1
|
Chauhan K, Goel F, Singh S. Apigenin protects melanocytes and improve tyrosinase activity in a hydroquinone induced vitiligo mouse model targeting P38 MAP kinase signaling: histopathology and immunohistochemistry analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4859-4869. [PMID: 38157025 DOI: 10.1007/s00210-023-02917-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Apigenin (APG) is a plant-based flavonoid that possesses antioxidants, anti-inflammatory, and modulates P38 MAPK as well as tyrosinase. Hydroquinone (HQ), a phenolic compound was used to induce vitiligo in C57BL/6 mice. The present study was performed to check the therapeutic potential of apigenin in HQ-induced vitiligo via targeting P38 MAPK pathway. In the present study, 41 C57BL/6 mice were divided into six groups containing seven animals per group except normal group. (I) normal group, (II) HQ group, (III) to (IV) APG with (1%, 2.5%, 5%), and (VI) tacrolimus (TAC) group. Topical application of HQ was performed from day 1 to day 20 to, (II), (III) to (IV) APG with (1%, 2.5%, 5%), (VI) tacrolimus (TAC) group, and then APG; tacrolimus (TAC) was applied from day 21 to day 60 after removing the hair. In the case of (I) normal group and (II) HQ group, we smeared them with water for 60 days and HQ for 20 days in their individual group. On day 61 after anesthesia, a part of the target skin was peeled and blood serum was taken to check the level of malondialdehyde, cholinesterase, catalase, tyrosinase, pro-inflammatory cytokines, and expression of P38 MAPK, histology of melanin containing hair follicles and depigmentation evaluation. Applying HQ topically had a noticeable impact on depigmentation, inflammatory indicators, oxidative stress, and lowered tyrosinase activity. Further HQ reduced melanin containing hair follicles and increased expression of P38 MAPK was confirmed by histopathology and immunohistochemistry. Furthermore, application of APG and TAC after day 21 to 60 significantly reduced depigmentation, inflammatory markers, oxidative stress, and increased tyrosinase. Furthermore, APG increased melanin containing hair follicles and decreased expression of non-phosphorylated P38 MAPK, as confirmed by histopathology and immunohistochemistry. Our finding demonstrated that APG significantly prevented HQ-induced vitiligo by acting as an anti-inflammatory, increasing tyrosine, and reducing the expression of non-phosphorylated P38 MAPK.
Collapse
Affiliation(s)
- Kanupriya Chauhan
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Falguni Goel
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Yu X, Wang Y, Wu Z, Jia M, Xu Y, Qu H, Zhao X, Wang S, Jing L, Lou Y, Fan G, Gui Y. Multi-technology integrated network pharmacology-based study on phytochemicals, active metabolites, and molecular mechanism of Psoraleae Fructus to promote melanogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117755. [PMID: 38218502 DOI: 10.1016/j.jep.2024.117755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Compendium of Materia Medica (Shizhen Li, Ming dynasty) and Welfare Pharmacy (Song dynasty), Psoraleae Fructus (PF), a traditional Chinese medicine (TCM) has a bitter taste and warm nature, which has the effect of treating spleen and kidney deficiency and skin disease. Although PF has been widely used since ancient times and has shown satisfactory efficacy in treating vitiligo, the active substances and the mechanism of PF in promoting melanogenesis remain unclear. AIM OF THE STUDY To explore the active substances and action mechanisms of PF in promoting melanogenesis. MATERIALS AND METHODS Firstly, UPLC-UV-Q-TOF/MS was used to characterize the components in PF extract and identify the absorption components and metabolites of PF after oral administration at usual doses in rats. Secondly, the active substances and related targets and pathways were predicted by network pharmacology and molecular docking. Finally, pharmacodynamic and molecular biology experiments were used to verify the prediction results. RESULTS The experimental results showed that 15 compounds were identified in PF extract, and 44 compounds, consisting of 8 prototype components and 36 metabolites (including isomers) were identified in rats' plasma. Promising action targets (MAPK1, MAPK8, MAPK14) and signaling pathways (MAPK signaling pathway) were screened and refined to elucidate the mechanism of PF against vitiligo based on network pharmacology. Bergaptol and xanthotol (the main metabolites of PF), psoralen (prototype drug), and PF extract significantly increased melanin production in zebrafish embryos. Furthermore, bergaptol could promote the pigmentation of zebrafish embryos more than psoralen and PF extract. Bergaptol significantly increased the protein expression levels of p-P38 and decreased ERK phosphorylation in B16F10 cells, which was also supported by the corresponding inhibitor/activator combination study. Moreover, bergaptol increased the mRNA expression levels of the downstream microphthalmia-associated transcription factor (MITF) and tyrosinase in B16F10 cells. Our data elucidate that bergaptol may promote melanogenesis by regulating the p-P38 and p-ERK signaling pathway. CONCLUSIONS This study will lay a foundation for discovering potential new drugs for treating vitiligo and provide feasible ideas for exploring the mechanism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xuemei Yu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Yuanyuan Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Mengqi Jia
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Ying Xu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Han Qu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Xin Zhao
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, PR China.
| | - Shuowen Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Lili Jing
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, PR China.
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Yaxing Gui
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
3
|
Wu W, Wang X, He K, Li C, Li S. From mice to men: An assessment of preclinical model systems for the study of vitiligo. Clin Immunol 2024; 262:110171. [PMID: 38462156 DOI: 10.1016/j.clim.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/21/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
Vitiligo is an autoimmune skin disease of multiple etiology, for which there is no complete cure. This chronic depigmentation is characterized by epidermal melanocyte loss, and causes disfigurement and significant psychosocial distress. Mouse models have been extensively employed to further our understanding of complex disease mechanisms in vitiligo, as well as to provide a preclinical platform for clinical interventional research on potential treatment strategies in humans. The current mouse models can be categorized into three groups: spontaneous mouse models, induced mouse models, and transgenic mice. Despite their limitations, these models allow us to understand the pathology processes of vitiligo at molecule, cell, tissue, organ, and system levels, and have been used to test prospective drugs. In this review, we comprehensively evaluate existing murine systems of vitiligo and elucidate their respective characteristics, aiming to offer a panorama for researchers to select the appropriate mouse models for their study.
Collapse
Affiliation(s)
- Wei Wu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Xinju Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Kaiqiao He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
4
|
Giri P, Desai D, Dwivedi M. Animal models unraveling the complexity of vitiligo pathogenesis. Autoimmun Rev 2024; 23:103515. [PMID: 38185189 DOI: 10.1016/j.autrev.2024.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Vitiligo is a chronic skin condition marked by the gradual loss of pigmentation, leading to the emergence of white or depigmented patches on the skin. The exact cause of vitiligo remains not entirely understood, although it is thought to involve a blend of genetic, autoimmune, and environmental factors. While there is currently no definitive cure for vitiligo, diverse treatments exist that may assist in managing the condition and fostering repigmentation in specific instances. Animal models play a pivotal role in comprehending the intricate mechanisms that underlie vitiligo, providing valuable insights into the progression and onset of the disease, as well as potential therapeutic interventions. Although induced experimental models lack the nuanced characteristics observed in natural experimental models, relying solely on a single animal model might not fully capture the intricate pathogenesis of vitiligo. Different animal models simulate specific aspects of human vitiligo pathogenesis to varying degrees. This review extensively explores the array of animal models utilized in vitiligo research, shedding light on their respective advantages, disadvantages, and applications.
Collapse
Affiliation(s)
- Prashant Giri
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India
| | - Dharm Desai
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India
| | - Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India.
| |
Collapse
|
5
|
Cai H, Wen H, Li J, Lu L, Zhao W, Jiang X, Bai R. Small-molecule agents for treating skin diseases. Eur J Med Chem 2024; 268:116269. [PMID: 38422702 DOI: 10.1016/j.ejmech.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Skin diseases are a class of common and frequently occurring diseases that significantly impact daily lives. Currently, the limited effective therapeutic drugs are far from meeting the clinical needs; most drugs typically only provide symptomatic relief rather than a cure. Developing small-molecule drugs with improved efficacy holds paramount importance for treating skin diseases. This review aimed to systematically introduce the pathogenesis of common skin diseases in daily life, list related drugs applied in the clinic, and summarize the clinical research status of candidate drugs and the latest research progress of candidate compounds in the drug discovery stage. Also, it statistically analyzed the number of publications and global attention trends for the involved skin diseases. This review might provide practical information for researchers engaged in dermatological drugs and further increase research attention to this disease area.
Collapse
Affiliation(s)
- Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Liuxin Lu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenxuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
6
|
Wang D, Chen J, Pu L, Yu L, Xiong F, Sun L, Yu Q, Cao X, Chen Y, Peng F, Peng C. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother Res 2023; 37:5700-5723. [PMID: 37748788 DOI: 10.1002/ptr.8013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023]
Abstract
Galangin is an important flavonoid with natural activity, that is abundant in galangal and propolis. Currently, various biological activities of galangin have been disclosed, including anti-inflammation, antibacterial effect, anti-oxidative stress and aging, anti-fibrosis, and antihypertensive effect. Based on the above bioactivities, more and more attention has been paid to the role of galangin in neurodegenerative diseases, rheumatoid arthritis, osteoarthritis, osteoporosis, skin diseases, and cancer. In this paper, the natural sources, pharmacokinetics, bioactivities, and therapeutic potential of galangin against various diseases were systematically reviewed by collecting and summarizing relevant literature. In addition, the molecular mechanism and new preparation of galangin in the treatment of related diseases are also discussed, to broaden the application prospect and provide reference for its clinical application. Furthermore, it should be noted that current toxicity and clinical studies of galangin are insufficient, and more evidence is needed to support its possibility as a functional food.
Collapse
Affiliation(s)
- Daibo Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Pu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Xiong
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Thapa R, Afzal O, Alfawaz Altamimi AS, Goyal A, Almalki WH, Alzarea SI, Kazmi I, Jakhmola V, Singh SK, Dua K, Gilhotra R, Gupta G. Galangin as an inflammatory response modulator: An updated overview and therapeutic potential. Chem Biol Interact 2023; 378:110482. [PMID: 37044286 DOI: 10.1016/j.cbi.2023.110482] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Numerous chronic diseases, such as cancer, diabetes, rheumatoid arthritis, cardiovascular disease, and gastrointestinal disorders, all have an inflammation-based etiology. In cellular and animal models of inflammation, flavonols were used to show potent anti-inflammatory activity. The flavonols enhanced the synthesis of the anti-inflammatory cytokines transforming growth factor and interleukin-10 (IL-10) and reduced the synthesis of the prostaglandins IL-6, tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2), IL-1. Galangin (GAL), a natural flavonol, has a strong ability to control apoptosis and inflammation. GAL was discovered to suppress extracellular signal-regulated kinase (ERK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)p65 phosphorylation, which results in anti-inflammatory actions. Arthritis, inflammatory bronchitis, stroke, and cognitive dysfunction have all been treated with GAL. The current review aimed to demonstrate the anti-inflammatory properties of GAL and their protective effects in treating various chronic illnesses, including those of the heart, brain, skin, lungs, liver, and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, U.P, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Vikash Jakhmola
- Uttaranchal Institute of pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Ritu Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
8
|
Wu H, Niu C, Aisa HA. Research Progress of Small Molecules as Anti-vitiligo Agents. Curr Med Chem 2023; 31:CMC-EPUB-129498. [PMID: 36786141 DOI: 10.2174/0929867330666230214103054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 02/15/2023]
Abstract
Vitiligo is a disease characterized by skin discoloration, and no safe and effective drugs have been developed until now. New drug research and development are imminent. This article reviews the research on small-molecule drugs for vitiligo from 1990 to 2021 at home and abroad. They are classified according to their structures and mechanisms of action, including natural products and derivatives, anti-oxidative stress drugs, immunosuppressants, prostaglandins, etc. The research on their anti-vitiligo activity, structural modification, new dosage forms, clinical trials, and the development trend in new anti-vitiligo drugs are reviewed, which provides important references for the development of new drugs.
Collapse
Affiliation(s)
- Heng Wu
- Xinjiang Technical Institute of Physics & Chemistry State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, University of Ürümqi China
| | - Chao Niu
- Xinjiang Technical Institute of Physics & Chemistry State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, University of Ürümqi China
| | - Haji Akber Aisa
- Xinjiang Technical Institute of Physics & Chemistry State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, University of Ürümqi China
| |
Collapse
|
9
|
Zhang Y, Zhang S, Long Y, Wang W, Du F, Li J, Jin F, Li Z. Stimulation of hair growth by Tianma Gouteng decoction: Identifying mechanisms based on chemical analysis, systems biology approach, and experimental evaluation. Front Pharmacol 2022; 13:1073392. [PMID: 36588691 PMCID: PMC9802907 DOI: 10.3389/fphar.2022.1073392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Hair serves important physiological functions, including temperature regulation and scalp protection. However, excessive shedding not only impacts these functions but can also significantly affect mental health and quality of life. Tianma Gouteng decoction (TGD) is a traditional Chinese medicine used for the treatment of various conditions, including hair loss. However, the associated mechanism underlying its anti-alopecia effect remains unknown. Therefore, this study aims to elucidate these mechanisms by employing systematic biology approaches, as well as in vitro and in vivo experimental validation. The chemical constituents of Tianma Gouteng decoction were identified using UHPLC-MS/MS, from which 39 potential bioactive components were screened, while an additional 131 putative Tianma Gouteng decoction beneficial components were extracted from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) database. We then applied a dual-dimensional network pharmacology approach to analyze the data, followed by validation studies combining molecular docking techniques with in vivo and in vitro experiments. From the 39 bioactive components, including quercetin, luteolin, fisetin, wogonin, oroxylin A, boldine, tetrahydroalstonine, and galangin A, 782 corresponding targets were identified. In particular, GSK3β and β-catenin exhibited strong binding activity with the bioactive compounds. Hence, construction of a bioactive component-target network revealed that the mechanism underlying the anti-alopecia mechanism of Tianma Gouteng decoction primarily involved the Wnt/β-catenin signaling pathway. Moreover, C57BL/6J mice exhibited measurable improvements in hair follicle regeneration following treatment with Tianma Gouteng decoction. Additionally, β-catenin and p-GSK3β levels were upregulated, while GSK3β was downregulated in Tianma Gouteng decoction-treated animals and dermal papilla cells compared to control group. These in vivo and in vitro outcomes validated the targets and pathways predicted in the network pharmacology analysis of Tianma Gouteng decoction. This study provides a systematic analysis approach to identify the underlying anti-alopecia mechanisms of Tianma Gouteng decoction, further providing theoretical support for clinical assessment of Tianma Gouteng decoction.
Collapse
Affiliation(s)
- Yanyan Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shiqian Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yunluan Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fanpan Du
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China,*Correspondence: Zheng Li,
| |
Collapse
|
10
|
A Novel Furocoumarin Derivative, 5-((diethylamino)me-13 thyl)-3-phenyl-7H-furo [3,2-g] chromen-7-one Upregulates Melanin Synthesis via the Activation of cAMP/PKA and MAPKs Signal Pathway: In Vitro and In Vivo Study. Int J Mol Sci 2022; 23:ijms232214190. [PMID: 36430668 PMCID: PMC9694462 DOI: 10.3390/ijms232214190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Psoralen, a major furocoumarin component of the Fructus Psoralen (FP), in combination with ultraviolet radiation, cures abnormal pigmentation disorder. In a previous study, we synthesized a series of linear furocoumarins with different substituents, out of which 5-((diethylamino)methyl)-3-phenyl-7H-furo [3,2-g] chromen-7-one (encoded as 5D3PC) showed better pigmenting effect than others in B16 cells. In this study, we examined the mechanism underlying the melanogenic effect of 5D3PC both in vivo and in vitro. To examine the pigmentation effect, the B16 and human melanocyte cell lines, PIG1 and PIG3V melanocytes were incubated with 5D3PC. In animal experiments, C57BL/6 mice received 5% hydroquinone and were administrated with 5D3PC for 30 days. 5D3PC upregulated the melanin synthesis and tyrosinase in B16 cell, PIG1 and PIG3V. The expression level of tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1) and tyrosinase-related protein-2 (TRP-2), microphthalmia-associated transcription factor (MITF), cyclic adenosine monophosphate (cAMP), phosphorylation of cAMP-responsive element binding protein (p-CREB), phosphorylation of p38 mitogen-activated protein kinase (MAPK), c- phosphorylation of Jun N-terminal kinase (p-JNK) was significantly higher in 5D3PC-treated B16 cells. The oral administration of 5D3PC attenuated the depigmentation of the C57BL/6 vitiligo mice model by increasing the numbers of melanin-containing hair follicles, melanogenic protein, and melanogenesis-relative genes expression in skin tissues.
Collapse
|
11
|
A S, Ahmed MG, Gowda BJ, Surya S. Formulation and characteristic evaluation of tacrolimus cubosomal gel for vitiligo. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2139716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sanjana A
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru, India
| | - Mohammed Gulzar Ahmed
- Advanced Surgical Skill Enhancement Division (ASSEND), Yenepoya (Deemed to be University), Mangaluru, India
| | - B.H. Jaswanth Gowda
- Advanced Surgical Skill Enhancement Division (ASSEND), Yenepoya (Deemed to be University), Mangaluru, India
| | - Suprith Surya
- Advanced Surgical Skill Enhancement Division (ASSEND), Yenepoya (Deemed to be University), Mangaluru, India
| |
Collapse
|
12
|
Qadir A, Ullah SNMN, Jahan S, Ali A, Khan N. Drug delivery of natural products through nano-carriers for effective vitiligo therapy: A compendia review. J Cosmet Dermatol 2022; 21:5386-5404. [PMID: 35699364 DOI: 10.1111/jocd.15158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Vitiligo is a depigmenting illness that causes white areas on the skin. Vitiligo's pathogenetic genesis is based on the melanocyte's autoimmune destruction, in which oxidative stress causes melanocyte molecular, organelle, and exposure of antigen, as well as melanocyte cell death, and so plays a role in vitiligo progression. Natural compounds have recently shown a wide range of therapeutic bioactivities against a number of skin disorders. AIM The aim of this work is drug delivery of natural products through nano-carriers for effective vitiligo therapy: A compendia review. METHODS & MATERIALS An online literature analysis was guided for vitiligo therapy, nanotechnology, phytochemical composition, and, types of vitiligo, types of nanomedicine. Appropriate information were taken from different electronic scientific databases such as Web of Science, Science Direct, Elsevier, Google Scholar, Springer, PubMed, and scripts. RESULTS Nano-carriers-based natural compounds provide a great relationship for the enhancement in the efficacy and safety of pharmacotherapeutic agents for the treatment of vitiligo. DISCUSSION In this study focuses on natural compounds' effects and processes on vitiligo models. Although topical therapy plays an important role in vitiligo treatment, its utility and patient compliance are hampered by adverse effects or inadequate efficacy. Novel drug delivery techniques can help improve topical medication delivery by improving epidermal localization, reducing side effects, and increasing effectiveness. CONCLUSION This paper covers the significant potential of herbal-derived active compounds as anti-vitiligo drugs, as well as new drug delivery as a viable carrier and future possibilities to investigate.
Collapse
Affiliation(s)
- Abdul Qadir
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Department of Research and Developments, Herbalfarm Health Care Private Limited, New Delhi, India
| | | | - Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nausheen Khan
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
13
|
Ubaydee AHN, Issa R, Hajleh MNA, Ghanim BY, Al-Akayleh F, Qinna NA. The effect of Medicago sativa extract and light on skin hypopigmentation disorders in C57/BL6 mice. J Cosmet Dermatol 2022; 21:6270-6280. [PMID: 35815838 DOI: 10.1111/jocd.15233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Vitiligo is a common depigmentation skin disease that affects the quality of life in many patients. AIMS This study aims to investigate the effect of Medicago sativa methanol extract on the treatment of skin hypopigmentation disorders. METHODS Antioxidant activity and phytochemical constituents of the extract were determined using DDPH assay, Folin-Ciocalteu, AlCl3, and HPLC-MS/MS analysis. Oil in water (o/w) creams were prepared to contain the methanolic extract, and applied to hydroquinone-induced depigmentation in vivo model and further challenged in combination with UVA light exposure. Skin and hair colors were visually scored and evaluated at different time intervals, and histopathological examinations of skin layers and hair follicles were performed. RESULTS A total phenolic content of 187.70 mg/g, equivalent to gallic acid, and total flavonoid content of 21.97 mg/g, equivalent to quercetin, were recorded. Extract showed 71% antioxidant activity. Moreover, the HPLC-MS/MS detection revealed the presence of 18 compounds including P-coumaric acid and antioxidants flavonoids, of those are seven compounds not previously detected in this species. The in vivo study showed a remarkable skin and hair pigmentation effect on plant extract-treated groups, compared to the reference, placebo, and control groups. Histopathological examinations showed the growth of colored hair follicles in the dermis and epidermis layers of the extract-treated mice. CONCLUSION The study suggests the use of M. sativa extract in enhancing the pigmentation process in hypopigmented skin and hair if combined with UVA light. Therefore, M. sativa extract can be considered a potential treatment for vitiligo.
Collapse
Affiliation(s)
- Azal Hussein Najm Ubaydee
- Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Reem Issa
- Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Maha N Abu Hajleh
- Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan
| | - Faisal Al-Akayleh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan.,Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| |
Collapse
|
14
|
Elhalmoushy PM, Elsheikh MA, Matar NA, El-Hadidy WF, Kamel MA, Omran GA, Elnaggar YS. Novel Berberine-Loaded Hyalurosomes as A Promising Nanodermatological Treatment for Vitiligo: Biochemical, Biological and Gene Expression Studies. Int J Pharm 2022; 615:121523. [DOI: 10.1016/j.ijpharm.2022.121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 01/16/2023]
|
15
|
Pang Y, Wu S, He Y, Nian Q, Lei J, Yao Y, Guo J, Zeng J. Plant-Derived Compounds as Promising Therapeutics for Vitiligo. Front Pharmacol 2021; 12:685116. [PMID: 34858164 PMCID: PMC8631938 DOI: 10.3389/fphar.2021.685116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Vitiligo is the most common depigmenting disorder characterized by white patches in the skin. The pathogenetic origin of vitiligo revolves around autoimmune destruction of melanocytes in which, for instance, oxidative stress is responsible for melanocyte molecular, organelle dysfunction and melanocyte specific antigen exposure as well as melanocyte cell death and thus serves as an important contributor for vitiligo progression. In recent years, natural products have shown a wide range of pharmacological bioactivities against many skin diseases, and this review focuses on the effects and mechanisms of natural compounds against vitiligo models. It is showed that some natural compounds such as flavonoids, phenols, glycosides and coumarins have a protective role in melanocytes and thereby arrest the depigmentation, and, additionally, Nrf2/HO-1, MAPK, JAK/STAT, cAMP/PKA, and Wnt/β-catenin signaling pathways were reported to be implicated in these protective effects. This review discusses the great potential of plant derived natural products as anti-vitiligo agents, as well as the future directions to explore.
Collapse
Affiliation(s)
- Yaobin Pang
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi Wu
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingjie He
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lei
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Sangaraju R, Alavala S, Nalban N, Jerald MK, Sistla R. Galangin ameliorates Imiquimod-Induced psoriasis-like skin inflammation in BALB/c mice via down regulating NF-κB and activation of Nrf2 signaling pathways. Int Immunopharmacol 2021; 96:107754. [PMID: 34162135 DOI: 10.1016/j.intimp.2021.107754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022]
Abstract
Psoriasis is a most common chronic autoimmune-arbitrated cutaneous inflammatory skin disorder by unclear pathogenesis. In this current study we demonstrated the effect of galangin (GAL) on imiquimod (IMQ)-induced psoriasis-like skin inflammation and decipher its possible protective mechanism which has not been investigated. The in vivo results revealed that GAL at 1% w/w and 2% w/w for six consecutive days markedly reduced IMQ-induced PASI scoring, skin, ear thickness, hematological markers, levels of nitrites, TBARS, MPO, histopathological, as well modulated the protein levels of pro-inflammatory mediators of COX-2, iNOS, NF-κB pathway and pro-inflammatory cytokines IL-17, IL-23, IL-1β in the skin and also IL-6, TNF-α in both skin and serum. Besides, GAL restored the levels of antioxidants markers such as SOD, CAT, GST, GSH, GR and Vit-C, anti-inflammatory cytokine of IL-10, and the protein levels of Nrf2/HO-1 in the skin compared to the IMQ group. Finally, our study demonstrates that GAL exerted its protective effect by up-regulating the anti-inflammatory and the antioxidant markers against psoriasis pre-clinical models indicating its potency for treating psoriasis in humans.
Collapse
Affiliation(s)
- Rajendra Sangaraju
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Sateesh Alavala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
| | - Nasiruddin Nalban
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Mahesh Kumar Jerald
- Animal House Facility, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500 007, India
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
17
|
Effects of a Traditional Caraway Formulation on Experimental Models of Vitiligo and Mechanisms of Melanogenesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6675657. [PMID: 33959187 PMCID: PMC8075664 DOI: 10.1155/2021/6675657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/07/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
Background Kursi Karwiya or caraway tablet (CWT), a traditional medicine formula, is widely used in Xinjiang, China, for treating vitiligo, a common autoimmune disease for which there is currently no satisfactory cure. Clinical interventions include pharmacological treatment with psoralens, often in conjunction with UVA radiation, but toxic side effects limit this application. Studies on the activities and mechanisms of CWT are scarce. Objective To investigate the in vitro and in vivo effects of CWT in B16 cell line and in animal models of vitiligo, further exploring its mechanisms of regulating melanogenesis. Methods Effects of CWT on melanin synthesis in B16 cells and mushroom tyrosinase activity were investigated in vitro. The signaling pathway of melanogenesis in murine B16 melanoma cells was examined by Western blotting. Two different animal models were used, vitiligo induced by hydroquinone in the mouse model and by hydrogen peroxide in the guinea pig model. Relevant biochemical parameters in blood and skin tissue were measured, and visual inspection, histopathology, and immunohistochemical analysis of treated areas were carried out. Results CWT produced changes in biochemical parameters including TYR, MDA, MAO, AChE, IL-6, INF-α, β-EP, and cAMP in blood and/or skin tissue and in regulating melanogenesis. After treatment with CTW, skin color, melanin containing hair follicles, and expression of TYR, TRP-1, and TRP-2 in the skin of animals were significantly affected. Conclusions CWT alleviated many of detrimental effects in both models of vitiligo. Tyrosinase activity and melanin content in B16 cells were increased, at least in part, via activation of the PKA p38 MAPK signaling pathways. Our results show that CWT produces beneficial effects on parameters of vitiligo and is worthy of further investigation for use in this distressing autoimmune disorder which currently has no effective cure.
Collapse
|
18
|
Natural Nrf2 Modulators for Skin Protection. Antioxidants (Basel) 2020; 9:antiox9090812. [PMID: 32882952 PMCID: PMC7556038 DOI: 10.3390/antiox9090812] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of antioxidant responsive elements (ARE), which are commonly found in the promoter of the Phase II metabolism/antioxidant enzymes, and nuclear factor erythroid 2-related factor 2 (Nrf2), the transcription factor that binds to ARE, the study conducted in this field has expanded remarkably over the decades, and the Nrf2-mediated pathway is now recognized to occupy a central position in cell defense mechanisms. Induction of the Phase II metabolism/antioxidant enzymes through direct activation of Nrf2 can be a promising strategy for preventing degenerative diseases in general, but a dark side of this strategy should be considered, as Nrf2 activation can enhance the survival of cancer cells. In this review, we discuss the historical discovery of Nrf2 and the regulatory mechanism of the Nrf2-mediated pathway, focusing on the interacting proteins and post-translational modifications. In addition, we discuss the latest studies that examined various natural Nrf2 modulators for the protective roles in the skin, in consideration of their dermatological and cosmetic applications. Studies are reviewed in the order of time of research as much as possible, to help understand how and why such studies were conducted under the circumstances of that time. We hope that this review can serve as a steppingstone in conducting more advanced research by providing a scientific basis for researchers newly entering this field.
Collapse
|
19
|
Ding P, Yang L, Feng C, Xian JC. Research and application of Alpinia officinarum in medicinal field. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
20
|
Zhao Y, Wang N, Sui Z, Huang C, Zeng Z, Kong L. The Molecular and Structural Basis of O-methylation Reaction in Coumarin Biosynthesis in Peucedanum praeruptorum Dunn. Int J Mol Sci 2019; 20:ijms20071533. [PMID: 30934718 PMCID: PMC6480711 DOI: 10.3390/ijms20071533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023] Open
Abstract
Methoxylated coumarins represent a large proportion of officinal value coumarins while only one enzyme specific to bergaptol O-methylation (BMT) has been identified to date. The multiple types of methoxylated coumarins indicate that at least one unknown enzyme participates in the O-methylation of other hydroxylated coumarins and remains to be identified. Combined transcriptome and metabonomics analysis revealed that an enzyme similar to caffeic acid O-methyltransferase (COMT-S, S is short for similar) was involved in catalyzing all the hydroxylated coumarins in Peucedanum praeruptorum. However, the precise molecular mechanism of its substrate heterozygosis remains unsolved. Pursuing this question, we determined the crystal structure of COMT-S to clarify its substrate preference. The result revealed that Asn132, Asp271, and Asn325 govern the substrate heterozygosis of COMT-S. A single mutation, such as N132A, determines the catalytic selectivity of hydroxyl groups in esculetin and also causes production differences in bergapten. Evolution-based analysis indicated that BMT was only recently derived as a paralogue of caffeic acid O-methyltransferase (COMT) via gene duplication, occurring before the Apiaceae family divergence between 37 and 100 mya. The present study identified the previously unknown O-methylation steps in coumarin biosynthesis. The crystallographic and mutational studies provided a deeper understanding of the substrate preference, which can be used for producing specific O-methylation coumarins. Moreover, the evolutionary relationship between BMT and COMT-S was clarified to facilitate understanding of evolutionary events in the Apiaceae family.
Collapse
Affiliation(s)
- Yucheng Zhao
- Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Nana Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ziwei Sui
- Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Chuanlong Huang
- Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhixiong Zeng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lingyi Kong
- Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
21
|
Zhong H, Zhou J, An XH, Hua YR, Lai YF, Zhang R, Ahmad O, Zhang Y, Shang J. Natural product-based design, synthesis and biological evaluation of 2',3,4,4'-tetrahydrochalcone analogues as antivitiligo agents. Bioorg Chem 2019; 87:523-533. [PMID: 30928875 DOI: 10.1016/j.bioorg.2019.03.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/19/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
A bioactive component, 2',3,4,4'-tetrahydrochalcone (RY3-a) was first isolated from Vernohia anthelmintica (L.) willd seeds, and a set of its analogs, RY3-a-1-RY3-a-15 and RY3-c were designed and synthesized. Biological activity assays showed that RY3-c exhibited better melanogenesis and antioxidant activity and lower toxicity in comparison with RY3-a and butin. Further study tests showed that RY3-c exhibited better melanogenesis activity compared with the positive control 8-methoxypsoralan (8-MOP) in a vitiligo mouse model, suggesting that RY3-c is a good candidate antivitiligo agent. Mechanistic studies showed that RY3-c could repair cell damage induced by excessive oxidative stress and may exert melanin synthesis activity in the mouse melanoma B16F10 cell line by activating the mitogen-activated protein kinase (MAPK) pathway and the upregulation of c-kit.
Collapse
Affiliation(s)
- Hui Zhong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jia Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiao-Hong An
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ying-Rong Hua
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi-Fan Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rui Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Owais Ahmad
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ye Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541004, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China.
| | - Jing Shang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
22
|
Abubakar IB, Malami I, Yahaya Y, Sule SM. A review on the ethnomedicinal uses, phytochemistry and pharmacology of Alpinia officinarum Hance. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:45-62. [PMID: 29803568 DOI: 10.1016/j.jep.2018.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alpinia officinarum Hance is a perennial plant that has been traditionally used for many decades to treat several ailments including inflammation, pain, stomach-ache, cold, amongst others. Pharmacological studies over the years have demonstrated remarkable bioactivities that could be further explored for development of new therapeutic agents against various ailments. AIM OF THE STUDY The paper critically reviewed the ethno-medicinal uses, pharmacology, and phytochemistry of A. officinarum. METHODS Keywords including A. officinarum and its synonyms were searched using electronic databases including ISI web of knowledge, Science direct, Scopus, PubMed, Google scholar and relevant database for Masters and Doctoral theses. RESULTS A. officinarum is prepared in Asia, Turkey, Morocco and Iran as a decoction, infusion or juice as a single preparation or in combination with other herbs, food or drinks for the treatment of general health problems including cold, inflammation, digestive disorders, etc. Pharmacological studies revealed the potent in vitro and in vivo bioactivities of various parts of A. officinarum that include anti-inflammatory, cytotoxicity, homeostasis, lipid regulation, antioxidant, antiviral, antimicrobial, antiosteoporosis, etc. Over 90 phytochemical constituents have been identified and isolated from A. officinarum comprising vastly of phenolic compounds especially diarylheptanoids isolated from the rhizome and considered the most active bioactive components. CONCLUSION In vitro and in vivo studies have confirmed the potency of A. officinarum. However, further studies are required to establish the mechanisms mediating its bioactivities in relation to the medicinal uses as well as investigating any potential toxicity for future clinical studies.
Collapse
Affiliation(s)
- Ibrahim Babangida Abubakar
- Department of Biochemistry, Faculty of Science, Kebbi State University of Science and Technology, PMB 1144 Aliero, Nigeria.
| | - Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346 Sokoto, Nigeria.
| | - Yakubu Yahaya
- Department of Pure and Applied Chemistry, Faculty of Science, Kebbi State University of Science and Technology, PMB 1144 Aliero, Nigeria.
| | - Sahabi Manga Sule
- Department of Biological Sciences, Faculty of Science, Kebbi State University of Science and Technology, PMB 1144 Aliero, Nigeria.
| |
Collapse
|
23
|
Mak KK, Tan JJ, Marappan P, Balijepalli MK, Choudhury H, Ramamurthy S, Pichika MR. Galangin’s potential as a functional food ingredient. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
24
|
Huo SX, Wang Q, Liu XM, Ge CH, Gao L, Peng XM, Yan M. The Effect of Butin on the Vitiligo Mouse Model Induced by Hydroquinone. Phytother Res 2017; 31:740-746. [PMID: 28321929 DOI: 10.1002/ptr.5794] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/03/2017] [Accepted: 02/09/2017] [Indexed: 11/09/2022]
Abstract
Vernonia anthelmintica (L.) Willd has been traditionally used in the treatment of vitiligo in Uyghur medicine. This study used butin, the main component of V. anthelmintica, to study the influence on hydroquinone-induced vitiligo in mice. The animals were randomly divided into six groups: control, model, 8-methoxypsoralen (8-MOP, 4.25 mg/kg), and butin (0.425, 4.25, and 42.5 mg/kg) groups. The number of melanin-containing hair follicles, basal layer melanocytes, melanin-containing epidermal cells, the expression of tyrosinase (TYR) and tyrosinase-related protein-1 (TRP-1), the malondialdehyde (MDA), and cholinesterase (CHE) activity in serum were measured. Our results indicated that compared with the model group, the melanin-containing hair follicles, the expression of TYR and TRP-1 increased, the activity of CHE decreased after treatment with 8-MOP and all doses of butin (p < 0.05, p < 0.01), the basal layer melanocytes and melanin-containing epidermal cells increased significantly after treatment with butin 4.25 and 42.5 mg/kg (p < 0.05, p < 0.01), and the MDA activity decreased after using butin 4.25 and 42.5 mg/kg and 8-MOP (p < 0.05, p < 0.01). Our results support the use of butin on vitiligo, and its possible mechanisms may be related to increase the TYR and TRP-1 protein expression and decrease the activity of MDA and CHE in hydroquinone-induced vitiligo model in mice. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shi-Xia Huo
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Qiong Wang
- Preclinical Medicine Research Center/School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xin-Min Liu
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830049, China.,Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Chun-Hui Ge
- Institute of Soil and Fertilizer & Agricultural Water Conservation, Xinjiang Academy of Agricultural Science, Urumqi, 830011, China
| | - Li Gao
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Xiao-Ming Peng
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830049, China
| | - Ming Yan
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, 830049, China
| |
Collapse
|
25
|
Xu P, Su S, Tan C, Lai RS, Min ZS. Effects of aqueous extracts of Ecliptae herba, Polygoni multiflori radix praeparata and Rehmanniae radix praeparata on melanogenesis and the migration of human melanocytes. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:89-95. [PMID: 27902928 DOI: 10.1016/j.jep.2016.11.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/13/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygoni multiflori radix praeparata (PMRP), Ecliptae herba (EH) and Rehmanniae radix praeparata (RRP) are the most frequently-used herbs by Traditional Chinese Medicine practitioners for the treatment of vitiligo. Their abilities to stimulate melanogenesis, melanocyte migration and MITF (microphthalmia associated transcription factor) protein expression were evaluated in this study. MATERIALS AND METHODS The effects of aqueous extracts of PMRP, EH and RRP on human melanocytes in vitro were examined by MTT assay, tyrosinase activity, melanin synthesis, migration assay and Western blot. RESULTS Treatment with EH (at 100μg/ml and 400μg/ml) significantly increased intracellular tyrosinase activity in accordance with the elevation of melanin content at the same concentrations. Treatment with RRP (at 100μg/ml and 400μg/ml) promoted melanin production but had no stimulatory effect on tyrosinase activity. Treatment with PMRP and EH (at 100μg/ml) promoted the migration of human melanocytes in a type IV collagen-coated transwell migration assay. Western blot analysis showed MITF protein expression was elevated by PMRP, EH and RRP (at 100μg/ml). CONCLUSION An aqueous extract of EH has a synergistic effect on melanocytes by up-regulating tyrosinase activity, enhancing melanin synthesis and promoting melanocyte migration as well as elevating MITF protein expression. RRP exhibits a significant stimulating effect on melanogenesis and MITF protein expression. These results suggest that EH and RRP contain substances with direct enhancing effects on melanogenesis and migration, possibly via their effects on MITF protein expression.
Collapse
Affiliation(s)
- Ping Xu
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210009, China
| | - Shulan Su
- Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Cheng Tan
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210009, China.
| | - Ren-Sheng Lai
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210009, China
| | - Zhong-Sheng Min
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing 210029, China; Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210009, China
| |
Collapse
|
26
|
Basri AM, Taha H, Ahmad N. A Review on the Pharmacological Activities and Phytochemicals of Alpinia officinarum (Galangal) Extracts Derived from Bioassay-Guided Fractionation and Isolation. Pharmacogn Rev 2017; 11:43-56. [PMID: 28503054 PMCID: PMC5414456 DOI: 10.4103/phrev.phrev_55_16] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The rhizomes of Alpinia officinarum Hance have been used conventionally for the treatment of various ailments, triggering a wide interest from the scientific research community on this ethnomedicinal plant. This review summarizes the phytochemical and pharmacological properties of the extracts and fractions from A. officinarum, a plant species of the Zingiberaceae family. Different parts of the plant – leaves, roots, rhizomes, and aerial parts – have been extracted in various solvents – methanol, ethanol, ethyl acetate, hexane, dichloromethane, aqueous, chloroform, and petroleum ether, using various techniques – Soxhlet extraction, maceration, ultrasonication, and soaking, whereas fractionation of the plant extracts involves the solvent–solvent partition method. The extracts, fractions, and isolated compounds have been studied for their biological activities – antioxidant, antibacterial, anti-inflammatory, anticancer, antiproliferative, inhibition of enzymes, as well as the inhibition of nitric oxide production. More findings on A. officinarum are certainly important to further develop potential bioactive drug compounds.
Collapse
Affiliation(s)
- Aida Maryam Basri
- Herbal Drug Discovery Laboratory, Faculty of Science, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
| | - Hussein Taha
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
| | - Norhayati Ahmad
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
| |
Collapse
|
27
|
Pei T, Zheng C, Huang C, Chen X, Guo Z, Fu Y, Liu J, Wang Y. Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:272-287. [PMID: 27265513 DOI: 10.1016/j.jep.2016.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vitiligo is a depigmentation disorder, which results in substantial cosmetic disfigurement and poses a detriment to patients' physical as well as mental. Now the molecular pathogenesis of vitiligo still remains unclear, which leads to a daunting challenge for vitiligo therapy in modern medicine. Herbal medicines, characterized by multi-compound and multi-target, have long been shown effective in treating vitiligo, but their molecular mechanisms of action also remain ambiguous. MATERIALS AND METHODS Here we proposed a systems pharmacology approach using a clinically effective herb formula as a tool to detect the molecular pathogenesis of vitiligo. This study provided an integrative analysis of active chemicals, drug targets and interacting pathways of the Uygur medicine Qubaibabuqi formula for curing Vitiligo. RESULTS The results show that 56 active ingredients of Qubaibabuqi interacting with 83 therapeutic proteins were identified. And Qubaibabuqi probably participate in immunomodulation, neuromodulation and keratinocytes apoptosis inhibition in treatment of vitiligo by a synergistic/cooperative way. CONCLUSIONS The drug-target network-based analysis and pathway-based analysis can provide a new approach for understanding the pathogenesis of vitiligo and uncovering the molecular mechanisms of Qubaibabuqi, which will also facilitate the application of traditional Chinese herbs in modern medicine.
Collapse
Affiliation(s)
- Tianli Pei
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, China
| | - Chunli Zheng
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chao Huang
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xuetong Chen
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zihu Guo
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yingxue Fu
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jianling Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Ministry of Education, China
| | - Yonghua Wang
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
28
|
Association analysis of traditional Uighur medicine differential syndrome typing with biochemical parameters in serum and lesional tissue fluid of vitiligo patients. Eur J Integr Med 2015. [DOI: 10.1016/j.eujim.2015.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|