1
|
Panda G, Dehury S, Behuria HG, Biswal BK, Jena AK, Mohanty I, Hotta S, Padhi SK, Sahu SK. Gymnema saponin-induced lipid flip-flop identifies rigid membrane phenotype of methicillin resistant S. aureus and enhances it's antibiotic susceptibility. Arch Biochem Biophys 2025; 765:110303. [PMID: 39805384 DOI: 10.1016/j.abb.2025.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Our previous study revealed that lipid flip-flop inducing phytochemicals from Gymnema sylvestre increase membrane permeability of antimicrobials in S. aureus. However, their lipid flipping and membrane permeabilizing effect on methicillin resistant S. aureus (MRSA) membrane that has intrinsically higher aminoacylated lipid content compared to methicillin sensitive S. aureus (MSSA) is poorly characterized. Gymnema saponins, gymnemic acid I and IV significantly increased the antibiotic susceptibility in both MSSA and MRSA. MRSA exhibited a rigid membrane with lipid diffusion coefficient 0.0002 μm2/s compared to the MSSA membrane lipids with diffusion coefficient 1.48 μm2/s. Further, unlike MSSA, MRSA cells inhibited fusion of fluid liposomes with their plasma membrane. In vitro assay on reconstituted membrane vesicles revealed that Gymnema saponins induced 60 % lipid flipping in MSSA membrane compared to only 20 % lipid flipping in MRSA, indicating significantly lower Gymnema saponin-induced trans-bilayer lipid mobility in MRSA. Gymnema saponins induced significantly lower crystal violet uptake, release of cellular protein, cell shrinkage and lysis in MRSA compared to MSSA. Gymnema saponins led to dose-dependent inhibition of lipid-aminoacylation in both MSSA and MRSA making their membranes more negative compared to untreated control cells. In silico analysis reveals binding of both gymnemic acid I and IV to multiple peptide resistance factor (binding energy ∼ 7.5 kCal), the protein responsible for lipid aminoacylation in S. aureus. For the first time, our study reveals that MRSA membrane with higher aminoacyl-PG compared to MSSA shows significantly lower rate of diffusion and trans-bilayer flip-flop of lipids. Further, gymnemic acids are useful probes for identification, characterization and drug sensitization of rigid membrane MRSA phenotypes.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha, 757003, India
| | - Swagatika Dehury
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha, 757003, India
| | - Himadri Gourav Behuria
- Multi-disciplinary Research Unit, PRM Medical College and Hospital, Baripada, Odisha, 757107, India
| | - Bijesh Kumar Biswal
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ashis Kumar Jena
- Department of Chemistry, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha, 757003, India
| | - Indrani Mohanty
- Department of Microbiology, PRM Medical College and Hospital, Baripada, Odisha, 757107, India
| | - Sasmita Hotta
- Department of Microbiology, PRM Medical College and Hospital, Baripada, Odisha, 757107, India
| | - Santosh Kumar Padhi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, India
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, (Erstwhile: North Orissa University), Baripada, Odisha, 757003, India.
| |
Collapse
|
2
|
Sulaiman M, Ebehairy L, Nissapatorn V, Rahmatullah M, Villegas J, Dupa HJ, Verzosa RC, Dolma KG, Shabaz M, Lanting S, Rusdi NA, Abdullah NH, Bin Break MK, Khoo T, Wang W, Wiart C. Antibacterial phenolic compounds from the flowering plants of Asia and the Pacific: coming to the light. PHARMACEUTICAL BIOLOGY 2024; 62:713-766. [PMID: 39392281 PMCID: PMC11486068 DOI: 10.1080/13880209.2024.2407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT The emergence of pan-resistant bacteria requires the development of new antibiotics and antibiotic potentiators. OBJECTIVE This review identifies antibacterial phenolic compounds that have been identified in Asian and Pacific Angiosperms from 1945 to 2023 and analyzes their strengths and spectra of activity, distributions, molecular masses, solubilities, modes of action, structures-activities, as well as their synergistic effects with antibiotics, toxicities, and clinical potential. METHODS All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, and library search; other sources were excluded. We used the following combination of keywords: 'Phenolic compound', 'Plants', and 'Antibacterial'. This produced 736 results. Each result was examined and articles that did not contain information relevant to the topic or coming from non-peer-reviewed journals were excluded. Each of the remaining 467 selected articles was read critically for the information that it contained. RESULTS Out of ∼350 antibacterial phenolic compounds identified, 44 were very strongly active, mainly targeting the cytoplasmic membrane of Gram-positive bacteria, and with a molecular mass between 200 and 400 g/mol. 2-Methoxy-7-methyljuglone, [6]-gingerol, anacardic acid, baicalin, vitexin, and malabaricone A and B have the potential to be developed as antibacterial leads. CONCLUSIONS Angiosperms from Asia and the Pacific provide a rich source of natural products with the potential to be developed as leads for treating bacterial infections.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Layane Ebehairy
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology, University of Development Alternative, Dhaka, Bangladesh
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Helina Jean Dupa
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Ricksterlie C. Verzosa
- Faculty of Agriculture and Life Science, Davao Oriental State University, Mati, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal University, Gangtok, India
| | - Muhamad Shabaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute of Malaysia, Kepong, Malaysia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Teng Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
3
|
Wu Y, Pang Y, Yang H, Zhu L, Ma T, Chen X. Repurposed Anti-Multiple Sclerosis Drug Fty720 Targets Carbapenem-Resistant Acinetobacter baumannii via Multiple Pathways. Curr Microbiol 2024; 82:17. [PMID: 39607538 DOI: 10.1007/s00284-024-03986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Bacterial antimicrobial resistance (AMR), particularly multidrug resistance (MDR) in gram-negative bacterial strains, has emerged as a formidable challenge of substantial consequence, necessitating an urgent pursuit of a sustainable and efficacious strategic response. Repurposing nonantibiotic drugs as potential antibiotics or antibiotic adjuvants is a valuable approach to targeting MDR bacteria. A total of 1,750 FDA-approved drugs (APExBIO, USA) were screened to test their antimicrobial activities against MDR bacteria using the broth microdilution method according to the standard of the Clinical and Laboratory Standards Institute (CLSI). Microscale thermophoresis (MST) analysis was performed to detect the Fty720-LPS interactions. Fty720-indcued lipid changes were measured by untargeted lipidomic analysis. Isothermal titration calorimetry (ITC) analysis was used to determine the Fty720-lipid binding affinities. DNA degradation was assessed via agarose gel electrophoresis with ethidium bromide (EB) staining and visualized using a gel imaging system. Galleria mellonella larvae infection model and Mouse peritonitis infection models were used to evaluated the antibacterial ability of Fty720 in vivo. In this study, we identified Fty720, a pharmaceutical agent for treating multiple sclerosis, as a potent inhibitor of carbapenem-resistant Acinetobacter baumannii (CRAB). We demonstrated that Fty720 exerts antibacterial effects through multiple strategies, including disruption of the structural integrity of the membranes by interacting with LPS and glycerophospholipids, as well as degradation of bacterial DNA. Furthermore, through judicious structural modification, the pivotal role of the positively charged moiety (NH2) in Fty720's antibacterial activity was substantiated. Intriguingly, the translation of Fty720's antibacterial efficacy was demonstrated in vivo, substantiating its pronounced influence on elevating survival rates among models afflicted with MDR gram-negative bacterial infections. Fty720 targets CRAB via multiple pathways, including disruption of outer and inner membrane integrity and DNA degradation. This investigation unveils the multifaceted antibacterial mechanisms of Fty720 while concurrently delineating a prospective therapeutic avenue to counteract MDR gram-negative bacterial strains.
Collapse
Affiliation(s)
- Yuxuan Wu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Yufan Pang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Han Yang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Li Zhu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Tonghui Ma
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China.
| | - Xiuli Chen
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
4
|
Dai D, Qv M, Wu Q, Wang W, Huang L, Zhu L. Investigating flocculation mechanisms and ecological safety of cationic guar gum for rapid harvesting of microalgal cells. BIORESOURCE TECHNOLOGY 2024; 406:130979. [PMID: 38879054 DOI: 10.1016/j.biortech.2024.130979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024]
Abstract
Addressing the drawbacks of traditional flocculants on microalgae biomass harvesting is crucial for large-scale industrial applications of microalgae production. In this study, cationic bioflocculant was successfully prepared by introducing cationic groups into the side chain of guar gum, achieving in-situ algae flocculation efficiency of 83.5 % with the dosage of 18.0 mg/L under pH = 10.0. Through a harmonious integration of predictive modelling and practical experimentation, a superior cell flocculation capacity of 23.5 g/g was achieved. In addition, the environmental safety and biocompatibility of cationic guar gum was assessed, using the typical suspension quantitative bacteriostatic method and the fluorescent double-staining technique. The results showed that the inhibition efficiency of Staphylococcus aureus in the system containing 60.0 mg/L cationic guar gum was only 12.0 % and there was no inhibition against Escherichia coli colonies. These findings provide a safe and green flocculant for efficient microalgae harvesting and spent medium treatment.
Collapse
Affiliation(s)
- Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, No. 8, East Lake South Road, Wuhan 430079, China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, China.
| |
Collapse
|
5
|
Mohamed H, Marusich E, Divashuk M, Leonov S. A unique combination of natural fatty acids from Hermetia illucens fly larvae fat effectively combats virulence factors and biofilms of MDR hypervirulent mucoviscus Klebsiella pneumoniae strains by increasing Lewis acid-base/van der Waals interactions in bacterial wall membranes. Front Cell Infect Microbiol 2024; 14:1408179. [PMID: 39119288 PMCID: PMC11306206 DOI: 10.3389/fcimb.2024.1408179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Hypervirulent Klebsiella pneumoniae (hvKp) and carbapenem-resistant K. pneumoniae (CR-Kp) are rapidly emerging as opportunistic pathogens that have a global impact leading to a significant increase in mortality rates among clinical patients. Anti-virulence strategies that target bacterial behavior, such as adhesion and biofilm formation, have been proposed as alternatives to biocidal antibiotic treatments to reduce the rapid emergence of bacterial resistance. The main objective of this study was to examine the efficacy of fatty acid-enriched extract (AWME3) derived from the fat of Black Soldier Fly larvae (Hermetia illucens) in fighting against biofilms of multi-drug resistant (MDR) and highly virulent Klebsiella pneumoniae (hvKp) pathogens. Additionally, the study also aimed to investigate the potential mechanisms underlying this effect. Methods Crystal violet (CV) and ethidium bromide (EtBr) assays show how AWME3 affects the formation of mixed and mature biofilms by the KP ATCC BAA-2473, KPi1627, and KPM9 strains. AWME3 has shown exceptional efficacy in combating the hypermucoviscosity (HMV) virulent factors of KPi1627 and KPM9 strains when tested using the string assay. The rudimentary motility of MDR KPM9 and KP ATCC BAA-2473 strains was detected through swimming, swarming, and twitching assays. The cell wall membrane disturbances induced by AWME3 were detected by light and scanning electron microscopy and further validated by an increase in the bacterial cell wall permeability and Lewis acid-base/van der Waals characteristics of K. pneumoniae strains tested by MATS (microbial adhesion to solvents) method. Results After being exposed to 0.5 MIC (0.125 mg/ml) of AWME3, a significant reduction in the rudimentary motility of MDR KPM9 and KP ATCC BAA-2473 strains, whereas the treated bacterial strains exhibited motility between 4.23 ± 0.25 and 4.47 ± 0.25 mm, while the non-treated control groups showed significantly higher motility ranging from 8.5 ± 0.5 to 10.5 ± 0.5 mm. Conclusion In conclusion, this study demonstrates the exceptional capability of the natural AWME3 extract enriched with a unique combination of fatty acids to effectively eliminate the biofilms formed by the highly drug-resistant and highly virulent K. pneumoniae (hvKp) pathogens. Our results highlight the opportunity to control and minimize the rapid emergence of bacterial resistance through the treatment using AWME3 of biofilm-associated infections caused by hvKp and CRKp pathogens.
Collapse
Affiliation(s)
- Heakal Mohamed
- Agricultural Research Center (ARC), Plant Protection Research Institute (PPRI), Giza, Egypt
- The Laboratory of Personalized Chemoradiotherapy, Institute of Future Biophysics, Moscow, Russia
| | - Elena Marusich
- The Laboratory of Personalized Chemoradiotherapy, Institute of Future Biophysics, Moscow, Russia
| | - Mikhail Divashuk
- All-Russia Research Institute of Agricultural Biotechnology Kurchatov Genomic Center - VNIISB, Moscow, Russia
| | - Sergey Leonov
- The Laboratory of Personalized Chemoradiotherapy, Institute of Future Biophysics, Moscow, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Zhao R, Du B, Luo Y, Xue F, Wang H, Qu D, Han S, Heilbronner S, Zhao Y. Antimicrobial and anti-biofilm activity of a thiazolidinone derivative against Staphylococcus aureus in vitro and in vivo. Microbiol Spectr 2024; 12:e0232723. [PMID: 38329365 PMCID: PMC10913468 DOI: 10.1128/spectrum.02327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Staphylococcus aureus (S. aureus) causes many infections with significant morbidity and mortality. S. aureus can form biofilms, which can cause biofilm-associated diseases and increase resistance to many conventional antibiotics, resulting in chronic infection. It is critical to develop novel antibiotics against staphylococcal infections, particularly those that can kill cells embedded in biofilms. This study aimed to investigate the bacteriocidal and anti-biofilm activities of thiazolidinone derivative (TD-H2-A) against S. aureus. A total of 40 non-duplicate strains were collected, and the minimum inhibitory concentrations (MICs) of TD-H2-A were determined. The effect of TD-H2-A on established S. aureus mature biofilms was examined using a confocal laser scanning microscope (CLSM). The antibacterial effects of the compound on planktonic bacteria and bacteria in mature biofilms were investigated. Other characteristics, such as cytotoxicity and hemolytic activity, were researched. A mouse skin infection model was used, and a routine hematoxylin and eosin (H&E) staining was used for histological examination. The MIC values of TD-H2-A against the different S. aureus strains were 6.3-25.0 µg/mL. The 5 × MIC TD-H2-A killed almost all planktonic S. aureus USA300. The derivative was found to have strong bacteriocidal activity against cells in mature biofilms meanwhile having low cytotoxicity and hemolytic activity against Vero cells and human erythrocytes. TD-H2-A had a good bacteriocidal effect on S. aureus SA113-infected mice. In conclusion, TD-H2-A demonstrated good bacteriocidal and anti-biofilm activities against S. aureus, paving the way for the development of novel agents to combat biofilm infections and multidrug-resistant staphylococcal infections.IMPORTANCEStaphylococcus aureus, a notorious pathogen, can form a stubborn biofilm and develop drug resistance. It is crucial to develop new anti-infective therapies against biofilm-associated infections. The manuscript describes the new antibiotic to effectively combat multidrug-resistant and biofilm-associated diseases.
Collapse
Affiliation(s)
- Rui Zhao
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Bingyu Du
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Luo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Fen Xue
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Huanhuan Wang
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Di Qu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Simon Heilbronner
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Yanfeng Zhao
- Laboratory Medicine Center, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Weng Z, Zeng F, Wang M, Guo S, Tang Z, Itagaki K, Lin Y, Shen X, Cao Y, Duan JA, Wang F. Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption. J Adv Res 2024; 57:197-212. [PMID: 37137428 PMCID: PMC10918359 DOI: 10.1016/j.jare.2023.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
INTRODUCTION The continuous emergence and rapid spread of multidrug-resistant bacteria have accelerated the demand for the discovery of alternative antibiotics. Natural plants contain a variety of antibacterial components, which is an important source for the discovery of antimicrobial agents. OBJECTIVE To explore the antimicrobial activities and related mechanisms of two lavandulylated flavonoids, sophoraflavanone G and kurarinone in Sophora flavescens against methicillin-resistant Staphylococcus aureus. METHODS The effects of sophoraflavanone G and kurarinone on methicillin-resistant Staphylococcus aureus were comprehensively investigated by a combination of proteomics and metabolomics studies. Bacterial morphology was observed by scanning electron microscopy. Membrane fluidity, membrane potential, and membrane integrity were determined using the fluorescent probes Laurdan, DiSC3(5), and propidium iodide, respectively. Adenosine triphosphate and reactive oxygen species levels were determined using the adenosine triphosphate kit and reactive oxygen species kit, respectively. The affinity activity of sophoraflavanone G to the cell membrane was determined by isothermal titration calorimetry assays. RESULTS Sophoraflavanone G and kurarinone showed significant antibacterial activity and anti-multidrug resistance properties. Mechanistic studies mainly showed that they could target the bacterial membrane and cause the destruction of the membrane integrity and biosynthesis. They could inhibit cell wall synthesis, induce hydrolysis and prevent bacteria from synthesizing biofilms. In addition, they can interfere with the energy metabolism of methicillin-resistant Staphylococcus aureus and disrupt the normal physiological activities of the bacteria. In vivo studies have shown that they can significantly improve wound infection and promote wound healing. CONCLUSION Kurarinone and sophoraflavanone G showed promising antimicrobial properties against methicillin-resistant Staphylococcus aureus, suggesting that they may be potential candidates for the development of new antibiotic agents against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zebin Weng
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fei Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Minxin Wang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng Guo
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhijuan Tang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kiyoshi Itagaki
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yajuan Lin
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering, and Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yaqi Cao
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin-Ao Duan
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Fang Wang
- College of Food Science and Engineering, and Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Mangal S, Ranot N, Nosran A, Singh V, Chhibber S, Harjai K. In vivo efficacy of pyochelin-mediated delivery of zingerone in Pseudomonas aeruginosa-induced peritonitis. Future Microbiol 2023; 18:1339-1351. [PMID: 37962488 DOI: 10.2217/fmb-2023-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/14/2023] [Indexed: 11/15/2023] Open
Abstract
Aim: The efficacy of a pyochelin-zingerone conjugate (PZC) against Pseudomonas aeruginosa in vivo in a mouse model of peritonitis, as well as mode of action in vitro, were investigated. Methods & results: Intraperitoneal administration of PZC (220 mg kg-1 b.wt.) resulted in a significant reduction in bacterial count in liver tissue by 2 log10 on the 4th day post infection. This was supported by reduced levels of inflammatory markers, liver function, inflammatory cytokines and improved histopathology. PZC showed its ability to disrupt the cellular membrane, increase permeability of the membrane and leakage of intracellular contents of P. aeruginosa, resulting in its death. Conclusion: The present study reports the hepatoprotective potential of PZC in an experimental model of P. aeruginosa-induced peritonitis.
Collapse
Affiliation(s)
- Surabhi Mangal
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| | - Nishma Ranot
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| | - Anu Nosran
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| | - Vasundhara Singh
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, 160012, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, 160025, India
| |
Collapse
|
9
|
Orabi MAA, Hasan AH, AbouZid SF, El Amir D, Hetta MH, Awadh AAA, Alqahtani OS, Hatano T, El-Shanawany MA. Nutritional, Antioxidant, Antimicrobial, and Anticholinesterase Properties of Phyllanthus emblica: A Study Supported by Spectroscopic and Computational Investigations. Metabolites 2023; 13:1013. [PMID: 37755293 PMCID: PMC10537340 DOI: 10.3390/metabo13091013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Dietary fruits and vegetables play a vital role as food and drugs and are the main sources of antioxidant defences against degenerative diseases, such as brain dysfunctions, cardiovascular diseases, immune system deteriorations, and cancers, brought on by oxidative damage. Phyllanthus emblica is a significant herbal remedy used in conventional medicine to recover lost strength and power. In this research, the potential value of Phyllanthus emblica as a food and drug is researched. The total phenolic, total flavonoid, and total tannin contents as well as the nutritional value, vitamin C, vitamin E, and mineral contents of different organs of P. emblica were evaluated. The antioxidant and antimicrobial activities of extracts and fractions of different organs of P. emblica were determined. A total of eleven flavonoids, simple phenolic, tannin-related phenolic, and tannin molecules were isolated from a hydroalcoholic extract of the leaves and fruits. The structures were identified by spectroscopic data and comparison with the literature values as gallic acid (1), naringenin 7-O-(6″-O-galloyl)-β-D-glucopyranoside (2), 3,3'-di-O-methyl ellagic acid-4'-O-β-d-glucopyranoside (3), 1-O-galloyl glycerol (4), 1,6-di-O-galloyl-β-d-glucopyranoside (5), flavogallonic acid bislactone (6), corilagin (7), ethyl gallate (8), urolithin M5 (9), (E)-p-coumaroyl-1-O-β-d-glucopyranoside (10), and 1,2,4,6-tetra-O-galloyl-β-d-glucopyranoside (11). Among them, compounds 3 and 10 are first isolated from the plant. Molecular docking was performed to investigate the comparative interactions between positive controls (galantamine and donepezil) and selected compounds utilizing acetylcholinesterase (4EY7) as a target receptor. Results exhibited the potency of these compounds against the target receptor. In summary, P. emblica has a wealth of minerals, vitamins C and E, and polyphenolic phytochemicals that may work together to treat infectious disease, prevent and/or treat oxidative-damage-related illnesses including Alzheimer's disease.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 66454, Saudi Arabia;
| | - Aso Hameed Hasan
- Department of Chemistry, College of Science, University of Garmian, Kalar 46021, Kurdistan Region, Iraq;
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Sameh F. AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Dalia El Amir
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Mona H. Hetta
- Department of Pharmacognosy, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 66454, Saudi Arabia;
| | - Omaish Salman Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 66454, Saudi Arabia;
| | - Tsutomu Hatano
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan;
| | - Mohamed A. El-Shanawany
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| |
Collapse
|
10
|
Lam PL, Gambari R, Ho YW, Wong WY, Hau DKP, Leung TWT, Leung PHM, Chui CH. Anti-methicillin resistance Staphylococcus aureus and in vitro toxicology evaluation of corilagin-loaded gelatin/agar microspheres with potential biotextile applications. Int J Biol Macromol 2023; 237:123982. [PMID: 36907297 DOI: 10.1016/j.ijbiomac.2023.123982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/10/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has emerged since the early 1960s. The increasing resistance of pathogens to currently used antibiotics requires the urgent discovery of new antimicrobials effective in combating drug-resistant bacteria. From past to present, medicinal plants are useful to cure human diseases. Corilagin (β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose), commonly found in Phyllanthus species, exerts potentiating effect on β-lactams against MRSA. However, its biological effect may not be fully utilized. Therefore, incorporating microencapsulation technology with the delivery of corilagin would be more effective in utilizing the potential effect on biomedical applications. This work reports the development of a safe micro-particulate system which combined agar with gelatin as wall matrix materials for topical delivery of corilagin in order to eliminate the potential toxicity of the crosslinker formaldehyde. The optimal parameters for microsphere preparation were identified and the particle size of optimal microspheres was 20.11 μm ± 3.58. Antibacterial studies revealed that micro-trapped corilagin (minimum bactericidal concentration, MBC = 0.5 mg/mL) possessed a higher potency against MRSA than free corilagin (MBC = 1 mg/mL). The in vitro skin cytotoxicity showed the safety of the corilagin-loaded microspheres for topical applications, with approximately 90 % of HaCaT cell viability. Our results demonstrated the potential of corilagin-loaded gelatin/agar microspheres for the applicable bio-textile products to treat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- P-L Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - R Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Y-W Ho
- Allways Health Care Medical Centre, Tsuen Wan, Hong Kong, China
| | - W-Y Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - D K-P Hau
- Research and Development Division, One Health International Limited, Hong Kong, China
| | - T W-T Leung
- Comprehensive Oncology Centre, 3/F, Li Shu Fan Block, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - P H-M Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| | - C-H Chui
- Research and Development Division, One Health International Limited, Hong Kong, China.
| |
Collapse
|
11
|
Silén H, Salih EYA, Mgbeahuruike EE, Fyhrqvist P. Ethnopharmacology, Antimicrobial Potency, and Phytochemistry of African Combretum and Pteleopsis Species (Combretaceae): A Review. Antibiotics (Basel) 2023; 12:264. [PMID: 36830175 PMCID: PMC9951921 DOI: 10.3390/antibiotics12020264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Bacterial and fungal resistance to antibiotics is of growing global concern. Plants such as the African Combretum and Pteleopsis species, which are used in traditional medicine for the treatment of infections, could be good sources for antimicrobial extracts, drug scaffolds, and/or antibiotic adjuvants. In African countries, plant species are often used in combinations as traditional remedies. It is suggested that the plant species enhance the effects of each other in these combination treatments. Thus, the multi-species-containing herbal medications could have a good antimicrobial potency. In addition, plant extracts and compounds are known to potentiate the effects of antibiotics. The objective of this review is to compile the information on the botany, ethnopharmacology, ethnobotany, and appearance in herbal markets of African species of the genera Combretum and Pteleopsis. With this ethnobotanical information as a background, this review summarizes the information on the phytochemistry and antimicrobial potency of the extracts and their active compounds, as well as their combination effects with conventional antibiotics. The databases used for the literature search were Scopus, Elsevier, EBSCOhost, PubMed, Google Scholar, and SciFinder. In summary, a number of Combretum and Pteleopsis species were reported to display significant in vitro antibacterial and antifungal efficacy. Tannins, terpenes, flavonoids, stilbenes, and alkaloids-some of them with good antimicrobial potential-are known from species of the genera Combretum and Pteleopsis. Among the most potent antimicrobial compounds are arjunglucoside I (MIC 1.9 µg/mL) and imberbic acid (MIC 1.56 µg/mL), found in both genera and in some Combretum species, respectively. The in vitro antimicrobial properties of the extracts and compounds of many Combretum and Pteleopsis species support their traditional medicinal uses.
Collapse
Affiliation(s)
| | | | | | - Pia Fyhrqvist
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
12
|
Polysorbate 21 Can Modulate the Antibacterial Potential of Two Pyrazol Derivatives. Biomolecules 2022; 12:biom12121819. [PMID: 36551246 PMCID: PMC9776004 DOI: 10.3390/biom12121819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The combination of two compounds with known antimicrobial activity may, in some cases, be an effective way to limit the resistance to antibiotics of specific pathogens. Molecules carrying pyrazole moiety are well known for their bioactive properties and have wide applicability in the medical and pharmaceutical field. Surfactants have, among other useful properties, the ability to affect the growth of microorganisms. The paper reports on the effect of the combination of two pyrazole derivatives, (1H-pyrazol-1-yl) methanol 1-hydroxymethylpyrazole (SAM1) and 1,1'methandiylbis (1H-pyrazol) (AM1), with sorbitan monolaurate (polysorbate 21, Tween 21, T21) on the growth of Gram-positive and Gram-negative bacteria. The results demonstrated a different ability of this combination to inhibit Staphylococcus aureus and Escherichia coli. T21 intensified the inhibitory activity of the pyrazoles to a greater extent in the Gram-negative bacteria compared to the Gram-positive ones, a fact confirmed by time-kill experiments. The experimental data showed that the association of T21 with the pyrazoles led to the increased release of intracellular material and a more intense uptake of crystal violet, which indicates that the potentiation of the antibacterial effect was based on the modification of the normal permeability of bacterial cells. T21 acted as a modulating factor and increased the permeability of the membrane, allowing the accelerated penetration of the pyrazoles inside the bacterial cells. This fact is important in controlling the global increase in microbial resistance to antibiotics and antimicrobials and finding viable solutions to overcome the antibiotic crisis. The paper highlights the possibility of using non-toxic surfactant molecules in antimicrobial combinations with practical applications. This could widen the range of adjuvants in applications which would be useful in the control of resistant microorganisms.
Collapse
|
13
|
Samet S, Ayachi A, Fourati M, Mallouli L, Allouche N, Treilhou M, Téné N, Mezghani-Jarraya R. Antioxidant and Antimicrobial Activities of Erodium arborescens Aerial Part Extracts and Characterization by LC-HESI-MS 2 of Its Acetone Extract. Molecules 2022; 27:molecules27144399. [PMID: 35889269 PMCID: PMC9318634 DOI: 10.3390/molecules27144399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
The phytochemical analysis of antioxidant and antibacterial activities of Erodium arborescens aerial part extracts constitute the focus of this research. The chemical composition of an acetone extract was investigated using LC-HESI-MS2, which revealed the presence of 70 compounds. The major identified components were tannin derivatives. Total polyphenol and total flavonoid contents were assessed in plant extracts (hexane, ethyl acetate, acetone and methanol). The results showed that the acetone extract exhibited the highest contents of polyphenols and flavonoids, 895.54 and 36.39 mg QE/g DE, respectively. Furthermore, when compared to other extracts, Erodium arborescens acetone extract was endowed with the highest antioxidant activity with 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and total antioxidant capacity (TAC) tests. In addition, the four extracts of Erodium arborescens showed variable degrees of antimicrobial activity against the tested strains, and the interesting activity was obtained with acetone and methanol extracts.
Collapse
Affiliation(s)
- Sonda Samet
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia; (S.S.); (A.A.); (N.A.); (R.M.-J.)
| | - Amani Ayachi
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia; (S.S.); (A.A.); (N.A.); (R.M.-J.)
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Enzyme Engineering of the Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P.B. 1177, Sfax 3018, Tunisia; (M.F.); (L.M.)
| | - Lotfi Mallouli
- Laboratory of Microbial Biotechnology and Enzyme Engineering of the Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P.B. 1177, Sfax 3018, Tunisia; (M.F.); (L.M.)
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia; (S.S.); (A.A.); (N.A.); (R.M.-J.)
| | - Michel Treilhou
- Equipe BTSB-EA 7417, Institut National Universitaire Jean-François Champollion, Université de Toulouse, Place de Verdun, 81012 Albi, France;
| | - Nathan Téné
- Equipe BTSB-EA 7417, Institut National Universitaire Jean-François Champollion, Université de Toulouse, Place de Verdun, 81012 Albi, France;
- Correspondence: ; Tel.: +33-667276471
| | - Raoudha Mezghani-Jarraya
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia; (S.S.); (A.A.); (N.A.); (R.M.-J.)
| |
Collapse
|
14
|
Torgbo S, Sukatta U, Kamonpatana P, Sukyai P. Ohmic heating extraction and characterization of rambutan (Nephelium lappaceum L.) peel extract with enhanced antioxidant and antifungal activity as a bioactive and functional ingredient in white bread preparation. Food Chem 2022; 382:132332. [DOI: 10.1016/j.foodchem.2022.132332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 01/21/2023]
|
15
|
Richa K, Temsurenla, Supong A, Ajungla T, Sinha UB. Mechanistic Insight into the Antibacterial Activity of Isothiocyanates via Cell Membrane Permeability Alteration. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Ljoljić Bilić V, Gašić UM, Milojković-Opsenica D, Rimac H, Vuković Rodriguez J, Vlainić J, Brlek-Gorski D, Kosalec I. Antibacterial Fractions from Erodium cicutarium Exposed—Clinical Strains of Staphylococcus aureus in Focus. Antibiotics (Basel) 2022; 11:antibiotics11040492. [PMID: 35453242 PMCID: PMC9027144 DOI: 10.3390/antibiotics11040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Followed by a buildup of its phytochemical profile, Erodium cicutarium is being subjected to antimicrobial investigation guided with its ethnobotanical use. The results of performed in vitro screening on Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans strains, show that E. cicutarium has antimicrobial activity, with a particular emphasis on clinical S. aureus strains—both the methicillin sensitive (MSSA) and the methicillin resistant (MRSA) S. aureus. Experimental design consisted of general methods (the serial microdilution broth assay and the agar well diffusion assay), as well as observing bactericidal/bacteriostatic activity through time (the “time-kill” assay), investigating the effect on cell wall integrity and biofilm formation, and modulation of bacterial hemolysis. Observed antibacterial activity from above-described methods led to further activity-guided fractionation of water and methanol extracts using bioautography coupled with UHPLC-LTQ OrbiTrap MS4. It was determined that active fractions are predominantly formed by gallic acid derivatives and flavonol glycosides. Among the most active phytochemicals, galloyl-shikimic acid was identified as the most abundant compound. These results point to a direct connection between galloyl-shikimic acid and the observed E. cicutarium antibacterial activity, and open several new research approaches for future investigation.
Collapse
Affiliation(s)
- Vanja Ljoljić Bilić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (V.L.B.); (H.R.)
| | - Uroš M. Gašić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | | | - Hrvoje Rimac
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (V.L.B.); (H.R.)
| | | | - Josipa Vlainić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Bošković Institute, 10000 Zagreb, Croatia;
| | - Diana Brlek-Gorski
- Croatian Institute of Public Health, Rockefeller Str. 7, 10000 Zagreb, Croatia;
| | - Ivan Kosalec
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (V.L.B.); (H.R.)
- Correspondence: ; Tel.: +385-1639-4492
| |
Collapse
|
17
|
Braga AS, Abdelbary MMH, Kim RR, de Melo FPDSR, Saldanha LL, Dokkedal AL, Conrads G, Esteves-Oliveira M, Magalhães AC. The Effect of Toothpastes Containing Natural Extracts on Bacterial Species of a Microcosm Biofilm and on Enamel Caries Development. Antibiotics (Basel) 2022; 11:antibiotics11030414. [PMID: 35326877 PMCID: PMC8944744 DOI: 10.3390/antibiotics11030414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
This study investigated the effects of herbal toothpaste on bacterial counts and enamel demineralization. Thirty-six bovine enamel samples were exposed to a microcosm biofilm using human saliva and McBain saliva (0.2% sucrose) for 5 days at 37 °C and first incubated anaerobically, then aerobically–capnophilically. The following experimental toothpaste slurries (2 × 2 min/day) were applied: (1) Vochysia tucanorum (10 mg/g); (2) Myrcia bella (5 mg/g); (3) Matricaria chamomilla (80 mg/g); (4) Myrrha and propolis toothpaste (commercial); (5) fluoride (F) and triclosan (1450 ppm F), 0.3% triclosan and sorbitol (Colgate®, positive control); (6) placebo (negative control). The pH of the medium was measured, bacteria were analyzed using quantitative polymerase chain reaction, and enamel demineralization was quantified using transverse microradiography. The total bacterial count was reduced by toothpaste containing Myrcia bella, Matricaria chamomilla, fluoride, and triclosan (commercial) compared to the placebo. As far as assessable, Myrcia bella, Matricaria chamomilla, and Myrrha and propolis (commercial) inhibited the outgrowth of S. mutans, while Lactobacillus spp. were reduced/eliminated by all toothpastes except Vochysia tucanorum. Mineral loss and lesion depth were significantly reduced by all toothpastes (total: 1423.6 ± 115.2 vol% × μm; 57.3 ± 9.8 μm) compared to the placebo (2420.0 ± 626.0 vol% × μm; 108.9 ± 21.17 μm). Herbal toothpastes were able to reduce enamel demineralization.
Collapse
Affiliation(s)
- Aline Silva Braga
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-191, Brazil; (A.S.B.); (R.R.K.)
| | - Mohamed Mostafa Hefny Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry and Periodontology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (M.M.H.A.); (G.C.)
| | - Rafaela Ricci Kim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-191, Brazil; (A.S.B.); (R.R.K.)
| | - Fernanda Pereira de Souza Rosa de Melo
- Department of Biological Sciences, School of Science, The São Paulo State University (UNESP), Bauru 17033-360, Brazil; (F.P.d.S.R.d.M.); (L.L.S.); (A.L.D.)
| | - Luiz Leonardo Saldanha
- Department of Biological Sciences, School of Science, The São Paulo State University (UNESP), Bauru 17033-360, Brazil; (F.P.d.S.R.d.M.); (L.L.S.); (A.L.D.)
| | - Anne Lígia Dokkedal
- Department of Biological Sciences, School of Science, The São Paulo State University (UNESP), Bauru 17033-360, Brazil; (F.P.d.S.R.d.M.); (L.L.S.); (A.L.D.)
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry and Periodontology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (M.M.H.A.); (G.C.)
| | - Marcella Esteves-Oliveira
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, 3010 Bern, Switzerland
- Correspondence: (M.E.-O.); (A.C.M.)
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-191, Brazil; (A.S.B.); (R.R.K.)
- Correspondence: (M.E.-O.); (A.C.M.)
| |
Collapse
|
18
|
Behuria H, Arumugam GS, Pal CK, Jena AK, Sahu SK. Lipid Flip-Flop-Inducing Antimicrobial Phytochemicals from Gymnema sylvestre are Bacterial Membrane Permeability Enhancers. ACS OMEGA 2021; 6:35667-35678. [PMID: 34984297 PMCID: PMC8717809 DOI: 10.1021/acsomega.1c05581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
An amphiphilic phytochemical fraction isolated from methanol extract of Gymnema sylvestre leaf powder contained six terpenoids, two flavonoids, and one alkaloid that induced rapid flip-flop of fluorescent phospholipid analog in the phosphatidyl choline bilayer. Lipid-flipping activity of the methanol-extracted fraction of G. sylvestre (MEFGS) was dose-dependent and time-dependent with a rate constant k = (12.09 ± 0.94) mg-1 min-1 that was saturable at (40 ± 1) % flipping of the fluorescent lipid analogue. Interactions of MEFGS phytochemicals with large unilamelar vesicles led to time-dependent change in their rounded morphology into irregular shapes, indicating their membrane-destabilizing activity. MEFGS exhibited antibacterial activity on Escherichia coli (MTCC-118), Staphylococcus aureus (MTCC-212), and Pseudomonas aeruginosa (MTCC-1035) with IC50 values 0.5, 0.35, and 0.1 mg/mL, respectively. Phytochemicals in MEFGS increased membrane permeabilization in all three bacteria, as indicated by 23, 17, and 17% increase in the uptake of crystal violet, respectively. MEFGS enhanced membrane damage, resulting in a 3-5 fold increase in leakage of cytosolic ions, 0.5-2 fold increase in leakage of PO4 -, and 15-20% increase in loss of cellular proteins. MEFGS synergistically increased the efficacy of curcumin, amoxillin, ampicillin, and cefotaxime on S. aureus probably by enhancing their permeability into the bacterium. For the first time, our study reveals that phytochemicals from G. sylvestre enhance the permeability of the bacterial plasma membrane by facilitating flip-flop of membrane lipids. Lipid-flipping phytochemicals from G. sylvestre can be used as adjuvant therapeutics to enhance the efficacy of antibacterials by increasing their bioavailability in the target bacteria.
Collapse
Affiliation(s)
- Himadri
Gourav Behuria
- Department
of Biotechnology, Maharaja Sriram Chandra
Bhanj Deo University (Erstwhile: North Orissa University), Mayurbhanj, Baripada, Odisha 757003, India
| | | | - Chandan Kumar Pal
- Department
of Chemistry, Maharaja Sriram Chandra Bhanj
Deo University (Erstwhile: North Orissa University), Mayurbhanj, Baripada, Odisha 757003, India
| | - Ashis Kumar Jena
- Department
of Chemistry, Maharaja Sriram Chandra Bhanj
Deo University (Erstwhile: North Orissa University), Mayurbhanj, Baripada, Odisha 757003, India
| | - Santosh Kumar Sahu
- Department
of Biotechnology, Maharaja Sriram Chandra
Bhanj Deo University (Erstwhile: North Orissa University), Mayurbhanj, Baripada, Odisha 757003, India
| |
Collapse
|
19
|
Hydrolyzable tannins (ellagitannins), flavonoids, pentacyclic triterpenes and their glycosides in antimycobacterial extracts of the ethnopharmacologically selected Sudanese medicinal plant Combretum hartmannianum Schweinf. Biomed Pharmacother 2021; 144:112264. [PMID: 34624680 DOI: 10.1016/j.biopha.2021.112264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
In Sudanese traditional medicine, decoctions, macerations, and tonics of the stem and root of Combretum hartmannianum are used for the treatment of persistent cough, a symptom that could be related to tuberculosis (TB). To verify these traditional uses, extracts from the stem wood, stem bark, and roots of C. hartmannianum were screened for their growth inhibitory effects against Mycobacterium smegmatis ATCC 14468. Methanol Soxhlet and ethyl acetate extracts of the root gave the strongest effects (MIC 312.5 and 625 µg/ml, respectively). HPLC-UV/DAD and UHPLC/QTOF-MS analysis of the ethyl acetate extract of the root led to the detection of 54 compounds, of which most were polyphenols and many characterized for the first time in C. hartmannianum. Among the major compounds were terflavin B and its two isomers, castalagin, corilagin, tellimagrandin I and its derivative, (S)-flavogallonic acid dilactone, punicalagin, and methyl-ellagic acid xylopyranoside. In addition, di-, tri- and tetra-galloyl glucose, combregenin, terminolic acid, cordifoliside D, luteolin, and quercetin-3-O-galactoside-7-O-rhamnoside-(2→1)-O-β-D-arabinopyranoside were characterized. Luteolin gave better growth inhibition against M. smegmatis (MIC 250 µg/ml) than corilagin, ellagic acid, and gallic acid (MIC 500-1000 µg/ml). Our study justifies the use of C. hartmannianum in Sudanese folk medicine against prolonged cough that could be related to TB infection. This study demonstrates that C. hartmannianum should be explored further for new anti-TB drug scaffolds and antibiotic adjuvants.
Collapse
|
20
|
Petrillo G, Tavani C, Bianchi L, Benzi A, Cavalluzzi MM, Salvagno L, Quintieri L, De Palma A, Caputo L, Rosato A, Lentini G. Densely Functionalized 2-Methylideneazetidines: Evaluation as Antibacterials. Molecules 2021; 26:3891. [PMID: 34202191 PMCID: PMC8271477 DOI: 10.3390/molecules26133891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/27/2023] Open
Abstract
Twenty-two novel, variously substituted nitroazetidines were designed as both sulfonamide and urethane vinylogs possibly endowed with antimicrobial activity. The compounds under study were obtained following a general procedure recently developed, starting from 4-nitropentadienoates deriving from a common β-nitrothiophenic precursor. While being devoid of any activity against fungi and Gram-negative bacteria, most of the title compounds performed as potent antibacterial agents on Gram-positive bacteria (E. faecalis and three strains of S. aureus), with the most potent congener being the 1-(4-chlorobenzyl)-3-nitro-4-(p-tolyl)azetidine 22, which displayed potency close to that of norfloxacin, the reference antibiotic (minimum inhibitory concentration values 4 and 1-2 μg/mL, respectively). Since 22 combines a relatively efficient activity against Gram-positive bacteria and a cytotoxicity on eucharyotic cells only at 4-times higher concentrations (inhibiting concentration on 50% of the cultured eukaryotic cells: 36 ± 10 μM, MIC: 8.6 μM), it may be considered as a promising hit compound for the development of a new series of antibacterials selectively active on Gram-positive pathogens. The relatively concise synthetic route described herein, based on widely available starting materials, could feed further structure-activity relationship studies, thus allowing for the fine investigation and optimization of the toxico-pharmacological profile.
Collapse
Affiliation(s)
- Giovanni Petrillo
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Cinzia Tavani
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Lara Bianchi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Alice Benzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genoa, Italy; (C.T.); (L.B.); (A.B.)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| | - Lara Salvagno
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| | - Laura Quintieri
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona 4, 70126 Bari, Italy;
| | - Leonardo Caputo
- Institute of Sciences of Food Production (CNR-ISPA) National Council of Research, Via G. Amendola, 122/O, 70126 Bari, Italy; (L.Q.); (L.C.)
| | - Antonio Rosato
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| | - Giovanni Lentini
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona n. 4, 70126 Bari, Italy; (M.M.C.); (L.S.); (A.R.); (G.L.)
| |
Collapse
|
21
|
Yang Y, Wang X, Gao Y, Niu X. Insight into the Dual Inhibition Mechanism of Corilagin against MRSA Serine/Threonine Phosphatase (Stp1) by Molecular Modeling. ACS OMEGA 2020; 5:32959-32968. [PMID: 33403257 PMCID: PMC7774088 DOI: 10.1021/acsomega.0c03955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Serine/threonine phosphatase (Stp1) is known to be involved in the regulation of cysteine phosphorylation levels in many different pathways, such as virulence factor regulation in methicillin-resistant Staphylococcus aureus (MRSA). Therefore, Stp1 can be used as a potential target for inhibiting MRSA infection. In this study, using virtual screening, we found that corilagin, a natural compound, was screened as a potential Stp1 inhibitor. Then, the phosphatase assay exhibited high inhibitory activity against Stp1. On the basis of the enzyme kinetics experiment, we found that corilagin exhibited a dual inhibitory mechanism of competitive and allosteric inhibition. To further elucidate the mechanism of interaction between corilagin and Stp1, molecular dynamics (MD) simulations were performed on the Stp1-corilagin complex. Consistent with the mutagenesis assays and fluorescence quenching assays results, the competitive and allosteric binding sites of corilagin with Stp1 were identified. In the competitive binding site of Stp1, Asn162, Ile164, Tyr199, and Lys232 were found to play a key role in this complex. In the allosteric binding site, hydrophobic interaction was the main binding force. The Asn142, Val145, Leu146, Pro152, and Phe179 residues of Stp1 were found to play a critical role in the binding of corilagin with Stp1. In this study, we used MD simulation to reveal the ligand-protein interactions, providing a theoretical basis. This research work, thus, lays down the foundation for the development of new Stp1 inhibitors to be utilized in the future.
Collapse
|
22
|
Cieśluk M, Deptuła P, Piktel E, Fiedoruk K, Suprewicz Ł, Paprocka P, Kot P, Pogoda K, Bucki R. Physics Comes to the Aid of Medicine-Clinically-Relevant Microorganisms through the Eyes of Atomic Force Microscope. Pathogens 2020; 9:pathogens9110969. [PMID: 33233696 PMCID: PMC7699805 DOI: 10.3390/pathogens9110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/01/2022] Open
Abstract
Despite the hope that was raised with the implementation of antibiotics to the treatment of infections in medical practice, the initial enthusiasm has substantially faded due to increasing drug resistance in pathogenic microorganisms. Therefore, there is a need for novel analytical and diagnostic methods in order to extend our knowledge regarding the mode of action of the conventional and novel antimicrobial agents from a perspective of single microbial cells as well as their communities growing in infected sites, i.e., biofilms. In recent years, atomic force microscopy (AFM) has been mostly used to study different aspects of the pathophysiology of noninfectious conditions with attempts to characterize morphological and rheological properties of tissues, individual mammalian cells as well as their organelles and extracellular matrix, and cells’ mechanical changes upon exposure to different stimuli. At the same time, an ever-growing number of studies have demonstrated AFM as a valuable approach in studying microorganisms in regard to changes in their morphology and nanomechanical properties, e.g., stiffness in response to antimicrobial treatment or interaction with a substrate as well as the mechanisms behind their virulence. This review summarizes recent developments and the authors’ point of view on AFM-based evaluation of microorganisms’ response to applied antimicrobial treatment within a group of selected bacteria, fungi, and viruses. The AFM potential in development of modern diagnostic and therapeutic methods for combating of infections caused by drug-resistant bacterial strains is also discussed.
Collapse
Affiliation(s)
- Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
| | - Paulina Paprocka
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Patrycja Kot
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland; (P.P.); (P.K.)
| | - Katarzyna Pogoda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, PL-15222 Bialystok, Poland; (M.C.); (P.D.); (E.P.); (K.F.); (Ł.S.)
- Correspondence:
| |
Collapse
|
23
|
Puljula E, Walton G, Woodward MJ, Karonen M. Antimicrobial Activities of Ellagitannins against Clostridiales perfringens, Escherichia coli, Lactobacillus plantarum and Staphylococcus aureus. Molecules 2020; 25:E3714. [PMID: 32824081 PMCID: PMC7465317 DOI: 10.3390/molecules25163714] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 11/26/2022] Open
Abstract
In this study, we tested the growth inhibition effect of 22 individual ellagitannins and of pentagalloylglucose on four bacterial species, i.e., Clostridiales perfringens, Escherichia coli, Lactobacillus plantarum and Staphylococcus aureus. All tested compounds showed antimicrobial effects against S. aureus, and almost all against E. coli and C. perfringens. For L. plantarum, no or very weak growth inhibition was detected. The level of inhibition was the greatest for S. aureus and the weakest for C. perfringens. For S. aureus, the molecular size or flexibility of ellagitannins did not show a clear relationship with their antimicrobial activity, even though rugosins E and D and pentagalloylglucose with four or five free galloyl groups had a stronger growth inhibition effect than the other ellagitannins with glucopyranose cores but with less free galloyl groups. Additionally, our results with S. aureus showed that the oligomeric linkage of ellagitannin might have an effect on its antimicrobial activity. For E. coli, the molecular size, but not the molecular flexibility, of ellagitannins seemed to be an important factor. For C. perfringens, both the molecular size and the flexibility of ellagitannin were important factors. In previous studies, corilagin was used as a model for ellagitannins, but our results showed that other ellagitannins are much more efficacious; therefore, the antimicrobial effects of ellagitannins could be more significant than previously thought.
Collapse
Affiliation(s)
- Elina Puljula
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland;
| | - Gemma Walton
- Department of Food and Nutritional Studies, The University of Reading, Reading RG6 6AH, UK; (G.W.); or
| | - Martin J. Woodward
- Department of Food and Nutritional Studies, The University of Reading, Reading RG6 6AH, UK; (G.W.); or
- Folium Science, Unit-DX, Bristol BS2 OXJ, UK
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland;
| |
Collapse
|
24
|
Fyhrquist P, Salih EYA, Helenius S, Laakso I, Julkunen-Tiitto R. HPLC-DAD and UHPLC/QTOF-MS Analysis of Polyphenols in Extracts of the African Species Combretum padoides, C. zeyheri and C. psidioides Related to Their Antimycobacterial Activity. Antibiotics (Basel) 2020; 9:E459. [PMID: 32751268 PMCID: PMC7460068 DOI: 10.3390/antibiotics9080459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 12/26/2022] Open
Abstract
Combretum padoides Engl. & Diels, C. psidioides Welv. and C. zeyheri Sond. are used forthe treatment of infections and tuberculosis related symptoms in African traditional medicine. In orderto verify these uses, extracts were screened for their growth inhibitory eects against M. smegmatisATCC 14468. Ultra-high pressure liquid chromatography coupled to quadrupole time-of-flightmass spectrometry (UHPLC/QTOF-MS) and GC-MS were used to investigate the polyphenoliccomposition in the active extracts. The lowest minimum inhibitory concentration (MIC), 625 g/mL,was shown by a methanol extract of the stem bark of C. psidioides. A butanol extract of C. psidioidesgave large inhibition zone diameters (IZD 21 mm) and inhibited 84% of the mycobacterial growthat 312 g/mL. Combretastatin B-2 and dihydrostilbene derivatives were present in the methanolextract of C. psidioides, whereas the butanol extract of this species contained punicalagin, corilagin,and sanguiin H-4. Methanol and butanol extracts of the stem bark of C. padoides gave large inhibitionzone diameters (IZD 26.5 mm) and MIC values of 1250 and 2500 g/mL, respectively. C. padoidescontained an ellagitannin with a mass identical to punicalagin ([M-H]- 1083.0587) and a corilaginlike derivative ([M-H]- 633.0750) as well as ellagic acid arabinoside and methyl ellagic acid xyloside.A butanol extract of the roots of C. zeyheri showed mild antimycobacterial activity and containeda gallotannin at m/z [M-H]- 647.0894 as the main compound along with punicalagin and threeunknown ellagitannins at m/z [M-H]- 763.0788, 765.0566, and 817.4212. Our results indicate thatthe studied species of Combretum contain phenolic and polyphenolic compounds with possiblepotential as leads for antimycobacterial drugs or as adjuvants for conventional anti-TB drugs.
Collapse
Affiliation(s)
- Pia Fyhrquist
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Viikki Biocenter, P.O. Box 56, FIN-00014, University of Helsinki, 00100 Helsinki, Finland; (E.Y.A.S.); (S.H.); (I.L.)
| | - Enass Y. A. Salih
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Viikki Biocenter, P.O. Box 56, FIN-00014, University of Helsinki, 00100 Helsinki, Finland; (E.Y.A.S.); (S.H.); (I.L.)
- Department of Forest Products and Industries, Shambat Campus, SUD-13314, University of Khartoum, Khartoum 11111, Sudan
| | - Satu Helenius
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Viikki Biocenter, P.O. Box 56, FIN-00014, University of Helsinki, 00100 Helsinki, Finland; (E.Y.A.S.); (S.H.); (I.L.)
| | - Into Laakso
- Faculty of Pharmacy, Division of Pharmaceutical Biosciences, Viikki Biocenter, P.O. Box 56, FIN-00014, University of Helsinki, 00100 Helsinki, Finland; (E.Y.A.S.); (S.H.); (I.L.)
| | - Riitta Julkunen-Tiitto
- Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland;
| |
Collapse
|
25
|
Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol 2020; 10:107. [PMID: 32257966 PMCID: PMC7089872 DOI: 10.3389/fcimb.2020.00107] [Citation(s) in RCA: 383] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Infectious diseases are the second most important cause of human death worldwide; Staphylococcus aureus (S. aureus) is a very common human pathogenic microorganism that can trigger a variety of infectious diseases, such as skin and soft tissue infections, endocarditis, osteomyelitis, bacteremia, and lethal pneumonia. Moreover, according to the sensitivity to antibiotic drugs, S. aureus can be divided into methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). In recent decades, due to the evolution of bacteria and the abuse of antibiotics, the drug resistance of S. aureus has gradually increased, the infection rate of MRSA has increased worldwide, and the clinical anti-infective treatment for MRSA has become more difficult. Accumulating evidence has demonstrated that the resistance mechanisms of S. aureus are very complex, especially for MRSA, which is resistant to many kinds of antibiotics. Therefore, understanding the drug resistance of MRSA in a timely manner and elucidating its drug resistance mechanism at the molecular level are of great significance for the treatment of S. aureus infection. A large number of researchers believe that analyzing the molecular characteristics of S. aureus can help provide a basis for designing effective prevention and treatment measures against hospital infections caused by S. aureus and further monitor the evolution of S. aureus. This paper reviews the research status of MSSA and MRSA, the detailed mechanisms of the intrinsic antibiotic resistance and the acquired antibiotic resistance, the advanced research on anti-MRSA antibiotics and novel therapeutic strategies for MRSA treatment.
Collapse
Affiliation(s)
- Yunlei Guo
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guanghui Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meiling Sun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Juan Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Phuong NNM, Le TT, Van Camp J, Raes K. Evaluation of antimicrobial activity of rambutan (Nephelium lappaceum L.) peel extracts. Int J Food Microbiol 2020; 321:108539. [PMID: 32062528 DOI: 10.1016/j.ijfoodmicro.2020.108539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/28/2019] [Accepted: 01/22/2020] [Indexed: 11/30/2022]
Abstract
Microbial safety in food products is not always adequately controlled. Chemical antimicrobials which are recognized as hazards to human health are gradually replaced by natural antimicrobial compounds. In the current study, the antimicrobial activity against some Gram-positive and Gram- negative bacteria by the methanolic extract from rambutan fruit peels was evaluated using both in vitro (medium) and in situ (food matrices i.e. raw chicken breast and pangasius fillet fish) methods. Methanolic rambutan peel extract (lyophilized to powder with total phenolic content of 310 ± 14.5 mg GAE/g) with geraniin, ellagic acid, rutin, quercetin, and corilagin as main phenolic compounds was a potent inhibitor towards E. coli, V. campbellii, V. parahaemolyticus, V. anguillarum, P. aeruginosa, S. enteritidis, St. aureus, L. monocytogenes, and C. albicans using in vitro tests. In in situ tests, the extract inhibited S. enteritidis in raw chicken breast during 14 days of cold storage at 4 °C. Even though food matrices partly protected bacteria, the extract showed a 1.5 log CFU/g reduction of V. parahaemolyticus in fish during 10 days of cold storage. These results provide useful information on the utilization of rambutan fruit peel as natural antimicrobial agent in food products.
Collapse
Affiliation(s)
- Nguyen Nhat Minh Phuong
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium; Department of Food Engineering, Faculty of Food Science and Technology, Nong Lam University, Block 6, Ward Linh Trung, Thu Duc District, Ho Chi Minh City, Viet Nam; Department of Food Technology, College of Agriculture, Can Tho University, Campus 2, 3/2 Street, Ward An Khanh, Ninh Kieu District, Can Tho City, Viet Nam.
| | - Thien Trung Le
- Department of Food Engineering, Faculty of Food Science and Technology, Nong Lam University, Block 6, Ward Linh Trung, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - John Van Camp
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Katleen Raes
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| |
Collapse
|
27
|
Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol 2020; 10:107. [PMID: 32257966 DOI: 10.3389/fcimb.2020.00107/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/27/2020] [Indexed: 05/20/2023] Open
Abstract
Infectious diseases are the second most important cause of human death worldwide; Staphylococcus aureus (S. aureus) is a very common human pathogenic microorganism that can trigger a variety of infectious diseases, such as skin and soft tissue infections, endocarditis, osteomyelitis, bacteremia, and lethal pneumonia. Moreover, according to the sensitivity to antibiotic drugs, S. aureus can be divided into methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). In recent decades, due to the evolution of bacteria and the abuse of antibiotics, the drug resistance of S. aureus has gradually increased, the infection rate of MRSA has increased worldwide, and the clinical anti-infective treatment for MRSA has become more difficult. Accumulating evidence has demonstrated that the resistance mechanisms of S. aureus are very complex, especially for MRSA, which is resistant to many kinds of antibiotics. Therefore, understanding the drug resistance of MRSA in a timely manner and elucidating its drug resistance mechanism at the molecular level are of great significance for the treatment of S. aureus infection. A large number of researchers believe that analyzing the molecular characteristics of S. aureus can help provide a basis for designing effective prevention and treatment measures against hospital infections caused by S. aureus and further monitor the evolution of S. aureus. This paper reviews the research status of MSSA and MRSA, the detailed mechanisms of the intrinsic antibiotic resistance and the acquired antibiotic resistance, the advanced research on anti-MRSA antibiotics and novel therapeutic strategies for MRSA treatment.
Collapse
Affiliation(s)
- Yunlei Guo
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guanghui Song
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meiling Sun
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Juan Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Gaudreault R, Mousseau N. Mitigating Alzheimer’s Disease with Natural Polyphenols: A Review. Curr Alzheimer Res 2019; 16:529-543. [DOI: 10.2174/1567205016666190315093520] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/14/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
:According to Alzheimer’s Disease International (ADI), nearly 50 million people worldwide were living with dementia in 2017, and this number is expected to triple by 2050. Despite years of research in this field, the root cause and mechanisms responsible for Alzheimer’s disease (AD) have not been fully elucidated yet. Moreover, promising preclinical results have repeatedly failed to translate into patient treatments. Until now, none of the molecules targeting AD has successfully passed the Phase III trial. Although natural molecules have been extensively studied, they normally require high concentrations to be effective; alternately, they are too large to cross the blood-brain barrier (BBB).:In this review, we report AD treatment strategies, with a virtually exclusive focus on green chemistry (natural phenolic molecules). These include therapeutic strategies for decreasing amyloid-β (Aβ) production, preventing and/or altering Aβ aggregation, and reducing oligomers cytotoxicity such as curcumin, (-)-epigallocatechin-3-gallate (EGCG), morin, resveratrol, tannic acid, and other natural green molecules. We also examine whether consideration should be given to potential candidates used outside of medicine and nutrition, through a discussion of two intermediate-sized green molecules, with very similar molecular structures and key properties, which exhibit potential in mitigating Alzheimer’s disease.
Collapse
Affiliation(s)
- Roger Gaudreault
- Department of Physics, Universit�© de Montr�©al, Case Postale 6128, Succursale Centre-ville, Montreal (QC), Canada
| | - Normand Mousseau
- Department of Physics, Universit�© de Montr�©al, Case Postale 6128, Succursale Centre-ville, Montreal (QC), Canada
| |
Collapse
|
29
|
Dos Santos MZ, de Ávila J, Morel A, Canto-Dorow TS, Mostardeiro MA, Dalcol II. Evaluation of prolyl oligopeptidase and acetylcholinesterase inhibition by Phyllanthus tenellus Roxb. from Brazil. Nat Prod Res 2019; 35:1840-1846. [PMID: 31282201 DOI: 10.1080/14786419.2019.1637869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phyllanthus tenellus Roxb. (Phyllanthaceae) is a plant used in Brazilian folk medicine for the treatment of intestinal infections and diabetes. Despite its use in traditional medicine, it was reported that P. tenellus extract may cause several effects in the central nervous system (CNS) of animals, such as agitation and signs of depression. The aim of this study was to determine the main constituents of P. tenellus methanol extract and to investigate whether the extract is able to inhibit the enzymes prolyl oligopeptidase (POP), acetylcholinesterase (AChE) and dipeptidyl peptidase-IV (DPP-IV). Corilagin (1) was isolated as the main constituent of the P. tenellus extract, along with rutin (2) and vitexin-2″-O-rhamnoside (3). The extract presented the ability to inhibit mainly POP. Dichloromethane and ethyl acetate fractions showed the highest inhibitory potency against POP (IC50 values of 1.7 ± 0.4 and 11.7 ± 2 µg/mL, respectively). All fractions were inactive against AChE. Corilagin displayed selective POP inhibition in a dose-dependent manner, with IC50= 19.7 ± 2.6 µg/mL. Corilagin exhibited moderate capacity to pass through the phospholipid membrane by passive diffusion, presenting effective permeability (Pe) of 1.26 × 10-7 cm/s.
Collapse
Affiliation(s)
- Maura Z Dos Santos
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria RS, Brazil
| | - Janaína de Ávila
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria RS, Brazil
| | - Ademir Morel
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria RS, Brazil
| | - Thais S Canto-Dorow
- Programa de Pós-Graduação em Ensino de Ciências e Matemática, Universidade Franciscana, Santa Maria RS, Brazil
| | - Marco A Mostardeiro
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria RS, Brazil
| | - Ionara I Dalcol
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria RS, Brazil
| |
Collapse
|
30
|
Robertson J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Swift S. The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms. PeerJ 2018; 6:e5135. [PMID: 29967756 PMCID: PMC6026458 DOI: 10.7717/peerj.5135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
Polyaniline (PANI) and functionalised polyanilines (fPANI) are novel antimicrobial agents whose mechanism of action was investigated. Escherichia coli single gene deletion mutants revealed that the antimicrobial mechanism of PANI likely involves production of hydrogen peroxide while homopolymer poly(3-aminobenzoic acid), P3ABA, used as an example of a fPANI, disrupts metabolic and respiratory machinery, by targeting ATP synthase and causes acid stress. PANI was more active against E. coli in aerobic, compared to anaerobic, conditions, while this was apparent for P3ABA only in rich media. Greater activity in aerobic conditions suggests involvement of reactive oxygen species. P3ABA treatment causes an increase in intracellular free iron, which is linked to perturbation of metabolic enzymes and could promote reactive oxygen species production. Addition of exogenous catalase protected E. coli from PANI antimicrobial action; however, this was not apparent for P3ABA treated cells. The results presented suggest that PANI induces production of hydrogen peroxide, which can promote formation of hydroxyl radicals causing biomolecule damage and potentially cell death. P3ABA is thought to act as an uncoupler by targeting ATP synthase resulting in a futile cycle, which precipitates dysregulation of iron homeostasis, oxidative stress, acid stress, and potentially the fatal loss of proton motive force.
Collapse
Affiliation(s)
- Julia Robertson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | | | | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Maiti M, Sarkar M, Liu D, Xu S, Maiti S, Paul BK, Das S. Tungsten doped hydroxyapatite processed at different temperatures: dielectric behaviour and anti-microbial properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj02801j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Electrical and antibacterial activities of bio-compatible W/HAp synthesizedviachemical precipitation followed by annealing at different temperature.
Collapse
Affiliation(s)
- Moumita Maiti
- College of Biosystems Engineering and Food Science
- Zhejiang University
- China
| | - Manas Sarkar
- Institute of Advanced Engineering Structures and Materials
- College of Civil Engineering
- Zhejiang University
- China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science
- Zhejiang University
- China
| | - Shilang Xu
- Institute of Advanced Engineering Structures and Materials
- College of Civil Engineering
- Zhejiang University
- China
| | - Soumen Maiti
- Department of Physics
- St. Thomas College of Engineering and Technology
- India
| | | | - Sukhen Das
- Department of Physics
- Jadavpur University
- India
| |
Collapse
|
32
|
Vu TT, Kim H, Tran VK, Vu HD, Hoang TX, Han JW, Choi YH, Jang KS, Choi GJ, Kim JC. Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt. PLoS One 2017; 12:e0181499. [PMID: 28742863 PMCID: PMC5526539 DOI: 10.1371/journal.pone.0181499] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/03/2017] [Indexed: 01/03/2023] Open
Abstract
In the search for new antibacterial agents from natural sources, we revealed that a crude methanol extract of Sapium baccatum was highly active against Ralstonia solanacearum, a causal agent of a serious disease called bacterial wilt of tomato. The bioassay-guided fractionation of this extract resulted in the isolation of seven known active compounds, including gallic acid, methyl gallate, corilagin, tercatain, chebulagic acid, chebulinic acid, and quercetin 3-O-α-L-arabinopyranoside. Their chemical structures were determined by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. An in vitro antibacterial bioassay using a broth microdilution method revealed that, except for quercetin 3-O-α-L-arabinopyranoside (MIC = 250 μg/mL), the isolated compounds exhibited strong antibacterial activity against R. solanacearum (MIC = 26-52 μg/mL). Among the seven compounds, methyl gallate exhibited the strongest broad-spectrum activity against most of the plant pathogenic bacteria tested (MIC = 26-250 μg/mL). In the in vivo experiments, the crude extract of S. baccatum at 2000 and 1000 μg/mL reduced the development of tomato bacterial wilt by 83 and 63%, respectively, under greenhouse conditions after 14 days of infection. The results suggested that the extracts of S. baccatum or isolated tannins could be used as natural bactericides for the control of bacterial wilt of tomato.
Collapse
Affiliation(s)
- Thuy Thu Vu
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hun Kim
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Vu Khac Tran
- Department of Pharmaceutical Chemistry and Pesticides Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Hoang Dinh Vu
- Department of Pharmaceutical Chemistry and Pesticides Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Tien Xuan Hoang
- Department of Pharmaceutical Chemistry and Pesticides Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Jae Woo Han
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yong Ho Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Kyoung Soo Jang
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
33
|
Guo N, Zang YP, Cui Q, Gai QY, Jiao J, Wang W, Zu YG, Fu YJ. The preservative potential of Amomum tsaoko e ssential oil against E. coil, its antibacterial property and mode of action. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Li HR, Liu J, Zhang SL, Luo T, Wu F, Dong JH, Guo YJ, Zhao L. Corilagin ameliorates the extreme inflammatory status in sepsis through TLR4 signaling pathways. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:18. [PMID: 28056977 PMCID: PMC5217594 DOI: 10.1186/s12906-016-1533-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022]
Abstract
Background Sepsis is one of the serious disorders in clinical practice. Recent studies found toll-like receptors 4 (TLR4) played an important role in sepsis. In this study, we tried to find the influence of Corilagin on TLR4 signal pathways in vitro and in vivo. Methods The cellular and animal models of sepsis were established by LPS and then interfered with Corilagin. Real-time PCR and western blot were employed to detect the mRNA and protein expressions of TLR4, MyD88, TRIF and TRAF6. ELISA was used to determine the IL-6 and IL-1β levels in supernatant and serum. Results The survival rate was improved in the LPS + Corilagin group, and the mRNA and protein expressions of TLR4, MyD88, TRIF and TRAF6 were significantly decreased than that in the LPS group both in cellular and animal models (P < 0.01). The pro-inflammatory cytokines IL-6 and IL-1β were greatly decreased in the LPS + Corilagin group both in supernatant and serum (P < 0.01). Conclusions Corilagin exerts the anti-inflammatory effects by down-regulating the TLR4 signaling molecules to ameliorate the extreme inflammatory status in sepsis.
Collapse
|
35
|
Ochoa-Pacheco A, Escalona Arranz JC, Beaven M, Peres-Roses R, Gámez YM, Camacho-Pozo MI, Maury GL, de Macedo MB, Cos P, Tavares JF, Da Silva MS. Bioassay-guided In vitro Study of the Antimicrobial and Cytotoxic Properties of the Leaves from Excoecaria Lucida Sw. Pharmacognosy Res 2017; 9:396-400. [PMID: 29263635 PMCID: PMC5717794 DOI: 10.4103/pr.pr_124_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Excoecaria lucida Sw. (Euphorbiaceae) is a plant conventionally used throughout the Caribbean in the treatment of infectious diseases. Objective: To evaluate, using bioassay-guided fractionation, the in vitro cytotoxicity and antimicrobial activity of E. lucida leaves. Materials and Methods: A 95% ethanol crude extract was dried and fractionated by solid-liquid separation in four phases (hexane, dichloromethane, ethyl acetate, and butanol). Antimicrobial activity (3 bacteria, 6 yeasts, and 2 fungi) was evaluated by the dilution method with resazurin (2048, 512, 128, 32, and 8 μg/mL). The cytotoxicity assays were evaluated in two cell lines: MRC-5 and RAW 264.7; calculating the selectivity index. Assays were performed for the total extract, the isolated compound with the highest yield, and the ethyl acetate and butanol phases. Isolated compounds were characterized by nuclear magnetic resonance and mass spectrometry techniques. Results: Fractionation process led to the isolation of ellagic acid (784.29 mg), 3,3',4'-tri-O-methyl ellagic 4-O-β-D-glucopyranoside acid (6.1 mg), and corilagin (6.91 mg). The most active were ethyl acetate phase and ellagic acid with IC50= 128 μg/mL against seven and five different species of microorganisms, respectively. The total extract (IC50=512 μg/mL) and the ethyl acetate phase (IC50=128 μg/mL) were cytotoxic in both cell lines, while butanol phase and ellagic acid both with IC50>2048 μg/mL seemed to be safer. Conclusions: The results obtained indicate that the Excoecaria leaves can be conventionally used as antimicrobial, but it should be present that some cytotoxicity could appear. In addition, the three identified compounds were reported for the first time in the species. SUMMARY Excoecaria lucida leaves (Euphorbiaceae) are used by the Cuban population due to their antimicrobial activity. This ethnopharmacological knowledge is confirmed by the integrated antibacterial and antifungal in vitro screening developed, using the bioassay-guided fractionation method. Abbreviations Used: MRC-5-SV2: Diploid human lung fibroblasts cells, RAW 264.7: Murine macrophages cells, IC50: Inhibitory Concentration 50%, ATCC: American Type Culture Collection, CCEBI: Culture Collection of Industrial Biotechnology Center, CECT: Spanish Culture Collection Type, CFU: Colony forming units, CC50: 50% cytotoxic concentration, CO2: Carbon dioxide, SI: Selectivity index, IR: Infrared spectroscopy, 1H NMR: Nuclear Magnetic Resonance of hydrogen, 13C NMR: Nuclear Magnetic Resonance of carbon, HMQC: Heteronuclear Multiple-Quantum Correlation, HMBC: Heteronuclear Multiple Bond Correlation, COSY: Correlation Spectroscopy, NOESY: Nuclear Overhauser Effect Spectroscopy, KBr: Potassium bromide, DMSO-D6: Deuterated dimethyl sulfoxide, LC.MS: Liquid Chromatography-Mass Spectrometry, [α]D: Optical rotation, EL1: ellagic acid, EL2: 3,3’,4’-tri-O-methyl ellagic 4-O-β-D-glucopyranoside acid, EL3: corilagin, Active (+), inactive (-).
Collapse
Affiliation(s)
- Ania Ochoa-Pacheco
- Department of Pharmacy, Faculty of Natural Sciences, Oriente University, Santiago de Cuba, Cuba
| | | | - Munyewu Beaven
- Department of Pharmacy, Faculty of Natural Sciences, Oriente University, Santiago de Cuba, Cuba
| | - Renato Peres-Roses
- Department of Pharmacy, Faculty of Natural Sciences, Oriente University, Santiago de Cuba, Cuba
| | - Yordania Matos Gámez
- Department of Pharmacy, Faculty of Natural Sciences, Oriente University, Santiago de Cuba, Cuba
| | - Miladis I Camacho-Pozo
- Center for Studies on Industrial Biotechnology (CEBI), Oriente University, Santiago de Cuba, Cuba
| | - Gabriel Llauradó Maury
- Center for Studies on Industrial Biotechnology (CEBI), Oriente University, Santiago de Cuba, Cuba
| | - Maíra Bidart de Macedo
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Belgium
| | - Josean Fechine Tavares
- Institute of Health Sciences, Post-graduation Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcelo Sobral Da Silva
- Institute of Health Sciences, Post-graduation Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
36
|
Lu M, Li T, Wan J, Li X, Yuan L, Sun S. Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole. Int J Antimicrob Agents 2016; 49:125-136. [PMID: 28040409 DOI: 10.1016/j.ijantimicag.2016.10.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022]
Abstract
Invasive fungal infections caused by Candida spp. remain the most predominant nosocomial fungal infections. Owing to the increased use of antifungal agents, resistance of Candida spp. to antimycotics has emerged frequently, especially to fluconazole (FLC). To cope with this issue, new efforts have been dedicated to discovering novel antimycotics or new agents that can enhance the susceptibility of Candida spp. to existing antimycotics. The secondary metabolites of plants represent a large library of compounds that are important sources for new drugs or compounds suitable for further modification. Research on the anti-Candida activities of phytocompounds has been carried out in recent years and the results showed that a series of phytocompounds have anti-Candida properties, such as phenylpropanoids, flavonoids, terpenoids and alkaloids. Among these phytocompounds, some displayed potent antifungal activity, with minimum inhibitory concentrations (MICs) of ≤8 µg/mL, and several compounds were even more effective against drug-resistant Candida spp. than FLC or itraconazole (e.g. honokiol, magnolol and shikonin). Interestingly, quite a few phytocompounds not only displayed anti-Candida activity alone but also synergised with FLC against Candida spp., even leading to a reversal of FLC resistance. This review focuses on summarising the anti-Candida activities of phytocompounds as well as the interactions of phytocompounds with FLC. In addition, we briefly overview the synergistic mechanisms and present the structure of the antimycotic phytocompounds. Hopefully, this analysis will provide insight into antifungal agent discovery and new approaches against antifungal drug resistance.
Collapse
Affiliation(s)
- Mengjiao Lu
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong Province 250014, China
| | - Jianjian Wan
- Department of Respiratory, Yucheng People's Hospital, Yucheng, Shandong Province 251200, China
| | - Xiuyun Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, China
| | - Lei Yuan
- Department of Pharmacy, Baodi District People's Hospital, Tianjin 301800, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province 250014, China.
| |
Collapse
|
37
|
Guo N, Gai QY, Jiao J, Wang W, Zu YG, Fu YJ. Antibacterial Activity of Fructus forsythia Essential Oil and the Application of EO-Loaded Nanoparticles to Food-Borne Pathogens. Foods 2016; 5:E73. [PMID: 28231167 PMCID: PMC5302441 DOI: 10.3390/foods5040073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 11/16/2022] Open
Abstract
Fructus forsythia essential oil (FEO) with excellent antibacterial activity was rarely reported. The objective of the present study was to investigate the antibacterial activity and the antibacterial mechanism of FEO against two food-borne pathogenic bacteria, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in vitro. When treated FEO, the zones of inhibition (ZOI) of E. coli (20.5 ± 0.25 mm) and S. aureus (24.3 ± 0.21 mm) were much larger than control (p < 0.05). The minimum inhibitory concentrations (MICs) of FEO were 3.13 mg/mL and 1.56 mg/mL for E. coli and S. aureus, respectively. The antibacterial mechanism of FEO against E. coil was due to the changes in permeability and integrity of cell membrane leading to the leakage of nucleic acids and proteins. With the superior antibacterial activity of FEO, the nano-encapsulation method has been applied in FEO. When compared to FEO and blank chitosan nanoparticles, FEO-loaded nanoparticles (chitosan to FEO of 1:1) can effectively inhibit the growth of E. coil above 90% at room temperature. It is necessary to consider that FEO and FEO-loaded nanoparticles will become promising antibacterial additives for food preservative, cosmetic, and pharmaceutical applications.
Collapse
Affiliation(s)
- Na Guo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, China.
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, 150040 Harbin, China.
- Collaborative Innovation Center for Development and Utilization of Forest Resources, Northeast Forestry University, 150040 Harbin, China.
| | - Qing-Yan Gai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, China.
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, 150040 Harbin, China.
- Collaborative Innovation Center for Development and Utilization of Forest Resources, Northeast Forestry University, 150040 Harbin, China.
| | - Jiao Jiao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, China.
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, 150040 Harbin, China.
- Collaborative Innovation Center for Development and Utilization of Forest Resources, Northeast Forestry University, 150040 Harbin, China.
| | - Wei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, China.
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, 150040 Harbin, China.
- Collaborative Innovation Center for Development and Utilization of Forest Resources, Northeast Forestry University, 150040 Harbin, China.
| | - Yuan-Gang Zu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, China.
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, 150040 Harbin, China.
- Collaborative Innovation Center for Development and Utilization of Forest Resources, Northeast Forestry University, 150040 Harbin, China.
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, China.
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, 150040 Harbin, China.
- Collaborative Innovation Center for Development and Utilization of Forest Resources, Northeast Forestry University, 150040 Harbin, China.
| |
Collapse
|
38
|
Liu Q, Yeo WS, Bae T. The SaeRS Two-Component System of Staphylococcus aureus. Genes (Basel) 2016; 7:genes7100081. [PMID: 27706107 PMCID: PMC5083920 DOI: 10.3390/genes7100081] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022] Open
Abstract
In the Gram-positive pathogenic bacterium Staphylococcus aureus, the SaeRS twocomponent system (TCS) plays a major role in controlling the production of over 20 virulence factors including hemolysins, leukocidins, superantigens, surface proteins, and proteases. The SaeRS TCS is composed of the sensor histidine kinase SaeS, response regulator SaeR, and two auxiliary proteins SaeP and SaeQ. Since its discovery in 1994, the sae locus has been studied extensively, and its contributions to staphylococcal virulence and pathogenesis have been well documented and understood; however, the molecular mechanism by which the SaeRS TCS receives and processes cognate signals is not. In this article, therefore, we review the literature focusing on the signaling mechanism and its interaction with other global regulators.
Collapse
Affiliation(s)
- Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Won-Sik Yeo
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA.
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA.
| |
Collapse
|
39
|
Hmoteh J, Syed Musthafa K, Pomwised R, Voravuthikunchai SP. Effects of Rhodomyrtus tomentosa Extract on Killing Activity of Human Neutrophils and Membrane Integrity of Enterohaemorrhagic Escherichia coli O157:H7. Molecules 2016; 21:E692. [PMID: 27240332 PMCID: PMC6273412 DOI: 10.3390/molecules21060692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (E. coli) O157:H7 is one of the most virulent causative agents of foodborne disease. Use of antibiotics for the treatment against E. coli O157:H7 infection leads to hemolytic uremic syndrome. The present study evaluated the potential of ethanolic leaf extract of a medicinal plant, Rhodomyrtus tomentosa in enhancing the killing activity of human neutrophils against E. coli O157:H7. In addition, the effects of the extract on membrane permeability of the organisms were studied. In the killing assay, percentage survival of the bacterial cells after being exposed to human neutrophils in the presence of various concentrations of the extract were determined. At 45 min, percentage survival of E. coli O157:H7 and E. coli ATCC 25922 after treated with neutrophils in the presence of the extract at 125-250 µg/mL was 58.48%-50.28% and 69.13%-35.35%, respectively. Furthermore, upon treatment with R. tomentosa at 250 µg/mL uptake of crystal violet by E. coli O157:H7 and E. coli ATCC 25922 was increased to 40.07% and 36.16%, respectively. Therefore, it is suggested that the extract exhibited dual effects as immunostimulant and membrane permeabilizing agent perhaps resulted in enhancing the killing activity of neutrophils against the organisms.
Collapse
Affiliation(s)
- Jutharat Hmoteh
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
- Excellent Research Laboratory on Natural products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Khadar Syed Musthafa
- Excellent Research Laboratory on Natural products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Rattanaruji Pomwised
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Supayang Piyawan Voravuthikunchai
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
- Excellent Research Laboratory on Natural products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
40
|
Ekambaram SP, Perumal SS, Balakrishnan A. Scope of Hydrolysable Tannins as Possible Antimicrobial Agent. Phytother Res 2016; 30:1035-45. [PMID: 27062587 DOI: 10.1002/ptr.5616] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 11/12/2022]
Abstract
Hydrolysable tannins (HTs) are secondary metabolites from plants, which are roughly classified into gallotannins and ellagitannins having gallic acid and ellagic acid residues respectively attached to the hydroxyl group of glucose by ester linkage. The presence of hexahydroxydiphenoyl and nonahydroxyterphenoyl moieties is considered to render antimicrobial property to HTs. HTs also show considerable synergy with antibiotics. Nevertheless, they have low pharmacokinetic property. The present review presents the scope of HTs as future antimicrobial agent. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sanmuga Priya Ekambaram
- Department of Pharmaceutical Technology, Anna University BIT Campus, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Senthamil Selvan Perumal
- Department of Pharmaceutical Technology, Anna University BIT Campus, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Ajay Balakrishnan
- Department of Pharmaceutical Technology, Anna University BIT Campus, Tiruchirappalli, 620 024, Tamilnadu, India
| |
Collapse
|
41
|
Gu Y, Xiao L, Ming Y, Zheng Z, Li W. Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo. Int J Oncol 2016; 48:1868-76. [PMID: 26935808 PMCID: PMC4809656 DOI: 10.3892/ijo.2016.3413] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2022] Open
Abstract
Corilagin is a natural plant polyphenol tannic acid with antitumor, anti-inflammatory, and anti-oxidative properties. However, the mechanisms of its actions are largely unknown. Our group reported that corilagin could induce cell inhibition in human breast cancer cell line MCF-7 and human liver hepatocellular carcinoma cell lines HepG2. We report here that corilagin inhibits cholangiocarcinoma (CCA) development through regulating Notch signaling pathway. We found that, in vitro, corilagin inhibited CCA cell proliferation, migration and invasion, promoted CCA cell apoptosis, and inhibited Notch1 and Notch signaling pathway protein expression. Co-immunoprecipitation was used to establish Notch intracellular domain (NICD) interaction with MAML1 and P300 in CCA. Importantly, corilagin reduced Hes1 mRNA level through inhibiting Hes1 promoter activity. In nude mice, corilagin inhibited CCA growth and repressed the expression of Notch1 and mTOR. These results indicate that corilagin may control CCA cell growth by downregulating the expression of Notch1. Therefore, our findings suggest that corilagin may have the potential to become a new therapeutic drug for human CCA.
Collapse
Affiliation(s)
- Yue Gu
- Medical College of Xiamen University, Xiamen, Fujian, P.R. China
| | - Linfeng Xiao
- Medical College of Xiamen University, Xiamen, Fujian, P.R. China
| | - Yanlin Ming
- The Research and Development Center for Medicine Plants and Plant Drugs, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian, P.R. China
| | - Zhizhong Zheng
- The Research and Development Center for Medicine Plants and Plant Drugs, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian, P.R. China
| | - Wengang Li
- Medical College of Xiamen University, Xiamen, Fujian, P.R. China
| |
Collapse
|
42
|
|
43
|
Wei Y, Liu Q, Yu J, Feng Q, Zhao L, Song H, Wang W. Antibacterial mode of action of 1,8-dihydroxy-anthraquinone from Porphyra haitanensis against Staphylococcus aureus. Nat Prod Res 2014; 29:976-9. [PMID: 25259418 DOI: 10.1080/14786419.2014.964705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
As one kind of anthraquinone dihydroxy derivatives, 1,8-dihydroxy-anthraquinone (Dan) with strong antibacterial activity against Staphylococcus aureus was first isolated from Porphyra haitanensis. Here, we report on the investigation of the antibacterial mode of action of Dan on the Gram-positive bacterium S. aureus. The results show that Dan strongly inhibited cell growth at logarithmic phase. In this study, the antibacterial activity of Dan was analysed by using phosphorus standard solution, p-nitrophenyl phosphate, o-nitrophenyl-β-D-galactopyanoside, scanning electron microscopy and transmission electron microscopy. The results suggested that the antibacterial activity of Dan is due to its interaction with the cell wall and cell membrane, by which it increases the permeability of the cell envelope and leads to the leakage of cytoplasm and the deconstruction of cell. This study indicates that Dan as a natural product in seaweeds deserves further investigation for applications as an antibacterial bioactive substance in food safety control and drugs.
Collapse
Affiliation(s)
- Yuxi Wei
- a College of Life Sciences, Qingdao University , Qingdao 266071 , P.R. China
| | | | | | | | | | | | | |
Collapse
|