1
|
Ambele MA, Maebele LT, Mulaudzi TV, Kungoane T, Damane BP. Advances in nano-delivery of phytochemicals for glioblastoma treatment. DISCOVER NANO 2024; 19:216. [PMID: 39718730 DOI: 10.1186/s11671-024-04172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor characterized by cellular and molecular diversity. This diversity presents significant challenges for treatment and leads to poor prognosis. Surgery remains the primary treatment of choice for GBMs, but it often results in tumor recurrence due to complex interactions between GBM cells and the peritumoral brain zone. Phytochemicals have shown promising anticancer activity in in-vitro studies and are being investigated as potential treatments for various cancers, including GBM. However, some phytochemicals have failed to translate their efficacy to pre-clinical studies due to limited penetration into the tumor microenvironment, leading to high toxicity. Thus, combining phytochemicals with nanotechnology has emerged as a promising alternative for treating GBM. This review explores the potential of utilizing specific nanoparticles to deliver known anticancer phytochemicals directly to tumor cells. This method has demonstrated potential in overcoming the challenges of the complex GBM microenvironment, including the tight blood-brain barrier while minimizing damage to healthy brain tissue. Therefore, employing this interdisciplinary approach holds significant promise for developing effective phyto-nanomedicines for GBM and improving patient outcomes.
Collapse
Affiliation(s)
- Melvin Anyasi Ambele
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, School of Dentistry, University of Pretoria, P.O. Box 1266, Pretoria, 0001, South Africa.
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 0084, Gezina, South Africa.
| | - Lorraine Tshegofatso Maebele
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Tsholofelo Kungoane
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, School of Dentistry, University of Pretoria, P.O. Box 1266, Pretoria, 0001, South Africa
| | - Botle Precious Damane
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa.
| |
Collapse
|
2
|
Jiang W, Liu K, Huan W, Wu X, Zhu M, Tao H, Song L, Gao F. Specific extraction of bioactive flavonoids from Torreya grandis pomace using magnetic nanoparticles modified with a ChCl/acetamide deep eutectic solvent. Lebensm Wiss Technol 2024; 211:116914. [DOI: 10.1016/j.lwt.2024.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
|
3
|
Chen M, Li H, Zheng S, Shen J, Chen Y, Li Y, Yuan M, Wu J, Sun Q. Nobiletin targets SREBP1/ACLY to induce autophagy-dependent cell death of gastric cancer cells through PI3K/Akt/mTOR signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155360. [PMID: 38547624 DOI: 10.1016/j.phymed.2024.155360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Autophagy could sense metabolic conditions and safeguard cells against nutrient deprivation, ultimately supporting the survival of cancer cells. Nobiletin (NOB) is a kind of bioactive component of the traditional Chinese medicine Citri Reticulatae Pericarpium and has been proven to induce GC cell death by reducing de novo fatty acid synthesis in our previous study. Nevertheless, the precise mechanisms by which NOB induces cell death in GC cells still need further elucidation. OBJECTIVES To examine the mechanism by which NOB inhibits gastric cancer progression through the regulation of autophagy under the condition of lipid metabolism inhibition. METHODS/ STUDY DESIGN Proliferation was detected by the CCK-8 assay. RNA sequencing (RNA-seq) was used to examine signaling pathway changes. Electron microscopy and mRFP-GFP-LC3 lentiviral transfection were performed to observe autophagy in vitro. Western blot, plasmid transfection, immunofluorescence staining, and CUT & Tag-qPCR techniques were utilized to explore the mechanisms by which NOB affects GC cells. Molecular docking and molecular dynamics simulations were conducted to predict the binding mode of NOB and SREBP1. CETSA was adopted to verify the predicted of binding model. A patient-derived xenograft (PDX) model was employed to verify the therapeutic efficacy of NOB in vivo. RESULTS We conducted functional studies and discovered that NOB inhibited the protective effect of autophagy via the PI3K/Akt/mTOR axis in GC cells. Based on previous research, we found that the overexpression of ACLY abrogated the NOB-induced autophagy-dependent cell death. In silico analysis predicted the formation of a stable complex between NOB and SREBP1. In vitro assays confirmed that NOB treatment increased the thermal stability of SREBP1 at the same temperature conditions. Moreover, CUT&TAG-qPCR analysis revealed that NOB could inhibit SREBP1 binding to the ACLY promoter. In the PDX model, NOB suppressed tumor growth, causing SREBP1 nuclear translocation inhibition, PI3K/Akt/mTOR inactivation, and autophagy-dependent cell death. CONCLUSION NOB demonstrated the ability to directly bind to SREBP1, inhibiting its nuclear translocation and binding to the ACLY promoter, thereby inducing autophagy-dependent cell death via PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Menglin Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Huaizhi Li
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shanshan Zheng
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Junyu Shen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuxuan Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yaqi Li
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Mengyun Yuan
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jian Wu
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| | - Qingmin Sun
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
4
|
Hao B, Yang Z, Liu H, Liu Y, Wang S. Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Curr Issues Mol Biol 2024; 46:2884-2925. [PMID: 38666911 PMCID: PMC11049524 DOI: 10.3390/cimb46040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.
Collapse
Affiliation(s)
| | | | | | | | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (B.H.); (Z.Y.); (H.L.); (Y.L.)
| |
Collapse
|
5
|
Sahoo L, Tripathy NS, Dilnawaz F. Naringenin Nanoformulations for Neurodegenerative Diseases. Curr Pharm Biotechnol 2024; 25:2108-2124. [PMID: 38347794 DOI: 10.2174/0113892010281459240118091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 09/10/2024]
Abstract
Glioblastoma (GBM) is a grade-IV astrocytoma, which is the most common and aggressive type of brain tumor, spreads rapidly and has a life-threatening catastrophic effect. GBM mostly occurs in adults with an average survival time of 15 to 18 months, and the overall mortality rate is 5%. Significant invasion and drug resistance activity cause the poor diagnosis of GBM. Naringenin (NRG) is a plant secondary metabolite byproduct of the flavanone subgroup. NRG can cross the blood-brain barrier and deliver drugs into the central nervous system when conjugated with appropriate nanocarriers to overcome the challenges associated with gliomas through naringenin-loaded nanoformulations. Here, we discuss several nanocarriers employed that are as delivery systems, such as polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanosuspensions, and nanoemulsions. These naringenin-loaded nanoformulations have been tested in various in vitro and in vivo models as a potential treatment for brain disorders. This review nanoformulations of NRG can a possible therapeutic alternative for the treatment of neurological diseases are discussed.
Collapse
Affiliation(s)
- Liza Sahoo
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Nigam Sekhar Tripathy
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Habibian Sezavar A, Ostad SN, Hasani Nourian Y, Aghamollaei H. Therapeutic Potential of Crocin and Nobiletin in a Mouse Model of Dry Eye Disease: Modulation of the Inflammatory Response and Protection of the Ocular Surface. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e149463. [PMID: 39830666 PMCID: PMC11742122 DOI: 10.5812/ijpr-149463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 01/22/2025]
Abstract
Background Dry eye disease (DED) is a multifactorial condition characterized by ocular surface inflammation, tear film instability, and corneal epithelial damage. Current treatments often provide temporary relief without addressing the underlying inflammatory mechanisms. Objectives This study examined the therapeutic potential of crocin and nobiletin, two naturally derived compounds with well-known antioxidant and anti-inflammatory properties, in a mouse model of DED induced by lacrimal gland excision (LGE). Methods Thirty female Balb/c mice were divided into five groups (n = 6 each): Control (sham surgery), untreated DED, nobiletin-treated DED (32.75 µM), crocin-treated DED (34 µM), and 1% betamethasone-treated DED. Treatments were administered three times daily for 28 days. Ocular tissues were evaluated using Hematoxylin and Eosin (H&E) staining and fluorescein staining. Conjunctival inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α), were measured by enzyme-linked immunosorbent assay (ELISA). Results Histological analysis showed that the crocin and nobiletin treatment groups exhibited reduced epithelial disruption, keratinization, and inflammatory cell infiltration compared to the untreated DED group. The ELISA assay revealed that both compounds efficiently inhibited the production of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β, which are key mediators of DED pathogenesis. Fluorescein staining further confirmed the protective impact of crocin and nobiletin on corneal epithelial integrity. Moreover, the anti-inflammatory and epithelial-preserving effects of these compounds were comparable to those of the corticosteroid betamethasone. Conclusions Overall, these findings suggest that crocin and nobiletin have therapeutic potential for DED management by modulating inflammatory responses and enhancing ocular surface healing. These naturally derived compounds offer promising avenues for the development of safer and more effective treatments for this challenging condition. However, further investigations, including clinical trials, are essential to elucidate the underlying mechanisms of action and optimize therapeutic approaches.
Collapse
Affiliation(s)
- Ahmad Habibian Sezavar
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Song L, Xiong P, Zhang W, Hu H, Tang S, Jia B, Huang W. Mechanism of Citri Reticulatae Pericarpium as an Anticancer Agent from the Perspective of Flavonoids: A Review. Molecules 2022; 27:molecules27175622. [PMID: 36080397 PMCID: PMC9458152 DOI: 10.3390/molecules27175622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
Citri Reticulatae Pericarpium (CRP), also known as “chenpi”, is the most common qi-regulating drug in traditional Chinese medicine. It is often used to treat cough and indigestion, but in recent years, it has been found to have multi-faceted anti-cancer effects. This article reviews the pharmacology of CRP and the mechanism of the action of flavonoids, the key components of CRP, against cancers including breast cancer, lung cancer, prostate cancer, hepatic carcinoma, gastric cancer, colorectal cancer, esophageal cancer, cervical cancer, bladder cancer and other cancers with a high diagnosis rate. Finally, the specific roles of CRP in important phenotypes such as cell proliferation, apoptosis, autophagy and migration–invasion in cancer were analyzed, and the possible prospects and deficiencies of CRP as an anticancer agent were evaluated.
Collapse
Affiliation(s)
- Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Peiyu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Hengchang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Songqi Tang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Wei Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
- Correspondence:
| |
Collapse
|
8
|
Rauf A, Shariati MA, Imran M, Bashir K, Khan SA, Mitra S, Emran TB, Badalova K, Uddin MS, Mubarak MS, Aljohani ASM, Alhumaydhi FA, Derkho M, Korpayev S, Zengin G. Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31025-31041. [PMID: 35119637 DOI: 10.1007/s11356-022-18754-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Though the incidence of several cancers in Western societies is regulated wisely, some cancers such as breast, lung, and colorectal cancer are currently rising in many low- and middle-income countries due to increased risk factors triggered by societal and development problems. Surgery, chemotherapy, hormone, radiation, and targeted therapies are examples of traditional cancer treatment approaches. However, multiple short- and long-term adverse effects may also significantly affect patient prognosis depending on treatment-associated clinical factors. More and more research has been carried out to find new therapeutic agents in natural products, among which the bioactive compounds derived from plants have been increasingly studied. Naringin and naringenin are abundantly found in citrus fruits, such as oranges and grapefruits. A variety of cell signaling pathways mediates their anti-carcinogenic properties. Naringin and naringenin were also documented to overcome multidrug resistance, one of the major challenges to clinical practice due to multiple defense mechanisms in cancer. The effective parameters underlying the anticancer effects of naringenin and naringin include GSK3β inactivation, suppression of the gene and protein activation of NF-kB and COX-2, JAK2/STAT3 downregulation, downregulation of intracellular adhesion molecules-1, upregulation of Notch1 and tyrocite-specific genes, and activation of p38/MAPK and caspase-3. Thus, this review outlines the potential of naringin and naringenin in managing different types of cancers.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management, The First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russia
| | - Muhammad Imran
- Department of food science and technology, University of Narowal-Pakistan, Pakistan
- Food, nutrition and lifestyle Unit, King Fahed Medical Research Center, Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Kashif Bashir
- Department of Microbiology and Biotechnology, Abasyan University Peshawar, Peshawar, Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar, Swabi, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Kamala Badalova
- General Toxicological Chemistry Department, Azerbaijan Medical University Azerbaijan, Baku, Azerbaijan
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | - Abdullah S M Aljohani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Marina Derkho
- Institute of Veterinary Medicine, South-Ural State Agrarian University, Chelyabinsk Region, 13 Gagarin St, Troitsk, 454700, Russian Federation
| | - Serdar Korpayev
- Biotechnology Institute, Ankara University, 06135, Ankara, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| |
Collapse
|
9
|
Chen YY, Liang JJ, Wang DL, Chen JB, Cao JP, Wang Y, Sun CD. Nobiletin as a chemopreventive natural product against cancer, a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:6309-6329. [PMID: 35089821 DOI: 10.1080/10408398.2022.2030297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a leading cause of death, second only to heart disease, cancer has always been one of the burning topics in medical research. When targeting multiple signal pathways in tumorigenesis chemoprevention, using natural or synthetic anti-cancer drugs is a vital strategy to reduce cancer damage. However, toxic effects, multidrug resistance (MDR) as well as cancer stem cells (CSCs) all prominently limited the clinical application of conventional anticancer drugs. With low side effects, strong biological activity, unique mechanism, and wide range of targets, natural products derived from plants are considered significant sources for new drug development. Nobiletin is one of the most attractive compounds, a unique flavonoid primarily isolated from the peel of citrus fruits. Numerous studies in vitro and in vivo have suggested that nobiletin and its derivatives possess the eminent potential to become effective cancer chemoprevention agents through various cellular and molecular levels. This article aims to comprehensively review the anticancer efficacy and specific mechanisms of nobiletin, enhancing our understanding of its chemoprevention properties and providing the latest research findings. At the end of this review, we also give some discussion and future perspectives regarding the challenges and opportunities in nobiletin efficient exploitation.
Collapse
Affiliation(s)
- Yun-Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jiao-Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Deng-Liang Wang
- Citrus Research Institute, Quzhou Academy of Agricultural Sciences, Quzhou, China
| | - Jie-Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jin-Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chong-De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
do Nascimento RP, dos Santos BL, Amparo JAO, Soares JRP, da Silva KC, Santana MR, Almeida ÁMAN, da Silva VDA, Costa MDFD, Ulrich H, Moura-Neto V, Lopes GPDF, Costa SL. Neuroimmunomodulatory Properties of Flavonoids and Derivates: A Potential Action as Adjuvants for the Treatment of Glioblastoma. Pharmaceutics 2022; 14:pharmaceutics14010116. [PMID: 35057010 PMCID: PMC8778519 DOI: 10.3390/pharmaceutics14010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Glioblastomas (GBMs) are tumors that have a high ability to migrate, invade and proliferate in the healthy tissue, what greatly impairs their treatment. These characteristics are associated with the complex microenvironment, formed by the perivascular niche, which is also composed of several stromal cells including astrocytes, microglia, fibroblasts, pericytes and endothelial cells, supporting tumor progression. Further microglia and macrophages associated with GBMs infiltrate the tumor. These innate immune cells are meant to participate in tumor surveillance and eradication, but they become compromised by GBM cells and exploited in the process. In this review we discuss the context of the GBM microenvironment together with the actions of flavonoids, which have attracted scientific attention due to their pharmacological properties as possible anti-tumor agents. Flavonoids act on a variety of signaling pathways, counteracting the invasion process. Luteolin and rutin inhibit NFκB activation, reducing IL-6 production. Fisetin promotes tumor apoptosis, while inhibiting ADAM expression, reducing invasion. Naringenin reduces tumor invasion by down-regulating metalloproteinases expression. Apigenin and rutin induce apoptosis in C6 cells increasing TNFα, while decreasing IL-10 production, denoting a shift from the immunosuppressive Th2 to the Th1 profile. Overall, flavonoids should be further exploited for glioma therapy.
Collapse
Affiliation(s)
- Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Balbino Lino dos Santos
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- Academic College of Nurse, Department of Health, Federal University of Vale do São Francisco, Petrolina 56304-205, Pernambuco, Brazil
| | - Jéssika Alves Oliveira Amparo
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Janaina Ribeiro Pereira Soares
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Karina Costa da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Monique Reis Santana
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Áurea Maria Alves Nunes Almeida
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Victor Diógenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
- Correspondence: (H.U.); (S.L.C.)
| | - Vivaldo Moura-Neto
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, São Paulo, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
- Paulo Niemeyer State Institute of the Brain, Rio de Janeiro 20230-024, Rio de Janeiro, Brazil
| | - Giselle Pinto de Faria Lopes
- Department of Marine Biotechnology, Admiral Paulo Moreira Institute for Sea Studies (IEAPM), Arraial do Cabo 28930-000, Rio de Janeiro, Brazil;
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-902, Bahia, Brazil; (R.P.d.N.); (B.L.d.S.); (J.A.O.A.); (J.R.P.S.); (K.C.d.S.); (M.R.S.); (Á.M.A.N.A.); (V.D.A.d.S.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, Rio de Janeiro, Brazil;
- Correspondence: (H.U.); (S.L.C.)
| |
Collapse
|
11
|
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel) 2021; 13:4226. [PMID: 34439380 PMCID: PMC8393628 DOI: 10.3390/cancers13164226] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.
Collapse
Affiliation(s)
- Abdul Samad Basheer
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 434000, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| |
Collapse
|
12
|
Xue Z, Wang Y, Yu W, Zhang Z, Kou X. Research Advancement of Natural Active Components in Alleviating Lung Damage Induced by PM2.5. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yumeng Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products; Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
13
|
A Z, J SW, A M, E L, I W, W R, J JG. LY294002 and sorafenib as inhibitors of intracellular survival pathways in the elimination of human glioma cells by programmed cell death. Cell Tissue Res 2021; 386:17-28. [PMID: 34236519 PMCID: PMC8526469 DOI: 10.1007/s00441-021-03481-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/02/2021] [Indexed: 11/05/2022]
Abstract
Gliomas are aggressive brain tumors with very high resistance to chemotherapy throughout the overexpression of multiple intracellular survival pathways. Therefore, the aim of the present study was to investigate for the first time the anticancer activity of LY294002, phosphatidylinositol 3-kinase (PI3K) inhibitor and sorafenib, and rapidly accelerated fibrosarcoma kinase (Raf) inhibitor in the elimination of human glioma cells by programmed cell death. MOGGCCM (anaplastic astrocytoma, III) and T98G (glioblastoma multiforme, IV) cell lines incubated with LY294002 and/or sorafenib were used in the experiments. Simultaneous treatment with both drugs was more effective in the elimination of cancer cells on the way of apoptosis with no significant necrotic effect than single application. It was correlated with decreasing the mitochondrial membrane potential and activation of caspase 3 and 9. The expression of Raf and PI3K was also inhibited. Blocking of those kinases expression by specific siRNA revealed significant apoptosis induction, exceeding the level observed after LY294002 and sorafenib treatment in non-transfected lines but only in MOGGCCM cells. Our results indicated that combination of LY294002 and sorafenib was very efficient in apoptosis induction in glioma cells. Anaplastic astrocytoma cells turned out to be more sensitive for apoptosis induction than glioblastoma multiforme after blocking PI3K and Raf expression with siRNA.
Collapse
Affiliation(s)
- Zając A
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland.
| | - Sumorek-Wiadro J
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Maciejczyk A
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Langner E
- Department of Medical Biology, Institute of Agricultural Medicine, Lublin, Poland
| | - Wertel I
- 1st Department of Gynecology, University School of Medicine, Lublin, Poland
| | - Rzeski W
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland.,Department of Medical Biology, Institute of Agricultural Medicine, Lublin, Poland
| | - Jakubowicz-Gil J
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
14
|
The Application of Citrus folium in Breast Cancer and the Mechanism of Its Main Component Nobiletin: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2847466. [PMID: 34257674 PMCID: PMC8260297 DOI: 10.1155/2021/2847466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023]
Abstract
Citrus folium and its main ingredient nobiletin (NOB) have received widespread attention in recent years due to their antitumor effects. The antitumor effect of Citrus folium is related to the traditional use, mainly in its Chinese medicinal properties of soothing the liver and promoting qi, resolving phlegm, and dispelling stagnation. Some studies have proved that Citrus folium and NOB are more effective for triple-negative breast cancer (TNBC), which is related to the syndrome of stagnation of liver qi. From the perspective of modern biomedical research, NOB has anticancer effects. Its potential molecular mechanisms include inhibition of the cell cycle, induction of apoptosis, and inhibition of angiogenesis, invasion, and migration. Citrus folium and NOB can also reduce the side effects of chemotherapy drugs and reverse multidrug resistance (MDR). However, more research studies are needed to clarify the underlying mechanisms. The modern evidence of Citrus folium and NOB in breast cancer treatment has a strong connection with the traditional concepts and laws of applying Citrus folium in Chinese medicine (CM). As a low-toxic anticancer drug candidate, NOB and its structural changes, Citrus folium, and compound prescriptions will attract scientists to use advanced technologies such as genomics, proteomics, and metabolomics to study its potential anticancer effects and mechanisms. On the contrary, there are relatively few studies on the anticancer effects of Citrus folium and NOB in vivo. The clinical application of Citrus folium and NOB as new cancer treatment drugs requires in vivo verification and further anticancer mechanism research. This review aims to provide reference for the treatment of breast cancer by Chinese medicine.
Collapse
|
15
|
Nobiletin enhances the development and quality of bovine embryos in vitro during two key periods of embryonic genome activation. Sci Rep 2021; 11:11796. [PMID: 34083641 PMCID: PMC8175487 DOI: 10.1038/s41598-021-91158-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
In vitro culture can alter the development and quality of bovine embryos. Therefore, we aimed to evaluate whether nobiletin supplementation during EGA improves embryonic development and blastocyst quality and if it affects PI3K/AKT signaling pathway. In vitro zygotes were cultured in SOF + 5% FCS (Control) or supplemented with 5, 10 or 25 µM nobiletin (Nob5, Nob10, Nob25) or with 0.03% dimethyl-sulfoxide (CDMSO) during minor (2 to 8-cell stage; MNEGA) or major (8 to 16-cell stage; MJEGA) EGA phase. Blastocyst yield on Day 8 was higher in Nob5 (42.7 ± 1.0%) and Nob10 (44.4 ± 1.3%) for MNEGA phase and in Nob10 (61.0 ± 0.8%) for MJEGA phase compared to other groups. Mitochondrial activity was higher and lipid content was reduced in blastocysts produced with nobiletin, irrespective of EGA phase. The mRNA abundance of CDK2, H3-3B, H3-3A, GPX1, NFE2L2 and PPARα transcripts was increased in 8-cells, 16-cells and blastocysts from nobiletin groups. Immunofluorescence analysis revealed immunoreactive proteins for p-AKT forms (Thr308 and Ser473) in bovine blastocysts produced with nobiletin. In conclusion, nobiletin supplementation during EGA has a positive effect on preimplantation bovine embryonic development in vitro and corroborates on the quality improvement of the produced blastocysts which could be modulated by the activation of AKT signaling pathway.
Collapse
|
16
|
Chen T, Liu L, Zou Y, Hu X, Zhang W, Zhou T, Luo X, Fu W, Xu J. Nobiletin downregulates the SKP2-p21/p27-CDK2 axis to inhibit tumor progression and shows synergistic effects with palbociclib on renal cell carcinoma. Cancer Biol Med 2021; 18:227-244. [PMID: 33628597 PMCID: PMC7877181 DOI: 10.20892/j.issn.2095-3941.2020.0186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Objective: Natural extracts, including nobiletin, have been reported to enhance the efficacy and sensitivity of chemotherapeutic drugs. However, whether and how nobiletin affects tumor growth and progression in renal cell carcinoma (RCC) are still unclear. Methods: Cell proliferation, cell cycle and apoptosis analyses, colony-formation assays, immunoblotting analysis, and qRT-PCR analysis were performed to investigate how nobiletin affected RCC cell proliferation in vitro. The nude mouse model was used to test the efficacy of nobiletin alone or in combination with palbociclib. Results: Nobiletin inhibited cell proliferation by inducing G1 cell cycle arrest and cell apoptosis in RCC cells. Mechanistically, nobiletin decreased SKP2 protein expression by reducing its transcriptional level. The downregulated SKP2 caused accumulation of its substrates, p27 and p21, which further inhibited the activity of the G1 phase-related protein, CDK2, leading to inhibition of cell proliferation and tumor formation. A higher SKP2 protein level indicated less sensitivity to the CDK4/6 inhibitor, palbociclib. A combination of nobiletin and palbociclib showed a synergistic tumor inhibition in vitro and in an in vivo model. Conclusions: Nobiletin downregulated the SKP2-p21/p27-CDK2 axis to inhibit tumor progression and showed synergistic tumor inhibition effects with the CDK4/6 inhibitor, palbociclib, on RCC, which indicates a potential new therapeutic strategy.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| | - Liu Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430040, China
| | - Yonghong Zou
- Department of Reproductive Medicine, Ji'an Central People's Hospital, Ji'an 343100, China
| | - Xiaoyan Hu
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| | - Wenfeng Zhang
- Department of Infectious Disease, the First Affiliated Hospital, Nanchang University, Nanchang 330001, China
| | - Tao Zhou
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| | - Xi Luo
- Department of Oncology, Southwest Hospital of Army Medical University, Chongqing 400038, China
| | - Weihua Fu
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| | - Jie Xu
- Department of Urology, Xinqiao Hospital of Army Medical University, Chongqing 400037, China
| |
Collapse
|
17
|
Tectorigenin Inhibits Glioblastoma Proliferation by G0/G1 Cell Cycle Arrest. ACTA ACUST UNITED AC 2020; 56:medicina56120681. [PMID: 33321738 PMCID: PMC7763962 DOI: 10.3390/medicina56120681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022]
Abstract
Background and objectives: Glioblastoma is one of the leading cancer-related causes of death of the brain region and has an average 5-year survival rate of less than 5%. The aim of this study was to investigate the effectiveness of tectorigenin, a naturally occurring flavonoid compound with anti-inflammatory, anti-oxidant, and anti-tumor properties, as a treatment for glioblastoma. A further goal was to use in vitro models to determine the underlying molecular mechanisms. Materials and Methods: Exposure to tectorigenin for 24 h dose-dependently reduced the viability of glioblastoma cells. Results: Significant cell cycle arrest at G0/G1 phase occurred in the presence of 200 and 300 µM tectorigenin. Treatment with tectorigenin clearly reduced the levels of phosphorylated retinoblastoma protein (p-RB) and decreased the expression of cyclin-dependent protein 4 (CDK4). Tectorigenin treatment also significantly enhanced the expression of p21, a CDK4 inhibitor. Conclusions: Collectively, our findings indicated that tectorigenin inhibited the proliferation of glioblastoma cells by cell cycle arrest at the G0/G1 phase.
Collapse
|
18
|
Lellupitiyage Don SS, Robertson KL, Lin HH, Labriola C, Harrington ME, Taylor SR, Farkas ME. Nobiletin affects circadian rhythms and oncogenic characteristics in a cell-dependent manner. PLoS One 2020; 15:e0236315. [PMID: 32706791 PMCID: PMC7380617 DOI: 10.1371/journal.pone.0236315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
The natural product nobiletin is a small molecule, widely studied with regard to its therapeutic effects, including in cancer cell lines and tumors. Recently, nobiletin has also been shown to affect circadian rhythms via their enhancement, resulting in protection against metabolic syndrome. We hypothesized that nobiletin's anti-oncogenic effects, such as prevention of cell migration and formation of anchorage independent colonies, are correspondingly accompanied by modulation of circadian rhythms. Concurrently, we wished to determine whether the circadian and anti-oncogenic effects of nobiletin differed across cancer cell lines. In this study, we assessed nobiletin's circadian and therapeutic characteristics to ascertain whether these effects depend on cell line, which here also varied in terms of baseline circadian rhythmicity. Three cell culture models where nobiletin's effects on cell proliferation and migration have been studied previously were evaluated: U2OS (bone osteosarcoma), which possesses robust circadian rhythms; MCF7 (breast adenocarcinoma), which has weak circadian rhythms; and MDA-MB-231 (breast adenocarcinoma), which is arrhythmic. We found that circadian, migration, and proliferative effects following nobiletin treatment were subtle in the U2OS and MCF7 cells. On the other hand, changes were clear in MDA-MB-231s, where nobiletin rescued rhythmicity and substantially reduced oncogenic features, specifically two-dimensional cell motility and anchorage-independent growth. Based on these results and those previously described, we posit that the effects of nobiletin are indeed cell-type dependent, and that a positive correlation may exist between nobiletin's circadian and therapeutic effects.
Collapse
Affiliation(s)
| | - Kelly L. Robertson
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Hui-Hsien Lin
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Caroline Labriola
- Department of Psychology, Smith College, Northampton, MA, United States of America
| | - Mary E. Harrington
- Department of Psychology, Smith College, Northampton, MA, United States of America
| | - Stephanie R. Taylor
- Department of Computer Science, Colby College, Waterville, ME, United States of America
| | - Michelle E. Farkas
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, United States of America
| |
Collapse
|
19
|
Yang J, Yang Y, Wang L, Jin Q, Pan M. Nobiletin selectively inhibits oral cancer cell growth by promoting apoptosis and DNA damage in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130:419-427. [PMID: 32868254 DOI: 10.1016/j.oooo.2020.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/12/2020] [Accepted: 06/26/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVES The aim of this study was to investigate whether nobiletin (NOB) can inhibit the proliferation of oral squamous cell carcinoma (OSCC) cells by promoting apoptosis, oxidative stress (reactive oxygen species [ROS]), and DNA damage. STUDY DESIGN OSCCs were treated with different concentrations of NOB (25, 50, and 100 µM) for different amounts of time (0, 24, 48, and 72 hours). The viability of NOB was assessed by using MTT-based cell viability assays. Flow cytometry was used to assess cell apoptosis, and the expressions of capase-3 and poly (adenosine diphosphate-ribose) polymerase (PARP) were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses. The intensity of ROS fluorescence was measured by using a spectrophotometer. The expression of γH2AX and 8-Oxo-20-deoxyguanosine (8-oxodG) were assessed to determine the degree of DNA damage. RESULTS We observed that NOB decreased OSCC cell viability in a dose- and time-dependent manner but had little effect on primary normal human oral epithelial cells (H0 ECs). Moreover, with the increase in NOB concentration and treatment time, capase-3, PARP messenger RNA (mRNA), and protein levels gradually increased, as did annexin V- and 7 adducin (ADD)-mediated apoptosis. In addition, NOB also increased the levels of ROS and DNA damage in a concentration- and time-dependent manner. CONCLUSIONS NOB can inhibit OSCC cell by promoting apoptosis, ROS production, and DNA damage.
Collapse
Affiliation(s)
- Junjun Yang
- Department of Stomatology, The Central Hospital of Wuhan, Wuhan, China
| | - Yang Yang
- Department of Pathology, The Central Hospital of Wuhan, Wuhan, China
| | - Lu Wang
- Department of Stomatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Hongshan District, Wuhan, China
| | - Qiuchen Jin
- Department of Stomatology, The Central Hospital of Wuhan, Wuhan, China
| | - Minghui Pan
- Department of Stomatology, The Central Hospital of Wuhan, Wuhan, China.
| |
Collapse
|
20
|
J J, Vanisree AJ. Naringenin Sensitizes Resistant C6 Glioma Cells with a Repressive Impact on the Migrating Ability. Ann Neurosci 2020; 27:114-123. [PMID: 34556949 PMCID: PMC8455008 DOI: 10.1177/0972753120950057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Glioma, the most common form of a malignant brain tumour is characterised by a poor prognosis, which is attributable to its resistance against current therapeutic approaches. Temozolomide (TMZ), a DNA alkylating agent, is the first-line drug for glioma treatment. Long-term treatment using TMZ was reported to culminate in the development of resistance with overexpression of multidrug resistance 1 gene coded protein P-glycoprotein, which in turn releases the drugs from the tumour cells. Purpose: Thus, to circumvent such resistance issues, the current study attempted to explore the effect of naringenin (a flavanone) with proven antiglial tumour potential, in mitigating the features of TMZ resistance. Methods: Colony-forming assay, invasion assay and scratch wound assay were performed among the groups, namely tumour control (C6), vehicle control (V), naringenin (NGEN)-treated, drug-resistant tumour cells (C6R), and drug resistance cells added with NGEN (C6R+NGEN), to examine the impact of NGEN on migration and invasion. The effect of NGEN on filopodia length and density during cell migration was also studied in addition to the matrix metalloproteinases (MMP-2 and MMP-9) and p-ERK levels. Results and Conclusion: NGEN and C6R+NGEN groups had shown significant reduction (P < .01) in length and density of filopodia, colony formation, invasion and wound healing. Further, NGEN could also modify the assessed protein levels (P < .001), which were involved in migration and invasion in sensitive and resistant cells. Our study had provided the first evidence on NGEN-induced enhanced sensitivity against TMZ resistance with profound influence as an antimigratory and anti-invasive agent.
Collapse
Affiliation(s)
- Jayalakshmi J
- Department of Biochemistry, University of Madras, Chennai, Tamil Nadu, India
| | | |
Collapse
|
21
|
Lin C, Tu C, Ma Y, Ye P, Shao X, Yang Z, Fang Y. Nobiletin inhibits cell growth through restraining aerobic glycolysis via PKA-CREB pathway in oral squamous cell carcinoma. Food Sci Nutr 2020; 8:3515-3524. [PMID: 32724614 PMCID: PMC7382131 DOI: 10.1002/fsn3.1634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIM Nobiletin is a polymethoxylated flavone enriched in Citrus and is used as an important drug in traditional Chinese medicine for various kinds of diseases. Among its multiple functions, it has shown that nobiletin inhibits proliferation of various cancer cells. However, it is unclear whether nobiletin inhibits the growth of oral squamous cell carcinoma (OSCC) cells. MATERIALS AND METHODS We explored the antitumor effects of nobiletin in TCA-8113 and CAL-27 oral squamous cells. The Cell Counting Kit-8 (CCK8) assay was used to measure cell vitality. Flow cytometry was performed to measure the number of cells in the various phases of the cell cycle. PCR and Western blot were applied to determine mRNA and protein expression, respectively. RESULTS Nobiletin inhibited proliferation of TCA-8113 and CAL-27 cells via inducing cell cycle arrest at the G1 phase. In addition, the levels of phosphorylated-PKA and phosphorylated-CREB were reduced in nobiletin-treated TCA-8113 and CAL-27 cells. Importantly, our results showed that nobiletin treatment resulted in impaired mitochondrial function and altered glucose consumption, and pyruvate and lactate production. Lastly, nobiletin was found to inhibit the generation of xenografts in vivo. Interestingly, administration of 50 μmol/L Sp-cAMP, a potent PKA activator, rescued all phenotypes caused by nobiletin. CONCLUSIONS Nobiletin inhibits OSCC cell proliferation in a mitochondria-dependent manner, indicating that it may have a promising role in cancer treatment and attenuation of drug resistance.
Collapse
Affiliation(s)
- Chong‐Xiang Lin
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Cheng‐Wei Tu
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi‐Ke Ma
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Peng‐Cheng Ye
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Xia Shao
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhao‐An Yang
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi‐Ming Fang
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
22
|
Ashrafizadeh M, Zarrabi A, Saberifar S, Hashemi F, Hushmandi K, Hashemi F, Moghadam ER, Mohammadinejad R, Najafi M, Garg M. Nobiletin in Cancer Therapy: How This Plant Derived-Natural Compound Targets Various Oncogene and Onco-Suppressor Pathways. Biomedicines 2020; 8:biomedicines8050110. [PMID: 32380783 PMCID: PMC7277899 DOI: 10.3390/biomedicines8050110] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer therapy is a growing field, and annually, a high number of research is performed to develop novel antitumor drugs. Attempts to find new antitumor drugs continue, since cancer cells are able to acquire resistance to conventional drugs. Natural chemicals can be considered as promising candidates in the field of cancer therapy due to their multiple-targeting capability. The nobiletin (NOB) is a ubiquitous flavone isolated from Citrus fruits. The NOB has a variety of pharmacological activities, such as antidiabetes, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective. Among them, the antitumor activity of NOB has been under attention over recent years. In this review, we comprehensively describe the efficacy of NOB in cancer therapy. NOB induces apoptosis and cell cycle arrest in cancer cells. It can suppress migration and invasion of cancer cells via the inhibition of epithelial-to-mesenchymal transition (EMT) and EMT-related factors such as TGF-β, ZEB, Slug, and Snail. Besides, NOB inhibits oncogene factors such as STAT3, NF-κB, Akt, PI3K, Wnt, and so on. Noteworthy, onco-suppressor factors such as microRNA-7 and -200b undergo upregulation by NOB in cancer therapy. These onco-suppressor and oncogene pathways and mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran;
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon 7319846451, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715749, Iran;
| | - Ebrahim Rahmani Moghadam
- Student Research Committee, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida-201313, India
- Correspondence: (R.M.); (M.N.); (M.G.)
| |
Collapse
|
23
|
Jiang C, Lin W, Wang L, Lv Y, Song Y, Chen X, Yang H. Fushen Granule, A Traditional Chinese Medicine, ameliorates intestinal mucosal dysfunction in peritoneal dialysis rat model by regulating p38MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112501. [PMID: 31877365 DOI: 10.1016/j.jep.2019.112501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/12/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fushen Granule (FSG) is a Chinese medicinal formular prepared in hospital to treat intestinal mucosal dysfunction induced by peritoneal dialysis (PD). However, the mechanisms of this formular has not been studied yet. AIM OF THE STUDY The present study was designed to investigate the effect of FSG against intestinal dysfunction during PD treatment and explore the potential mechanisms using a rat PD model. METHODS AND METHODS In the present study, the effect of FSG on improving intestinal mucosal architecture injury was intuitively shown by hematoxylin-eosin staining, the serum levels of DAO and D-lactate were measured to evaluate the intestinal permeability by the DAO Assay Kit and D-Lactic Acid ELISA Kit. The expression of the intestinal mucosal barrier related inflammation factor by real-time PCR. The main effective constituents of FSG were characterized by UPLC/Q-TOF analysis, and the targets and pathways of the constituents were predicted via TCMSP database and IPA. the activation of p38MAPK signaling pathway by western blotting. RESULTS HE staining results showed that FSG protected against intestinal mucosal injury in pathology in PD rats. FSG decreased the intestinal mucosal permeability by increasing the transepithelial electrical resistance (TER) level and decreasing the intestinal clearance of fluorescein-isothiocyanate dextran (FD4) and the level of D-lactate and diamine oxidase (DAO). FSG significantly decreased the expression of ICAM-1, IL-1β, iNOS and TNF-α, and further inhibited the activation of p38MAPK signaling pathway via down-regulating the expression of P-p38MAPK and up-regulating the expression of DUSP1, occludin, and ZO-1. CONCLUSION This study demonstrates that FSG ameliorated intestinal mucosal dysfunction in PD by decreasing expression of pro-inflammatory cytokines and inhibiting the activation of p38MAPK signaling pathway. The results provide a promising basis for the alternative medicine treatment of intestinal mucosal dysfunction in PD.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Wei Lin
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Yang Lv
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Yu Song
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Xin Chen
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
24
|
Yen JH, Lin CY, Chuang CH, Chin HK, Wu MJ, Chen PY. Nobiletin Promotes Megakaryocytic Differentiation through the MAPK/ERK-Dependent EGR1 Expression and Exerts Anti-Leukemic Effects in Human Chronic Myeloid Leukemia (CML) K562 Cells. Cells 2020; 9:cells9040877. [PMID: 32260160 PMCID: PMC7226785 DOI: 10.3390/cells9040877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022] Open
Abstract
Differentiation therapy is an alternative strategy used to induce the differentiation of blast cells toward mature cells and to inhibit tumor cell proliferation for cancer treatment. Nobiletin (NOB), a polymethoxyflavone phytochemical, is present abundantly in citrus peels and has been reported to possess anti-cancer activity. In this study, we investigated the anti-leukemic effects of NOB on cell differentiation and its underlying mechanisms in human chronic myeloid leukemia (CML) K562 cells. NOB (100 μM) treatment for 24 and 48 h significantly decreased viability of K562 cells to 54.4 ± 5.3% and 46.2 ± 9.9%, respectively. NOB (10–100 μM) significantly inhibited cell growth in K562 cells. Flow cytometry analysis and immunoblotting data showed that NOB (40 and 80 μM) could modulate the cell cycle regulators including p21, p27, and cyclin D2, and induce G1 phase arrest. NOB also increased the messenger RNA (mRNA) and protein expression of megakaryocytic differentiation markers, such as CD61, CD41, and CD42 as well as the formation of large cells with multi-lobulated nuclei in K562 cells. These results suggested that NOB facilitated K562 cells toward megakaryocytic differentiation. Furthermore, microarray analysis showed that expression of EGR1, a gene associated with promotion of megakaryocytic differentiation, was markedly elevated in NOB-treated K562 cells. The knockdown of EGR1 expression by small interference RNA (siRNA) could significantly attenuate NOB-mediated cell differentiation. We further elucidated that NOB induced EGR1 expression and CD61 expression through increases in MAPK/ERK phosphorylation in K562 cells. These results indicate that NOB promotes megakaryocytic differentiation through the MAPK/ERK pathway-dependent EGR1 expression in human CML cells. In addition, NOB when combined with imatinib could synergistically reduce the viability of K562 cells. Our findings suggest that NOB may serve as a beneficial anti-leukemic agent for differentiation therapy.
Collapse
MESH Headings
- Apoptosis/drug effects
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle/drug effects
- Cell Differentiation/drug effects
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Early Growth Response Protein 1/metabolism
- Flavones/chemistry
- Flavones/pharmacology
- Gene Expression Regulation, Leukemic/drug effects
- Gene Ontology
- Humans
- Imatinib Mesylate/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MAP Kinase Signaling System/drug effects
- Megakaryocytes/drug effects
- Megakaryocytes/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (J.-H.Y.); (C.-Y.L.); (C.-H.C.)
| | - Ching-Yen Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (J.-H.Y.); (C.-Y.L.); (C.-H.C.)
| | - Chin-Hsien Chuang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (J.-H.Y.); (C.-Y.L.); (C.-H.C.)
| | - Hsien-Kuo Chin
- Division of Cardiovascular, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Correspondence: or ; Tel.: +886-3-856-3092
| |
Collapse
|
25
|
Yousef EH, El-Mesery ME, Habeeb MR, Eissa LA. Polo-like kinase 1 as a promising diagnostic biomarker and potential therapeutic target for hepatocellular carcinoma. Tumour Biol 2020; 42:1010428320914475. [PMID: 32252611 DOI: 10.1177/1010428320914475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma is a major cause of cancer mortality worldwide. The outcome of hepatocellular carcinoma depends mainly on its early diagnosis. To date, the performance of traditional biomarkers is unsatisfactory. Polo-like kinase 1 is a serine/threonine kinase that plays essential roles in cell cycle progression and deoxyribonucleic acid damage. Moreover, polo-like kinase 1 knockdown decreases the survival of hepatocellular carcinoma cells; therefore, polo-like kinase 1 is an attractive target for anticancer treatments. Nobiletin, a natural polymethoxy flavonoid, exhibits a potential antiproliferative effect against a wide variety of cancers. This study targets to identify a reliable diagnostic biomarker for hepatocellular carcinoma and provide a potential therapeutic target for its treatment. Polo-like kinase 1 levels were analyzed in 44 hepatocellular carcinoma patients, 33 non-hepatocellular carcinoma liver cirrhosis patients and 15 healthy controls using the enzyme-linked immunosorbent assay method. Receiver operating characteristics curve analysis was used to establish a predictive model for polo-like kinase 1 relative to α-fetoprotein in hepatocellular carcinoma diagnosis. Furthermore, in the in vitro study, gene expressions were assessed by quantitative polymerase chain reaction in two human hepatocellular carcinoma cell lines after treatment with doxorubicin and polo-like kinase 1 inhibitor volasertib (Vola) either alone or in combination with nobiletin. Cell viability was also determined using the crystal violet assay.: Serum polo-like kinase 1 levels in hepatocellular carcinoma patients were significantly higher than liver cirrhosis and control groups (p < 0.0001). Polo-like kinase 1 showed a reasonable sensitivity, specificity, positive predictive value, and negative predictive value in hepatocellular carcinoma diagnosis. Moreover, nobiletin improved inhibition of cell growth induced by Vola and doxorubicin. Regarding reverse transcription polymerase chain reaction results, nobiletin suppressed expressions of polo-like kinase 1 and proliferating cell nuclear antigen and elevated expressions of P53, poly (ADPribose) polymerase 1, and caspase-3. Nobiletin/doxorubicin and nobiletin/Vola showed a significant increase in caspase-3 activity indicating cell apoptosis. Polo-like kinase 1 may be a potential biomarker for hepatocellular carcinoma diagnosis and follow-up during treatment with chemotherapies. In addition, nobiletin synergistically potentiates the doxorubicin and Vola-mediated anticancer effect that may be attributed partly to suppression of polo-like kinase 1 and proliferating cell nuclear antigen expression and enhancement of chemotherapy-induced apoptosis.
Collapse
Affiliation(s)
- Eman H Yousef
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Horus University - Egypt, Damietta, Egypt
| | - Mohamed E El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Maha R Habeeb
- Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
26
|
Zhang R, Chen J, Mao L, Guo Y, Hao Y, Deng Y, Han X, Li Q, Liao W, Yuan M. Nobiletin Triggers Reactive Oxygen Species-Mediated Pyroptosis through Regulating Autophagy in Ovarian Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1326-1336. [PMID: 31955565 DOI: 10.1021/acs.jafc.9b07908] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ovarian cancer is one of the most serious female malignancies worldwide. Despite intensive efforts being made to overcome ovarian cancer, there still remain limited optional treatments for this disease. Nobiletin, a prospective food-derived phytochemical extracted from citrus fruits, has recently been reported to suppress ovarian cancer cells, but the role of pyroptosis in ovarian carcinoma with nobiletin still remains unknown. In this study, we aim to explore the effect of nobiletin on ovarian carcinoma and further expound the underlying mechanisms of nobiletin-induced ovarian cancer cell death. Our results showed that nobiletin could significantly inhibit cell proliferation, induce DNA damage, and also lead to apoptosis by increasing the cleaved poly (ADP-ribose) polymerase (PARP) level of human ovarian cancer cells (HOCCs) in a dose-dependent manner. Moreover, we revealed that nobiletin decreased mitochondrial membrane potential and induced reactive oxygen species (ROS) generation and autophagy of HOCCs, contributing to gasdermin D-/gasdermin E-mediated pyroptosis. Taken together, nobiletin as a functional food ingredient represents a promising new anti-ovarian cancer candidate that could induce apoptosis and trigger ROS-mediated pyroptosis through regulating autophagy in ovarian cancer cells.
Collapse
Affiliation(s)
- Rongjun Zhang
- Cancer Research Institute, School of Basic Medical Sciences , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Jian Chen
- Cancer Research Institute, School of Basic Medical Sciences , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Lianzhi Mao
- Department of Nutrition and Food Hygiene, School of Public Health , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Yajie Guo
- The Eighth Affiliated Hospital , Sun Yat-sen University , Shenzhen 518033 , Guangdong , China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, School of Public Health , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Yudi Deng
- Department of Nutrition and Food Hygiene, School of Public Health , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Xue Han
- Department of Obstetrics and Gynecology , Gansu Provincial Hospital , Lanzhou 730000 , Gansu , China
| | - Qingjiao Li
- The Eighth Affiliated Hospital , Sun Yat-sen University , Shenzhen 518033 , Guangdong , China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, School of Public Health , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Miaomiao Yuan
- Cancer Research Institute, School of Basic Medical Sciences , Southern Medical University , Guangzhou 510515 , Guangdong , China
- The Eighth Affiliated Hospital , Sun Yat-sen University , Shenzhen 518033 , Guangdong , China
| |
Collapse
|
27
|
Wei D, Zhang G, Zhu Z, Zheng Y, Yan F, Pan C, Wang Z, Li X, Wang F, Meng P, Zheng W, Yan Z, Zhai D, Lu Z, Yuan J. Nobiletin Inhibits Cell Viability via the SRC/AKT/STAT3/YY1AP1 Pathway in Human Renal Carcinoma Cells. Front Pharmacol 2019; 10:690. [PMID: 31354472 PMCID: PMC6635658 DOI: 10.3389/fphar.2019.00690] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022] Open
Abstract
Nobiletin is a polymethoxy flavonoid isolated from Citrus depressa and Citrus reticulata. It has been reported that nobiletin can suppress tumors. We primarily explored the antitumor effects of nobiletin and the associated potential mechanisms in ACHN and Caki-2 renal carcinoma cells. A CCK-8 assay and cloning experiments were used to assess cell viability, and a transwell assay and scratch test were used to assess metastatic ability. The cell cycle was analyzed by flow cytometry, whereas apoptosis was analyzed using flow cytometry and a terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay. Protein expression was examined by Western blot and immunofluorescence. Renal cancer cells were subcutaneously transplanted into nude mice for in vivo studies. The data showed that nobiletin administration significantly dose- and time-dependently suppressed renal cancer cell proliferation; moreover, nobiletin treatment induced cell cycle arrest in the G0/G1 phase and promoted apoptosis. Immunofluorescence analysis indicated that nobiletin decreased the nuclear localization of signal transducer and activator of transcription 3 (STAT3) and YY1-associated protein 1 (YY1AP1). Western blot showed that the levels of phosphorylated SRC, phosphorylated AKT serine/threonine kinase (AKT), and phosphorylated STAT3 were decreased, whereas that of phosphorylated YY1AP1 was increased. The results further showed that application of insulin-like growth factor 1 (IGF1) was able to reverse the nobiletin-induced changes in the levels of phosphorylated AKT, phosphorylated STAT3, and phosphorylated YY1AP1, and could also reverse the antitumor effects of nobiletin. The results of in vivo experiments showed that, compared to the control, tumor volume and weight were both reduced following nobiletin treatment. In conclusion, our study demonstrated that nobiletin can inhibit renal carcinoma cell viability and provides a novel therapeutic approach for the treatment of kidney cancer.
Collapse
Affiliation(s)
- Di Wei
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Geng Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Yan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chongxian Pan
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Zhiyong Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xian Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Meng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wanxiang Zheng
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhao Yan
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongsheng Zhai
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, China
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
28
|
Sousa DP, Pojo M, Pinto AT, Leite V, Serra AT, Cavaco BM. Nobiletin Alone or in Combination with Cisplatin Decreases the Viability of Anaplastic Thyroid Cancer Cell Lines. Nutr Cancer 2019; 72:352-363. [DOI: 10.1080/01635581.2019.1634745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Diana P. Sousa
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| | - Ana T. Pinto
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| | - Valeriano Leite
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Branca M. Cavaco
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Professor Lima Basto, Lisboa, Portugal
| |
Collapse
|
29
|
Wu J, Yi J, Wu Y, Chen X, Zeng J, Wu J, Peng W. 3, 3-Dimethylquercetin Inhibits the Proliferation of Human Colon Cancer RKO Cells through Inducing G2/M Cell Cycle Arrest and Apoptosis. Anticancer Agents Med Chem 2019; 19:402-409. [PMID: 30398122 DOI: 10.2174/1871520618666181106120718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 01/24/2023]
Abstract
Background:
Our previous study successfully identified that 3,3-Dimethylquercetin (DMQ) acted
as a potent anticancer agent against human colon cancer cell lines RKO. Thus, this study was conducted to investigate
the underlying mechanism by which DMQ displayed inhibitory activity in RKO cells.
Methods:
Flow cytometry was used to evaluate the effect of DMQ on the cell cycle arrest, as well as the mitochondrial
membrane potential in RKO cells. DAPI staining and DNA fragmentation ladder assays were performed
to assess the apoptosis inducing activity of DMQ. Furthermore, western blot analysis was conducted to
examine the expression of related proteins responsible for the cell cycle arrest and apoptosis.
Results:
Treatment with DMQ caused a significant increase in the fraction of G2/M cells, and induced remarkable
apoptosis. Furthermore, western blot analysis showed that DMQ arrested cells at G2/M checkpoint by
down-regulation of cyclin B1, cdc2 and cdc25c and up-regulation of p21, and induced cell apoptosis via affecting
the ratio of Bax/Bcl-2, causing loss of the mitochondrial membrane potential and enhancing the expression
of cleaved caspase-9 (C-caspase-9) and cleaved caspase-3 (C-caspase-3).
Conclusion:
These data showed that DMQ could suppress RKO cell growth by arresting RKO cells at G2/M
checkpoint and inducing mitochondria-dependent cell apoptosis. Our findings shed light on the potential use of
DMQ as a chemotherapeutic agent for CRC.
Collapse
Affiliation(s)
- Jianguo Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jun Yi
- Department of Chemistry and Life Science, Fujian Institute of Education, Fuzhou, 350025, China
| | - Yanbin Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xuzheng Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jianwei Zeng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jinzhong Wu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
30
|
Qi G, Mi Y, Fan R, Li R, Liu Z, Liu X. Nobiletin Protects against Systemic Inflammation-Stimulated Memory Impairment via MAPK and NF-κB Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5122-5134. [PMID: 30995031 DOI: 10.1021/acs.jafc.9b00133] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neuroinflammation has been intensively demonstrated to be related to various neurodegenerative diseases including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). A natural polymethoxylated flavone, nobiletin (NOB) has been reported to alleviate oxidative stress, insulin resistance, and obesity. In this study, we evaluated the protection effects of NOB on neuroinflammation and memory deficit. Three-month mice were administrated with NOB by oral gavage every day for 6 weeks (100 mg/kg/day); subsequently mice were injected intraperitoneally with lipopolysaccharide (LPS) for 7 days. Results of behavioral tests revealed that NOB dramatically ameliorated LPS-triggered memory deficit regarding synaptic dysfunctions and neuronal loss. Also, NOB suppressed the microglial activation and proinflammatory cytokine secretion, such as COX-2, IL-1β, TNF-α, and iNOS. Similarly, upon LPS stimulation, pretreatment NOB diminished the secretion of the proinflammatory cytokines in BV-2 microglia cells by exposure to LPS via modulating MAPKs, PI3K/AKT, and NF-κB signaling pathways. In addition, NOB alleviated LPS-amplified redox imbalance, disturbance of mitochondrial membrane potential (MMP), and dampening of the expression of protein related to mitochondrial respiration. The present study provides compelling evidence that NOB decreased LPS-stimulated neuroinflammation and memory impairment through maintaining cellular oxidative balance and blocking the NF-κB transcriptional pathway, illustrating that the nutritional compound NOB may serve as a potential approach to alleviate neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Guoyuan Qi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Yashi Mi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Rong Fan
- Department of Nutrition and Health Sciences , University of Nebraska-Lincoln , Lincoln , Nebraska 68583 , United States
| | - Runnan Li
- Department of Animal and Food Science , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi 712100 , People's Republic of China
| |
Collapse
|
31
|
Wang Y, Zhang J, Yang Y, Liu Q, Xu G, Zhang R, Pang Q. ROS generation and autophagosome accumulation contribute to the DMAMCL-induced inhibition of glioma cell proliferation by regulating the ROS/MAPK signaling pathway and suppressing the Akt/mTOR signaling pathway. Onco Targets Ther 2019; 12:1867-1880. [PMID: 30881039 PMCID: PMC6413739 DOI: 10.2147/ott.s195329] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Chemotherapy after surgery can prolong the survival of patients with gliomas. Dimethylaminomicheliolide (DMAMCL), a novel chemotherapeutic agent, exhibited antitumor properties in acute myeloid leukemia stem cells and showed an increased drug concentration in the brain. This study aims to investigate the specific anticancer activities and mechanisms of DMAMCL in glioma cells. Materials and methods In this study, the effects of DMAMCL were evaluated and characterized in U87-MG and U251 glioma cells. Cell viability was assessed by Cell Counting Kit-8. Apoptosis, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) generation were assessed by fluorescence microscopy. Autophagosome formation was observed with transmission electron microscopy, and the autophagy flux was measured by transfecting cells with mRFP-GFP-LC3 adenoviral vectors. Immunofluorescence and Western blot analyses were used to determine the expression of proteins. Results In the present study, treatment with DMAMCL decreased cell viability and induced apoptosis in U87-MG and U251 glioma cells. Additionally, DMAMCL activated autophagy-mediated cell death as evidenced by the formation of autophagosomes, accumulation of LC3B-II, inhibition of autophagy flux, and increase in cell viability after cotreatment with an autophagy inhibitor. Subsequent experiments showed that the DMAMCL-induced apoptosis and autophagy were possibly mediated by ROS generation and Akt/mTOR signaling pathway inhibition. On the other hand, the ROS scavenger N-acetyl-L-cysteine and the Akt activator insulin-like growth factor-1 attenuated the DMAMCL-induced autophagy and cell death. Conclusion Our findings revealed that DMAMCL induced apoptosis and autophagic cell death by regulating the ROS/mitogen-activated protein kinase signaling pathway and suppressing the Akt/mTOR signaling pathway in human glioma cells. DMAMCL may be a novel effective anticancer agent, which can target gliomas.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China, ;
| | - Jiachen Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China, ;
| | - Yihang Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China, ;
| | - Qian Liu
- Department of Histology and Embryology, Shandong University Cheeloo College Medicine, Jinan, 250012, Shandong, China
| | - Guangming Xu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China, ;
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China, ;
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China, ;
| |
Collapse
|
32
|
Chen YY, Chang YM, Wang KY, Chen PN, Hseu YC, Chen KM, Yeh KT, Chen CJ, Hsu LS. Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. ENVIRONMENTAL TOXICOLOGY 2019; 34:233-239. [PMID: 30431227 DOI: 10.1002/tox.22677] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
Glioblastoma (GBM) is the most mortality brain cancer in the world. Due to high invasion and drug resistance cause the poor prognosis of GBM. Naringenin, an ingredient of citrus, exhibits many cellular functions such as antioxidant, anti-inflammation, and anticancer. Naringenin inhibits the migration of bladder and lung cancer via modulation of MMP-2 and/or MMP-9 activities, Naringenin inhibits migration and trigger apoptosis in gastric cancer cells through downregulation of AKT pathway. However, the effects of naringenin in GBM still remain to be elucidated. In this study, we reveal the molecular mechanisms of naringenin in the inhibition of migration and invasion in GBM. No overt alternation of cell proliferation was found in of GBM 8901 cells treated with different concentration of naringenin. Slight decreased cell viability was found in GBM 8401 cell treated with 200 and 300 μM naringenin. Significant reduction of migration and invasion as assayed by Boyden chamber analysis was found in of GBM cells treated with 100, 200, and 300 μM naringenin. Zymography analysis also revealed that the activities of MMP-2 and MMP-9 of GBM cells were significantly inhibited in response to 100, 200, or 300 μM naringenin treatment. Proteins of MMP-2 and MMP-9 were downregulated in naringenin treated GBM cells. In addition, naringenin also attenuated the activities of ERK and p38. Naringenin decreased mesenchymal markers (snail and slug) expression as revealed by Western blot analysis. Taken together, our findings indicated that naringenin eliminated the migration and invasion of GBM cells through multiple mechanisms including inhibition of MMPs, ERK, and p38 activities and modulation of EMT markers. Our results also suggested that naringenin may be a potential agent to prevent metastasis of GBM.
Collapse
Affiliation(s)
- Yen-Yu Chen
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Yuh-Ming Chang
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Neurology, Division of Internal Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Kuan-Yi Wang
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Ke-Min Chen
- Department of Parasitology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Jung Chen
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
33
|
Zheng GD, Hu PJ, Chao YX, Zhou Y, Yang XJ, Chen BZ, Yu XY, Cai Y. Nobiletin induces growth inhibition and apoptosis in human nasopharyngeal carcinoma C666-1 cells through regulating PARP-2/SIRT1/AMPK signaling pathway. Food Sci Nutr 2019; 7:1104-1112. [PMID: 30918653 PMCID: PMC6418462 DOI: 10.1002/fsn3.953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/29/2018] [Accepted: 01/06/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/AIM Nobiletin, a major polymethoxyflavones (PMFs) from citri reticulatae pericarpium (CRP), can inhibit several forms of cancer proliferation. However, the effects of nobiletin on nasopharyngeal carcinoma (NPC) C666-1 cells remain largely unknown. MATERIALS AND METHODS Cell counting kit 8 (CCK8) assay was used to measure cell vitality. Flow cytometry was performed to measure the apoptosis rate. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis were applied to determine the expression of mRNA and protein, respectively. RESULTS We showed that the proliferation rate of C666-1 cells was inhibited and the apoptosis rate was raised after treating with nobiletin. Moreover, nobiletin inhibited the expression of poly(ADP-ribose)polymerase-2 (PARP-2), and the tumor suppression effect of nobiletin on C666-1 is associated with PARP-2-dependent pathway. CONCLUSION We demonstrated for the first time that nobiletin inhibited the growth of C666-1 cells, which may be relative to its regulation on PARP-2/SIRT1/AMPK signaling pathway. Our result implied that nobiletin may serve as a strategy to treat nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Guo Dong Zheng
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Ping Jun Hu
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Ying Xin Chao
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Ying Zhou
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Xiu Juan Yang
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Bai Zhong Chen
- Guangdong Xinbaotang Biological Technology Co, LtdJiangmenChina
| | - Xi Yong Yu
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical PharmacologyState Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou 511436China
| |
Collapse
|
34
|
Tung YC, Chou YC, Hung WL, Cheng AC, Yu RC, Ho CT, Pan MH. Polymethoxyflavones: Chemistry and Molecular Mechanisms for Cancer Prevention and Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40495-019-00170-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Chen PY, Chen YT, Gao WY, Wu MJ, Yen JH. Nobiletin Down-Regulates c-KIT Gene Expression and Exerts Antileukemic Effects on Human Acute Myeloid Leukemia Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13423-13434. [PMID: 30507186 DOI: 10.1021/acs.jafc.8b05680] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nobiletin, a dietary citrus flavonoid, has been reported to possess several biological activities such as antioxidant, anti-inflammatory, and anticancer properties. The aim of this study was to investigate the antileukemic effects of nobiletin and its underlying mechanisms on human acute myeloid leukemia (AML) cells. We demonstrated that nobiletin (0-100 μM) significantly reduced cell viability from 100.0 ± 9.6% to 31.1 ± 2.8% in human AML THP-1 cell line. Nobiletin arrested cell cycle progression in G1 phase and induced myeloid cell differentiation in human AML cells. Microarray analysis showed that mRNA expression of the c- KIT gene, a critical proto-oncogene associated with leukemia progression, was dramatically reduced in nobiletin-treated AML cells. Furthermore, we verified that AML cells treated with nobiletin (40 and 80 μM) for 48 h markedly suppressed c-KIT mRNA expression (from 1.00 ± 0.07-fold to 0.62 ± 0.08- and 0.30 ± 0.05-fold) and reduced the level of c-KIT protein expression (from 1.00 ± 0.11-fold to 0.60 ± 0.15- and 0.34 ± 0.05-fold) by inhibition of KIT promoter activity. The knockdown of c-KIT expression by shRNA attenuated cancer cell growth and induced cell differentiation. Moreover, we found that the overexpression of c-KIT abolished nobiletin-mediated cell growth inhibition in leukemia cells. These results indicate that nobiletin exerts antileukemic effects through the down-regulation of c-KIT gene expression in AML cells. Finally, we demonstrated that the combination of a conventional AML chemotherapeutic agent, cytarabine, with nobiletin resulted in more reduction of cell viability in AML cells. Our current findings suggest that nobiletin is a novel c-KIT inhibitor and may serve as a chemo-preventive or -therapeutic agent against human AML.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Differentiation/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Down-Regulation/drug effects
- Flavones/pharmacology
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/physiopathology
- Promoter Regions, Genetic/drug effects
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-kit/genetics
- Proto-Oncogene Proteins c-kit/metabolism
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics , Buddhist Tzu Chi General Hospital , Hualien 970 , Taiwan
| | - Yu-Ting Chen
- Department of Molecular Biology and Human Genetics , Tzu Chi University , Hualien 970 , Taiwan
| | - Wan-Yun Gao
- Department of Molecular Biology and Human Genetics , Tzu Chi University , Hualien 970 , Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology , Chia-Nan University of Pharmacy and Science , Tainan 717 , Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics , Tzu Chi University , Hualien 970 , Taiwan
| |
Collapse
|
36
|
Zhao C, Wang F, Lian Y, Xiao H, Zheng J. Biosynthesis of citrus flavonoids and their health effects. Crit Rev Food Sci Nutr 2018; 60:566-583. [DOI: 10.1080/10408398.2018.1544885] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhe Lian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Cheng HL, Hsieh MJ, Yang JS, Lin CW, Lue KH, Lu KH, Yang SF. Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression. Oncotarget 2018; 7:35208-23. [PMID: 27144433 PMCID: PMC5085222 DOI: 10.18632/oncotarget.9106] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/11/2016] [Indexed: 12/12/2022] Open
Abstract
Nobiletin, a polymethoxyflavone, has a few pharmacological activities, including anti-inflammation and anti-cancer effects. However, its effect on human osteosarcoma progression remains uninvestigated. Therefore, we examined the effectiveness of nobiletin against cellular metastasis of human osteosarcoma and the underlying mechanisms. Nobiletin, up to 100 μM without cytotoxicity, significantly decreased motility, migration and invasion as well as enzymatic activities, protein levels and mRNA expressions of matrix metalloproteinase (MMP)-2 and MMP-9 in U2OS and HOS cells. In addition to inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the inhibitory effect of nobiletin on the DNA-binding activity of the transcription factor nuclear factor-kappa B (NF-κB), cAMP response element-binding protein (CREB), and specificity protein 1 (SP-1) in U2OS and HOS cells. Co-treatment with ERK and JNK inhibitors and nobiletin further reduced U2OS cells migration and invasion. These results indicated that nobiletin inhibits human osteosarcoma U2OS and HOS cells motility, migration and invasion by down-regulating MMP-2 and MMP-9 expressions via ERK and JNK pathways and through the inactivation of downstream NF-κB, CREB, and SP-1. Nobiletin has the potential to serve as an anti-metastatic agent for treating osteosarcoma.
Collapse
Affiliation(s)
- Hsin-Lin Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ko-Haung Lue
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ko-Hsiu Lu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Orthopedics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
38
|
Gao Z, Gao W, Zeng SL, Li P, Liu EH. Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
39
|
Borah N, Gunawardana S, Torres H, McDonnell S, Van Slambrouck S. 5,6,7,3',4',5'-Hexamethoxyflavone inhibits growth of triple-negative breast cancer cells via suppression of MAPK and Akt signaling pathways and arresting cell cycle. Int J Oncol 2017; 51:1685-1693. [PMID: 29039514 PMCID: PMC5673012 DOI: 10.3892/ijo.2017.4157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023] Open
Abstract
Natural components continue to be an important source for the discovery and development of novel anticancer agents. Polymethoxyflavones are a class of flavonoids found in citrus fruits and medicinal plants used in traditional medicine. In the present study, the anticancer activity of the well-known nobiletin (5,6,7,8,3′,4′-hexamethoxyflavone) was compared against its less studied structural isomer 5,6,7,3′,4′,5′-hexamethoxyflavone. These compounds were evaluated on the Hs578T triple-negative breast cancer cell line and its more migratory subclone Hs578Ts(i)8. 5,6,7,3′,4′,5′-hexamethoxyflavone was found to be less toxic than nobiletin, while a similar growth inhibitory effect was observed after 72 h. Additionally, 5,6,7,3′,4′,5′-hexamethoxyflavone arrested the cell cycle in the G2/M phase, while no effect was observed on apoptosis or the migratory behavior of these cells. Furthermore, mechanistic studies revealed that the growth inhibition was concomitant with reduced phosphorylation levels of signaling molecules in the MAPK and Akt pathways as well as cell cycle regulators, involved in regulating cell proliferation, survival and cell cycle. In summary, the present study is the first to report on the anticancer activities of 5,6,7,3′,4′,5′-hexamethoxyflavone and to provide evidence that this flavone could have a greater potential than nobiletin for prevention or treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Natasha Borah
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Shimara Gunawardana
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Haydee Torres
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| | - Susan McDonnell
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield Dublin 4, Ireland
| | - Severine Van Slambrouck
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
40
|
Ye H, Wang WG, Cao J, Hu XC. SPARCL1 suppresses cell migration and invasion in renal cell carcinoma. Mol Med Rep 2017; 16:7784-7790. [PMID: 28944877 DOI: 10.3892/mmr.2017.7535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/15/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that the human SPARC‑like 1 (SPARCL1) is crucial for human cancer migration and invasion. In the present study, the expression, biological function and possible molecular regulatory mechanisms of SPARCL1 were investigated in human renal cell carcinoma (RCC). The protein expression of SPARCL1 in cells was evaluated using western blot analysis and immunohistochemical staining in the tissue microarray. The effects of SPARCL1 on the biological behaviors of RCC cells were assessed using in vitro assays. The present study also provisionally investigated the role of SPARCL1 on the mitogen‑activated protein kinase (MAPK) signaling pathway. The results revealed that the expression of SPARCL1 was decreased in the RCC cell lines examined and in the tissue microarray. The overexpression of SPARCL1 significantly inhibited cell migration and invasion, and this may have been due to the inactivation of p38/c‑Jun N‑terminal kinase (JNK)/extracellular signal‑regulated kinase (ERK) MAPKs. The results showed that high expression levels of SPARCL1 offered potential as a useful prognostic factor in RCC. Taken together, the present study demonstrated that the expression of SPARCL1 was downregulated in RCC cells and tissues, however, the overexpression of SPARCL1 inhibited RCC cell migration and invasion. SPARCL1 also reduced the expression of phosphorylated p38/JNK/ERK MAPKs. These data suggested that increasing the protein expression level of SPARCL1 may be novel strategy for treating RCC.
Collapse
Affiliation(s)
- Hui Ye
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Wei-Gang Wang
- Shanghai Minhang District Gumei Community Health Center, Shanghai 201102, P.R. China
| | - Jun Cao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xi-Chun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
41
|
Wang Y, Qian J, Cao J, Wang D, Liu C, Yang R, Li X, Sun C. Antioxidant Capacity, Anticancer Ability and Flavonoids Composition of 35 Citrus (Citrus reticulata Blanco) Varieties. Molecules 2017; 22:molecules22071114. [PMID: 28678176 PMCID: PMC6152254 DOI: 10.3390/molecules22071114] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/16/2022] Open
Abstract
Citrus (Citrus reticulate Blanco) is one of the most commonly consumed and widely distributed fruit in the world, which is possessing extensive bioactivities. Present study aimed to fully understand the flavonoids compositions, antioxidant capacities and in vitro anticancer abilities of different citrus resources. Citrus fruits of 35 varieties belonging to 5 types (pummelos, oranges, tangerines, mandarins and hybrids) were collected. Combining li quid chromatography combined with electrospray ionization mass spectrometry (LC-ESI-MS/MS) and ultra-performance liquid chromatography combined with diode array detector (UPLC-DAD), a total of 39 flavonoid compounds were identified, including 4 flavones, 9 flavanones and 26 polymethoxylated flavonoids (PMFs). Each citrus fruit was examined and compared by 4 parts, flavedo, albedo, segment membrane and juice sacs. The juice sacs had the lowest total phenolics, following by the segment membrane. Four antioxidant traits including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) and cupric reducing antioxidant capacity (CUPRAC) were applied for the antioxidant capacities evaluation. Three gastric cancer cell lines, SGC-7901, BGC-823 and AGS were applied for the cytotoxicity evaluation. According to the results of correlation analysis, phenolics compounds might be the main contributor to the antioxidant activity of citrus extracts, while PMFs existing only in the flavedo might be closely related to the gastric cancer cell line cytotoxicity of citrus extracts. The results of present study might provide a theoretical guidance for the utilization of citrus resources.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (Y.W.); (J.Q.); (J.C.); (X.L.)
| | - Jing Qian
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (Y.W.); (J.Q.); (J.C.); (X.L.)
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (Y.W.); (J.Q.); (J.C.); (X.L.)
- Horticulture Research Institute, Taizhou Academy of Agricultural Sciences, Linhai 317000, China
| | - Dengliang Wang
- Citrus Research Institute, Quzhou Academy of Agricultural Sciences, Quzhou 324000, China; (D.W.); qzlcr @aliyun.com (C.L.)
| | - Chunrong Liu
- Citrus Research Institute, Quzhou Academy of Agricultural Sciences, Quzhou 324000, China; (D.W.); qzlcr @aliyun.com (C.L.)
| | - Rongxi Yang
- Forestry Special Production Technology Promotion Center, Xiangshan Bureau of Agriculture and Forestry, Ningbo 315700, China;
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (Y.W.); (J.Q.); (J.C.); (X.L.)
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (Y.W.); (J.Q.); (J.C.); (X.L.)
- Correspondence: ; Tel.: +86-571-8898-2229
| |
Collapse
|
42
|
Chen G, Yue Y, Qin J, Xiao X, Ren Q, Xiao B. Plumbagin suppresses the migration and invasion of glioma cells via downregulation of MMP-2/9 expression and inaction of PI3K/Akt signaling pathway in vitro. J Pharmacol Sci 2017; 134:59-67. [DOI: 10.1016/j.jphs.2017.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/13/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022] Open
|
43
|
Zhang X, Zheng K, Li C, Zhao Y, Li H, Liu X, Long Y, Yao J. Nobiletin inhibits invasion via inhibiting AKT/GSK3β/β-catenin signaling pathway in Slug-expressing glioma cells. Oncol Rep 2017; 37:2847-2856. [PMID: 28339056 DOI: 10.3892/or.2017.5522] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/24/2017] [Indexed: 11/06/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a pivotal event in tumor progression during which cancer cells undergo dramatic changes acquiring highly invasive properties. In this study, we found that nobiletin, a polymethoxylated flavone, suppressed migration and invasion in both U87 and U251 glioma cells. Expression of epithelial markers (E-cadherin and occludin) was upregulated; mesenchymal markers (N-cadherin, fibronectin) and the transcriptional factor Slug were downregulated after nobiletin treatment. Transforming growth factor β (TGF-β) was applied to stimulate EMT and the results showed that nobiletin not only influenced basal level cell migration but also prevented TGF-β-triggered migration and EMT, with the AKT/GSK3β/β-catenin signaling pathway greatly involved. Furthermore, nobiletin remarkably diminished TGF-β-induced β-catenin nuclear translocation and the binding to the Slug promoter. It is worth noting that nobiletin almost blocked invasion in Slug-expressing U87 and U251 cells, and only exhibiting faint effect on non-Slug-expressing U343 glioma cells. Reinforced Slug expression in U343 cells by transfecting Slug plasmid was significantly attenuated by nobiletin, demonstrating the essential role of Slug in the anti-metastasis effect of nobiletin. Nobiletin repressed tumor growth in vivo and abrogated EMT in nude mice bearing U87-Luc xenografts, as demonstrated by Xenogen IVIS imaging and immunohistochemistry assay. Our findings suggested that nobiletin might have a great potential for treating glioblastoma.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Chunhui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yonghui Zhao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Heyang Li
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Xuguang Liu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yinbo Long
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Junchao Yao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
44
|
Cirmi S, Ferlazzo N, Lombardo GE, Maugeri A, Calapai G, Gangemi S, Navarra M. Chemopreventive Agents and Inhibitors of Cancer Hallmarks: May Citrus Offer New Perspectives? Nutrients 2016; 8:E698. [PMID: 27827912 PMCID: PMC5133085 DOI: 10.3390/nu8110698] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022] Open
Abstract
Fruits and vegetables have long been recognized as potentially important in the prevention of cancer risk. Thus, scientific interest in nutrition and cancer has grown over time, as shown by increasing number of experimental studies about the relationship between diet and cancer development. This review attempts to provide an insight into the anti-cancer effects of Citrus fruits, with a focus on their bioactive compounds, elucidating the main cellular and molecular mechanisms through which they may protect against cancer. Scientific literature was selected for this review with the aim of collecting the relevant experimental evidence for the anti-cancer effects of Citrus fruits and their flavonoids. The findings discussed in this review strongly support their potential as anti-cancer agents, and may represent a scientific basis to develop nutraceuticals, food supplements, or complementary and alternative drugs in a context of a multi-target pharmacological strategy in the oncology.
Collapse
Affiliation(s)
- Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Giovanni E Lombardo
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro I-88100, Italy.
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina I-98125, Italy.
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Messina I-98125, Italy.
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR), Pozzuoli I-80078, Italy.
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| |
Collapse
|
45
|
Dai Z, Wu J, Chen F, Cheng Q, Zhang M, Wang Y, Guo Y, Song T. CXCL5 promotes the proliferation and migration of glioma cells in autocrine- and paracrine-dependent manners. Oncol Rep 2016; 36:3303-3310. [PMID: 27748886 DOI: 10.3892/or.2016.5155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022] Open
Abstract
CXCL5 and its receptor CXCR2 have been found to be involved in tumorigenesis and cancer progression. Recent studies have shown that CXCR2 is upregulated in glioma tissues, and associated with poor prognosis and recurrence. However, the role of CXCL5/CXCR2 signaling in mediating the malignant phenotypes of glioma cells, as well as the underlying mechanism, still remains unclear. In the present study, we found that CXCL5 was upregulated in glioma tissues compared to that noted in normal brain tissues. High CXCL5 levels were significantly associated with higher tumor grade, advanced clinical stage, and shorter survival time of glioma patients. In vitro studies indicated that the protein expression levels of CXCL5 and CXCR2 were markedly higher in human glioma cell lines (U87, U251, U373 and A172), when compared with those in normal human gliocyte HEB cells. Overexpression of CXLC5 significantly promoted the proliferation and migration of U87 cells, while knockdown of CXCL5 by small interfering RNA markedly inhibited U87 cell proliferation and migration. Moreover, both exogenous CXCL5 treatment and the conditioned medium of CXCL5-overexpressing HEB cells also enhanced the proliferation and migration of U87 cells. Molecular mechanism investigation revealed that CXLC5 activated the ERK, JNK, p38 MAPK signaling pathways, which play key roles in tumor growth and metastasis. According to these data, our study suggests that CXCL5 plays a promoting role in glioma in autocrine- and paracrine-dependent manners.
Collapse
Affiliation(s)
- Zhijie Dai
- Institute of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jun Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yong Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
46
|
The Multifunctional Effects of Nobiletin and Its Metabolites In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2918796. [PMID: 27761146 PMCID: PMC5059563 DOI: 10.1155/2016/2918796] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 12/31/2022]
Abstract
Nobiletin (NOB) chemically known as 5,6,7,8,3′,4′-hexamethoxyflavone is a dietary polymethoxylated flavonoid found in Citrus fruits. Recent evidences show that NOB is a multifunctional pharmaceutical agent. The various pharmacological activities of NOB include neuroprotection, cardiovascular protection, antimetabolic disorder, anticancer, anti-inflammation, and antioxidation. These events may be underpinned by modulation of signaling cascades, including PKA/ERK/MEK/CREB, NF-κB, MAPK, Ca2+/CaMKII, PI3K/Akt1/2, HIF-1α, and TGFβ signaling pathways. The metabolites may exhibit stronger beneficial effects than NOB on diseases pathogenesis. The biological activities of NOB have been clarified on many systems. This review aims to discuss the pharmacological effects of NOB with specific mechanisms of actions. NOB may become a promising candidate for potential drug development. However, further investigations of NOB on specific intracellular targets and clinical trials are still needed, especially for in vivo medical applications.
Collapse
|