case study of obtaining biosystematic and developmental fingerprint information from metabolite accumulation data in a little studied species. Digitalis purpurea, well known as a source of cardiac glycosides, is used to illustrate how integrating metabolomics and transcriptomics data can lead to identification of candidate genes encoding biosynthetic enzymes in the cardiac glycoside pathway. Medicinal Plant Metabolomics Resource (MPM) [1] provides a framework for generating experimentally testable hypotheses about the metabolic networks that lead to the generation of specialized compounds, identifying genes that control their biosynthesis and establishing a basis for modeling metabolism in less studied species. The database is publicly available and can be used by researchers in medicine and plant biology.
Collapse
Affiliation(s)
- Eve Syrkin Wurtele
- Department of Genetics, Cell and Developmental Biology, Iowa State University, Ames, IA 50011, USA.
| | - Joe Chappell
- Department of Cellular and Molecular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - A Daniel Jones
- Department of Biochemistry & Molecular Biology and Deptment of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Mary Dawn Celiz
- Department of Biochemistry & Molecular Biology and Deptment of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Nick Ransom
- Department of Genetics, Cell and Developmental Biology, Iowa State University, Ames, IA 50011, USA
| | - Manhoi Hur
- Department of Genetics, Cell and Developmental Biology, Iowa State University, Ames, IA 50011, USA
| | - Ludmila Rizshsky
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011, USA
| | - Matthew Crispin
- Department of Genetics, Cell and Developmental Biology, Iowa State University, Ames, IA 50011, USA
| | - Philip Dixon
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Jia Liu
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Mark P Widrlechner
- Department of Ecology, Evolution, and Organismal Biology and Department of Horticulture, Iowa State University, Ames, IA 50011, USA
| | - Basil J Nikolau
- Center for Metabolic Biology, The Plant Science Institute, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|