1
|
Jin Z, Wang X. Traditional Chinese medicine and plant-derived natural products in regulating triglyceride metabolism: Mechanisms and therapeutic potential. Pharmacol Res 2024; 208:107387. [PMID: 39216839 DOI: 10.1016/j.phrs.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The incidence of cardiometabolic disease is increasing globally, with a trend toward younger age of onset. Among these, atherosclerotic cardiovascular disease is a leading cause of mortality worldwide. Despite the efficacy of traditional lipid-lowering drugs, such as statins, in reducing low-density lipoprotein cholesterol levels, a significant residual risk of cardiovascular events remains, which is closely related to unmet triglyceride (TG) targets. The clinical application of current TG-lowering Western medicines has certain limitations, necessitating alternative or complementary therapeutic strategies. Traditional Chinese medicine (TCM) and plant-derived natural products, known for their safety owing to their natural origins and diverse biological activities, offer promising avenues for TG regulation with potentially fewer side effects. This review systematically summarises the mechanisms of TG metabolism and subsequently reviews the regulatory effects of TCM and plant-derived natural products on TG metabolism, including the inhibition of TG synthesis (via endogenous and exogenous pathways), promotion of TG catabolism, regulation of fatty acid absorption and transport, enhancement of lipophagy, modulation of the gut microbiota, and other mechanisms. In conclusion, through a comprehensive analysis of recent studies, this review consolidates the multifaceted regulatory roles of TCM and plant-derived natural products in TG metabolism and elucidates their potential as safer, multi-target therapeutic agents in managing hypertriglyceridemia and mitigating cardiovascular risk, thereby providing a basis for new drug development.
Collapse
Affiliation(s)
- Zhou Jin
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Tusevski O, Todorovska M, Petreska Stanoeva J, Gadzovska Simic S. Phytochemical Analysis, Biological Activities, and Docking of Phenolics from Shoot Cultures of Hypericum perforatum L. Transformed by Agrobacterium rhizogenes. Molecules 2024; 29:3893. [PMID: 39202972 PMCID: PMC11357161 DOI: 10.3390/molecules29163893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Hypericum perforatum transformed shoot lines (TSL) regenerated from corresponding hairy roots and non-transformed shoots (NTS) were comparatively evaluated for their phenolic compound contents and in vitro inhibitory capacity against target enzymes (monoamine oxidase-A, cholinesterases, tyrosinase, α-amylase, α-glucosidase, lipase, and cholesterol esterase). Molecular docking was conducted to assess the contribution of dominant phenolic compounds to the enzyme-inhibitory properties of TSL samples. The TSL extracts represent a rich source of chlorogenic acid, epicatechin and procyanidins, quercetin aglycone and glycosides, anthocyanins, naphthodianthrones, acyl-phloroglucinols, and xanthones. Concerning in vitro bioactivity assays, TSL displayed significantly higher acetylcholinesterase, tyrosinase, α-amylase, pancreatic lipase, and cholesterol esterase inhibitory properties compared to NTS, implying their neuroprotective, antidiabetic, and antiobesity potential. The docking data revealed that pseudohypericin, hyperforin, cadensin G, epicatechin, and chlorogenic acid are superior inhibitors of selected enzymes, exhibiting the lowest binding energy of ligand-receptor complexes. Present data indicate that H. perforatum transformed shoots might be recognized as an excellent biotechnological system for producing phenolic compounds with multiple health benefits.
Collapse
Affiliation(s)
- Oliver Tusevski
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia;
| | - Marija Todorovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia;
| | - Jasmina Petreska Stanoeva
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia;
| | - Sonja Gadzovska Simic
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia;
| |
Collapse
|
3
|
Peng Z, Lu J, Liu K, Xie L, Wang Y, Cai C, Yang D, Xi J, Yan C, Li X, Shi M. Hypericin as a promising natural bioactive naphthodianthrone: A review of its pharmacology, pharmacokinetics, toxicity, and safety. Phytother Res 2023; 37:5639-5656. [PMID: 37690821 DOI: 10.1002/ptr.8011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Hypericin can be derived from St. John's wort, which is widely spread around the world. As a natural product, it has been put into clinical practice such as wound healing and depression for a long time. In this article, we review the pharmacology, pharmacokinetics, and safety of hypericin, aiming to introduce the research advances and provide a full evaluation of it. Turns out hypericin, as a natural photosensitizer, exhibits an excellent capacity for anticancer, neuroprotection, and elimination of microorganisms, especially when activated by light, potent anticancer and antimicrobial effects are obtained after photodynamic therapy. The mechanisms of its therapeutic effects involve the induction of cell death, inhibition of cell cycle progression, inhibition of the reuptake of amines, and inhibition of virus replication. The pharmacokinetics properties indicate that hypericin has poor water solubility and bioavailability. The distribution and excretion are fast, and it is metabolized in bile. The toxicity of hypericin is rarely reported and the conventional use of it rarely causes adverse effects except for photosensitization. Therefore, we may conclude that hypericin can be used safely and effectively against a variety of diseases. We hope to provide researchers with detailed guidance and enlighten the development of it.
Collapse
Affiliation(s)
- Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Shaik Mohamed Sayed UF, Moshawih S, Goh HP, Kifli N, Gupta G, Singh SK, Chellappan DK, Dua K, Hermansyah A, Ser HL, Ming LC, Goh BH. Natural products as novel anti-obesity agents: insights into mechanisms of action and potential for therapeutic management. Front Pharmacol 2023; 14:1182937. [PMID: 37408757 PMCID: PMC10318930 DOI: 10.3389/fphar.2023.1182937] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Obesity affects more than 10% of the adult population globally. Despite the introduction of diverse medications aimed at combating fat accumulation and obesity, a significant number of these pharmaceutical interventions are linked to substantial occurrences of severe adverse events, occasionally leading to their withdrawal from the market. Natural products serve as attractive sources for anti-obesity agents as many of them can alter the host metabolic processes and maintain glucose homeostasis via metabolic and thermogenic stimulation, appetite regulation, pancreatic lipase and amylase inhibition, insulin sensitivity enhancing, adipogenesis inhibition and adipocyte apoptosis induction. In this review, we shed light on the biological processes that control energy balance and thermogenesis as well as metabolic pathways in white adipose tissue browning, we also highlight the anti-obesity potential of natural products with their mechanism of action. Based on previous findings, the crucial proteins and molecular pathways involved in adipose tissue browning and lipolysis induction are uncoupling protein-1, PR domain containing 16, and peroxisome proliferator-activated receptor-γ in addition to Sirtuin-1 and AMP-activated protein kinase pathway. Given that some phytochemicals can also lower proinflammatory substances like TNF-α, IL-6, and IL-1 secreted from adipose tissue and change the production of adipokines like leptin and adiponectin, which are important regulators of body weight, natural products represent a treasure trove for anti-obesity agents. In conclusion, conducting comprehensive research on natural products holds the potential to accelerate the development of an improved obesity management strategy characterized by heightened efficacy and reduced incidence of side effects.
Collapse
Affiliation(s)
| | - Said Moshawih
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Hui Poh Goh
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Nurolaini Kifli
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas AirlanggaSurabaya, Indonesia
| | - Hooi Leng Ser
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Long Chiau Ming
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas AirlanggaSurabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Mohagheghzadeh A, Badr P, Mohagheghzadeh A, Hemmati S. Hypericum perforatum L. and the Underlying Molecular Mechanisms for Its Choleretic, Cholagogue, and Regenerative Properties. Pharmaceuticals (Basel) 2023; 16:887. [PMID: 37375834 PMCID: PMC10300974 DOI: 10.3390/ph16060887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Any defects in bile formation, secretion, or flow may give rise to cholestasis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. As the pathogenesis of hepatic disorders is multifactorial, targeting parallel pathways potentially increases the outcome of therapy. Hypericum perforatum has been famed for its anti-depressive effects. However, according to traditional Persian medicine, it helps with jaundice and acts as a choleretic medication. Here, we will discuss the underlying molecular mechanisms of Hypericum for its use in hepatobiliary disorders. Differentially expressed genes retrieved from microarray data analysis upon treatment with safe doses of Hypericum extract and intersection with the genes involved in cholestasis are identified. Target genes are located mainly at the endomembrane system with integrin-binding ability. Activation of α5β1 integrins, as osmo-sensors in the liver, activates a non-receptor tyrosine kinase, c-SRC, which leads to the insertion of bile acid transporters into the canalicular membrane to trigger choleresis. Hypericum upregulates CDK6 that controls cell proliferation, compensating for the bile acid damage to hepatocytes. It induces ICAM1 to stimulate liver regeneration and regulates nischarin, a hepatoprotective receptor. The extract targets the expression of conserved oligomeric Golgi (COG) and facilitates the movement of bile acids toward the canalicular membrane via Golgi-derived vesicles. In addition, Hypericum induces SCP2, an intracellular cholesterol transporter, to maintain cholesterol homeostasis. We have also provided a comprehensive view of the target genes affected by Hypericum's main metabolites, such as hypericin, hyperforin, quercitrin, isoquercitrin, quercetin, kaempferol, rutin, and p-coumaric acid to enlighten a new scope in the management of chronic liver disorders. Altogether, standard trials using Hypericum as a neo-adjuvant or second-line therapy in ursodeoxycholic-acid-non-responder patients define the future trajectories of cholestasis treatment with this product.
Collapse
Affiliation(s)
- Ala Mohagheghzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Parmis Badr
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
| | - Abdolali Mohagheghzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran; (P.B.); (A.M.)
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Rafailovska E, Tushevski O, Shijakova K, Simic SG, Kjovkarovska SD, Miova B. Hypericum perforatum L. extract exerts insulinotropic effects and inhibits gluconeogenesis in diabetic rats by regulating AMPK expression and PKCε concentration. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115899. [PMID: 36336219 DOI: 10.1016/j.jep.2022.115899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum perforatum L., commonly known as St. John's Wort (SJW), represents one of the best-known and most thoroughly researched medicinal plant species. The ethnobotanical usage and bioactivities related to H. perforatum include treatment of skin diseases, wounds and burns, gastrointestinal problems, urogenital diseases and psychiatric disorders, particularly depression. In the last decade, many studies focused on the bioactive constituents responsible for the antihyperglycemic and antidiabetic activity of SJW extracts. However, the mechanism by which H. perforatum extract exhibits these properties is still unclear. Hence, the current study was designed to gain insight into the underlying biochemical and molecular mechanisms by which wildly growing H. perforatum exerts its antihyperglycemic and antidiabetic activities. MATERIAL AND METHODS Plant material of H. perforatum was harvested from a natural population in the Republic of North Macedonia during full flowering season. Methanol (80% v/v) was used to extract bioactive components from HH powder. The dissolved HH dry extract (in 0.3% CMC) was given daily as a single treatment (200 mg/kg bw) during 14 days both in healthy and streptozotocin-induced diabetic rats. As a positive control, we applied glibenclamide. The activity of key enzymes involved in carbohydrate methabolisam in the liver were assessed, along with substrate concentration, as well as AMPK mRNA levels, PKCε concentration, plasma insulin level and pancreatic PARP activity. RESULTS Compared to diabetic rats, treatment of diabetic rats with HH extract resulted with decreased activity of hepatic enzymes glucose-6-phospatase and fructose-1,6-bisphosphatase, increased liver glycogen and glucose-6-phosphate content, which resulted with reduced blood glucose concentration up to normoglycaemia. Non-significant changes were observed in the activity of hexokinase, glycogen phosphorylase and glucose-6-phospahte dehydrogenase. HH-treatment also caused an increase in plasma insulin concentration and increase in pancreatic PARP activity. Finally, HH treatment of diabetic rats showed significant increase in AMPK expression and decrease of PKCε concentration. CONCLUSION We present in vivo evidence that HH- extract exert insulinotropic effects and regulate endogenous glucose production mostly by suppressing liver gluconeogenesis. The HH-treatment did not effected glycogenolysys and glycolysis. Finally, we confirm the antihyperglycemic and antidiabetic effect of HH-extract and the mechanism of this effect involves amelioration of AMPK and PKCε changes in the liver.
Collapse
Affiliation(s)
- Elena Rafailovska
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia.
| | - Oliver Tushevski
- Laboratory of Plant Cell and Tissue Culture, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia.
| | - Kristiana Shijakova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia.
| | - Sonja Gadzovska Simic
- Laboratory of Plant Cell and Tissue Culture, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia.
| | - Suzana Dinevska Kjovkarovska
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia.
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia.
| |
Collapse
|
7
|
Nobakht SZ, Akaberi M, Mohammadpour AH, Tafazoli Moghadam A, Emami SA. Hypericum perforatum: Traditional uses, clinical trials, and drug interactions. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1045-1058. [PMID: 36246064 PMCID: PMC9526892 DOI: 10.22038/ijbms.2022.65112.14338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
Hypericum perforatum (Hypericaceae), known as Saint John’s wort (SJW), has been used in different systems of traditional medicine such as Chinese traditional medicine, Greek traditional medicine, and Islamic traditional medicine. The plant and its active constituents such as hyperforin and hypericin have a wide range of medicinal uses, particularly as anti-depressant, wound-healing, and antibacterial agents. In recent decades, many clinical trials have been performed to investigate the safety and efficacy of this medicinal plant. However, to the best on our knowledge, there is no comprehensive review article in this regard. In the current study, we aim to have a comprehensive review of the clinical trials of SJW to evaluate its efficacy and safety as well as its application in traditional medicine. Clinical studies investigating the safety, interactions, and efficacy of SJW were identified and summarized, including contributions from 2000 until December 2021. According to the results, these clinical studies were divided into three main categories based on the type of disease: psychiatric, endocrine, and skin problems. Important details of the studies, including the type and duration of the study, the type and percentage of the effective compounds or the extract used, the number of patients, and the obtained results were also discussed. In addition, co-administration and drug interaction of SJW with other drugs were summarized. SJW is a valuable medicinal plant, especially for psychiatric disorders. However, precautions should be taken while administrating the plant.
Collapse
Affiliation(s)
- Seyedeh Zahra Nobakht
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Tafazoli Moghadam
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Seyed Ahmad Emami. Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-3180 1267; Fax: +98-05118823251;
| |
Collapse
|
8
|
Sahebkar-Khorasani M, Safarian M, Jarahi L, Yousefi M, Salari R, Meshkat M, Ayati MH, Bahrami-Taghanaki H, Kargozar R, Azizi H. Comparative effectiveness of Hypericum perforatum, acupuncture, and lifestyle modification in the management of obesity: a randomized clinical trial. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
10
|
Shijakova K, Rafailovska E, Tushevski O, Gadzovska-Simic S, Dinevska-Kjovkarovska S, Miova B. The effects of transgenic root extracts of Hypericum perforatum L. on carbohydrate metabolism in heart of diabetic rats. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/10.33320/maced.pharm.bull.2020.66.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kristiana Shijakova
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, 1000 Skopje, R.N. Macedonia
| | - Elena Rafailovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, 1000 Skopje, R.N. Macedonia
| | - Oliver Tushevski
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, 1000 Skopje, R.N. Macedonia
| | - Sonja Gadzovska-Simic
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, 1000 Skopje, R.N. Macedonia
| | - Suzana Dinevska-Kjovkarovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, 1000 Skopje, R.N. Macedonia
| | - Biljana Miova
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, 1000 Skopje, R.N. Macedonia
| |
Collapse
|
11
|
Mata-Torres G, Andrade-Cetto A, Espinoza-Hernández F. Approaches to Decrease Hyperglycemia by Targeting Impaired Hepatic Glucose Homeostasis Using Medicinal Plants. Front Pharmacol 2021; 12:809994. [PMID: 35002743 PMCID: PMC8733686 DOI: 10.3389/fphar.2021.809994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022] Open
Abstract
Liver plays a pivotal role in maintaining blood glucose levels through complex processes which involve the disposal, storage, and endogenous production of this carbohydrate. Insulin is the hormone responsible for regulating hepatic glucose production and glucose storage as glycogen, thus abnormalities in its function lead to hyperglycemia in obese or diabetic patients because of higher production rates and lower capacity to store glucose. In this context, two different but complementary therapeutic approaches can be highlighted to avoid the hyperglycemia generated by the hepatic insulin resistance: 1) enhancing insulin function by inhibiting the protein tyrosine phosphatase 1B, one of the main enzymes that disrupt the insulin signal, and 2) direct regulation of key enzymes involved in hepatic glucose production and glycogen synthesis/breakdown. It is recognized that medicinal plants are a valuable source of molecules with special properties and a wide range of scaffolds that can improve hepatic glucose metabolism. Some molecules, especially phenolic compounds and terpenoids, exhibit a powerful inhibitory capacity on protein tyrosine phosphatase 1B and decrease the expression or activity of the key enzymes involved in the gluconeogenic pathway, such as phosphoenolpyruvate carboxykinase or glucose 6-phosphatase. This review shed light on the progress made in the past 7 years in medicinal plants capable of improving hepatic glucose homeostasis through the two proposed approaches. We suggest that Coreopsis tinctoria, Lithocarpus polystachyus, and Panax ginseng can be good candidates for developing herbal medicines or phytomedicines that target inhibition of hepatic glucose output as they can modulate the activity of PTP-1B, the expression of gluconeogenic enzymes, and the glycogen content.
Collapse
Affiliation(s)
| | - Adolfo Andrade-Cetto
- Laboratorio de Etnofarmacología, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
12
|
Faraji N, Ganji A, Heshami N, Salehi I, Haddadian A, Shojaie S, Komaki A. Hypolipidemic effects of Hypericum Scabrum extract on the serum lipid profile and obesity in high-fat diet fed rats. Hum Antibodies 2020; 29:55-61. [PMID: 33136094 DOI: 10.3233/hab-200430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diets included high-fat (HFD) and high calories intake is correlated with greater risk of obesity and oxidative stress, which lead to increase the risk of related diseases such as cardiovascular and metabolic disease. In the present study, we have examined the hypolipidemic activity of Hypericum Scabrum extract on HFD fed rats. Fifty-four male Wistar rats divided into six groups: 1) control, 2) H. Scabrum extract (100 mg/kg gavage per day), 3) H. Scabrum extract (300 mg/kg), 4) HFD, 5) HFD and H. Scabrum extract (100 mg/kg), 6) HFD and H. Scabrum extract (300 mg/kg). The groups were fed their diet and treatment for 3 months. Biochemical analysis showed elevated lipid serum profile in HFD rats compared to control group. H. Scabrum extract supplementation significantly ameliorated triglyceride, total cholesterol and LDL-cholesterol. H. Scabrum extract supplementation leading to increase HDL-cholesterol in HFD treated groups. This experiment showed that H. Scabrum extract decreased HFD complications and might be beneficial herbal drug for treatment of hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Nafiseh Faraji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Ganji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Neda Heshami
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Haddadian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shiva Shojaie
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Novelli M, Masiello P, Beffy P, Menegazzi M. Protective Role of St. John's Wort and Its Components Hyperforin and Hypericin against Diabetes through Inhibition of Inflammatory Signaling: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E8108. [PMID: 33143088 PMCID: PMC7662691 DOI: 10.3390/ijms21218108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a very common chronic disease with progressively increasing prevalence. Besides the well-known autoimmune and inflammatory pathogenesis of type 1 diabetes, in many people, metabolic changes and inappropriate lifestyle favor a subtle chronic inflammatory state that contributes to development of insulin resistance and progressive loss of β-cell function and mass, eventually resulting in metabolic syndrome or overt type 2 diabetes. In this paper, we review the anti-inflammatory effects of the extract of Hypericum perforatum L. (St. John's wort, SJW) and its main active ingredients firstly in representative pathological situations on inflammatory basis and then in pancreatic β cells and in obese or diabetic animal models. The simultaneous and long-lasting inhibition of signal transducer and activator of transcription (STAT)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs)/c-jun N-terminal kinase (JNK) signaling pathways involved in pro-inflammatory cytokine-induced β-cell dysfunction/death and insulin resistance make SJW particularly suitable for both preventive and therapeutic use in metabolic diseases. Hindrance of inflammatory cytokine signaling is likely dependent on the hyperforin content of SJW extract, but recent data reveal that hypericin can also exert relevant protective effects, mediated by activation of the cyclic adenosine monophosphate (cAMP)/protein kinase cAMP-dependent (PKA)/adenosine monophosphate activated protein kinase (AMPK) pathway, against high-fat-diet-induced metabolic abnormalities. Actually, the mechanisms of action of the two main components of SJW appear complementary, strengthening the efficacy of the plant extract. Careful quantitative analysis of SJW components and suitable dosage, with monitoring of possible drug-drug interaction in a context of remarkable tolerability, are easily achievable pre-requisites for forthcoming clinical applications.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pascale Beffy
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy;
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
14
|
Hypericum perforatum L.: a medicinal plant with potential as a curative agent against obesity-associated complications. Mol Biol Rep 2020; 47:8679-8686. [PMID: 33090307 DOI: 10.1007/s11033-020-05912-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022]
Abstract
Obesity is a low-grade inflammatory disease that is getting increasingly common among adults and children and causes different complications. Insulin resistance, Type II diabetes, atherosclerosis, metabolic syndrome and hypertension are among the major health problems, that are associated with obesity. Some medications are used to treat obese individuals and metabolic surgery is recommended, if appropriate, for individuals with a BMI ≥ 40. Due to the fact that medications and metabolic surgery are not tolerated by all, researchers focus on alternative therapies. Medicinal plants comprise the most important group of these alternative treatments. Hypericum perforatum L. is the medicinal plant, which we focused on in this study. Hypericum perforatum L. has been recognized as a medicinally valuable plant for over 2000 years. It has been used for generations to treat anxiety, depression, insomnia, gastritis, hemorrhoids, wounds, and burns. Recent studies have indeed shown promising effects for the treatment of obesity. In this study, 3T3-L1 adipocytes were used to mimic the adipocyte differentiation associated with obesity in cellular terms. Lipoprotein lipase (Lpl), Diacylglycerol-O-acyltransferase 1 (Dgat1), Fatty acid synthase (Fasn) markers were used to study the lipid accumulation, and Collagen V (ColV) was used to study cell elasticity to investigate the relationship of the effects of the administration of Hypericum perforatum L. with obesity.
Collapse
|
15
|
Hou XD, Guan XQ, Cao YF, Weng ZM, Hu Q, Liu HB, Jia SN, Zang SZ, Zhou Q, Yang L, Ge GB, Hou J. Inhibition of pancreatic lipase by the constituents in St. John's Wort: In vitro and in silico investigations. Int J Biol Macromol 2020; 145:620-633. [DOI: 10.1016/j.ijbiomac.2019.12.231] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022]
|
16
|
Yi Q, Sun P, Li J, Kong S, Tian J, Li X, Yang Y, Zhang P, Liu Y, Han J, Zhang X, Ye F. Rho, a Fraction From Rhodiola crenulate, Ameliorates Hepatic Steatosis in Mice Models. Front Physiol 2018; 9:222. [PMID: 29593573 PMCID: PMC5861213 DOI: 10.3389/fphys.2018.00222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD), which is developed from hepatic steatosis, is increasing worldwide. However, no specific drugs for NAFLD have been approved yet. To observe the effects of Rho, a fraction from Rhodiola crenulate, on non-alcoholic hepatic steatosis, three mouse models with characteristics of NAFLD were used including high-fat diet (HFD)-induced obesity (DIO) mice, KKAy mice, and HFD combined with tetracycline stimulated Model-T mice. Hepatic lipid accumulation was determined via histopathological analysis and/or hepatic TG determination. The responses to insulin were evaluated by insulin tolerance test (ITT), glucose tolerance test (GTT), and hyperinsulinemic-euglycemic clamp, respectively. The pathways involved in hepatic lipid metabolism were observed via western-blot. Furthermore, the liver microcirculation was observed by inverted microscopy. The HPLC analysis indicated that the main components of Rho were flavan polymers. The results of histopathological analysis showed that Rho could ameliorate hepatic steatosis in DIO, KKAy, and Model-T hepatic steatosis mouse models, respectively. After Rho treatment in DIO mice, insulin resistance was improved with increasing glucose infusion rate (GIR) in hyperinsulinemic-euglycemic clamp, and decreasing areas under the blood glucose-time curve (AUC) in both ITT and GTT; the pathways involved in fatty acid uptake and de novo lipogenesis were both down-regulated, respectively. However, the pathways involved in beta-oxidation and VLDL-export on hepatic steatosis were not changed significantly. The liver microcirculation disturbances were also improved by Rho in DIO mice. These results suggest that Rho is a lead nature product for hepatic steatosis treatment. The mechanism is related to enhancing insulin sensitivity, suppressing fatty acid uptake and inhibiting de novo lipogenesis in liver.
Collapse
Affiliation(s)
- Qin Yi
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Puyang Sun
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Juan Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Siming Kong
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jinying Tian
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xuechen Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yanan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Peicheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yuying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Jingyan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Xiaolin Zhang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Fei Ye
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Abd El Motteleb DM, Abd El Aleem DI. Renoprotective effect ofHypericum perforatumagainst diabetic nephropathy in rats: Insights in the underlying mechanisms. Clin Exp Pharmacol Physiol 2017; 44:509-521. [DOI: 10.1111/1440-1681.12729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | - Dalia I. Abd El Aleem
- Department of Medical Physiology; Faculty of Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
18
|
Cai W, Yu L, Zhang Y, Feng L, Kong S, Tan H, Xu H, Huang C. Extracts of Coreopsis tinctoria Nutt. Flower Exhibit Antidiabetic Effects via the Inhibition of α-Glucosidase Activity. J Diabetes Res 2016; 2016:2340276. [PMID: 27088095 PMCID: PMC4819113 DOI: 10.1155/2016/2340276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to assay the effects of Coreopsis tinctoria Nutt. flower extracts on hyperglycemia of diet-induced obese mice and the underlying mechanisms. Coreopsis tinctoria flower was extracted with ethanol and water, respectively. The total phenol, flavonoid levels, and the constituents of the extracts were measured. For the animal experiments, C57BL/6 mice were fed with a chow diet, high-fat diet, or high-fat diet mixed with 0.4% (w/w) water and ethanol extracts of Coreopsis tinctoria flower for 8 weeks. The inhibitory effects of the extracts on α-glucosidase activity and the antioxidant properties were assayed in vitro. We found that the extracts blocked the increase of fasting blood glucose, serum triglyceride (TG), insulin, leptin, and liver lipid levels and prevented the development of glucose tolerance impairment and insulin resistance in the C57BL/6 mice induced by a high-fat diet. The extracts inhibited α-glycosidase activity and increased oxidant activity in vitro. In conclusion, Coreopsis tinctoria flower extracts may ameliorate high-fat diet-induced hyperglycemia and insulin resistance. The underling mechanism may be via the inhibition of α-glucosidase activity. Our data indicate that Coreopsis tinctoria flower could be used as a beverage supplement and a potential source of drugs for treatment of diabetics.
Collapse
Affiliation(s)
- Wujie Cai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Lijing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Li Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Siyuan Kong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- *Cheng Huang:
| |
Collapse
|
19
|
Hernández-Saavedra D, Pérez-Ramírez IF, Ramos-Gómez M, Mendoza-Díaz S, Loarca-Piña G, Reynoso-Camacho R. Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1454-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|