1
|
El-Dessouki AM, Alzokaky AA, Raslan NA, Ibrahim S, Salama LA, Yousef EH. Piracetam mitigates nephrotoxicity induced by cisplatin via the AMPK-mediated PI3K/Akt and MAPK/JNK/ERK signaling pathways. Int Immunopharmacol 2024; 137:112511. [PMID: 38909496 DOI: 10.1016/j.intimp.2024.112511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
AIMS Cisplatin (CDDP) is commonly employed as an antineoplastic agent, but its use is significantly limited by the occurrence of dose-dependent nephrotoxicity, the detailed mechanisms of which remain unclear. This research is aimed to explore the molecular mechanisms of Piracetam (PIR)'s protective effects on nephrotoxicity resulting from CDDP exposure and to elucidate the mechanisms responsible for these effects. MAIN METHODS PIR was given in dosages of 100 and 300 mg/kg body weight for a duration of 15 days; concurrently, on the last day, a single 10 mg/kg dose of CDDP was delivered via intraperitoneal injection. Forty-eight hours post-CDDP injection, the animals were sacrificed to assess nephrotoxicity. Blood samples and renal tissues were taken for biochemical and histopathological investigations. Serum creatinine and blood urea nitrogen (BUN) were measured. AMP-activated protein kinase (AMPK), caspase-9 and nuclear factor kappa b p65 (NF-κB p65) were assessed by immunohistochemistry method. Enzyme-linked immunosorbent assay (ELISA) analysis was employed to determine cytochrome c (Cyt. c), Bcl-2-associated X-protein (BAX), caspase-3, nuclear factor erythroid 2-related factor 2 (Nrf2), Heme oxygenase-1 (HO-1), superoxide dismutase (SOD), tumor necrosis factor alpha (TNF-α), myeloperoxidase (MPO), and interleukin-1β (IL-1β) levels in renal tissue homogenates. The mRNA levels of tumor protein P53 (TP53), phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK) were tested by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, histopathological evaluations of the renal tissues and the binding affinity of PIR to AMPK by molecular docking were also performed. KEY FINDINGS Pre-treatment with PIR enhanced renal function markers such as urea and creatinine, mitigated histological damage, and diminished inflammatory cell presence in renal tubules. PIR demonstrated antioxidant effects by reestablishing the equilibrium between pro-oxidants and antioxidants such as MPO, HO-1, Nrf2, as well as SOD. Furthermore, PIR inhibited the inflammatory pathways through the MAPK/NF-κB pathway. Additionally, PIR counteracted the CDDP-induced decline in PI3K/Akt activity and hindered caspase-dependent apoptotic processes. SIGNIFICANCE In summary, PIR appears to be an effective therapeutic strategy for reducing CDDP-induced nephrotoxicity, attributed to its antioxidant, anti-inflammatory, and antiapoptotic mechanisms. Consequently, PIR may serve as a complementary treatment alongside CDDP to alleviate nephrotoxicity associated with CDDP.
Collapse
Affiliation(s)
- Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 12566, Giza, Egypt
| | - Amany A Alzokaky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; Pharmacology and Biochemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Nahed A Raslan
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; Clinical Pharmacy Program, College of Health Sciences and Nursing, Al-Rayan Colleges, Madina, Saudi Arabia
| | - Samar Ibrahim
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Galala University, Ataka, Egypt
| | - Lamiaa A Salama
- Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Eman H Yousef
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| |
Collapse
|
2
|
Linsaenkart P, Ruksiriwanich W, Muangsanguan A, Sommano SR, Sringarm K, Arjin C, Rachtanapun P, Jantanasakulwong K, Castagnini JM, Chutoprapat R, Boonpisuttinant K. Antioxidant, Anti-Inflammation, and Melanogenesis Inhibition of Sang 5 CMU Rice ( Oryza sativa) Byproduct for Cosmetic Applications. PLANTS (BASEL, SWITZERLAND) 2024; 13:1795. [PMID: 38999635 PMCID: PMC11244455 DOI: 10.3390/plants13131795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Prolonged exposure to environmental oxidative stress can result in visible signs of skin aging such as wrinkles, hyperpigmentation, and thinning of the skin. Oryza sativa variety Sang 5 CMU, an inbred rice cultivar from northern Thailand, contains phenolic and flavonoid compounds in its bran and husk portions that are known for their natural antioxidant properties. In this study, we evaluated the cosmetic properties of crude extracts from rice bran and husk of Sang 5 CMU, focusing on antioxidant, anti-inflammatory, anti-melanogenesis, and collagen-regulating properties. Our findings suggest that both extracts possess antioxidant potential against DPPH, ABTS radicals, and metal ions. Additionally, they could downregulate TBARS levels from 125% to 100% of the control, approximately, while increasing the expression of genes related to the NRF2-mediated antioxidant pathway, such as NRF2 and HO-1, in H2O2-induced human fibroblast cells. Notably, rice bran and husk extracts could increase mRNA levels of HO-1 more greatly than the standard L-ascorbic acid, by about 1.29 and 1.07 times, respectively. Furthermore, the crude extracts exhibited anti-inflammatory activity by suppressing nitric oxide production in both mouse macrophage and human fibroblast cells. Specifically, the bran and husk extracts inhibited the gene expression of the inflammatory cytokine IL-6 in LPS-induced inflammation in fibroblasts. Moreover, both extracts demonstrated potential for inhibiting melanin production and intracellular tyrosinase activity in human melanoma cells by decreasing the expression of the transcription factor MITF and the pigmentary genes TYR, TRP-1, and DCT. They also exhibit collagen-stimulating effects by reducing MMP-2 expression in H2O2-induced fibroblasts from 135% to 80% of the control, approximately, and increasing the gene associated with type I collagen production, COL1A1. Overall, the rice bran and husk extracts of Sang 5 CMU showed promise as effective natural ingredients for cosmetic applications.
Collapse
Affiliation(s)
- Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarana Rose Sommano
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawan Sringarm
- Cluster of Valorization and Bio-Green Transformation for Translation Research Innovation of Raw Materials and Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Juan M Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdoms (INPTW), Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand
| |
Collapse
|
3
|
Zhao X, Yang F, Wu H, Fan Z, Wei G, Zou Y, Xue J, Liu M, Chen G. Zhilong Huoxue Tongyu capsule improves myocardial ischemia/reperfusion injury via the PI3K/AKT/Nrf2 axis. PLoS One 2024; 19:e0302650. [PMID: 38687744 PMCID: PMC11060539 DOI: 10.1371/journal.pone.0302650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
INTRODUCTION Zhilong Huoxue Tongyu Capsule (ZL) is a Chinese medicine used for the treatment of cardio-cerebral diseases. However, the pharmacological mechanisms underlying its regulation of myocardial ischemia/reperfusion injury (MI/RI) remain unclear. PURPOSE This study aims to investigate the effects and mechanisms of ZL on MI/RI in mice. MATERIALS AND METHODS C57BL/6J mice were randomly assigned to four groups: Sham group, I/R group, ZL group, and ZLY group. The MI/RI mouse model was established by ligation of the left anterior descending coronary artery for 30 minutes, followed by reperfusion for 120 minutes to restore blood perfusion. Cardiac function was evaluated using cardiac ultrasound. Histopathological changes and myocardial infarction area were assessed using Hematoxylin and eosin (H&E) staining and triphenyltetrazolium chloride (TTC) staining. The changes in oxidative stress- and ferroptosis-related markers were detected. RT-qPCR, Western blot, and ELISA were conducted to further explore the mechanism of ZL in improving MI/RI. RESULTS Our findings demonstrated that ZL exerted a protective effect against MI/RI by inhibiting ferroptosis, evidenced by the upregulation of antioxidant enzymes such as GSH and GPX4, coupled with the downregulation of ACSL4, a pro-ferroptosis factor. Furthermore, ZL positively impacted the PI3K/AKT/Nrf2 pathway by promoting ATPase activities and enhancing the relative protein expression of its components. Notably, the administration of a PI3K/AKT inhibitor reversed the antioxidant and anti-ferroptosis effects of ZL to some extent, suggesting a potential role for this pathway in mediating ZL's protective effects. CONCLUSIONS ZL protects against MI/RI-induced ferroptosis by modulating the PI3K/AKT signaling pathway, leading to increased Nrf2 expression and activation of the HO-1/GPX4 pathway. These findings shed light on the potential therapeutic mechanisms of ZL in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoping Zhao
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Fang Yang
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Wu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhongcai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wei
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Zou
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinyi Xue
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Mengnan Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Gong Chen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Sağraç D, Aydın S, Kırbaş OK, Öztürkoğlu D, Şahin F. Extracellular vesicles derived from human foreskin cells (hFS-Exo) accelerate cell migration and angiogenesis through MAPK pathway: an in vitro study. Mol Biol Rep 2024; 51:471. [PMID: 38551706 DOI: 10.1007/s11033-024-09378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Wound healing is one of the important processes in the body. Attempts to create new drugs are of interest due to the side effects of natural and chemical wound healing compounds. To overcome this obstacle, stem cells have been used as healing agents. However, both difficulties in collection and risks such as rejection and teratoma in the recipient body have limited the use of stem cells, directly. Since the potential content of the stem cells can be transferred to the recipient cells by vesicles, small extracellular vesicles have recently become prominent agents. METHODS AND RESULTS The wound-healing effect of extracellular vesicles derived from foreskin cells was investigated in both keratinocyte and endothelial cells. Migration assay, RT-PCR, Col1a1 ELISA and Western Blot experiments were utilized to reveal healing effect of EVs and its possible molecular pathways. EV-treated groups exhibited more proliferative, invasive, and migrative characteristics. When comparing to the control group, new vessel formation was induced in EV groups. An increase in gene levels of growth factors related to wound healing and change in the mitogen-activated protein kinase (MAPK) signaling pathway proteins in EV-treated groups were determined. Possible molecular mechanisms underlying cell movements were associated with the MAPK pathway. It was found that human foreskin cell EVs (hFS-Exo) may have a potential to heal wounds in a short period of time by triggering the MAPK pathway. CONCLUSIONS hFS-Exo could be a new promising wound healing agent in the future.
Collapse
Affiliation(s)
- Derya Sağraç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Safa Aydın
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Dilek Öztürkoğlu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey.
| |
Collapse
|
5
|
Jeong M, Kwon H, Kim Y, Jin H, Choi GE, Hyun KY. Erigeron annuus Extract Improves DNCB-Induced Atopic Dermatitis in a Mouse Model via the Nrf2/HO-1 Pathway. Nutrients 2024; 16:451. [PMID: 38337735 PMCID: PMC10857527 DOI: 10.3390/nu16030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Atopic dermatitis (AD) is a persistent inflammatory skin condition resulting from an intricate interplay among genetic, immunological, and environmental factors. Erigeron annuus (EA), an annual winter plant belonging to the family Asteraceae, possesses anti-inflammatory, cytoprotective, and antioxidant activities. In this study, we hypothesized that Erigeron annuus extract (EAE) could be an effective agent for ameliorating AD-like symptoms. To confirm this hypothesis in vitro, we used H2O2-stimulated human keratinocytes (HaCaT cells) to demonstrate that pre-treatment with EAE protected against oxidative stress. HaCaT cells pretreated with EAE and stimulated with H2O2 showed decreased intracellular malondialdehyde content, increased superoxide dismutase activity, and reduced intracellular reactive oxygen species accumulation. To verify the in vivo hypothesis based on the intracellular results, an AD disease mouse model was induced with 1-chloro-2,4-dinitrobenzene (DNCB), and EAE was orally administered at a non-toxic concentration according to the toxicity evaluation results. The results showed that AD disease models in BALB/c mice exhibited reduced ear epidermal thickness, scratching behavior, and mast cell infiltration. In conclusion, our results indicate that EAE has the potential to improve AD by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway.
Collapse
Affiliation(s)
- Myeongguk Jeong
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; (M.J.); (H.K.); (Y.K.); (H.J.)
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Hyeokjin Kwon
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; (M.J.); (H.K.); (Y.K.); (H.J.)
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Yeeun Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; (M.J.); (H.K.); (Y.K.); (H.J.)
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Hyunwoo Jin
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; (M.J.); (H.K.); (Y.K.); (H.J.)
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Go-Eun Choi
- Department of Biomedical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea; (M.J.); (H.K.); (Y.K.); (H.J.)
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Kyung-Yae Hyun
- Department of Clinical Laboratory Science, Dong-Eui University, Busan 47340, Republic of Korea
| |
Collapse
|
6
|
Li W, Tang T, Yao S, Zhong S, Fan Q, Zou T. Low-dose Lipopolysaccharide Alleviates Spinal Cord Injury-induced Neuronal Inflammation by Inhibiting microRNA-429-mediated Suppression of PI3K/AKT/Nrf2 Signaling. Mol Neurobiol 2024; 61:294-307. [PMID: 37605094 DOI: 10.1007/s12035-023-03483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/23/2023]
Abstract
This study investigated the impact of low-dose lipopolysaccharide (LPS) on spinal cord injury (SCI) and the potential molecular mechanism. Rats were randomly assigned to four groups: Sham, SCI, SCI + LPS, and SCI + LPS + agomir. Allen's weight-drop method was used to establish an in vivo SCI model. The Basso Bcattie Bresnahan rating scale was employed to monitor locomotor function. An in vitro SCI model was constructed by subjecting PC12 cells to oxygen and glucose deprivation/ reoxygenation (OGD/R). Enzyme-linked immunosorbent assay (ELISA) was applied for the determination interleukin (IL)-1β and IL-6. The dual luciferase reporter assay was used to validate the targeting of microRNA (miR)-429 with PI3K. Immunohistochemical staining was used to assess the expression of PI3K, phosphorylated AKT and Nrf2 proteins. The Nrf2-downstream anti-oxidative stress proteins, OH-1 and NQO1, were detected by western blot assay. MiR-429 expression was detected by fluorescence in situ hybridization and real-time quantitative reverse transcription PCR. In vitro, low-dose LPS decreased miR-429 expression, activated PI3K/AKT/Nrf2, inhibited oxidative stress and inflammation, and attenuated SCI. MiR-429 was found to target and negatively regulate PI3K. Inhibition of miR-429 suppressed low-dose LPS-mediated oxidative stress and inflammation via activation of the PI3K/AKT/Nrf2 pathway. In vivo, miR-429 was detectable in neurons. Inhibition of miR-429 blocked low-dose LPS-mediated oxidative stress and inflammation via activation of the PI3K/AKT/Nrf2 pathway. Overall, low-dose LPS was found to alleviate SCI-induced neuronal oxidative stress and inflammatory response by down-regulating miR-429 to activate the PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Weichao Li
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, 650032, China
| | - Tao Tang
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shaoping Yao
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, 650032, China
| | - Shixiao Zhong
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qianbo Fan
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tiannan Zou
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
- Yunnan Key Laboratory of Digital Orthopaedics, Kunming, 650032, China.
| |
Collapse
|
7
|
Shahid NH, Rashid H, Kumar S, Archoo S, Umar SA, Nazir LA, Parvinder SP, Tasduq SA. Inhibition of melanogenesis by 3-(1'-methyltetrahydropyridinyl)-2,4-6-trihydroxy acetophenone via suppressing the activity of cAMP response element-binding protein (CREB) and nuclear exclusion of CREB-regulated transcription coactivator 1 (CRTC1). Eur J Pharmacol 2023:175734. [PMID: 37080332 DOI: 10.1016/j.ejphar.2023.175734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Exposure to Ultraviolet radiation or α-melanocyte-stimulating hormone (α-MSH) stimulates the Cyclic Adenosine Monophosphate/Protein Kinase A signalling pathway, which leads to the synthesis and deposition of melanin granules in the epidermis. Skin pigmentation is the major physiological defence against inimical effects of sunlight. However, excessive melanin production and accumulation can cause various skin hyperpigmentation disorders. The present study involved the identification of 3-(1'-methyltetrahydropyridinyl)-2,4-6-trihydroxy acetophenone (IIIM-8) as an inhibitor of melanogenesis, IIIM-8 significantly inhibited pigment production both invitro and invivowithout incurring any cytotoxicity in Human Adult Epidermal Melanocytes (HAEM). IIIM-8 repressed melanin synthesis and secretion both at basal levels and in α-MSH stimulated cultured HAEM cells by decreasing the levels of Cyclic Adenosine Monophosphate (cAMP) and inhibiting the phosphorylation of cAMP response element-binding (CREB) protein, coupled with restoring the phosphorylation of CREB-regulated transcription coactivator 1 (CRTC1) and its nuclear exclusion in HAEM cells. This impeding effect correlates with diminished expression of master melanogenic proteins including microphthalmia-associated transcription factor (MITF), Tyrosinase (TYR), Tyrosinase related protein 1 (TRP1), and Tyrosinase related protein 2 (TRP2). Additionally, topical application of IIIM-8 induced tail depigmentation in C57BL/6 J mice. Furthermore, IIIM-8 efficiently mitigated the effect of ultraviolet-B radiation on melanin synthesis in the auricles of C57BL/6 J mice. This study demonstrates that IIIM-8 is an active anti-melanogenic agent against ultraviolet radiation-induced melanogenesis and other hyperpigmentation disorders.
Collapse
Affiliation(s)
- Naikoo H Shahid
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Haroon Rashid
- Sher-e-KashmirInstitute of Medical Sciences, Soura, Srinagar, 190011, Jammu and Kashmir, India
| | - Sanjay Kumar
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India
| | - Sajida Archoo
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheikh A Umar
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lone A Nazir
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Singh P Parvinder
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheikh A Tasduq
- Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Tanveer MA, Rashid H, Nazir LA, Archoo S, Shahid NH, Ragni G, Umar SA, Tasduq SA. Trigonelline, a plant derived alkaloid prevents ultraviolet-B-induced oxidative DNA damage in primary human dermal fibroblasts and BALB/c mice via modulation of phosphoinositide 3-kinase-Akt-Nrf2 signalling axis. Exp Gerontol 2023; 171:112028. [PMID: 36384201 DOI: 10.1016/j.exger.2022.112028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND DNA is the main target for UV-B-irradiation-induced skin photodamage and accounts for 90 % of all the non-melanoma skin cancers. PURPOSE In this study, we explored the mechanistic basis of photoprotective effect of Trigonelline, a naturally occurring alkaloid from the Trigonella foenum-graecum, against UV-B-induced oxidative DNA Damage Response using Primary Human Dermal Fibroblasts (HDFs) and BALB/C mice as models of skin photodamage. METHODS Primary HDFs were subjected to UV-B exposure (10 mJ/cm2) with or without TG for 24 h. Effect of UV-B exposure and TG treatment was evaluated by analyzing the cell survival, cellular morphology, oxidative stress & DNA damage response markers by performing biochemical studies, florescent microscopy & protein expression studies. In in-vivo study, TG pre-treated BALB/c mice were -irradiated with 180 mJ/cm2 of UV-B dose thrice a week on alternative days for four months, followed by topical application of different concentrations of TG. The photodamage caused by UV-B exposure and its ameleoriation by topical treatment of TG was studied by physical and morphological appearance and analyzing the oxidative stress & DNA damage response markers from skin. RESULTS We found that TG significantly alleviates UV-B-induced cell death effects in HDFs. TG protects HDF cells and BALB/c mice from UV-B-induced DNA damage by regulating the expression profile of key protein markers of DNA damage which include P53, ATM, ATR, ϒH2AX, Chk1 and Chk2. We found that TG offers geno-protection to UV-B-irradiated HDFs by alleviating CPD induction, reducing the number of TUNEL positive cells and by decreasing the expression levels of DNA damage marker protein ϒH2AX in immunocytochemistry. Further, we found that TG prevents the UVB induced oxidative stress by activating the PI3K-AKT-Nrf2 signalling pathway. On employing PI3K inhibitor, LY294002, we found the expression of ϒH2AX and p-P53 is significantly increased compared to UV-B treated only, indicating that TG mediates the geno-protection against UV-B irradiation via PI3K-AKT-Nrf2 signalling pathway. CONCLUSION Current study presents for the first time the photo-protective role of TG against UV-B-induced oxidative DNA damage and provides its mechanistic insights also and provide strong evidence for TG to be carried forward as a potential remedial and cosmeceutical agent against UV-B-induced skin photodamage disorders.
Collapse
Affiliation(s)
- Malik A Tanveer
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu & Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Haroon Rashid
- Department of Hospital Adminstration, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar 190011, Jammu & Kashmir, India.
| | - Lone A Nazir
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu & Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sajida Archoo
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu & Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Naiku H Shahid
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu & Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gupta Ragni
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu & Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sheikh A Umar
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu & Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sheikh A Tasduq
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu & Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Geniposidic Acid from Eucommia ulmoides Oliver Staminate Flower Tea Mitigates Cellular Oxidative Stress via Activating AKT/NRF2 Signaling. Molecules 2022; 27:molecules27238568. [PMID: 36500666 PMCID: PMC9739628 DOI: 10.3390/molecules27238568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Eucommia ulmoides Oliver staminate flower (ESF) tea enjoys a good reputation in folk medicine and displays multiple bioactivities, such as antioxidant and antifatigue properties. However, the underlying biological mechanisms remain largely unknown. In this study, we aimed to investigate whether ESF tea can mitigate cellular oxidative stress. Crude ethyl alcohol extract and its three subfractions prepared by sequential extraction with chloroform, n-butyl alcohol and residual water were prepared from ESF tea. The results of antioxidant activity tests in vitro manifested n-butyl alcohol fraction (n-BUF) showed the strongest antioxidant capacity (DPPH: IC50 = 24.45 ± 0.74 μg/mL, ABTS: IC50 = 17.25 ± 0.04 μg/mL). Moreover, all subfractions of ESF tea, especially the n-BUF, exhibited an obvious capacity to scavenge the reactive oxygen species (ROS) and stimulate the NRF2 antioxidative response in human keratinocytes HaCaT treated by H2O2. Using ultra-high-performance liquid chromatography, we identified geniposidic acid (GPA) as the most abundant component in ESF tea extract. Furthermore, it was found that GPA relieved oxidative stress in H2O2-induced HaCaT cells by activating the Akt/Nrf2/OGG1 pathway. Our findings indicated that ESF tea may be a source of natural antioxidants to protect against skin cell oxidative damage and deserves further development and utilization.
Collapse
|
10
|
The Neuroprotective Effects of Arecae Pericarpium against Glutamate-Induced HT22 Cell Cytotoxicity. Curr Issues Mol Biol 2022; 44:5902-5914. [PMID: 36547063 PMCID: PMC9776483 DOI: 10.3390/cimb44120402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Arecae Pericarpium has been found to exert anti-migraine, antidepressant, and antioxidative effects. However, the mechanisms involved are unclear. This study explored the possibility that Arecae Pericarpium ethanol extract (APE) exerts neuroprotective effects against oxidative stress-induced neuronal cell death. Since glutamate excitotoxicity has been implicated in the pathogenesis and development of several neurodegenerative disorders, we explored the mechanisms of action of APE on oxidative stress-induced by glutamate. Our results revealed that pretreatment with APE prevents glutamate-induced HT22 cell death. APE also reduced both the levels of intracellular reactive oxygen species and the apoptosis of cells, while maintaining glutamate-induced mitochondrial membrane potentials. Western blotting showed that pretreatment with APE facilitates the upregulation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) phosphorylation; the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2); and the production of antioxidant enzymes, including catalase, glutamate-cysteine ligase catalytic subunits, NAD(P)H quinone oxidoreductase 1, and heme oxygenase (HO)-1. The administration of LY294002, a PI3K/Akt inhibitor, attenuated the neuroprotective effects of APE on oxidative stress-induced neuronal cell damage. This allowed us to infer that the protective effects of APE on oxidative damage to cells can be attributed to the PI3K/Akt-mediated Nrf-2/HO-1 signaling pathway.
Collapse
|
11
|
Choi MK, Kim J, Park HM, Lim CM, Pham TH, Shin HY, Kim SE, Oh DK, Yoon DY. The DPA-derivative 11S, 17S-dihydroxy 7,9,13,15,19 (Z,E,Z,E,Z)-docosapentaenoic acid inhibits IL-6 production by inhibiting ROS production and ERK/NF-κB pathway in keratinocytes HaCaT stimulated with a fine dust PM 10. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113252. [PMID: 35104780 DOI: 10.1016/j.ecoenv.2022.113252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
11 S, 17S-dihydroxy 7,9,13,15,19 (Z,E,Z,E,Z)-docosapentaenoic acid (DoPE) is a derivative of docosapentaenoic acid, a specialized pro-resolving mediator of inflammation such as lipoxins, resolvins, maresins, and protectins. PM10 is a fine dust particle that induces oxidative stress, DNA damage, inflammation, aging, and cancer. The anti-inflammatory mechanism of DoPE, however, has not yet been elucidated. In these studies, we investigated whether DoPE has anti-inflammatory effects in human keratinocyte HaCaT cells. We demonstrated that DoPE suppressed PM10-induced expressions of IL-6 mRNA and protein in human HaCaT keratinocytes. We also investigated the modulating effects of DoPE on reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK). ROS production, extracellular signal regulated kinase (ERK) phosphorylation, and translocation of nuclear factor-kappa B (NF-kB) p65 and NF-kB activity were suppressed by DoPE in PM10-stimulated HaCaT cells. Collectively, our results demonstrated that DoPE inhibited IL-6 expression by reducing ROS generation, suppressing ERK phosphorylation, and inhibiting translocation of NF-kB p65 and NF-kB activity in PM10-stimulated HaCaT cells, suggesting that DoPE can be useful for the resolution of the inflammation caused by IL-6.
Collapse
Affiliation(s)
- Myoung-Kwon Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
12
|
Cajas YN, Cañón-Beltrán K, Núñez-Puente C, Gutierrez-Adán A, González EM, Agirregoitia E, Rizos D. Nobiletin-induced partial abrogation of deleterious effects of AKT inhibition on preimplantation bovine embryo development in vitro. Biol Reprod 2021; 105:1427-1442. [PMID: 34617564 DOI: 10.1093/biolre/ioab184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/20/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022] Open
Abstract
During preimplantational embryo development, PI3K/AKT regulates cell proliferation and differentiation and nobiletin modulates this pathway to promote cell survival. Therefore, we aimed to establish whether, when the AKT cascade is inhibited using inhibitors III and IV, nobiletin supplementation to in vitro culture media during the minor (2 to 8-cell stage, MNEGA) or major (8 to 16-cell stage, MJEGA) phases of EGA is able to modulate the development and quality of bovine embryos. In vitro zygotes were cultured during MNEGA or MJEGA phase in SOF + 5% FCS or supplemented with: 15 μM AKT-InhIII; 10 μM AKT-InhIV; 10 μM nobiletin; nobiletin+AKT-InhIII; nobiletin+AKT-InhIV; 0.03% DMSO. Embryo development was lower in treatments with AKT inhibitors, while combination of nobiletin with AKT inhibitors was able to recover their adverse developmental effect and also increase blastocyst cell number. The mRNA abundance of GPX1, NFE2L2, and POU5F1 was partially increased in 8- and 16-cell embryos from nobiletin with AKT inhibitors. Besides, nobiletin increased the p-rpS6 level whether or not AKT inhibitors were present. In conclusion, nobiletin promotes bovine embryo development and quality and partially recovers the adverse developmental effect of AKT inhibitors which infers that nobiletin probably uses another signalling cascade that PI3K/AKT during early embryo development in bovine.
Collapse
Affiliation(s)
- Yulia N Cajas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Karina Cañón-Beltrán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Carolina Núñez-Puente
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Alfonso Gutierrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), 28040, Madrid, Spain
| | - Ekaitz Agirregoitia
- Department of Physiology, Faculty of Medicine and Nursing, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), 28040, Madrid, Spain
| |
Collapse
|
13
|
Zhang H, Li L, Hao M, Chen K, Lu Y, Qi J, Chen W, Ren L, Cai X, Chen C, Liu Z, Zhao B, Li Z, Hou P. Yixin-Fumai granules improve sick sinus syndrome in aging mice through Nrf-2/HO-1 pathway: A new target for sick sinus syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114254. [PMID: 34062246 DOI: 10.1016/j.jep.2021.114254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yixin-Fumai granules (YXFMs)-composed of Ginseng quinquefolium (L.) Alph. Wood, Ophiopogon japonicus (Thunb.) Ker Gawl, Schisandra arisanensis Hayata, Astragalus aaronsohnianus Eig, Salvia cryptantha Montbret & Aucher ex Benth, and Ligusticum striatum DC-are compound granules used in traditional Chinese medicine to increase heart rate and thus treat bradyarrhythmia. It may be effective in treating sick sinus syndrome (SSS). AIM To observe the effect of YXFMs on aging-induced SSS in mice and explore whether this effect is related to the Nrf-2/HO-1 signaling pathway. MATERIALS AND METHODS Mice with a significant decrease in the heart rate due to natural aging were selected to construct an SSS model. After the mice were administered YXFMs, the damage to their sinoartrial node (SAN) was assessed through electrocardiography, Masson's trichrome staining, and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Dihydroethidium staining and immunofluorescence staining were used to assay reactive oxygen species (ROS) content and HCN4, respectively. Moreover, to observe the effects of YXFMs in vitro, the HL-1 cell line, derived from mouse atrial myocytes, was used to simulate SAN pacemaker cells, with H2O2 used as the cellular oxidative stress (OS) inducer. 2,7-Dichlorodihydrofluorescein diacetate staining was used to assay ROS content, whereas immunofluorescence staining and Western blotting were used to elucidate the related protein expression. Finally, mice were injected the Nrf-2 inhibitor ML385 to reversely verify the effects of YXFMs. RESULTS In our in vivo experiments, YXFMs significantly inhibited aging-induced SSS, shortened the R-R interval, increased heart rate, alleviated fibrosis, reduced apoptosis rate and ROS content, and promote HCN4 expression in the SAN. In our in vitro experiments, YXFMs significantly inhibited H2O2-induced cell peroxidation damage, promoted Nrf-2 activation and nuclear metastasis, increased HO-1 expression- thereby inhibiting ROS accumulation-and finally, upregulated HCN4 expression through the inhibition of histone deacetylase 4 (HDAC4) expression and its nuclear metastasis. Finally, injection of the Nrf-2 inhibitor ML385 after YXFMs administration inhibited their protective effect in the mice. CONCLUSION Here, we elaborated on the relationship between aging-induced SSS and the Nrf-2/HO-1 pathway for the first time and proposed that YXFMs improve SSS via the Nrf-2/HO-1 axis. Specifically, YXFMs promoted Nrf-2 activation and plasma-nuclear transfer to enhance HO-1 expression via the Nrf-2/HO-1 axis. This inhibited OS and reduced ROS accumulation in the SAN, and then, through the ROS/HDAC4 axis, reduced HDAC4 expression and plasma-nuclear transfer. Thereby, the OS-induced HCN4 loss in the SAN was inhibited-improving the function of If channel and thus producing SAN protection effect against SSS and improving the heart rate and R-R interval. In the future, we plan to use bioinformatics analysis technology to execute the next step of our research, namely to determine the effect of isolated, purified components of YXFMs in SSS, to increase its efficiency and reduce the toxicity of YXFMs.
Collapse
Affiliation(s)
- Heng Zhang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China
| | - Lingkang Li
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China
| | - Miao Hao
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang, 110000, China
| | - Yongping Lu
- Department of NHC Key Laboratory of Reproductive Health and Medical Genetics, Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, 110000, China
| | - Jing Qi
- Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China
| | - Wei Chen
- Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China
| | - Lu Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China; Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China
| | - Xintong Cai
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China
| | - Chen Chen
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China
| | - Zhuang Liu
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China
| | - Bin Zhao
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China
| | - Zhishuang Li
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China
| | - Ping Hou
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China; Department of Cardiology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, China.
| |
Collapse
|
14
|
Song S, Lee YM, Lee YY, Yeum KJ. Oat ( Avena sativa) Extract against Oxidative Stress-Induced Apoptosis in Human Keratinocytes. Molecules 2021; 26:5564. [PMID: 34577035 PMCID: PMC8464938 DOI: 10.3390/molecules26185564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Oat (Avena sativa) is well known for its various health benefits. The protective effect of oat extract against oxidative stress-induced apoptosis in human keratinocytes HaCaT was determined. First, extracts of two varieties of oat, Daeyang and Choyang, were analyzed for fat-soluble antioxidants such as α-tocotrienol, γ-oryzanols, lutein and zeaxanthin using an UPLC system and for antioxidant activity using a DPPH assay. Specifically, an 80% ethanol extract of Daeyang oat (Avena sativa cv. Daeyang), which had high amounts of antioxidants and potent radical scavenging activity, was further evaluated for protective effect against oxidative stress-induced cell death, intracellular reactive oxygen species levels, the phosphorylation of DNA damage mediating genes such as H2AX, checkpoint kinase 1 and 2, and p53 and the activation of apoptotic genes such as cleaved caspase-3 and 7 and poly (ADP-ribose) polymerase in HaCaT cells. The Daeyang and Choyang oat 80% ethanol extracts had 26.9 and 24.1 mg/100 g γ-oryzanols, 7.69 and 8.38 mg/100 g α-tocotrienol, 1.25 and 0.34 mg/100 g of lutein and 1.20 and 0.17 mg/100 g of zeaxanthin, respectively. The oat 80% ethanol extract treatment (Avena sativa cv. Daeyang) had a protective effect on oxidative stress-induced cell death in HaCaT cells. In addition, the oat 80% ethanol extracts led to a significant decrease in the intracellular ROS level at a concentration of 50-200 μg/mL, the attenuation of DNA damage mediating genes and the inhibition of apoptotic caspase activities in a dose dependent manner (50-200 μg/mL). Thus, the current study indicates that an oat (Avena sativa cv. Daeyang) extract rich in antioxidants, such as polyphenols, avenanthramides, γ-oryzanols, tocotrienols and carotenoids, has a protective role against oxidative stress-induced keratinocyte injuries and that oat may a useful source for oxidative stress-associated skin damage.
Collapse
Affiliation(s)
- Sooji Song
- Department of Integrated Biosicences, College of Biomedical and Health Science, Konkuk University, Chungju-si 27478, Chungcheongbuk-do, Korea; (S.S.); (Y.-M.L.)
| | - Yoon-Mi Lee
- Department of Integrated Biosicences, College of Biomedical and Health Science, Konkuk University, Chungju-si 27478, Chungcheongbuk-do, Korea; (S.S.); (Y.-M.L.)
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju-si 27478, Korea
| | - Yu Young Lee
- Department of Central Area, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Korea;
| | - Kyung-Jin Yeum
- Department of Integrated Biosicences, College of Biomedical and Health Science, Konkuk University, Chungju-si 27478, Chungcheongbuk-do, Korea; (S.S.); (Y.-M.L.)
| |
Collapse
|
15
|
Bianchini Silva LS, Perasoli FB, Carvalho KV, Vieira KM, Paz Lopes MT, Bianco de Souza GH, Henrique Dos Santos OD, Freitas KM. Melaleuca leucadendron (L.) L. flower extract exhibits antioxidant and photoprotective activities in human keratinocytes exposed to ultraviolet B radiation. Free Radic Biol Med 2020; 159:54-65. [PMID: 32745772 DOI: 10.1016/j.freeradbiomed.2020.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022]
Abstract
Recently, there has been a demand for the replacement of chemical sunscreens with natural compounds that could prevent or restore UV-induced skin damage. Here, we investigated the photoprotective influence of the Melaleuca leucadendron ethanolic flower extract (EEMec) on factors involved in cellular and molecular UVB-induced oxidative stress in human skin keratinocytes (HaCaT). The phytochemical constituents, antioxidant potential by DPPH assay, content of total phenolic and flavonoid compounds in EEMec were evaluated. HaCaT cells were treated with EEMec followed by irradiation with UVB. CAT activity; GSH and ROS levels; and SOD1, GPx, CAT and COX-2 expression assays were employed to verify the oxidative stress, as well as EEMec effect on transmembrane transport, and pro-inflammatory and pro-apoptotic protein expression. EEMec reverted the viability loss of HaCaT cells after irradiation with UVB, exhibited significant antioxidant capacity and free radical scavenging activity in vitro, inhibited COX-2 expression and ensure protection of DNA-damage. EEMec shown a great photoprotective property to prevent keratinocytes damage induced by UV radiation and, thus a candidate potential to application as an adjuvant in sunscreen formulations as a strategy to reduce risk of sunburn and prevent skin diseases associated with UV-induced inflammation and cancer.
Collapse
Affiliation(s)
- Luan Silvestro Bianchini Silva
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Fernanda Barçante Perasoli
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Karen Vitor Carvalho
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Karla Murata Vieira
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Miriam Teresa Paz Lopes
- Laboratório de Substâncias Antitumorais, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| | - Gustavo Henrique Bianco de Souza
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Orlando David Henrique Dos Santos
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil.
| | - Kátia Michelle Freitas
- Laboratório de Fitotecnologia, Departamento de Farmácia, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| |
Collapse
|
16
|
Kim HJ, Baek SY, Sok DE, Lee KJ, Kim YJ, Kim MR. Neuroprotective Activity of Polyphenol-Rich Ribes diacanthum Pall against Oxidative Stress in Glutamate-Stimulated HT-22 Cells and a Scopolamine-Induced Amnesia Animal Model. Antioxidants (Basel) 2020; 9:antiox9090895. [PMID: 32967207 PMCID: PMC7555254 DOI: 10.3390/antiox9090895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Ribes diacanthum Pall, a native Mongolian medicinal plant, has been reported to show antioxidant activities due to its polyphenol and flavonoid content, and is especially rich in the ethyl acetate fraction from an 80% methanol extraction (RDP). We assessed the cytoprotective effect of RDP on glutamate-caused oxidative stress and apoptosis in mouse hippocampal neuronal cells (HT-22 cells). Cell viability was significantly recovered by RDP treatment. Also, RDP effectively decreased the glutamate-induced production of intracellular reactive oxygen species (ROS). In flow cytometric analysis, apoptotic cells and the mitochondrial membrane potential were suppressed by RDP. In the Western blotting analysis, we found that RDP not only decreased the release of apoptotic proteins but also recovered anti-apoptotic protein. Additionally, RDP enhanced the antioxidant defense system by regulating the expression of antioxidant enzymes. Furthermore, treatment with RDP activated the BDNF/TrkB pathway. In accordance with the in vitro results, RDP meliorated memory deficit by defending hippocampal neuronal cells against oxidative damage in scopolamine-injected mice. Taken together, our present study showed that RDP exerted antioxidant and neuroprotective actions against oxidative stress. Therefore, RDP might facilitate the development of candidates for functional health foods for neurodegenerative disorders.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; (H.J.K.); (S.Y.B.)
| | - Seung Yeon Baek
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; (H.J.K.); (S.Y.B.)
| | - Dai-Eun Sok
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Kun Jong Lee
- Department of Food and Nutrition, Soongeui Women’s College, Seoul 04628, Korea;
| | - Young-Jun Kim
- Department of Food Science and Technology, Seoul National University of Science and technology, Seoul 01811, Korea;
| | - Mee Ree Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; (H.J.K.); (S.Y.B.)
- Correspondence: ; Tel.: +82-42-821-6837; Fax: +82-42-821-8887
| |
Collapse
|
17
|
Zhang J, Wang W, Mao X. Chitopentaose protects HaCaT cells against H2O2-induced oxidative damage through modulating MAPKs and Nrf2/ARE signaling pathways. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Cao Y, Wang D, Li Q, Liu H, Jin C, Yang J, Wu S, Lu X, Cai Y. Activation of Nrf2 by lead sulfide nanoparticles induces impairment of learning and memory. Metallomics 2020; 12:34-41. [DOI: 10.1039/c9mt00151d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to determine, using rats, the mechanism of action of PbS NPs, exposure to which results in persistent alterations in nervous system function. The results showed that PbS NPs significantly impaired learning and memory.
Collapse
Affiliation(s)
- Yanhua Cao
- Department of Toxicology
- School of Public Health
- China Medical University
- Shenyang 110001
- China
| | - Dong Wang
- Department of Nutrition
- Beidaihe Sanatorium of Beijing Military Region
- Qinhuangdao 066000
- China
| | - Qingzhao Li
- Department of Toxicology
- School of Public Health
- Hebei United University
- Tangshan 063000
- China
| | - Huajie Liu
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 201800
- China
| | - Cuihong Jin
- Department of Toxicology
- School of Public Health
- China Medical University
- Shenyang 110001
- China
| | - Jinghua Yang
- Department of Toxicology
- School of Public Health
- China Medical University
- Shenyang 110001
- China
| | - Shengwen Wu
- Department of Toxicology
- School of Public Health
- China Medical University
- Shenyang 110001
- China
| | - Xiaobo Lu
- Department of Toxicology
- School of Public Health
- China Medical University
- Shenyang 110001
- China
| | - Yuan Cai
- Department of Toxicology
- School of Public Health
- China Medical University
- Shenyang 110001
- China
| |
Collapse
|
19
|
CGRP Reduces Apoptosis of DRG Cells Induced by High-Glucose Oxidative Stress Injury through PI3K/AKT Induction of Heme Oxygenase-1 and Nrf-2 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2053149. [PMID: 31885775 PMCID: PMC6899316 DOI: 10.1155/2019/2053149] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 10/22/2019] [Indexed: 01/26/2023]
Abstract
Dorsal root ganglion (DRG) neurons, which are sensitive to oxidative stress due to their anatomical and structural characteristics, play a complex role in the initiation and progression of diabetic bladder neuropathy. We investigated the hypothesis that the antioxidant and antiapoptotic effects of CGRP may be partly related to the expression of Nrf2 and HO-1, via the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, thus reducing apoptosis and oxidative stress responses. This study shows that CGRP activates the PI3K/AKT pathway, thereby inducing increased expression of Nrf2 and HO-1 and resulting in the decrease of reactive oxygen species and malondialdehyde levels and reduced neuronal apoptosis. These effects were suppressed by LY294002, an inhibitor of the PI3K/AKT pathway. Therefore, regulation of Nrf2 and HO-1 expression by the PI3K/AKT pathway plays an important role in the regulation of the antioxidant and antiapoptotic responses in DRG cells in a high-glucose culture model.
Collapse
|
20
|
Zhang X, Xue H, Zhou P, Liu L, Yu J, Dai P, Qu M. Angelica polysaccharide alleviates oxidative response damage in HaCaT cells through up-regulation of miR-126. Exp Mol Pathol 2019; 110:104281. [DOI: 10.1016/j.yexmp.2019.104281] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022]
|
21
|
He Y, Kim BG, Kim HE, Sun Q, Shi S, Ma G, Kim Y, Kim OS, Kim OJ. The Protective Role of Feruloylserotonin in LPS-Induced HaCaT Cells. Molecules 2019; 24:molecules24173064. [PMID: 31443581 PMCID: PMC6749254 DOI: 10.3390/molecules24173064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
Epidermal inflammation is caused by various bacterial infectious diseases that impair the skin health. Feruloylserotonin (FS) belongs to the hydroxycinnamic acid amides of serotonin, which mainly exists in safflower seeds and has been proven to have anti-inflammatory and antioxidant activities. Human epidermis mainly comprises keratinocytes whose inflammation causes skin problems. This study investigated the protective effects of FS on the keratinocyte with lipopolysaccharides (LPS)-induced human HaCaT cells and elucidated its underlying mechanisms of action. The mechanism was investigated by analyzing cell viability, PGE2 levels, cell apoptosis, nuclear factor erythroid 2-related factor 2 (Nrf2) translocation, and TLR4/NF-κB pathway. The anti-inflammatory effects of FS were assessed by inhibiting the inflammation via down-regulating the TLR4/NF-κB pathway. Additionally, FS promoted Nrf2 translocation to the nucleus, indicating that FS showed anti-oxidative activities. Furthermore, the antioxidative and anti-inflammatory effects of FS were found to benefit each other, but were independent. Thus, FS can be used as a component to manage epidermal inflammation due to its anti-inflammatory and anti-oxidative properties.
Collapse
Affiliation(s)
- Yuzhu He
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Byung-Gook Kim
- Department of Oral Medicine, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Hye-Eun Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qiaochu Sun
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Shuhan Shi
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Guowu Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Ok-Su Kim
- Department of Periodontology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Ok-Joon Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
22
|
Hemp seed polysaccharides protect intestinal epithelial cells from hydrogen peroxide-induced oxidative stress. Int J Biol Macromol 2019; 135:203-211. [DOI: 10.1016/j.ijbiomac.2019.05.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022]
|
23
|
Effect of Mechanical Stretch on the DNCB-induced Proinflammatory Cytokine Secretion in Human Keratinocytes. Sci Rep 2019; 9:5156. [PMID: 30914685 PMCID: PMC6435715 DOI: 10.1038/s41598-019-41480-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/27/2019] [Indexed: 01/09/2023] Open
Abstract
Skin is exposed to various physico-chemical cues. Keratinocytes, a major component of the skin epidermis, directly interact with the surrounding extracellular matrix, and thus, biochemical and biophysical stimulations from the matrix regulate the function of keratinocytes. Although it was reported that inflammatory responses of skin were altered by an applied mechanical force, understanding how the keratinocytes sense the mechanical stimuli and regulate a cytokine secretion remains unclear. Here, we designed a device that is able to apply chemo-mechanical cues to keratinocytes and assess their proinflammatory cytokine IL-6 production. We showed that when chemical stimuli were applied with mechanical stimuli simultaneously, the IL-6 production markedly increased compared to that observed with a single stimulus. Quantitative structural analysis of cellular components revealed that the applied mechanical stretch transformed the cell morphology into an elongated shape, increased the cell size, and dictated the distribution of focal adhesion complex. Our results suggest that the mechanical cue-mediated modulation of focal adhesion proteins and actin cytoskeleton translates into intracellular signaling associated with the IL-6 production particularly in skin sensitization. Our study can be applied to understand proinflammatory responses of skin under altered biophysical environments of the skin.
Collapse
|
24
|
Chen XJ, Ren SM, Dong JZ, Qiu CG, Chen YW, Tao HL. Ginkgo biloba extract-761 protects myocardium by regulating Akt/Nrf2 signal pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:647-655. [PMID: 30858695 PMCID: PMC6387611 DOI: 10.2147/dddt.s191537] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective The aim of this study was to investigate the protective effect and mechanism of Ginkgo biloba extract-761 (EGb 761) in the rat with myocardial ischemia–reperfusion injury (MIRI). Materials and methods Forty Sprague Dawley rats were randomly divided into following four groups: sham group, I/R group and EGb 761 groups (20 and 40 mg/kg). MIRI model was established after 14 days of administration. The myocardial infarct size and myocardial histology were measured and compared. Meanwhile, the levels of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), troponin T (TnT), TNF-α, IL-6, IL-1β, superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were evaluated. Western blot was used to detect the expression of Caspase-3, Bax, Bcl-2, HO-1, Nrf2, Akt, p-Akt and nuclear protein Nrf2. Results The levels of infarct size, CK-MB, LDH, TnT, TNF-α, IL-6 and IL-1β in the EGb 761 groups were significantly lower than those in the ischemia/reperfusion (I/R) group. The content of MDA was lower in the myocardium, whereas the activities of SOD and GSH-Px were higher than those in the I/R group. The expressions of Caspase-3 and Bax in the EGb 761 groups were significantly lower than those in the I/R group, whereas the expressions of Bcl-2, p-Akt and HO-1 and nuclear protein Nrf2 in the EGb 761 groups were higher than those in the I/R group. Conclusion EGb 761 might inhibit the apoptosis of myocardial cells and protect the myocardium by activating the Akt/Nrf2 pathway, increasing the expression of HO-1, decreasing oxidative stress and repressing inflammatory reaction.
Collapse
Affiliation(s)
- Xiao-Jie Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | - Shu-Min Ren
- Department of Genetics and Prenatal Diagnosis, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Zeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | - Chun-Guang Qiu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | - Ying-Wei Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | - Hai-Long Tao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| |
Collapse
|
25
|
Hu X, Liang Y, Zhao B, Wang Y. Oxyresveratrol protects human lens epithelial cells against hydrogen peroxide-induced oxidative stress and apoptosis by activation of Akt/HO-1 pathway. J Pharmacol Sci 2019; 139:166-173. [PMID: 30709701 DOI: 10.1016/j.jphs.2019.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 01/16/2023] Open
Abstract
Oxidative stress induced by hydrogen peroxide (H2O2) triggers human lens epithelial cell (HLEC) apoptosis and initiates cataract formation. Oxyresveratrol (Oxy) was reported to possess antioxidant and free radical scavenging activities. Herein, we investigated the effects of Oxy on H2O2-induced oxidative stress and apoptosis in HLECs and the associated mechanisms. Cell viability was detected by MTT assay. The oxidative damage was assessed by measuring the activities of superoxide dismutases-1 (SOD-1), catalase (CAT), glutathione reductase (GSH), and malondialdehyde (MDA). Apoptosis was analyzed by flow cytometry analysis. The changed expressions of heme oxygenase-1 (HO-1) and protein kinase B (Akt) pathways were evaluated by qRT-PCR and western blot. We found that exposure to H2O2 dose-dependently reduced cell viability, and induced oxidative stress and apoptosis in HLECs, which were reversed by pretreatment with Oxy. Oxy increased p-Akt and HO-1 expressions in H2O2-stimulated HLECs. Akt and HO-1 expressions form a regulatory axis and Oxy activated the Akt/HO-1 pathway in H2O2-stimulated HLECs. Inhibition of the Akt/HO-1 pathway by LY294002 or ZnPP attenuated the effects of Oxy on oxidative stress and apoptosis in H2O2-stimulated HLECs. In conclusion, Oxy protected H2O2-induced oxidative stress and apoptosis through activating the Akt/HO-1 pathway, suggesting the protective effect of Oxy against H2O2-induced cataract.
Collapse
Affiliation(s)
- Xin Hu
- Department of Ophtalmology, Huaihe Hospital of Henan University, Kaifeng 475000, PR China.
| | - Yuanyuan Liang
- Department of Ophtalmology, Huaihe Hospital of Henan University, Kaifeng 475000, PR China
| | - Bo Zhao
- Department of Ophtalmology, Huaihe Hospital of Henan University, Kaifeng 475000, PR China
| | - Yongyi Wang
- Department of Ophtalmology, Huaihe Hospital of Henan University, Kaifeng 475000, PR China
| |
Collapse
|
26
|
Hosseini R, Moosavi F, Silva T, Rajaian H, Hosseini SY, Bina S, Saso L, Miri R, Borges F, Firuzi O. Modulation of ERK1/2 and Akt Pathways Involved in the Neurotrophic Action of Caffeic Acid Alkyl Esters. Molecules 2018; 23:molecules23123340. [PMID: 30562988 PMCID: PMC6321311 DOI: 10.3390/molecules23123340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative diseases affect millions of human lives all over the world. The number of afflicted patients is rapidly growing, and disease-modifying agents are urgently needed. Caffeic acid, an important member of the hydroxycinnamic acid family of polyphenols, has considerable neurotrophic effects. We have previously shown how caffeate alkyl ester derivatives significantly promote survival and differentiation in neuronal cells. In this study, the mechanisms by which these ester derivatives exert their neurotrophic effects are examined. A series of eight caffeic acid esters with different alkyl chain lengths, ranging from methyl (CAF1) to dodecyl esters (CAF8), were synthesized and studied for their influence on neurotrophic signaling pathways. Caffeate esters did not induce tropomyosin-receptor kinase A (TrkA) phosphorylation, which was assessed by immunoblotting up to a concentration of 25 µM. NIH/3T3 cells overexpressing TrkA were generated to further examine phosphorylation of this receptor tyrosine kinase. None of the esters induced TrkA phosphorylation in these cells either. Assessment of the effect of caffeate derivatives on downstream neurotrophic pathways by immunoblotting showed that the most potent esters, decyl caffeate (CAF7) and dodecyl caffeate (CAF8) caused extracellular signal-regulated kinase (ERK1/2) and Akt serine threonine kinase phosphorylation in PC12 cells at 5 and 25 µM concentrations. In conclusion, this study shows that caffeate esters exert their neurotrophic action by modulation of ERK1/2 and Akt signaling pathways in neuronal cells, and further demonstrates the potential therapeutic implications of these derivatives for neurodegenerative diseases.
Collapse
Affiliation(s)
- Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz 71441-69155, Iran.
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz 71441-69155, Iran.
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Hamid Rajaian
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz 71441-69155, Iran.
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.
| | - Samaneh Bina
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy.
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz 71348-5373, Iran.
| |
Collapse
|
27
|
Yoon Y, Lee Y, Song S, Lee YY, Yeum K. Black soybeans protect human keratinocytes from oxidative stress-induced cell death. Food Sci Nutr 2018; 6:2423-2430. [PMID: 30510743 PMCID: PMC6261176 DOI: 10.1002/fsn3.842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022] Open
Abstract
Black soybeans are functional foods containing a variety of bioactives such as isoflavones, carotenoids, tocopherols, phenolic acid as well as anthocyanins. Here, we examined whether Cheongja#3 black soybean extract has a protective effect on oxidative stress-induced cell death in human keratinocytes HaCaT. First, we identified fat-soluble bioactives in three varieties of soybean extracts (Saedanbaek, Daechan, and Cheongja#3). In particular, black soybean Cheongja#3 had high amounts of lutein than other varieties. We demonstrated that Cheongja#3 extract reduced intracellular reactive oxygen species levels in HaCaT cells. Furthermore, Cheongja#3 protected cells from hydrogen peroxide (H2O2)-induced oxidative stress and triggered cell death determined by cell viabilities and apoptotic caspase activities. Next, we identified the underlying mechanism is due to increased Nrf2 antioxidant system by Cheongja#3, thus increasing the expression of heme oxygenases (HO)-1. These results indicated that Cheongja#3 soybean extract has protective role against oxidative stress by upregulating the Nrf-2 antioxidant system in human keratinocyte HaCaT cells.
Collapse
Affiliation(s)
- Young Yoon
- Division of Food BioscienceCollege of Biomedical and Health SciencesKonkuk UniversityChungju‐siKorea
| | - Yoon‐Mi Lee
- Division of Food BioscienceCollege of Biomedical and Health SciencesKonkuk UniversityChungju‐siKorea
- Nanotechnology Research CenterKonkuk UniversityChungju‐siKorea
| | - Sooji Song
- Division of Food BioscienceCollege of Biomedical and Health SciencesKonkuk UniversityChungju‐siKorea
| | - Yu Young Lee
- Department of Central AreaNational Institute of Crop ScienceRural Development AdministrationSuwonKorea
| | - Kyung‐Jin Yeum
- Division of Food BioscienceCollege of Biomedical and Health SciencesKonkuk UniversityChungju‐siKorea
- Institute of Biomedical and Health scienceKonkuk UniversityChungju‐siKorea
| |
Collapse
|
28
|
Mi XJ, Hou JG, Wang Z, Han Y, Ren S, Hu JN, Chen C, Li W. The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK-mediated PI3K/Akt and p53 signaling pathways. Sci Rep 2018; 8:15922. [PMID: 30374107 PMCID: PMC6206039 DOI: 10.1038/s41598-018-34156-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023] Open
Abstract
Cisplatin, a potent anticancer drug, is usually causing nephrotoxicity; limiting its therapeutic application and efficiency. Maltol may be used to prevent such toxic effect. The aim of this study was to investigate the underlying protective mechanisms of maltol on nephrotoxicity by cisplatin using a cisplatin-treated mouse model and a cellular toxicity model of HEK293 cells. The blood urea nitrogen (BUN), creatinine (CRE) and neutrophil gelatinase-associated lipocalin (NGAL) levels in mice were increased by cisplatin but decreased to normal ranges by maltol pretreatment (50 and 100 mg/kg) for ten days. Besides, maltol pretreatment decreased oxidative stress, lipid peroxidation and apoptosis in cisplatin-treated mice. The inhibitory action of maltol on inflammatory responses was achieved by reducing the expressions in NF-κB, IL-1β, iNOS, and TNF-α in the mice in vivo. Additionally, maltol restored the reduction of PI3K/Akt and mTOR levels by cisplatin through increasing AMPK expression in cisplatin-treated HEK293 cells. Maltol also suppressed the expression of Bax and caspase 3 by inhibiting the p53 activity in HEK293 cells. Overall, maltol may serve as a valuable potential drug to prevent cisplatin-induced nephrotoxicity, and the underlying molecular mechanisms of maltol action may involve intracellular AMPK/PI3K/Akt and p53 signaling pathways.
Collapse
Affiliation(s)
- Xiao-Jie Mi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
- Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ye Han
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Chen Chen
- School of Biomedical Sciences, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
29
|
Wang Y, Li L, Wang Y, Zhu X, Jiang M, Song E, Song Y. New application of the commercial sweetener rebaudioside a as a hepatoprotective candidate: Induction of the Nrf2 signaling pathway. Eur J Pharmacol 2018; 822:128-137. [PMID: 29355553 DOI: 10.1016/j.ejphar.2018.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
Abstract
A large population of drug candidates have failed "from bench to bed" due to unwanted toxicities. We intend to develop an alternative approach for drug discovery, that is, to seek candidates from "safe" compounds. Rebaudioside A (Reb-A) is an approved commercial sweetener from Stevia rebaudiana Bertoni. We found that Reb-A protects against carbon tetrachloride (CCl4)-induced oxidative injury in human liver hepatocellular carcinoma (HepG2) cells. Reb-A showed antioxidant activity on reducing cellular reactive oxygen species and malondialdehyde levels while increasing glutathione levels and superoxide dismutase and catalase activities. Reb-A treatment induced nuclear factor erythroid-derived 2-like 2 (Nrf2) activation and antioxidant response element activity, as well as the expression of heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). Further mechanistic studies indicated that c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), mitogen-active protein kinase (MAPK) and protein kinase C epsilon (PKCε) signaling was upregulated. Thus, the present in vitro study conclusively demonstrated that Reb-A is an activator of Nrf2 and is a potential candidate hepatoprotective agent. More importantly, the present study illustrated that seeking drug candidates from "safe" compounds is a promising strategy.
Collapse
Affiliation(s)
- Yuxin Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Linyao Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yawen Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaokang Zhu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Mingdong Jiang
- Department of Radiation Oncology, The Ninth People's Hospital of Chongqing, Chongqing 400700, People's Republic of China.
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
30
|
Wen ZS, Ma L, Xiang XW, Tang Z, Guan RF, Qu YL. Protective effect of low molecular-weight seleno-aminopolysaccharides against H2O2-induecd oxidative stress in intestinal epithelial cells. Int J Biol Macromol 2018; 112:745-753. [DOI: 10.1016/j.ijbiomac.2018.01.191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 01/02/2023]
|
31
|
Wahyudi LD, Jeong J, Yang H, Kim JH. Amentoflavone-induced oxidative stress activates NF-E2-related factor 2 via the p38 MAP kinase-AKT pathway in human keratinocytes. Int J Biochem Cell Biol 2018; 99:100-108. [DOI: 10.1016/j.biocel.2018.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022]
|
32
|
Liu L, Wu W, Li J, Jiao WH, Liu LY, Tang J, Liu L, Sun F, Han BN, Lin HW. Two sesquiterpene aminoquinones protect against oxidative injury in HaCaT keratinocytes via activation of AMPKα/ERK-Nrf2/ARE/HO-1 signaling. Biomed Pharmacother 2018; 100:417-425. [PMID: 29471244 DOI: 10.1016/j.biopha.2018.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/26/2018] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
AIMS To investigate the cytoprotective effects of two sesquiterpene aminoquinones isolated from the marine sponge Dysidea fragilis, Dysidaminone H (DA8) and 3'-methylamino-avarone (DA14), we examined their effects against hydrogen peroxide (H2O2)-induced oxidative injury in human keratinocyte cell line and elucidated the underlying mechanisms. MAIN METHODS Cell viability was detected using a CCK-8 assay kit. Intracellular reactive oxygen species (ROS) production was measured by fluorescence of 2, 7-Dichlorodi-hydrofluorescein diacetate (DCFH-DA). Messenger RNA and protein expression were measured by real-time quantitative PCR and western blotting analysis. Immunocytochemistry was performed to determine the intracellular location of nuclear factorerythroid 2 p45 related factor 2 (Nrf2). The antioxidant response element (ARE)-luciferase reporter gene assay and RNA interference were used to establish the role of ARE and Nrf2. KEY FINDINGS DA8 and DA14 (DAs) resisted H2O2induced decline of cell viability by inhibiting the accumulation of ROS. Meanwhile, DAs increased HO-1 expression and ARE activity and induced Nrf2 expression, as well as the accumulation of Nrf2 in the cell nucleus. However, silencing of Nrf2 abolished DAs-induced HO-1 expression and ARE luciferase activation. In addition, DAs induced the phosphorylation of both cyclic AMP-activated protein kinase-α (AMPKα) and extracellular signal-regulated kinase (ERK), while specific inhibitors of AMPKα and ERK abrogated HO1 upregulation and Nrf2 activation. SIGNIFICANCE DAs provided cytoprotective effects against H2O2-induced cytotoxicity by activation of the Nrf2/ARE/HO-1 pathway via phosphorylation of AMPKα and ERK. The findings suggested that DA8 and DA14 might be the candidate therapeutic agents for skin diseases caused by oxidative injury.
Collapse
Affiliation(s)
- Li Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Wu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li-Yun Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Tang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Bing-Nan Han
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Development Technology of Marine Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
33
|
Hseu YC, Korivi M, Lin FY, Li ML, Lin RW, Wu JJ, Yang HL. Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts. J Dermatol Sci 2018; 90:123-134. [PMID: 29395579 DOI: 10.1016/j.jdermsci.2018.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 12/18/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND UVA irradiation-induced skin damage/photoaging is associated with redox imbalance and collagen degradation. OBJECTIVE Dermato-protective efficacies of trans-cinnamic acid (t-CA), a naturally occurring aromatic compound have been investigated against UVA irradiation, and elucidated underlying molecular mechanism. METHODS Human foreskin fibroblast-derived (Hs68) cells and nude mice were treated with t-CA prior to UVA exposure, and assayed the anti-photoaging effects of t-CA. RESULTS We found t-CA (20-100 μM) pretreatment substantially ameliorated UVA (3 J/cm2)-induced cytotoxicity, and inhibited intracellular ROS production in Hs68 cells. UVA-induced profound upregulation of metalloproteinase (MMP)-1/-3 and degradation of type I procollagen in dermal fibroblasts were remarkably reversed by t-CA, possibly through inhibition of AP-1 (c-Fos, but not c-Jun) translocation. The t-CA-mediated anti-photoaging properties are associated with increased nuclear translocation of Nrf2. Activation of Nrf2 signaling is accompanied with induction of HO-1 and γ-GCLC expressions in t-CA-treated fibroblasts. Furthermore t-CA-induced Nrf2 translocation is mediated through PKC, AMPK, CKII or ROS signaling cascades. This phenomenon was confirmed with respective pharmacological inhibitors, GF109203X, Compound C, CKII inhibitor or NAC, which blockade t-CA-induced Nrf2 activation. Silencing of Nrf2 signaling with siRNA showed no anti-photoaging effects of t-CA against UVA-induced ROS production, loss of HO-1 and type I collagen degradation in fibroblasts. In vivo evidence on nude mice revealed that t-CA pretreatment (20 or 100 mM/day) significantly suppressed MMP-1/-3 activation and maintained sufficient type I procollagen levels in biopsied skin tissue against UVA irradiation (3 J/cm2/day for 10-day). CONCLUSION t-CA treatment diminished UVA-induced photoaging/collagen degradation, and protected structural integrity of the skin.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Mallikarjuna Korivi
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Fang-Ying Lin
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Mei-Ling Li
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ruei-Wan Lin
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jia-Jiuan Wu
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
34
|
Zerumbone protects human skin keratinocytes against UVA-irradiated damages through Nrf2 induction. Biochem Pharmacol 2018; 148:130-146. [DOI: 10.1016/j.bcp.2017.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/18/2017] [Indexed: 02/08/2023]
|
35
|
Kim HE, Cho H, Ishihara A, Kim B, Kim O. Cell proliferation and migration mechanism of caffeoylserotonin and serotonin via serotonin 2B receptor in human keratinocyte HaCaT cells. BMB Rep 2018; 51:188-193. [PMID: 29335070 PMCID: PMC5933214 DOI: 10.5483/bmbrep.2018.51.4.209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 11/20/2022] Open
Abstract
Caffeoylserotonin (CaS), one derivative of serotonin (5-HT), is a secondary metabolite produced in pepper fruits with strong antioxidant activities. In this study, we investigated the effect of CaS on proliferation and migration of human keratinocyte HaCaT cells compared to that of 5-HT. CaS enhanced keratinocyte proliferation even under serum deficient condition. This effect of CaS was mediated by serotonin 2B receptor (5-HT2BR) related to the cell proliferation effect of 5-HT. We also confirmed that both CaS and 5-HT induced G1 progression via 5-HT2BR/ERK pathway in HaCaT cells. However, Akt pathway was additionally involved in upregulated expression levels of cyclin D1 and cyclin E induced by CaS by activating 5-HT2BR. Moreover, CaS and 5-HT induced cell migration in HaCaT cells via 5-HT2BR. However, 5-HT regulated cell migration only through ERK/AP-1/MMP9 pathway while additional Akt/NF-κB/MMP9 pathway was involved in the cell migration effect of CaS. These results suggest that CaS can enhance keratinocyte proliferation and migration. It might have potential as a reagent beneficial for wound closing and cell regeneration.
Collapse
Affiliation(s)
- Hye-Eun Kim
- Department of Oral Pathology, Dental Science Research Institute and Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Hyejoung Cho
- Department of Oral Pathology, Dental Science Research Institute and Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Byungkuk Kim
- Department of Oral Pathology, Dental Science Research Institute and Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Okjoon Kim
- Department of Oral Pathology, Dental Science Research Institute and Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
36
|
Yang Z, Zhu ML, Li DH, Zeng R, Han BN. N-Me-trichodermamide B isolated from Penicillium janthinellum, with antioxidant properties through Nrf2-mediated signaling pathway. Bioorg Med Chem 2017; 25:6614-6622. [PMID: 29153548 DOI: 10.1016/j.bmc.2017.10.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
Abstract
A new trichodermamide-like alkaloid, N-Me-trichodermamide B (compound 1), was isolated from a marine fungus Penicillium janthinellum HDN13-309. The structure and absolute configuration of compound 1 were determined by extensive NMR analysis and the modified Mosher's method. This new alkaloid exhibited cellular protection from the H2O2-induced oxidative damage, and the mechanism study revealed that this antioxidant activity was regulated through Nrf2-mediated signaling pathway in HaCaT human keratinocytes. In addition, the inhibitor of p38 abrogated compound 1-induced phosphorylation of p38, up-expression of HO-1, and the nuclear localization of Nrf2. As a result, it suggested that this new alkaloid-induced antioxidant signaling pathway might be initiated through activation of p38.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacy, Graduate School, Hunan University of Chinese Medicine, Changsha 410208, People's Republic of China
| | - Mei-Lin Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - De-Hai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China.
| | - Rong Zeng
- Department of Pharmacy, Graduate School, Hunan University of Chinese Medicine, Changsha 410208, People's Republic of China.
| | - Bing-Nan Han
- Department of Development Technology of Marine Resources, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
37
|
Sun J, Wei X, Lu Y, Cui M, Li F, Lu J, Liu Y, Zhang X. Glutaredoxin 1 (GRX1) inhibits oxidative stress and apoptosis of chondrocytes by regulating CREB/HO-1 in osteoarthritis. Mol Immunol 2017; 90:211-218. [PMID: 28843170 DOI: 10.1016/j.molimm.2017.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 01/11/2023]
Abstract
GRX1 (glutaredoxin1), a sulfhydryl disulfide oxidoreductase, is involved in many cellular processes, including anti-oxidation, anti-apoptosis, and regulation of cell differentiation. However, the role of GRX1 in the oxidative stress and apoptosis of osteoarthritis chondrocytes remains unclear, prompting the current study. Protein and mRNA expressions were measured by Western blot and RT-qPCR. Oxidative stress was detected by the measurement of MDA and SOD contents. Cells apoptosis were detected by Annexin V-FITC/PI and caspase-3 activity assays. We found that the mRNA and protein expressions of GRX1 were significantly down-regulated in osteoarthritis tissues and cells. GRX1 overexpression increased the mRNA and protein expression of CREB and HO-1. Meanwhile, GRX1 overexpression inhibited oxidative stress and apoptosis in osteoarthritis chondrocytes. Furthermore, we found that GRX1 overexpression regulated HO-1 by increasing CREB, and that HO-1 regulated oxidative stress and apoptosis in osteoarthritis chondrocytes. Thus, GRX1 overexpression constrains oxidative stress and apoptosis in osteoarthritis chondrocytes by regulating CREB/HO-1, providing a novel insight into the molecular mechanism and potential treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jie Sun
- Department of Orthopaedic Trauma, Tianjin Hospital, Tianjin, 300211, China
| | - Xuelei Wei
- Department of Orthopaedic Trauma, Tianjin Hospital, Tianjin, 300211, China.
| | - Yandong Lu
- Department of Orthopaedic Trauma, Tianjin Hospital, Tianjin, 300211, China
| | - Meng Cui
- Department of Orthopaedic Trauma, Tianjin Hospital, Tianjin, 300211, China
| | - Fangguo Li
- Department of Orthopaedic Trauma, Tianjin Hospital, Tianjin, 300211, China
| | - Jie Lu
- Department of Orthopaedic Trauma, Tianjin Hospital, Tianjin, 300211, China
| | - Yunjiao Liu
- Department of Orthopaedic Trauma, Tianjin Hospital, Tianjin, 300211, China
| | - Xi Zhang
- Department of Orthopaedic Trauma, Tianjin Hospital, Tianjin, 300211, China
| |
Collapse
|
38
|
Liu Q, Hu S, He Y, Zhang J, Zeng X, Gong F, Liang L. The protective effects of Zhen-Wu-Tang against cisplatin-induced acute kidney injury in rats. PLoS One 2017; 12:e0179137. [PMID: 28586398 PMCID: PMC5460876 DOI: 10.1371/journal.pone.0179137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/24/2017] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition that confers a risk of progression of chronic kidney disease and a high risk of death. The purpose of the current study is to investigate the anti-apoptotic and anti-fibrotic effects of Zhen-Wu-Tang (ZWT) on cisplatin (CIS)-induced renal injury and elucidate the involvement of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), the PI3K/Akt signaling pathway, transforming growth factor (TGF)-β and the Wnt/β-catenin signaling pathway in the positive effects of Zhen-Wu-Tang on the kidneys. Wistar rats were randomly assigned into six groups of 6 rats each as follows: normal control 1; normal control 2; CIS 1 and CIS 2, which received single intraperitoneal injections of CIS (6 mg/kg); CIS+ZWT 4 and CIS+ZWT 10, which received ZWT (1 ml/100 g/day, ig) starting days after the CIS injection for 4 and 10 days, respectively. Hematoxylin-eosin (H&E) staining was performed to identify the amelioration of histopathological changes in the kidneys and apoptosis of the renal proximal tubular cells. Picrosirius red staining was used to evaluate renal fibrosis after ZWT treatment. The relationship between ZWT and the upregulation of Nrf2, phosphorylation of Akt, and the downregulation of TGF-β and WNT/β-catenin were determined by Western blotting. At the end of the experiment, serum was isolated from the orbital blood of rats, and blood urea nitrogen (BUN) and creatinine (Cr) levels were measured. The results showed that ZWT restored the histological alterations, aberrant collagen deposition in the kidneys and the BUN and Cr levels that were increased by CIS. Treatment with ZWT reduced the expression levels of TGF-β and Wnt and increased the expression levels of Nrf2, PI3K and Akt in the CIS-exposed kidney tissues. Furthermore, ZWT downregulated apoptosis and fibrosis by modulating the expression levels of caspase-3, Bax and alpha-smooth muscle actin (α-SMA). In conclusion, this study provides evidence for the anti-fibrotic and anti-apoptotic roles of ZWT in CIS-induced experimental kidney injury.
Collapse
Affiliation(s)
- Qi Liu
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Shouyu Hu
- Department of Neurology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yi He
- Department of Urology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiashu Zhang
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaona Zeng
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Fengtao Gong
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Li’na Liang
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
- * E-mail:
| |
Collapse
|
39
|
Youn CK, Jo ER, Sim JH, Cho SI. Peanut sprout extract attenuates cisplatin-induced ototoxicity by induction of the Akt/Nrf2-mediated redox pathway. Int J Pediatr Otorhinolaryngol 2017; 92:61-66. [PMID: 28012535 DOI: 10.1016/j.ijporl.2016.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Cisplatin is commonly used to treat solid tumors. However, permanent hearing loss is a major side effect of cisplatin chemotherapy and often results in dose reduction of the cisplatin chemotherapy. Peanut sprouts show cytoprotective properties owing to their antioxidant activities. This study was designed to investigate the effect of peanut sprout extract (PSE) on cisplatin-induced ototoxicity in an auditory cell line, HEI-OC1 cells. METHODS Cells were exposed to cisplatin for 24 h, with or without pre-treatment with PSE, cell viability was examined using the MTT assay. Apoptotic cells were identified by double staining with Hoechst 33258 and propidium iodide. Western blot analysis was performed to examine apoptotic proteins including C-PARP and C-caspase, anti-apoptotic protein Bcl-2, and Nrf2 redox system activation. Mitochondrial reactive oxygen species (ROS) were investigated to examine whether PSE could scavenge cisplatin-induced ROS. Real-time PCR analyses were performed to investigate the mRNA levels of antioxidant enzymes including NQO1, HO-1, GPx2, Gclc, and catalase. RESULTS The cisplatin-treated group showed reduced cell viability, increased apoptotic properties and markers, and increased ROS levels. PSE pre-treatment before cisplatin exposure significantly increased cell viability and reduced apoptotic properties and ROS production. These effects resulted from the up-regulation of antioxidant genes, including NQO1, HO-1, GPx2, Gclc, and catalase through Akt phosphorylation and Nrf2 activation. CONCLUSION Our results demonstrate that PSE protects from cisplatin-induced cytotoxicity by activating the antioxidant effects via the Akt/Nrf-2 pathway in this auditory cell line, and indicate that PSE may provide novel treatment to prevent cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Cha Kyung Youn
- Department of Otolaryngology-Head and Neck Surgery, Chosun University School of Medicine, Gwangju, South Korea; Division of Natural Medical Science, Chosun University School of Medicine, Gwangju, South Korea
| | - Eu-Ri Jo
- Department of Otolaryngology-Head and Neck Surgery, Chosun University School of Medicine, Gwangju, South Korea
| | - Ju-Hwan Sim
- Department of Otolaryngology-Head and Neck Surgery, Chosun University School of Medicine, Gwangju, South Korea
| | - Sung Il Cho
- Department of Otolaryngology-Head and Neck Surgery, Chosun University School of Medicine, Gwangju, South Korea.
| |
Collapse
|
40
|
Hosseini R, Moosavi F, Rajaian H, Silva T, Magalhães e Silva D, Soares P, Saso L, Edraki N, Miri R, Borges F, Firuzi O. Discovery of neurotrophic agents based on hydroxycinnamic acid scaffold. Chem Biol Drug Des 2016; 88:926-937. [DOI: 10.1111/cbdd.12829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
- Department of Pharmacology; School of Veterinary Medicine; Shiraz University; Shiraz Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
- Department of Pharmacology; School of Veterinary Medicine; Shiraz University; Shiraz Iran
| | - Hamid Rajaian
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Diogo Magalhães e Silva
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Pedro Soares
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”; Sapienza University of Rome; Rome Italy
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
41
|
An J, Guo P, Shang Y, Zhong Y, Zhang X, Yu Y, Yu Z. The "adaptive responses" of low concentrations of HBCD in L02 cells and the underlying molecular mechanisms. CHEMOSPHERE 2016; 145:68-76. [PMID: 26688241 DOI: 10.1016/j.chemosphere.2015.11.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 06/05/2023]
Abstract
This study aimed to investigate the "adaptive responses" of hexabromocyclododecanes (HBCD) at environmentally relevant concentrations in human hepatocytes L02. L02 cells were pre-treated with low concentrations of HBCD (10(-13)-10(-11) M), followed by treatment with high concentrations of HBCD, α-hexachlorocyclohexane (α-HCH), polychlorinated biphenyls (PCBs), or polybrominated diphenyl ether-47 (BDE47). The results showed that the pre-treatment with low concentrations of HBCD induced "adaptive responses" to high concentrations of HBCD/α-HCH exposure (but not to PCBs and BDE47), as evidenced by attenuation of survival inhibition, reactive oxygen species (ROS) over-production, and deoxyribonucleic acid (DNA) damage induction. The "adaptive responses" induced by low concentrations of HBCD, which depended on the activation of the phosphatidylinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, reduced the phosphorylation of adenosine monophosphate-activated kinase (AMPK) and enhanced the phosphorylation of p38 mitogen-activated protein kinases (p38 MAPK). The observations were further confirmed by the experiments with inhibitors. Moreover, the evaluation on the changes of metabolic enzymes revealed that HBCD and α-HCH shared a similar pattern of cytochrome P450 induction (CYP2B6), which was different from those of PCBs and BDE47 (CYP1A1 and CYP2B6). These results indicated that low concentrations of HBCD could induce "adaptive responses" to the subsequent treatment with high concentrations of HBCD/α-HCH in L02 cells, which was associated with the PI3K/Akt pathway, and AMPK and p38 MAPK signaling. The "adaptive responses" seemed to be dependent on the types of chemicals in terms of the metabolic patterns and chemical structures.
Collapse
Affiliation(s)
- Jing An
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Panpan Guo
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yu Shang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yufang Zhong
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xinyu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
42
|
An exploration of the antioxidant effects of garlic saponins in mouse-derived C2C12 myoblasts. Int J Mol Med 2015; 37:149-56. [PMID: 26531218 DOI: 10.3892/ijmm.2015.2398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/19/2015] [Indexed: 11/05/2022] Open
Abstract
In this study, we aimed to confirm the protective effects of garlic saponins against oxidative stress-induced cellular damage and to further elucidate the underlying mechanisms in mouse-derived C2C12 myoblasts. Relative cell viability was determined by 3-(4.5-dimethylthiazol-2-yl)-2.5 diphenyltetrazolium bromide assay. Comet assay was used to measure DNA damage and oxidative stress was determined using 2',7'-dichlorofluorescein diacetate to measure intracellular reactive oxygen species (ROS) generation. Western blot analysis and small interfering RNA (siRNA)-based knockdown were used in order to investigate the possible molecular mechanisms. Our results revealed that garlic saponins prevented hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against intracellular ROS. We also observed that garlic saponins prevented H2O2-induced comet tail formation and decreased the phosphorylation levels of γH2AX expression, suggesting that they can prevent H2O2-induced DNA damage. In addition, garlic saponins increased the levels of heme oxygenase-1 (HO-1), a potent antioxidant enzyme associated with the induction and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the translocation of Nrf2 from the cytosol into the nucleus. However, the protective effects of garlic saponins on H2O2-induced ROS generation and growth inhibition were significantly reduced by zinc protoporphyrin Ⅸ, an HO-1 competitive inhibitor. In addition, the potential of garlic saponins to mediate HO-1 induction and protect against H2O2‑mediated growth inhibition was adversely affected by transient transfection with Nrf2-specific siRNA. Garlic saponins activated extracellular signal‑regulated kinase (ERK) signaling, whereas a specific ERK inhibitor was able to inhibit HO-1 upregulation, as well as Nrf2 induction and phosphorylation. Taken together, the findings of our study suggest that garlic saponins activate the Nrf2/HO-1 pathway by enabling ERK to contribute to the induction of phase Ⅱ antioxidant and detoxifying enzymes, including HO-1 in C2C12 cells.
Collapse
|
43
|
Kim SJ, Park C, Lee JN, Lim H, Hong GY, Moon SK, Lim DJ, Choe SK, Park R. Erdosteine protects HEI-OC1 auditory cells from cisplatin toxicity through suppression of inflammatory cytokines and induction of Nrf2 target proteins. Toxicol Appl Pharmacol 2015; 288:192-202. [DOI: 10.1016/j.taap.2015.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/30/2015] [Accepted: 07/16/2015] [Indexed: 12/20/2022]
|
44
|
Chen HH, Wang TC, Lee YC, Shen PT, Chang JY, Yeh TK, Huang CH, Chang HH, Cheng SY, Lin CY, Shih C, Chen CT, Liu WM, Chen CH, Kuo CC. Novel Nrf2/ARE Activator, trans-Coniferylaldehyde, Induces a HO-1-Mediated Defense Mechanism through a Dual p38α/MAPKAPK-2 and PK-N3 Signaling Pathway. Chem Res Toxicol 2015; 28:1681-92. [DOI: 10.1021/acs.chemrestox.5b00085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Huang-Hui Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Department
of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tai-Chi Wang
- Department
of Pharmacy, Tajen University, Pingtung 90741, Taiwan
| | - Yen-Chen Lee
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Pei-Ting Shen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Jang-Yang Chang
- National
Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
- Institute
of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Teng-Kuang Yeh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chih-Hsiang Huang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Hsin-Huei Chang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Shu-Ying Cheng
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chin-Yu Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chuan Shih
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chiung-Tong Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Wei-Min Liu
- Department
of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department
of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hui Chen
- Department
of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department
of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Chuan Kuo
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Institute
of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Graduate
Program for Aging, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
45
|
Chen B, Lu Y, Chen Y, Cheng J. The role of Nrf2 in oxidative stress-induced endothelial injuries. J Endocrinol 2015; 225:R83-99. [PMID: 25918130 DOI: 10.1530/joe-14-0662] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2015] [Indexed: 02/05/2023]
Abstract
Endothelial dysfunction is an important risk factor for cardiovascular disease, and it represents the initial step in the pathogenesis of atherosclerosis. Failure to protect against oxidative stress-induced cellular damage accounts for endothelial dysfunction in the majority of pathophysiological conditions. Numerous antioxidant pathways are involved in cellular redox homeostasis, among which the nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)-antioxidant response element (ARE) signaling pathway is perhaps the most prominent. Nrf2, a transcription factor with a high sensitivity to oxidative stress, binds to AREs in the nucleus and promotes the transcription of a wide variety of antioxidant genes. Nrf2 is located in the cytoskeleton, adjacent to Keap1. Keap1 acts as an adapter for cullin 3/ring-box 1-mediated ubiquitination and degradation of Nrf2, which decreases the activity of Nrf2 under physiological conditions. Oxidative stress causes Nrf2 to dissociate from Keap1 and to subsequently translocate into the nucleus, which results in its binding to ARE and the transcription of downstream target genes. Experimental evidence has established that Nrf2-driven free radical detoxification pathways are important endogenous homeostatic mechanisms that are associated with vasoprotection in the setting of aging, atherosclerosis, hypertension, ischemia, and cardiovascular diseases. The aim of the present review is to briefly summarize the mechanisms that regulate the Nrf2/Keap1-ARE signaling pathway and the latest advances in understanding how Nrf2 protects against oxidative stress-induced endothelial injuries. Further studies regarding the precise mechanisms by which Nrf2-regulated endothelial protection occurs are necessary for determining whether Nrf2 can serve as a therapeutic target in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Bo Chen
- Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China
| |
Collapse
|
46
|
Neuroprotective Effect of N-Acyl 5-Hydroxytryptamines on Glutamate-Induced Cytotoxicity in HT-22 Cells. Neurochem Res 2014; 39:2440-51. [DOI: 10.1007/s11064-014-1448-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/20/2014] [Accepted: 09/30/2014] [Indexed: 01/06/2023]
|
47
|
Atorvastatin represses the angiotensin 2-induced oxidative stress and inflammatory response in dendritic cells via the PI3K/Akt/Nrf 2 pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:148798. [PMID: 25110549 PMCID: PMC4106155 DOI: 10.1155/2014/148798] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/11/2014] [Accepted: 06/11/2014] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs), which are highly proficient antigen-presenting cells, play a complex role in both the initiation and progression of atherosclerosis. We tested the hypothesis that the anti-inflammatory and antioxidant effects of atorvastatin may be partly mediated by the phosphatidylinositol 3-kinase/protein kinase B/transcription factor nuclear factor-erythroid 2-related factor 2 (PI3K/Akt/Nrf 2) pathway via the attenuation of DC maturation, thus reducing the inflammatory and oxidative stress responses. This study showed that angiotensin 2 (Ang 2) induced the maturation of DCs, stimulated CD83, CD40, CD80, and CD86 expression, and increased the secretion of IL-12p70, IL-6, and TNF-α. These effects were suppressed by atorvastatin. Atorvastatin also lowered the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), counteracting their initial increases in response to Ang 2 stimulation. Atorvastatin activated Nrf 2 via the PI3K/Akt pathway and thereby promoted Nrf 2 translocation from the cytoplasm to the nucleus in bone marrow-derived dendritic cells (BMDCs), a process that was reversed by the PI3K inhibitor LY294002. Therefore, the regulation of Nrf 2 expression by the PI3K/Akt pathway plays an important role in the regulation of the statin-mediated antioxidant and anti-inflammatory responses in DCs.
Collapse
|
48
|
Americanin B protects cultured human keratinocytes against oxidative stress by exerting antioxidant effects. In Vitro Cell Dev Biol Anim 2014; 50:766-77. [DOI: 10.1007/s11626-014-9759-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/07/2014] [Indexed: 01/27/2023]
|
49
|
Yao CW, Piao MJ, Kim KC, Zheng J, Cha JW, Hyun JW. 6'-o-galloylpaeoniflorin protects human keratinocytes against oxidative stress-induced cell damage. Biomol Ther (Seoul) 2013; 21:349-57. [PMID: 24244822 PMCID: PMC3825198 DOI: 10.4062/biomolther.2013.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023] Open
Abstract
6'-O-galloylpaeoniflorin (GPF) is a galloylated derivate of paeoniflorin and a key chemical constituent of the peony root, a perennial flowering plant that is widely used as an herbal medicine in East Asia. This study is the first investigation of the cytoprotective effects of GPF against hydrogen peroxide (H2O2)-induced cell injury and death in human HaCaT keratinocytes. GPF demonstrated a significant scavenging capacity against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical, H2O2-generated intracellular reactive oxygen species (ROS), the superoxide anion radical (O2-), and the hydroxyl radical (•OH). GPF also safeguarded HaCaT keratinocytes against H2O2-provoked apoptotic cell death and attenuated oxidative macromolecular damage to DNA, lipids, and proteins. The compound exerted its cytoprotective actions in keratinocytes at least in part by decreasing the number of DNA strand breaks, the levels of 8-isoprostane (a stable end-product of lipid peroxidation), and the formation of carbonylated protein species. Taken together, these results indicate that GPF may be developed as a cytoprotector against ROS-mediated oxidative stress.
Collapse
Affiliation(s)
- Cheng Wen Yao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | |
Collapse
|
50
|
Zou W, Chen C, Zhong Y, An J, Zhang X, Yu Y, Yu Z, Fu J. PI3K/Akt pathway mediates Nrf2/ARE activation in human L02 hepatocytes exposed to low-concentration HBCDs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12434-12440. [PMID: 24094245 DOI: 10.1021/es401791s] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We investigated the effects of hexabromocyclododecanes (HBCDs) at environmentally relevant concentrations on human L02 hepatocytes and explored possible underlying molecular mechanism(s), focusing on functional interactions between the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and nuclear factor-erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathways. The results showed that low concentrations of HBCDs could stimulate cell proliferation in a "DNA-dependent protein kinase catalytic subunit" (DNA-PKcs)-dependent manner, increase protein levels and nuclear translocation of transcription factor Nrf2, and upregulate expression of its target gene heme oxygenase-1 (HO-1). Electrophoretic mobility-shift assays (EMSAs) showed that ARE was a prominent element for HO-1 induction after low-concentration HBCDs exposure. The relationship between PI3K/Akt pathway and Nrf2/HO-1 axis was demonstrated by the finding that pretreatment with PI3K inhibitors (wortmannin, LY294002) attenuated the upregulation of Nrf2 expression induced by HBCDs exposure. Furthermore, knock-down of DNA-PKcs through small interfering RNA blocked Nrf2/HO-1 axis activation in L02 cells exposed to low-concentration HBCDs. Moreover, DNA-PKcs and phosphorylated Akt at Ser(473) proved to be crucial in regulating the Nrf2-ARE pathway. Thus, the PI3K/Akt pathway is essential in regulating Nrf2-ARE pathway activation in L02 cells induced by low-concentration HBCDs.
Collapse
Affiliation(s)
- Wen Zou
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|