1
|
Stankovic S, Mutavdzin Krneta S, Djuric D, Milosevic V, Milenkovic D. Plant Polyphenols as Heart's Best Friends: From Health Properties, to Cellular Effects, to Molecular Mechanisms of Action. Int J Mol Sci 2025; 26:915. [PMID: 39940685 PMCID: PMC11816429 DOI: 10.3390/ijms26030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/22/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Polyphenols are micronutrients found in fruits, vegetables, tea, coffee, cocoa, medicinal herbs, fish, crustaceans, and algae. They can also be synthesized using recombinant microorganisms. Interest in plant-derived natural compounds has grown due to their potential therapeutic effects with minimal side effects. This is particularly important as the aging population faces increasing rates of chronic diseases such as cancer, diabetes, arthritis, cardiovascular, and neurological disorders. Studies have highlighted polyphenols' capacity to reduce risk factors linked to the onset of chronic illnesses. This narrative review discusses polyphenol families and their metabolism, and the cardioprotective effects of polyphenols evidenced from in vitro studies, as well as from in vivo studies, on different animal models of cardiac disease. This study also explores the molecular mechanisms underlying these benefits. Current research suggests that polyphenols may protect against ischemia, hypertension, cardiac hypertrophy, heart failure, and myocardial injury through complex mechanisms, including epigenetic and genomic modulation. However, further studies under nutritionally and physiologically relevant conditions, using untargeted multigenomic approaches, are needed to more comprehensively elucidate these mechanisms and firmly prove the cardioprotective effects of polyphenols.
Collapse
Affiliation(s)
- Sanja Stankovic
- Center for Medical Biochemistry, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Slavica Mutavdzin Krneta
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.K.); (D.D.)
| | - Dragan Djuric
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.K.); (D.D.)
| | - Verica Milosevic
- Department of Anatomy, Faculty of Medicine, University of Niš, 18000 Nis, Serbia;
| | - Dragan Milenkovic
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Yang X, Liang H, Tang Y, Dong R, Liu Q, Pang W, Su L, Gu X, Liu M, Wu Q, Xue X, Zhan J. Soybean Extract Ameliorates Lung Injury induced by Uranium Inhalation: An integrated strategy of network pharmacology, metabolomics, and transcriptomics. Biomed Pharmacother 2024; 180:117451. [PMID: 39326101 DOI: 10.1016/j.biopha.2024.117451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
AIM This study aimed to evaluate the protective effect of soybean extract (SE) against uranium-induced lung injury in rats. MATERIALS AND METHODS A rat lung injury model was established through nebulized inhalation of uranyl nitrate. Pretreatment with SE or sterile water (control group) by gavage for seven days before uranium exposure and until the experiment endpoints. The levels of uranium in lung tissues were detected by ICP-MS. Paraffin embedding-based hematoxylin & eosin staining and Masson's staining for the lung tissue were performed to observe the histopathological imaging features. A public database was utilized to analyze the network pharmacological association between SE and lung injury. The expression levels of proteins indicating fibrosis were measured by enzyme-linked immunosorbent assay. RNA-seq transcriptomic and LC-MS/MS targeted metabolomics were conducted in lung tissues. RESULTS Uranium levels in the lung tissues were lower in SE-pretreated rats than in the uranium-treated group. Inflammatory cell infiltration and the deposition of extracellular matrix were attenuated, and the levels of alpha-smooth muscle actin, transforming growth factor beta1, and hydroxyproline decreased in SE-pretreated rats compared to the uranium-treated group. Active ingredients of SE were related to inflammation, oxidative stress, and drug metabolism. A total of 67 differentially expressed genes and 39 differential metabolites were identified in the SE-pretreated group compared to the uranium-treated group, focusing on the drug metabolism-cytochrome P450, glutathione metabolism, IL-17 signaling pathway, complement, and coagulation cascades. CONCLUSIONS These findings suggest that SE may ameliorate uranium-induced pulmonary inflammation and fibrosis by regulating glutathione metabolism, chronic inflammation, and immune regulation.
Collapse
Affiliation(s)
- Xin Yang
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Hongying Liang
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Yufu Tang
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Ruifeng Dong
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Qimiao Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Wanqing Pang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Lixia Su
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Xiaona Gu
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Mengya Liu
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Qingdong Wu
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China
| | - Xiangming Xue
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China.
| | - Jingming Zhan
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan 030006, China.
| |
Collapse
|
3
|
Hwang Y, Hwang HG, Lee JY, Jung GY. Systematic Engineering of Genistein Biosynthetic Pathway through Genetic Regulators and Combinatorial Enzyme Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5842-5848. [PMID: 38441872 DOI: 10.1021/acs.jafc.3c09687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Microbial production of genistein, an isoflavonoid primarily found in soybeans, is gaining prominence in the food industry due to its significant nutritional and health benefits. However, challenges arise in redesigning strains due to intricate regulatory nodes between cell growth and genistein production and in systematically exploring core enzymes involving genistein biosynthesis. To address this, this study devised a strategy that simultaneously and precisely rewires flux at both acetyl-CoA and malonyl-CoA nodes toward genistein synthesis. In particular, naringenin, the primary precursor of genistein, was accumulated 2.6 times more than the unoptimized strain through transcriptional repressor-based genetic regulators. Building upon this, a combination of isoflavone synthase and cytochrome P450 reductase with the remarkable conversion of naringenin to genistein was screened from enzyme homologue libraries. The integrated metabolic engineering strategy yields the highest reported production (98 mg/L of genistein) to date, providing a framework for the biosynthesis of diverse flavonoids, including genistein.
Collapse
Affiliation(s)
- Yunhee Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Hyun Gyu Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Ji Yeon Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
4
|
Wang Z, Dai Y, Azi F, Wang Z, Xu W, Wang D, Dong M, Xia X. Constructing Protein-Scaffolded Multienzyme Assembly Enhances the Coupling Efficiency of the P450 System for Efficient Daidzein Biosynthesis from (2 S)-Naringenin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5849-5859. [PMID: 38468401 DOI: 10.1021/acs.jafc.3c09854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Daidzein is a major isoflavone compound with an immense pharmaceutical value. This study applied a novel P450 CYP82D26 which can biosynthesize daidzein from (2S)-naringenin. However, the recombinant P450 systems often suffer from low coupling efficiency, leading to an electron transfer efficiency decrease and harmful reactive oxygen species release, thereby compromising their stability and catalytic efficiency. To address these challenges, the SH3-GBD-PDZ (SGP) protein scaffold was applied to assemble a multienzyme system comprising CYP82D26, P450 reductase, and NADP+-dependent aldehyde reductase in desired stoichiometric ratios. Results showed that the coupling efficiency of the P450 system was significantly increased, primarily attributed to the channeling effect of NADPH resulting from the proximity of tethered enzymes and the electrostatic interactions between NADPH and SGP. Assembling this SGP-scaffolded assembly system in Escherichia coli yielded a titer of 240.5 mg/L daidzein with an 86% (2S)-naringenin conversion rate, which showed a 9-fold increase over the free enzymes of the P450 system. These results underscore the potential application of the SGP-scaffolded multienzyme system in enhancing the coupling and catalytic efficiency of the P450 system.
Collapse
Affiliation(s)
- Zhe Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yiqiang Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Weimin Xu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Daoying Wang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiudong Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Lei L, Hui S, Chen Y, Yan H, Yang J, Tong S. Effect of soy isoflavone supplementation on blood pressure: a meta-analysis of randomized controlled trials. Nutr J 2024; 23:32. [PMID: 38454401 PMCID: PMC10918941 DOI: 10.1186/s12937-024-00932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Previous experimental studies have suggested that the consumption of soy isoflavones may have a potential impact on lowering blood pressure. Nevertheless, epidemiological studies have presented conflicting outcomes concerning the correlation between soy isoflavone consumption and blood pressure levels. Consequently, a comprehensive meta-analysis of all eligible randomized controlled trials (RCTs) was conducted to explore the influence of soy isoflavones on systolic blood pressure (SBP) and diastolic blood pressure (DBP) in adults. METHODS A thorough search of PubMed, Embase, and the Cochrane Library for relevant literature up to April 30, 2023 was conducted. RCTs involving adults that compared soy isoflavone supplementation with a placebo (the same matrix devoid of soy isoflavone) were included. The combined effect size was presented as the weighted mean difference (WMD) along with 95% confidence interval (CI), employing a fixed-effects model. RESULTS Our meta-analysis included a total of 24 studies involving 1945 participants. The results revealed a significant reduction in both SBP and DBP with soy isoflavone supplementation. Subgroup analyses suggested more pronounced reductions in SBP and DBP for interventions lasting ≥6 months, in individuals receiving mixed-type soy isoflavone, and among patients with metabolic syndrome or prehypertension. However, we did not detect significant nonlinear associations between supplementation dosage and intervention duration concerning both SBP and DBP. The overall quality of evidence was deemed moderate. CONCLUSIONS The current meta-analysis revealed that supplementation with soy isoflavones alone effectively reduces blood pressure. Additional high-quality studies are required to investigate the efficacy of blood pressure reduction through supplementation with an optimal quantity and proportion of soy isoflavone.
Collapse
Affiliation(s)
- Lifu Lei
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Suocheng Hui
- Department of Clinical Nutrition, The People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401135, China
| | - Yushi Chen
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hongjia Yan
- Department of Clinical Nutrition, The People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401135, China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 410020, China.
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 410020, China.
| | - Shiwen Tong
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Abdelghani E, Fathi MA, Li Z, Dai P, Li Y, Li C. In ovo injection of soy isoflavones on hatching performance and intestinal development of newly hatched chicks. J Anim Physiol Anim Nutr (Berl) 2023; 107:1381-1391. [PMID: 37391896 DOI: 10.1111/jpn.13850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/02/2023]
Abstract
This study aimed to evaluate the effects of in ovo injection of soy isoflavones (ISF) on hatchability, body weight, antioxidant status and intestinal development of newly hatched broiler chicks. One hundred and eighty fertile eggs were divided as follows: the control group, 3 mg/egg ISF (low dose) and 6 mg/egg ISF (high dose) on the 18th day of incubation. The results demonstrated that in ovo inclusion of 6 mg of ISF significantly increased hatchability and hatch weight. Both doses of ISF inclusion elevated the serum glutathione peroxidase and slightly decreased malondialdehyde compared to the control group. The high dose of ISF brings higher villus height and a higher villus/crypt ratio in chicks. Moreover, the mRNA levels of tumour necrosis factor- α and interferon-gamma in the spleen were significantly decreased. The ISF treatments showed an improvement in intestinal enzyme expression levels of sucrose isomaltase and mucin 2 as well as tight junction protein (TJ) mRNA expression of claudin-1 at high doses of ISF (p < 0.05) when compared with the other groups. Furthermore, the mRNA level of IGF-1 was increased in the high doses of ISF compared to the control. Overall, these findings indicate that in ovo administration of ISF on the 18th day of incubation enhances hatchability, antioxidant status and intestinal morphometrics in hatched chicks and modulates the expression of proinflammatory cytokines, TJs and insulin-like growth factor. In addition, the sustainability of antioxidants and other positive effects of ISF may increase chick viability and growth performance.
Collapse
Affiliation(s)
- Ezaldeen Abdelghani
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Mohamed A Fathi
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Poultry Breeding Department, Animal Production Research Institute, Agricultural Research Centre, Dokki, Giza, Egypt
| | - Zhaojian Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Pengyuan Dai
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yansen Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Qiang T, Wang J, Ding X, Zeng Q, Bai S, Lv L, Xuan Y, Peng H, Zhang K. The improving effect of soybean isoflavones on ovarian function in older laying hens. Poult Sci 2023; 102:102944. [PMID: 37531725 PMCID: PMC10407823 DOI: 10.1016/j.psj.2023.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023] Open
Abstract
Emerging evidence suggests an association between estrogen levels and reduced egg-laying performance as the layer became old. Since soy isoflavones (SF) have estrogen-mimic effects, whether it can enhance production performance and ovarian function of older layers is still not known. A total of 160 Lohmann pink layers (66-wk-old) were used in a 2 × 2 factorial design, which included 2 egg-laying levels [low (76.89 ± 1.65%; LOW) and normal (84.96 ± 1.01%; NOR)] and 2 different dietary groups [0 mg/kg SF, 20 mg/kg SF] were used. The results showed the NOR group had higher egg-laying rate, egg mass, and feed efficiency during the all phases (P(laying) < 0.05). The unqualified egg rate was lower in NOR group (9-12 wk, 1-12 wk) (P(laying) < 0.05). Dietary supplementation with SF increased the egg-laying rate and feed efficiency (5-8 wk, 9-12 wk, 1-12 wk), increased egg mass (9-12 wk, 1-12 wk) (P(SF) < 0.05). The NOR layers presented higher eggshell quality (redness, yellowness, brightness, eggshell ratio) at 12 wk (P(laying) < 0.05). Eggshell quality was found to be improved by SF (eggshell strength and eggshell thickness), egg albumen quality (higher albumen height and Haugh unit) at 12 wk (P(SF) < 0.05). Supplementing with SF led to an increase in eggshell strength in LOW group (P(laying*SF) < 0.05). The higher serum lever of glucose (GLU) and lower serum lever of follicle stimulating hormone (FSH) were in NOR group (P(laying) < 0.05). Supplementing SF in diets increased serum of estradiol (E2) and insulin-like growth factors-1 (IGF-1), decreased serum of FSH (P(SF) < 0.05). The NOR layers presented lower estrogen receptor α (ERα), estrogen receptor β (ERβ), B lymphoma 2 associated X protein (Bax), cytochrome c (Cytc), interleukin 6 (IL-6), caspase3, caspase9, IKKα, P50, and P65 expression in the ovary (P(laying) < 0.05). Dietary SF supplementation decreased the anti-Müllerian hormone receptor (AMHR), Bax, caspase3, caspase9, Cytc, IL-6, IKKα, P50, P65 expression in the ovary (P(SF) < 0.05). These findings indicated that layers with NOR group had higher production performance, egg quality, and ovarian function, while dietary supplementation with SF improved production performance and ovarian function by reducing inflammation and apoptosis-related genes expression in ovary.
Collapse
Affiliation(s)
- Taoyan Qiang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Lv
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Xuan
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanwei Peng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Keying Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Gong Y, Lv J, Pang X, Zhang S, Zhang G, Liu L, Wang Y, Li C. Advances in the Metabolic Mechanism and Functional Characteristics of Equol. Foods 2023; 12:2334. [PMID: 37372545 DOI: 10.3390/foods12122334] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Equol is the most potent soy isoflavone metabolite and is produced by specific intestinal microorganisms of mammals. It has promising application possibilities for preventing chronic diseases such as cardiovascular disease, breast cancer, and prostate cancer due to its high antioxidant activity and hormone-like activity. Thus, it is of great significance to systematically study the efficient preparation method of equol and its functional activity. This paper elaborates on the metabolic mechanism of equol in humans; focuses on the biological characteristics, synthesis methods, and the currently isolated equol-producing bacteria; and looks forward to its future development and application direction, aiming to provide guidance for the application and promotion of equol in the field of food and health products.
Collapse
Affiliation(s)
- Yining Gong
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Guofang Zhang
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Libo Liu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunna Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Chun Li
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| |
Collapse
|
9
|
Nanoparticles loaded with pharmacologically active plant-derived natural products: Biomedical applications and toxicity. Colloids Surf B Biointerfaces 2023; 225:113214. [PMID: 36893664 DOI: 10.1016/j.colsurfb.2023.113214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Pharmacologically active natural products have played a significant role in the history of drug development. They have acted as sources of therapeutic drugs for various diseases such as cancer and infectious diseases. However, most natural products suffer from poor water solubility and low bioavailability, limiting their clinical applications. The rapid development of nanotechnology has opened up new directions for applying natural products and numerous studies have explored the biomedical applications of nanomaterials loaded with natural products. This review covers the recent research on applying plant-derived natural products (PDNPs) nanomaterials, including nanomedicines loaded with flavonoids, non-flavonoid polyphenols, alkaloids, and quinones, especially their use in treating various diseases. Furthermore, some drugs derived from natural products can be toxic to the body, so the toxicity of them is discussed. This comprehensive review includes fundamental discoveries and exploratory advances in natural product-loaded nanomaterials that may be helpful for future clinical development.
Collapse
|
10
|
Wang Z, Li X, Dai Y, Yin L, Azi F, Zhou J, Dong M, Xia X. Sustainable production of genistin from glycerol by constructing and optimizing Escherichia coli. Metab Eng 2022; 74:206-219. [DOI: 10.1016/j.ymben.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
11
|
Li C, Li X, Li P, Wei B, Zhang C, Zhu X, Zhang J. Sodium humate alters the intestinal microbiome, short-chain fatty acids, eggshell ultrastructure, and egg performance of old laying hens. Front Vet Sci 2022; 9:986562. [PMID: 36311664 PMCID: PMC9597201 DOI: 10.3389/fvets.2022.986562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022] Open
Abstract
This study investigated the effect of sodium humate supplementation on changes in the intestinal microbiome, intestinal short-chain fatty acids production, and trace element absorption in older laying hens, with consequent effects on egg performance and shell quality. We used the same hens as their own control; a total of 720 laying hens aged 422 days were randomly divided into three replicates, with the CON group fed a commercial diet at 422–441 days of age and the HANa group fed a commercial diet supplemented with 0.05% sodium humate at 442–461 days of age. Compared with the CON group, in the HANa group, Bacteroidetes and Actinobacteria were significantly increased, whereas, Firmicutes was significantly decreased. Further, Veillonella, Enterococcus, Lactobacillus, and Turricibacter significantly decreased, and Peptoniphilus, Helcococcus, GW-34, Psychrobacter, Anaerococcus, Corynebacterium, Facklamia, Trichococcus, Gallicola, Clostridium, and Oscillospira were significantly increased. The results showed that sodium humate significantly altered the alpha and beta diversity and changed the structure of the intestinal microbiome. Acetic acid, isovaleric acid, and isobutyric acid, among short-chain fatty acids were significantly increased in the HANa group, whereas trace elements such as Mn, Zn, and Fe were significantly reduced. The eggshell strength and ultrastructure were significantly altered. In this study, sodium humate was found to alter the intestinal microbiome structure of aged hens, change the production of short-chain fatty acids, and promote the absorption of trace elements to keep aged hens from experiencing a decrease in egg production performance.
Collapse
Affiliation(s)
- Chenqinyao Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xue Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Bin Wei
- Shandong Asia-Pacific Haihua Biotechnology Co., Ltd., Jinan, China
| | - Cong Zhang
- Shandong Asia-Pacific Haihua Biotechnology Co., Ltd., Jinan, China
| | - Xiaoling Zhu
- Shandong Academy of Agricultural Sciences, Jinan, China,Xiaoling Zhu
| | - Jie Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China,*Correspondence: Jie Zhang
| |
Collapse
|
12
|
Oliveira JM, Oliveira IM, Sleiman HK, Dal Forno GO, Romano MA, Romano RM. Consumption of soy isoflavones during the prepubertal phase delays puberty and causes hypergonadotropic hypogonadism with disruption of hypothalamic-pituitary gonadotropins regulation in male rats. Toxicol Lett 2022; 369:1-11. [PMID: 35963426 DOI: 10.1016/j.toxlet.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Isoflavones are phytoestrogens with recognized estrogenic activity but may also affect testosterone, corticosterone and thyroid hormone levels in experimental models. However, the molecular mechanisms involved in these alterations are still unclear. Isoflavones are present in soy-based infant formula, in breast milk after the consumption of soy by the mother and are widely used for the preparation of beverages consumed by toddlers and teenagers. In this sense, we proposed to investigate the effects of soy isoflavone exposure during the prepubertal period, a recognized window of sensitivity for endocrine disruption, over the hypothalamic-pituitary-testicular (HPT) axis. For this, 42 3-week-old male Wistar rats were exposed to 0.5, 5 or 50 mg of soy isoflavones/kg from postnatal day (PND) 23 to PND60. We evaluated body growth, age at puberty, serum concentrations of LH, FSH, testosterone and estradiol, and the expression of the transcripts (mRNA) of genes encoding key genes controlling the hypothalamic-pituitary-testicular (HPT) axis. In the hypothalamus, we observed an increase in Esr1 mRNA expression (0.5 and 5 mg). In the pituitary, we observed an increase in Gnrhr mRNA expression (50 mg), a reduction in Lhb mRNA expression (0.5 mg), and a reduction in Ar mRNA expression. In the testis, we observed an increase in Lhcgr mRNA expression (50 mg) and a reduction in Star mRNA expression (0.5 and 5 mg). The serum levels of LH (5 and 50 mg) and FSH (0.5 mg) were increased, while testosterone and estradiol were reduced. Puberty was delayed in all groups. Taken together, these results suggest that prepubertal consumption of relevant levels of soy isoflavones disrupts the HPT axis, causing hypergonadotropic hypogonadism and altered expression levels of key genes regulating the axis.
Collapse
Affiliation(s)
- Jeane Maria Oliveira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Isabela Medeiros Oliveira
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Hanan Khaled Sleiman
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Gonzalo Ogliari Dal Forno
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Marco Aurelio Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| | - Renata Marino Romano
- Laboratory of Reproductive Toxicology, Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, Zip-Code 85040-080, Parana, Brazil.
| |
Collapse
|
13
|
Messina M, Duncan A, Messina V, Lynch H, Kiel J, Erdman JW. The health effects of soy: A reference guide for health professionals. Front Nutr 2022; 9:970364. [PMID: 36034914 PMCID: PMC9410752 DOI: 10.3389/fnut.2022.970364] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Soy is a hotly debated and widely discussed topic in the field of nutrition. However, health practitioners may be ill-equipped to counsel clients and patients about the use of soyfoods because of the enormous, and often contradictory, amount of research that has been published over the past 30 years. As interest in plant-based diets increases, there will be increased pressure for practitioners to gain a working knowledge of this area. The purpose of this review is to provide concise literature summaries (400-500 words) along with a short perspective on the current state of knowledge of a wide range of topics related to soy, from the cholesterol-lowering effects of soy protein to the impact of isoflavones on breast cancer risk. In addition to the literature summaries, general background information on soyfoods, soy protein, and isoflavones is provided. This analysis can serve as a tool for health professionals to be used when discussing soyfoods with their clients and patients.
Collapse
Affiliation(s)
- Mark Messina
- Soy Nutrition Institute Global, Washington, DC, United States
| | - Alison Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Heidi Lynch
- Kinesiology Department, Point Loma Nazarene University, San Diego, CA, United States
| | - Jessica Kiel
- Scientific and Clinical Affairs, Medifast Inc., Baltimore, MD, United States
| | - John W. Erdman
- Division of Nutritional Sciences and Beckman Institute, Department of Food Science and Human Nutrition, University of Illinois at Urbana/Champaign, Urbana, IL, United States
| |
Collapse
|
14
|
The Role of Soy Isoflavones in the Prevention of Bone Loss in Postmenopausal Women: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. J Clin Med 2022; 11:jcm11164676. [PMID: 36012916 PMCID: PMC9409780 DOI: 10.3390/jcm11164676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the report was to determine the effects of soy isoflavones on lumbar spine, femoral neck, and total hip bone mineral density (BMD) in menopausal women. MEDLINE (PubMed), EMBASE, and Cochrane Library databases were searched for articles published in English during 1995–2019. Studies were identified and reviewed for inclusion and exclusion eligibility. Weighted mean differences (WMD) were calculated for each study and were pooled by using the random effects model. Eighteen randomized controlled trials were selected for meta-analysis. Different types of soy phytoestrogens, i.e., genistein extracts, soy isoflavones extracts, soy protein isolate, and foods containing diverse amounts of isoflavones were used in the studies. The analysis showed that daily intake of 106 (range, 40–300) mg of isoflavones for 6–24 months moderately but statistically significantly positively affects BMD, compared with controls: lumbar spine WMD = 1.63 (95% CI: 0.51 to 2.75)%, p = 0004; femoral neck WMD = 1.87 (95% CI: 0.14 to 3.60)%, p = 0.034; and total hip WMD = 0.39 (95% CI: 0.08 to 0.69)%, p = 0.013. Subgroups analyses indicated that the varying effects of isoflavones on BMD across the trials might be associated with intervention duration, racial diversity (Caucasian, Asian), time after menopause, form of supplements (especially genistein), and dose of isoflavones. Our review and meta-analysis suggest that soy isoflavones are effective in slowing down bone loss after menopause.
Collapse
|
15
|
Liu Y, Li Y, Niu J, Liu H, Jiao N, Huang L, Jiang S, Yan L, Yang W. Effects of Dietary Macleaya cordata Extract Containing Isoquinoline Alkaloids Supplementation as an Alternative to Antibiotics in the Diets on Growth Performance and Liver Health of Broiler Chickens. Front Vet Sci 2022; 9:950174. [PMID: 35968000 PMCID: PMC9363708 DOI: 10.3389/fvets.2022.950174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate the effects of dietary supplementation with Macleaya cordata extract (MCE) containing protopine and allotypotopine on the growth performance and liver health in broiler chickens. A total of 486 1-day-old male AA broiler chickens were randomly assigned to the following three groups: (1) control (CON) group, broiler chickens fed a basal diet; (2) AGP group (positive control), broiler chickens fed a basal diet supplemented with 50 mg/kg aureomycin; (3) MCE group, broiler chickens fed a basal diet supplemented with 0.6 mg/kg MCE including 0.4 mg/kg protopine and 0.2 mg/kg allotypotopine. The results showed that the MCE group had significantly higher final body weight and average daily gain from d 0 to 42 than the other groups (p < 0.05), and groups MCE and AGP both had significantly lower feed-to-gain ratio from d 0 to 42 than the CON group (p < 0.05). Serum total protein, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, total cholesterol, glucose, immunoglobulin A, immunoglobulin M, and complements (C3, C4) concentrations in the MCE group were significantly higher than in the CON group (p < 0.05). Dietary MCE or aureomycin supplementation significantly reduced the hepatic contents of 8-hydroxy-2'-deoxyguanosine, malondialdehyde, interleukin (IL)-1β, IL-6, NLRs family pyrin domain containing 3 (NLRP3), and caspase-1 in the liver (p < 0.05). Moreover, MCE or aureomycin supplementation significantly inhibited mRNA expressions of Toll-like receptor 4, myeloid differentiation factor 88, nuclear factor-κB, and NLRP3, as well as the expression ratio of Bax to Bcl-2 mRNA (p < 0.05). Therefore, our study suggested that dietary supplementation with 0.6 mg/kg MCE containing protopine and allocryptopine improved growth performance and benefited liver health in broiler chickens possibly through inhibiting caspase-1-induced pyroptosis by inactivating TLR4/MyD88/NF-κB/NLRP3 signaling pathway, and provided support for the application of MCE containing protopine and allocryptopine as an alternative to antibiotics in the feed industry.
Collapse
Affiliation(s)
- Yang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
- *Correspondence: Yang Li
| | - Jiaxing Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Hua Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Ning Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Libo Huang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Shuzhen Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Lei Yan
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Weiren Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
- Weiren Yang
| |
Collapse
|
16
|
Long S, Wang Q, He T, Ma J, Wang J, Liu S, Wang H, Liu L, Piao X. Maternal Dietary Forsythia suspensa Extract Supplementation Induces Changes in Offspring Antioxidant Status, Inflammatory Responses, Intestinal Development, and Microbial Community of Sows. Front Vet Sci 2022; 9:926822. [PMID: 35909697 PMCID: PMC9334818 DOI: 10.3389/fvets.2022.926822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
This experiment aims to investigate the effect of maternal diet supplemented with Forsythia suspensa extract (FSE) on the performance, antioxidant status, inflammatory responses, intestinal development, and microbial community of sows. A total of 24 gestating sows (Landrace × Yorkshire) were assigned to 2 treatments with 12 sows per treatment. From d 107 of gestation to d 21 of lactation, sows were supplemented with a basal diet as control (CON) or an FSE diet (basal diet + 100 mg/kg FSE). Compared with CON, sows fed FSE showed lower (P < 0.05) wean-to-estrus interval, body weight loss, and higher (P < 0.05) average daily gain of suckling piglet. Sows fed FSE had reduced (P < 0.05) serum malondialdehyde (MDA) content and enhanced (P < 0.05) catalase and glutathione peroxidase (GSH-Px) contents at farrowing and weaning compared with CON. The suckling piglets of FSE-fed sows had increased (P < 0.05) mRNA expressions of nuclear factor erythroid-2 related factor 2, heme oxygenase-1 in the liver, and lower (P < 0.05) serum MDA content on d 0, 7, and 14 of lactation. Sows fed FSE had lower (P < 0.05) serum tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) contents at farrowing and reduced (P < 0.05) serum IL-6 and IL-8 contents at weaning compared with CON. Piglets from FSE-fed sows had enhanced (P ≤ 0.05) villus height and villus height to crypt depth ratio in the jejunum, and higher (P < 0.05) protein expression of Occludin in jejunal mucosa compared with CON. Sows fed FSE tended to have higher (P = 0.09) relative abundance of Lactobacillus at genus level in feces at weaning compared with CON. Our results showed maternal diet supplemented with FSE in lactating sows could effectively induce improvement of performance, antioxidant status, anti-inflammatory function, intestinal morphology, barrier function, and microbial community.
Collapse
Affiliation(s)
- Shenfei Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
| | - Tengfei He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
| | - Jiayu Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
| | - Hongliang Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Li Liu
- Tianjin Zhongsheng Feed Co., Ltd., Tianjin, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Agricultural University, Beijing, China
- *Correspondence: Xiangshu Piao
| |
Collapse
|
17
|
Jiang M, Lv Z, Huang Y, Cheng Z, Meng Z, Yang T, Yan Q, Lin M, Zhan K, Zhao G. Quercetin Alleviates Lipopolysaccharide-Induced Inflammatory Response in Bovine Mammary Epithelial Cells by Suppressing TLR4/NF-κB Signaling Pathway. Front Vet Sci 2022; 9:915726. [PMID: 35865878 PMCID: PMC9295012 DOI: 10.3389/fvets.2022.915726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine mastitis is one of the most common clinical diseases in dairy cows, causing huge economic losses to the dairy industry. Quercetin is an important flavonoid existing in many food resources, which has attracted widespread attention as a potential anti-inflammatory and antioxidant. However, the molecular mechanism of quercetin on inflammatory responses and oxidative stress in bovine mammary epithelial cells (BMECs) induced by lipopolysaccharide (LPS) remains unknown. The objective of this study was to investigate the effects of quercetin on inflammation responses, oxidative stress, and barrier function of BMEC induced by LPS. Our results showed that BMEC viability was not affected by treatment with 50 and 100 μg/ml of quercetin and 1 μg/ml of LPS compared with control group. The results of oxidative stress indicators and related genes of barrier function indicated that 100 μg/ml of quercetin effectively protected the BMECs from damage of oxidative and barrier induced by 1 μg/ml of LPS. Moreover, the messenger RNA (mRNA) expressions of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and chemokines CXCL2, CXCL5, CCL5, and CXCL8 were markedly decreased in the LPS-treated bovine retinal endothelial cells (BRECs) with 100 μg/ml of quercetin relatively to LPS alone. More importantly, the mRNA expressions of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes involved in TLR4 signal pathway were significantly attenuated by the addition of quercetin in LPS-treated BMEC, suggesting that quercetin can inhibit the TLR4 signal pathway. In addition, immunocytofluorescence showed that quercetin significantly inhibited the nuclear translocation of NF-κB p65 in BMEC induced by LPS. Therefore, the protective effects of quercetin on inflammatory responses in LPS-induced BMEC may be due to its ability to suppress the TLR4-mediated NF-κB signaling pathway. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat mastitis induced by exogenous or endogenous LPS release.
Collapse
Affiliation(s)
- Maocheng Jiang
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
| | - Ziyao Lv
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China
| | - Yinghao Huang
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
| | - Zhiqiang Cheng
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
| | - Zitong Meng
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
| | - Tianyu Yang
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
| | - Qi Yan
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
| | - Miao Lin
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kang Zhan
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Kang Zhan
| | - Guoqi Zhao
- College of Animal Science and Technology, Institute of Animal Culture Collection and Application, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Guoqi Zhao
| |
Collapse
|
18
|
Geng Y, Li T, Hu Y, Zhang L, Cui X, Zhu L, Wu B, Luo X. The Effect of Bone Morphogenetic Protein 2 or Extracellular Signal-Regulated Kinase 1 Silencing on Phosphorus Utilization and Related Parameters in Primary Broiler Osteoblasts. Front Vet Sci 2022; 9:943864. [PMID: 35847630 PMCID: PMC9280412 DOI: 10.3389/fvets.2022.943864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Two experiments were conducted to study the effect of bone morphogenetic protein 2 (BMP2) or extracellular signal-regulated kinase 1 (ERK1) silencing on phosphorus (P) utilization and related parameters in primary broiler osteoblasts. Experiment 1 was carried out to select the most efficacious siRNAs against BMP2 or ERK1 for the subsequent experiment. In experiment 2, with or without the siRNA against BMP2 or ERK1, primary broiler osteoblasts were incubated in the medium supplemented with 0.0 or 2.0 mmol/L of P as NaH2PO4 for 12 days. The osteoblastic P utilization and related parameters were determined. The results showed that the si980 and si1003 were the most effective (P < 0.05) in inhibiting BMP2 and ERK1 expressions, respectively. The BMP2 silencing reduced (P < 0.004) the osteoblastic P retention rate, alkaline phosphatase (ALP) activity, BMP2 mRNA and protein expressions. Supplemental P increased (P = 0.0008) ALP activity. Significant interactions (P < 0.04) between the gene silencing and supplemental P level were observed in both mineralization formation and bone gal protein (BGP) content. The BMP2 silencing decreased (P < 0.05) mineralization formation at both 0.0 and 2.0 mmol/L of added P levels, but the decreased degree was greater at 2.0 mmol/L of added P level, while BMP2 silencing reduced (P < 0.05) BGP content at only 2.0 mmol/L of added P level. The ERK1 silencing decreased (P < 0.004) mineralization formation, ALP activity, BGP content, ERK1 mRNA, ERK1 and p-ERK1 protein expressions. Supplemental P increased (P < 0.03) mineralization formation, ALP activity, BGP content and p-ERK1 protein expression, but inhibited (P = 0.014) ERK1 protein expression. There was an interaction (P < 0.03) between the gene silencing and supplemental P level in the osteoblastic P retention rate. The ERK1 silencing decreased (P < 0.05) it regardless of 0.0 or 2.0 mmol/L of added P level, but the reduced degree was greater at 2.0 mmol/L of added P level. It was concluded that either BMP2 or ERK1 silencing suppressed P utilization, and thus either of them participated in regulating P utilization in primary broiler osteoblasts.
Collapse
Affiliation(s)
- Yanqiang Geng
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ling Zhu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bingxin Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Xugang Luo
| |
Collapse
|
19
|
Pan C, Yang C, Ma Y, Sheng H, Lei Z, Wang S, Hu H, Feng X, Zhang J, Ma Y. Identification of Key Genes Associated With Early Calf-Hood Nutrition in Subcutaneous and Visceral Adipose Tissues by Co-Expression Analysis. Front Vet Sci 2022; 9:831129. [PMID: 35619603 PMCID: PMC9127810 DOI: 10.3389/fvets.2022.831129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/29/2022] [Indexed: 12/31/2022] Open
Abstract
Background Substantive evidence has confirmed that nutrition state is associated with health risk and the onset of pubertal and metabolic profile. Due to heterogeneity, adipose tissues in different anatomical positions tend to show various metabolic mechanisms for nutrition. To date, the complicated molecular mechanisms of early calf-hood nutrition on bovine adipose tissue are still largely unknown. This study aimed to identify key genes and functionally enriched pathways associated with early calf-hood nutrition in visceral and subcutaneous adipose tissue. Results The RNA-seq data of visceral and subcutaneous adipose tissues of calves feeding on low and high dietary nutrition for more than 100 days were downloaded and analyzed by weighted gene co-expression network analysis (WGCNA). Two modules that positively associated with a low plane of nutrition diet and two modules with a high plane of nutrition diet were identified in the subcutaneous adipose tissue. The blue and yellow modules, most closely associated with low and high nutrition, were selected for the functional enrichment analysis and exploration of hub genes. The results showed that genes in the blue module were significantly enriched in pathways that related to fat metabolism, reproduction, and cell communication. Genes in the yellow module were enriched in pathways related to fat metabolism, reproduction, cell proliferation, and senescence. Meanwhile, the blue and brown modules in visceral adipose tissue were most closely associated with low and high nutrition, respectively. Notably, genes of the blue module were significantly enriched in pathways related to substance metabolism, and genes in the brown module were significantly enriched in energy metabolism and disease pathways. Finally, key genes in subcutaneous adipose tissue for low nutrition (PLCG1, GNA11, and ANXA5) and high nutrition (BUB1B, ASPM, RRM2, PBK, NCAPG, and MKI67), and visceral adipose tissue for low nutrition (RPS5, RPL4, RPL14, and RPLP0) and high nutrition (SDHA and AKT1) were obtained and verified. Conclusion The study applied WGCNA to identify hub genes and functionally enriched pathways in subcutaneous and visceral adipose tissue and provided a basis for studying the effect of early calf-hood nutrition on the two adipose tissue types.
Collapse
|
20
|
Zou W, Huang H, Wu H, Cao Y, Lu W, He Y. Preparation, Antibacterial Potential, and Antibacterial Components of Fermented Compound Chinese Medicine Feed Additives. Front Vet Sci 2022; 9:808846. [PMID: 35400112 PMCID: PMC8987234 DOI: 10.3389/fvets.2022.808846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
This experiment was conducted to compare the antibacterial ability and to identify the antibacterial components of different fermented compound Chinese medicine feed additives in order to develop one fermented compound Chinese medicine feed additive product that can effectively alleviate metritis, vaginitis, and mastitis of sows. The Oxford cup method and double dilution method were used to compare the antibacterial ability of three fermented compound Chinese medicine feed additives (A, B, and C). UHPLC-QE-MS-based untargeted metabolomics was used to identify the antibacterial components of fermented compound Chinese medicine feed additives. Results showed that among fermented compound Chinese medicine feed additives A, B, and C, additive A had the strongest ability to inhibit the growth of Staphylococcus aureus, Salmonella cholerae suis, Escherichia coli, and Streptococcus agalactiae. The MIC and MBC of additive A were the lowest for Staphylococcus aureus compared to that for the other three pathogens. The concentrations of 23 Chinese medicine ingredients (ellagic acid, guanine, camphor, L-valine, sinapine, dipropylphthalate, 3-hydroxy-5-isopropylidene-3,8-dimethyl-2,3,3a,4,5,8a-hexahydro-6(1H)-azulenone, 7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one, acetylcholine, farrerol, pyrogallol, ethyl gallate, demethylwedelolactone, methyl gallate, kaempferide, gallic acid, eriodictyol, threonic acid, inositol, 3′,4′,7-trihydroxyflavanone, taxifolin, asiatic acid, and isorhamnetin) in additive A were significantly (p < 0.05 or p < 0.01) higher than those in additive B, respectively. It is concluded that the mixture composed of 23 active components in fermented compound Chinese medicine feed additive A plays an important role in inhibiting the growth of Staphylococcus aureus, Salmonella cholerae suis, Escherichia coli, and Streptococcus agalactiae.
Collapse
Affiliation(s)
- Wanjie Zou
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Honglan Huang
- Forest Institution, Jiangxi Environmental Engineering Vocational College, Ganzhou, China
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuandong Cao
- Department of Technology, Jiangxi Jiabo Bioengineering Co. Ltd., Jiujiang, China
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Wei Lu
| | - Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
- Yuyong He
| |
Collapse
|
21
|
Zeng W, Hu M, Lee HK, Wat E, Lau CBS, Ho CS, Wong CK, Tomlinson B. Effect of Green Tea Extract and Soy Isoflavones on the Pharmacokinetics of Rosuvastatin in Healthy Volunteers. Front Nutr 2022; 9:850318. [PMID: 35399656 PMCID: PMC8987933 DOI: 10.3389/fnut.2022.850318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background and Aim Green tea and soy products are extensively consumed in daily life. Research has shown that green tea catechins and soy isoflavones may influence the activity of drug metabolizing enzymes and drug transporters. We examined whether regular consumption of green tea extract or soy isoflavones affected the pharmacokinetics of a single dose of rosuvastatin in healthy subjects and whether any interactions were influenced by the polymorphism in the drug transporter ABCG2. Study Design This was an open-label, three-phase randomized crossover study with single doses of rosuvastatin. Methods Healthy Chinese male subjects were given a single dose of rosuvastatin 10 mg on 3 occasions: 1. without herbs; 2. with green tea extract; 3. with soy isoflavone extract. The green tea and soy isoflavone extract were given at a dose containing EGCG 800 mg once daily or soy isoflavones−80 mg once daily for 14 days before statin dosing and at the same time as the statin dosing with at least 4-weeks washout period between phases. Results Twenty healthy male subjects completed the study and the intake of green tea extract significantly reduced the systemic exposure to rosuvastatin by about 20% reducing AUC0−24h from [geometric mean (% coefficient of variation)] 108.7 (28.9) h·μg/L to 74.1 (35.3) h·μg/L and Cmax from 13.1 (32.2) μg/L to 7.9 (38.3) μg/L (P < 0.001 for both), without affecting the elimination half-life. The ABCG2 421C>A polymorphism had a significant effect on rosuvastatin exposure but no impact on the interaction with green tea. Soy isoflavones had no significant effect on rosuvastatin pharmacokinetics. Conclusion This study showed that repeated administration of green tea extract significantly reduced the systemic exposure of rosuvastatin in healthy volunteers. These effects might be predicted to either reduce or increase the lipid-lowering effect of rosuvastatin depending on the mechanism of the effect.
Collapse
Affiliation(s)
- Weiwei Zeng
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Miao Hu
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Hon Kit Lee
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Pathology, Tuen Mun Hospital, Hong Kong, Hong Kong SAR, China
| | - Elaine Wat
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Clara Bik San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chung Shun Ho
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
- *Correspondence: Brian Tomlinson ; orcid.org/0000-0001-6717-5444
| |
Collapse
|
22
|
Tong Z, Lei F, Liu L, Wang F, Guo A. Effects of Plotytarya strohilacea Sieb. et Zuce Tannin on the Growth Performance, Oxidation Resistance, Intestinal Morphology and Cecal Microbial Composition of Broilers. Front Vet Sci 2022; 8:806105. [PMID: 35071393 PMCID: PMC8766804 DOI: 10.3389/fvets.2021.806105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this experiment was to study the effects of Plotytarya strohilacea Sieb. et Zuce tannin on broilers growth performance, antioxidant function, intestinal development, intestinal morphology and the cecal microbial composition. In this experiment, a total of 360 1-day-old Arbor Acres male broilers were randomly divided into 4 treatment groups, with 6 replicates in each group and 15 broilers in each replicate. The control group (Control) was fed the basal diet, and the broilers were fed a basal diet supplemented with 0 (Control), 100 (PT1), 400 (PT2), and 800 (PT3) mg/kg Plotytarya strohilacea Sieb. et Zuce tannins for 42 days, respectively. The results showed that the average daily feed intake (ADFI) of the PT1 group was significantly lower than that of the control group, and there was a significant quadratic relationship between the ADFI and the concentration of tannin (P < 0.05). Compared with the control group, the F/G of broilers during the 22-42 days phase in the PT1 group showed a decreasing trend (P = 0.063). The serum catalase (CAT) activity in the PT1 group was significantly higher than those of the other three groups, and the effect was significantly quadratically related to the dosage (P < 0.05). The glutathione peroxidase (GSH-Px) activity in the PT1, PT2 and control groups were significantly higher than that of the PT3 group, and the effect was significantly quadratically related to the addition amount (P < 0.05). The serum total antioxidant capacity (T-AOC) activity in the PT1 group was significantly higher than that in the control group, and the effect was significantly quadratically related to the addition amount (P < 0.05). Compared to the control group, the villus height of jejunum in the PT1, PT2 and PT3 groups were significantly higher, and there was a significant quadratic relationship between the villus height of jejunum and the addition amount (P < 0.05). In addition, adding tannins to diets significantly increased Parabacteroides in the dominant genus (P < 0.05). In conclusion, dietary supplementation with Plotytarya strohilacea Sieb. et Zuce tannin improved the growth performance, antioxidant function, and intestinal morphology along with an increased abundance of Parabacteroides in the cecum, and the recommended dosage of tannin in broiler diets was 100 mg/kg.
Collapse
Affiliation(s)
- Zhenkai Tong
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Fuhong Lei
- Moringa oleifera Research Center, Yunnan Institute of Tropical Crops, Jinghong, China
| | - Lixuan Liu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Fei Wang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
23
|
Kotake K, Kumazawa T, Nakamura K, Shimizu Y, Ayabe T, Adachi T. Ingestion of miso regulates immunological robustness in mice. PLoS One 2022; 17:e0261680. [PMID: 35061718 PMCID: PMC8782471 DOI: 10.1371/journal.pone.0261680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023] Open
Abstract
In Japan, there is a long history of consumption of miso, a fermented soybean paste, which possesses beneficial effects on human health. However, the mechanism behind these effects is not fully understood. To clarify the effects of miso on immune cells, we evaluated its immunomodulatory activity in mice. Miso did not alter the percentage of B and T cells in the spleen; however, it increased CD69+ B cells, germinal center B cells and regulatory T cells. Anti-DNA immunoglobulin M antibodies, which prevent autoimmune disease, were increased following ingestion of miso. Transcriptome analysis of mouse spleen cells cultured with miso and its raw material revealed that the expression of genes, including interleukin (IL)-10, IL-22 and CD86, was upregulated. Furthermore, intravital imaging of the small intestinal epithelium using a calcium biosensor mouse line indicated that miso induced Ca2+ signaling in a manner similar to that of probiotics. Thus, ingestion of miso strengthened the immune response and tolerance in mice. These results appear to account, at least in part, to the salubrious effects of miso.
Collapse
Affiliation(s)
- Kunihiko Kotake
- Ichibiki Co., Ltd., Nagoya, Japan
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Kumazawa
- Ichibiki Co., Ltd., Nagoya, Japan
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiminori Nakamura
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Yu Shimizu
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Tokiyoshi Ayabe
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Takahiro Adachi
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
24
|
Tong Z, He W, Fan X, Guo A. Biological Function of Plant Tannin and Its Application in Animal Health. Front Vet Sci 2022; 8:803657. [PMID: 35083309 PMCID: PMC8784788 DOI: 10.3389/fvets.2021.803657] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Plant tannins are widely found in plants and can be divided into hydrolyzed tannins and condensed tannins. In recent years, researchers have become more and more interested in using tannin-rich plants and plant extracts in ruminant diets to improve the quality of animal products. Some research results show that plant tannins can effectively improve the quality of meat and milk, and enhance the oxidative stability of the product. In this paper, the classification and extraction sources of plant tannins are reviewed, as well as the biological functions of plant tannins in animals. The antioxidant function of plant tannins is discussed, and the influence of their structure on antioxidation is analyzed. The effects of plant tannins against pathogenic bacteria and the mechanism of action are discussed, and the relationship between antibacterial action and antioxidant action is analyzed. The inhibitory effect of plant tannins on many kinds of pathogenic viruses and their action pathways are discussed, as are the antiparasitic properties of plant tannins. The anti-inflammatory action of tannins and its mechanism are analyzed. The function of plant tannins in antidiarrheal action and its influencing factors are discussed. In addition, the effects of plant tannins as feed additives on animals and the influencing factors are reviewed in this paper to provide a reference for further research.
Collapse
|
25
|
Song Z, Xie K, Zhang Y, Xie Q, He X, Zhang H. Effects of Dietary Ginsenoside Rg1 Supplementation on Growth Performance, Gut Health, and Serum Immunity in Broiler Chickens. Front Nutr 2021; 8:705279. [PMID: 34912836 PMCID: PMC8667319 DOI: 10.3389/fnut.2021.705279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
The restriction and banning of antibiotics in farm animal feed has led to a search for promising substitutes for antibiotics to promote growth and maintain health for livestock and poultry. Ginsenoside Rg1, which is one of the most effective bioactive components in ginseng, has been reported to have great potential to improve the anti-inflammatory and anti-oxidative status of animals. In this study, 360 Chinese indigenous broiler chickens with close initial body weight were divided into 5 groups. Each group contained 6 replicates and each replicate had 12 birds. The experimental groups were: the control group, fed with the basal diet; the antibiotic group, fed basal diet + 300 mg/kg 15% chlortetracycline; and three Rg1 supplementation groups, fed with basal diet + 100, 200, and 300 mg/kg ginsenoside Rg1, respectively. The growth performance, immune function, and intestinal health of birds were examined at early (day 1-28) and late (day 29-51) stages. Our results showed that dietary supplementation of 300 mg/kg ginsenoside Rg1 significantly improved the growth performance for broilers, particularly at the late stage, including an increase in final body weight and decrease of feed conversion ratio (P < 0.05). Additionally, the integrity of intestinal morphology (Villus height, Crypt depth, and Villus height/Crypt depth) and tight junction (ZO-1 and Occludin), and the secretion of sIgA in the intestine were enhanced by the supplementation of Rg1 in chicken diet (P < 0.05). The immune organ index showed that the weight of the thymus, spleen, and bursa was significantly increased at the early stage in ginsenoside Rg1 supplementation groups (P < 0.05). Our findings might demonstrate that ginsenoside Rg1 could serve as a promising antibiotic alternative to improve the growth performance and gut health for broiler chickens mainly through its amelioration of inflammatory and oxidative activities.
Collapse
Affiliation(s)
- Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China.,Hunan Engineering Research Center of Poultry Production Safety, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Kaihuan Xie
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yunlu Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Xie
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China.,Hunan Engineering Research Center of Poultry Production Safety, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha, China.,Hunan Engineering Research Center of Poultry Production Safety, Changsha, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| |
Collapse
|
26
|
Yin C, Xia B, Tang S, Cao A, Liu L, Zhong R, Chen L, Zhang H. The Effect of Exogenous Bile Acids on Antioxidant Status and Gut Microbiota in Heat-Stressed Broiler Chickens. Front Nutr 2021; 8:747136. [PMID: 34901107 PMCID: PMC8652638 DOI: 10.3389/fnut.2021.747136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids are critical for lipid absorption, however, their new roles in maintaining or regulating systemic metabolism are irreplaceable. The negative impacts of heat stress (HS) on growth performance, lipid metabolism, and antioxidant status have been reported, but it remains unknown whether the bile acids (BA) composition of broiler chickens can be affected by HS. Therefore, this study aimed to investigate the modulating effects of the environment (HS) and whether dietary BA supplementation can benefit heat-stressed broiler chickens. A total of 216 Arbor Acres broilers were selected with a bodyweight approach average and treated with thermal neutral (TN), HS (32°C), or HS-BA (200 mg/kg BA supplementation) from 21 to 42 days. The results showed that an increase in average daily gain (P < 0.05) while GSH-Px activities (P < 0.05) in both serum and liver were restored to the normal range were observed in the HS-BA group. HS caused a drop in the primary BA (P = 0.084, 38.46%) and Tauro-conjugated BA (33.49%) in the ileum, meanwhile, the secondary BA in the liver and cecum were lower by 36.88 and 39.45% respectively. Notably, results were consistent that SBA levels were significantly increased in the serum (3-fold, P = 0.0003) and the ileum (24.89-fold, P < 0.0001). Among them, TUDCA levels (P < 0.01) were included. Besides, BA supplementation indeed increased significantly TUDCA (P = 0.0154) and THDCA (P = 0.0003) levels in the liver, while ileal TDCA (P = 0.0307), TLCA (P = 0.0453), HDCA (P = 0.0018), and THDCA (P = 0.0002) levels were also increased. Intestinal morphology of ileum was observed by hematoxylin and eosin (H&E) staining, birds fed with BA supplementation reduced (P = 0.0431) crypt depth, and the ratio of villous height to crypt depth trended higher (P = 0.0539) under the heat exposure. Quantitative RT-PCR showed that dietary supplementation with BA resulted in upregulation of FXR (P = 0.0369), ASBT (P = 0.0154), and Keap-1 (P = 0.0104) while downregulation of iNOS (P = 0.0399) expression in ileum. Moreover, 16S rRNA gene sequencing analysis and relevance networks revealed that HS-derived changes in gut microbiota and BA metabolites of broilers may affect their resistance to HS. Thus, BA supplementation can benefit broiler chickens during high ambient temperatures, serving as a new nutritional strategy against heat stress.
Collapse
Affiliation(s)
- Chang Yin
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Bing Xia
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Shanlong Tang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Aizhi Cao
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Shandong Longchang Animal Health Care Co., Ltd., Jinan, China
| | - Lei Liu
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ruqing Zhong
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Liang Chen
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hongfu Zhang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
27
|
Maciejewska-Turska M, Zgórka G. In-depth phytochemical and biological studies on potential AChE inhibitors in red and zigzag clover dry extracts using reversed-phase liquid chromatography (RP-LC) coupled with photodiode array (PDA) and electron spray ionization-quadrupole/time of flight-mass spectrometric (ESI-QToF/MS-MS) detection and thin-layer chromatography-bioautography. Food Chem 2021; 375:131846. [PMID: 34920306 DOI: 10.1016/j.foodchem.2021.131846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/21/2023]
Abstract
In the study, Trifolium medium L. and T. pratense L. were used to obtain lyophilisates which were named as TML and TPL, respectively. The former clover taxon represents a little explored species, while the latter one is often found in dietary supplements and functional foods due to the content of isoflavones that alleviate various menopausal symptoms. Detailed phytochemical profiles of both lyophilisates were examined and compared using coupled chromatographic (RP-LC) and spectroscopic PDA/ESI-QToF/MS-MS methods. A total of 54 and 55 compounds were identified in TML and TPL, respectively. Close chemotaxonomic similarities were confirmed for both clover taxa examined, especially in terms of the most abundant isoflavones and hydroxycinnamates. For the first time, neurotropic polyphenols (AChE inhibitors) were identified in clover extracts using TLC-bioautography. In this group, caffeoylmalic acid exhibited significant AChE inhibitory effect confirming the potential of TPL and TML to support physiological functions of the endocrine and nervous systems.
Collapse
Affiliation(s)
- Magdalena Maciejewska-Turska
- Medical University of Lublin, Department of Pharmacognosy with the Medicinal Plant Garden, 1 Chodźki Street, 20-093 Lublin, Poland.
| | - Grażyna Zgórka
- Medical University of Lublin, Department of Pharmacognosy with the Medicinal Plant Garden, 1 Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
28
|
Zhu Q, Sun P, Zhang B, Kong L, Xiao C, Song Z. Progress on Gut Health Maintenance and Antibiotic Alternatives in Broiler Chicken Production. Front Nutr 2021; 8:692839. [PMID: 34869510 PMCID: PMC8636040 DOI: 10.3389/fnut.2021.692839] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/15/2021] [Indexed: 01/10/2023] Open
Abstract
The perturbation of gut health is a common yet unresolved problem in broiler chicken production. Antibiotics used as growth promoters have remarkably improved the broiler production industry with high feed conversion efficiency and reduced intestinal problems. However, the misuse of antibiotics has also led to the increase in the development of antibiotic resistance and antibiotic residues in the meat. Many countries have enacted laws prohibiting the use of antibiotics in livestock production because of the increasing concerns from the consumers and the public. Consequently, one of the most significant discussions in the poultry industry is currently antibiotic-free livestock production. However, the biggest challenge in animal husbandry globally is the complete removal of antibiotics. The necessity to venture into antibiotic-free production has led researchers to look for alternatives to antibiotics in broiler chicken production. Many strategies can be used to replace the use of antibiotics in broiler farming. In recent years, many studies have been conducted to identify functional feed additives with similar beneficial effects as antibiotic growth promoters. Attention has been focused on prebiotics, probiotics, organic acids, emulsifiers, enzymes, essential oils, tributyrin, and medium-chain fatty acids. In this review, we focused on recent discoveries on gut health maintenance through the use of these functional feed additives as alternatives to antibiotics in the past 10 years to provide novel insights into the design of antibiotic-free feeds.
Collapse
Affiliation(s)
- Qidong Zhu
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Peng Sun
- Department of Nutrition Technology, Shandong Hekangyuan Cooperation, Jinan, China
| | - Bingkun Zhang
- Department of Animal Science, China Agricultural University, Beijing, China
| | - LingLian Kong
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Chuanpi Xiao
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
29
|
Tranquilino-Rodríguez E, Martínez-Flores HE, Rodiles-López JO, Martínez-Avila GC. Effect of two dehydration processes on extracts from Opuntia atropes and characterization of polyphenolic compounds by ultra high-resolution liquid chromatograph coupled with mass spectrometry. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1995505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Eunice Tranquilino-Rodríguez
- Programa Institucional de Doctorado en Ciencias Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - Héctor E. Martínez-Flores
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - José O. Rodiles-López
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - Guillermo C.G. Martínez-Avila
- School of Agronomy, Laboratory of Chemistry and Biochemistry, Autonomus University of Nuevo León, General Escobedo, México
| |
Collapse
|
30
|
He C, Wu H, Lv Y, You H, Zha L, Li Q, Huang Y, Tian J, Chen Q, Shen Y, Xiong S, Xue F. Gastrointestinal Development and Microbiota Responses of Geese to Honeycomb Flavonoids Supplementation. Front Vet Sci 2021; 8:739237. [PMID: 34733903 PMCID: PMC8558617 DOI: 10.3389/fvets.2021.739237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Geese are conventionally considered to be herbivorous, which could also be raised with concentrate feeding diets without green grass because of the similar gastrointestinal tract with other poultry. However, the geese gut microbiota profiles and their interactions with epithelial cells are still of limited study. Flavonoids were well-documented to shape gut microbiota and promote epithelial barrier functions individually or cooperatively with other metabolites. Therefore, in the present study, honeycomb flavonoids (HF) were supplemented to investigate the effects on growth performances, intestinal development, and gut microbiome of geese. Material and Methods: A total of 400 1-day-old male lion-head geese with similar birth weight (82.6 ± 1.4 g) were randomly divided into five treatments: the control treatment (CON) and the HF supplementation treatments, HF was supplemented arithmetically to increase from 0.25 to 1%. Growth performance, carcass performances, and intestines' development parameters were measured to determine the optimum supplement. Junction proteins including ZO-1 and ZO-2 and cecal microbiota were investigated to demonstrate the regulatory effects of HF on both microbiota and intestinal epithelium. Results: Results showed that 0.5% of HF supplement had superior growth performance, carcass performance, and the total parameters of gastrointestinal development to other treatments. Further research showed that tight junction proteins including ZO-1 and ZO-2 significantly up-regulated, while Firmicutes and some probiotics including Clostridiales, Streptococcus, Lachnoclostridium, and Bifidobacterium, remarkably proliferated after HF supplement. In conclusion, HF supplement in concentrate-diet feeding geese effectively increased the growth performances by regulating the gut microbiota to increase the probiotic abundance to promote the nutrient digestibility and fortify the epithelial development and barrier functions to facilitate the nutrient absorption and utilization.
Collapse
Affiliation(s)
- Chenxin He
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Huadong Wu
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Yaning Lv
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Hongnan You
- School of Foreign Language, Jiangxi Agricultural University, Nanchang, China
| | - Liqing Zha
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Qin Li
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Yani Huang
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Jinghong Tian
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Qiuchun Chen
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Yiwen Shen
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Shiyuan Xiong
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China
| | - Fuguang Xue
- Nanchang Key Laboratory of Animal Health and Safety Production, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
31
|
Kim SB, Assefa F, Lee SJ, Park EK, Kim SS. Combined effects of soy isoflavone and lecithin on bone loss in ovariectomized mice. Nutr Res Pract 2021; 15:541-554. [PMID: 34603603 PMCID: PMC8446686 DOI: 10.4162/nrp.2021.15.5.541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/11/2020] [Accepted: 02/15/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND/OBJECTIVES Isoflavones (ISFs) are effective in preventing bone loss, but not effective enough to prevent osteoporosis. Mixtures of soy ISF and lecithin (LCT) were prepared and characterized in an attempt to improve the bone loss. MATERIALS/METHODS The daidzein (DZ) and genistein (GN) solubility in soy ISF were measured using liquid chromatography-mass spectrometry. The change in the crystalline characteristics of soy ISF in LCT was evaluated using X-ray diffraction analysis. Pharmacokinetic studies were conducted to evaluate and compare ISF bioavailability. Animal studies with ovariectomized (OVX) mice were carried out to estimate the effects on bone loss. The Student's t-test was used to evaluate statistical significance. RESULTS The solubility of DZ and GN in LCT was 125.6 and 9.7 mg/L, respectively, which were approximately 25 and 7 times higher, respectively, than those in water. The bioavailability determined by the area under the curve of DZ for the oral administration (400 mg/kg) of soy ISF alone and the soy ISF-LCT mixture was 13.19 and 16.09 µg·h/mL, respectively. The bone mineral density of OVX mice given soy ISF-LCT mixtures at ISF doses of 60 and 100 mg/kg daily was 0.189 ± 0.020 and 0.194 ± 0.010 g/mm3, respectively, whereas that of mice given 100 mg/kg soy ISF was 0.172 ± 0.028 g/mm3. The number of osteoclasts per bone perimeter was reduced by the simultaneous administration of soy ISF and LCT. CONCLUSIONS The effect of preventing bone loss and osteoclast formation by ingesting soy ISF and LCT at the same time was superior to soy ISF alone as the bioavailability of ISF may have been improved by the emulsification and solvation of LCT. These results suggest the possibility of using the combination of soy ISF and LCT to prevent osteoporosis.
Collapse
Affiliation(s)
| | - Freshet Assefa
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Su Jeong Lee
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | | |
Collapse
|
32
|
Sun B, Hou L, Yang Y. Effects of Adding Eubiotic Lignocellulose on the Growth Performance, Laying Performance, Gut Microbiota, and Short-Chain Fatty Acids of Two Breeds of Hens. Front Vet Sci 2021; 8:668003. [PMID: 34589531 PMCID: PMC8473647 DOI: 10.3389/fvets.2021.668003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/29/2021] [Indexed: 01/12/2023] Open
Abstract
Eubiotic lignocellulose is a new and useful dietary fiber source for chickens. However, few studies have been undertaken on the impacts of its use as a supplement in different chicken breeds. In this experiment, 108 Chinese native breed Bian hens (BH) and 108 commercial breed ISA Brown hens (IBH) were chosen. They were randomly divided into three groups, and 0, 2, or 4% eubiotic lignocellulose was added to their feed during the growing periods (9-20 weeks), respectively. We aimed to observe the impacts of adding eubiotic lignocellulose on the growth and laying performance, gut microbiota, and short-chain fatty acid (SCFA) of two breeds of hens. In this study, the addition of eubiotic lignocellulose had no significant effect on the growth performance and gut microbial diversity in the two breeds of chickens (P > 0.05). Compared with the control group, adding 4% eubiotic lignocellulose significantly increased the cecum weight, laying performance (P < 0.05), but had no significant effect on the SCFA of BH (P > 0.05); however, adding 4% significantly inhibited the intestinal development, laying performance, butyrate concentration, and SCFA content of IBH (P < 0.05). Moreover, the relative abundances of the fiber-degrading bacteria Alloprevotella and butyrate-producing bacteria Fusobacterium in the 4% group of BH were significantly higher than those in the 4% group of IBH (P < 0.05), resulting in the concentration of butyrate was significantly higher than those in it (P < 0.05). Combining these results suggests that the tolerance of BH to a high level of eubiotic lignocellulose is greater than that of IBH and adding 2-4% eubiotic lignocellulose is appropriate for BH, while 0-2% eubiotic lignocellulose is appropriate for IBH.
Collapse
Affiliation(s)
- Baosheng Sun
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China.,Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Linyue Hou
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China.,Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, China
| | - Yu Yang
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
33
|
Langa S, Landete JM. Strategies to achieve significant physiological concentrations of bioactive phytoestrogens in plasma. Crit Rev Food Sci Nutr 2021; 63:2203-2215. [PMID: 34470513 DOI: 10.1080/10408398.2021.1971946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The benefits to health attributed to the intake of phytoestrogens (PEs) have been demonstrated in previous studies with significant physiological concentrations of bioactive PEs, such as genistein, equol, enterolignans and urolithins in plasma. However, the achievement of high bioactive PE levels in plasma is restricted to a select population group, mainly due to the low intake of plant PEs and/or the absence, or inhibition, of the microbiota capable of producing these bioactive forms. In this study, the intake of plant PEs, the concentration of bioactive PEs in plasma, the ability of the intestinal microbiota to produce bioactive PEs, as well as the different mechanisms used by GRAS bacteria to increase the level of bioactive PEs were evaluated concluding that the use of GRAS bacteria bioactive PE producers and the development of fermented foods enriched in bioactive PEs in addition to a high intake of plant PEs and taking care of the intestinal microbiota, are some of the different strategies to achieve significant physiological concentrations of bioactive PEs in the intestine and, subsequently, in plasma and targets organs which are essential to improve menopausal symptoms or reduce the risk of some pathologies such as breast and colon cancer, or cardiovascular disease.
Collapse
Affiliation(s)
- Susana Langa
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - José M Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
34
|
López-Ríos L, Barber MA, Wiebe J, Machín RP, Vega-Morales T, Chirino R. Influence of a new botanical combination on quality of life in menopausal Spanish women: Results of a randomized, placebo-controlled pilot study. PLoS One 2021; 16:e0255015. [PMID: 34288973 PMCID: PMC8294509 DOI: 10.1371/journal.pone.0255015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 06/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This study was designed to evaluate the beneficial effects of a botanical extract combination containing soy isoflavone extract (100mg), Aframomum melegueta seed dry extract (50 mg), and Punica granatum skin dry extract (100mg) on health-related Quality of Life in healthy Spanish menopausal women with hot flashes, anxiety, and depressive symptoms using the validated Cervantes Scale. METHODS AND RESULTS Fifty-seven outpatient women (45-65 years) with menstrual problems associated with climacteric syndrome were enrolled from April 2018 to April 2019 in the context of a prospective, placebo-controlled, double-blind study. Women were randomized to receive treatment with either the botanical combination (250 mg daily divided into two doses) or placebo for eight weeks. At the beginning and end of the study, health-related Quality of Life was assessed using the Cervantes Scale. Subjects treated with the botanical extract, compared to subjects in the placebo group, showed a significant improvement in the Global health-related Quality of Life score (38% [11.3-50.0]% vs. 18.8% [0-37.7]%; P = 0.04) on the Cervantes Scale and, specifically, in the menopause and health domain (13.6% [0-45.4]% vs. 40.7% [20.6-61.0]%; P = 0.05). By contrast, there were no significant changes in the psychic, sexuality, and couple relationship related domains of the Cervantes Scale. Patients who concluded the study did not report substantial side effects. CONCLUSION Short-term intake of the botanical combination improved the Global Quality of Life of climateric women, according to the Cervantes Scale. Since this is a pilot trial, results should be analysed with caution. TRIAL REGISTRATION NCT04381026; ClinicalTrial.gov (retrospectively registered).
Collapse
Affiliation(s)
- Laura López-Ríos
- Department of Research, Development and Innovation, Nektium Pharma SL, Agüimes, Las Palmas, Spain
| | - Miguel A. Barber
- Gynecological Division, Baren Clinic, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Julia Wiebe
- Department of Research, Development and Innovation, Nektium Pharma SL, Agüimes, Las Palmas, Spain
| | - Rubén P. Machín
- Department of Research, Development and Innovation, Nektium Pharma SL, Agüimes, Las Palmas, Spain
| | - Tanausú Vega-Morales
- Department of Research, Development and Innovation, Nektium Pharma SL, Agüimes, Las Palmas, Spain
| | - Ricardo Chirino
- Department of Biochemistry, Molecular Biology, Physiology, Genetics and Immunology, Universidad de las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
35
|
Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants (Basel) 2021; 10:antiox10071064. [PMID: 34209224 PMCID: PMC8301030 DOI: 10.3390/antiox10071064] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Soybeans are rich in proteins and lipids and have become a staple part of the human diet. Besides their nutritional excellence, they have also been shown to contain various functional components, including isoflavones, and have consequently received increasing attention as a functional food item. Isoflavones are structurally similar to 17-β-estradiol and bind to estrogen receptors (ERα and ERβ). The estrogenic activity of isoflavones ranges from a hundredth to a thousandth of that of estrogen itself. Isoflavones play a role in regulating the effects of estrogen in the human body, depending on the situation. Thus, when estrogen is insufficient, isoflavones perform the functions of estrogen, and when estrogen is excessive, isoflavones block the estrogen receptors to which estrogen binds, thus acting as an estrogen antagonist. In particular, estrogen antagonistic activity is important in the breast, endometrium, and prostate, and such antagonistic activity suppresses cancer occurrence. Genistein, an isoflavone, has cancer-suppressing effects on estrogen receptor-positive (ER+) cancers, including breast cancer. It suppresses the function of enzymes such as tyrosine protein kinase, mitogen-activated kinase, and DNA polymerase II, thus inhibiting cell proliferation and inducing apoptosis. Genistein is the most biologically active and potent isoflavone candidate for cancer prevention. Furthermore, among the various physiological functions of isoflavones, they are best known for their antioxidant activities. S-Equol, a metabolite of genistein and daidzein, has strong antioxidative effects; however, the ability to metabolize daidzein into S-equol varies based on racial and individual differences. The antioxidant activity of isoflavones may be effective in preventing dementia by inhibiting the phosphorylation of Alzheimer's-related tau proteins. Genistein also reduces allergic responses by limiting the expression of mast cell IgE receptors, which are involved in allergic responses. In addition, they have been known to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. Further, it also has positive effects on menstrual irregularity in non-menopausal women and relieving menopausal symptoms in middle-aged women. Recently, soybean consumption has shown steep increasing trend in Western countries where the intake was previously only 1/20-1/50 of that in Asian countries. In this review, I have dealt with the latest research trends that have shown substantial interest in the biological efficacy of isoflavones in humans and plants, and their related mechanisms.
Collapse
|
36
|
Sleiman HK, de Oliveira JM, Langoni de Freitas GB. Isoflavones alter male and female fertility in different development windows. Biomed Pharmacother 2021; 140:111448. [PMID: 34130202 DOI: 10.1016/j.biopha.2021.111448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Isoflavones are a group of secondary metabolites found in plants belonging to the class of phytoestrogens. These, because they have a chemical structure similar to the endogenous hormone 17β-estradiol, act as endocrine disruptors over the different development window periods. This study aimed to evaluate male and female reproductive systems' responses when exposed to isoflavones during the development window. It is characterized as a bibliographic review, built after analyzing clinical and preclinical articles indexed in English, Portuguese, and Spanish published in the last ten years. The isoflavones, aglycone or glucosides, have essential therapeutic properties in the relief of postmenopausal symptoms in women, reduce the proliferation of cancers, in addition to being antioxidants. On the other hand, they can still behave in a similar way to 17β-estradiol, binding to hormone receptors and acting as endocrine disruptors over the gestational period until pre-puberty, negatively affecting the development of the reproductive system. The effects on reproduction are not dose-response but are influenced by the type of isoflavone and period. There are variations in the serum concentration of hormones and action on their negative feedback on the hypothalamic-pituitary-testicular axis in males. Reproductive functions are also affected by spermatogenesis, such as decreased sperm count, lower reproductive performance, reduced litter size, low sperm production, and reduced seminal vesicle size. In females, puberty is reached later, irregular estrous cycle, reduced weight of the ovary, uterus, lower serum levels of estradiol and progesterone, reduced fertility, or interrupted fertility. At the end of the analysis of the selected publications, it can be concluded that despite the beneficial therapeutic effects in the face of pathologies, the unknown consumption of doses and types of isoflavones in food can damage the development and reproduction of individuals. Therefore, further studies must be carried out to elucidate the usual safe doses of the analyzed phytoestrogen. Greater control over insertion in foods targeted at pediatric consumers should be implemented until we have adequate safety.
Collapse
Affiliation(s)
| | - Jeane Maria de Oliveira
- Laboratory of Medicinal Chemistry and Biotechnology (LaQuiMB), Department of Biochemistry and Pharmacology, Federal University of Piauí, Piauí, Brazil
| | - Guilherme Barroso Langoni de Freitas
- Department of Pharmacy, State University of Centro-Oeste, Parana, Brazil; Program in Biotechnology in Human and Animal Health - (PPGBiotec), State University of Ceará, Ceará, Brazil.
| |
Collapse
|
37
|
Oliveira FRK, Gustavo AFSE, Gonçalves RB, Bolfi F, Mendes AL, Nunes-Nogueira VDS. Association between a soy-based infant diet and the onset of puberty: A systematic review and meta-analysis. PLoS One 2021; 16:e0251241. [PMID: 34003856 PMCID: PMC8130953 DOI: 10.1371/journal.pone.0251241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
The objective of this systematic review was to evaluate the association between a soy-based infant diet and the onset of puberty. We included studies in which children were fed a soy-based diet, and we compared them with those who were not. The primary outcomes were the onset of puberty in girls (thelarche, pubarche, and menarche age), boys (pubarche, voice change, testicular and penis enlargement age), and both (risk of delayed and precocious puberty [PP]). Search strategies were performed in PubMed, Embase, LILACS, and CENTRAL databases. Two reviewers selected eligible studies, assessed the risk of bias, and extracted data from the included studies. The odds ratio (OR) and mean difference (MD) were calculated with a 95% confidence interval (CI) as a measure of the association between soy consumption and outcomes. We used a random-effects model to pool results across studies and the Grading of Recommendations Assessment, Development, and Evaluation to evaluate the certainty of evidence. We included eight studies in which 598 children consumed a soy-based diet but 2957 did not. The primary outcomes that could be plotted in the meta-analysis were the risk of PP and age at menarche. There was no statistical difference between groups for PP (OR: 0.51, 95% CI: 0.09 to 2.94, 3 studies, 206 participants, low certainty of evidence). No between-group difference was observed in menarche age (MD 0.14 years, 95% CI -0.16 to 0.45, 3 studies, 605 children, low certainty of evidence). One study presented this outcome in terms of median and interquartile range, and although the onset of menarche was marginally increased in girls who received a soy-based diet, the reported age was within the normal age range for menarche. We did not find any association between a soy-based infant diet and the onset of puberty in boys or girls. Trial Registration: PROSPERO registration: CRD42018088902.
Collapse
Affiliation(s)
- Flávia Ramos Kazan Oliveira
- Department of Internal Medicine, São Paulo State University (UNESP), Medical School, Botucatu, Sao Paulo, Brazil
| | - Ana Flora Silva e Gustavo
- Department of Internal Medicine, São Paulo State University (UNESP), Medical School, Botucatu, Sao Paulo, Brazil
| | - Renan Braga Gonçalves
- Department of Internal Medicine, São Paulo State University (UNESP), Medical School, Botucatu, Sao Paulo, Brazil
| | - Fernanda Bolfi
- Department of Internal Medicine, São Paulo State University (UNESP), Medical School, Botucatu, Sao Paulo, Brazil
| | - Adriana Lúcia Mendes
- Department of Internal Medicine, São Paulo State University (UNESP), Medical School, Botucatu, Sao Paulo, Brazil
| | | |
Collapse
|
38
|
Drabińska N, Ogrodowczyk A. Crossroad of Tradition and Innovation – The Application of Lactic Acid Fermentation to Increase the Nutritional and Health-Promoting Potential of Plant-Based Food Products – a Review. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/134282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
39
|
Vodnik VV, Mojić M, Stamenović U, Otoničar M, Ajdžanović V, Maksimović-Ivanić D, Mijatović S, Marković MM, Barudžija T, Filipović B, Milošević V, Šošić-Jurjević B. Development of genistein-loaded gold nanoparticles and their antitumor potential against prostate cancer cell lines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112078. [PMID: 33947570 DOI: 10.1016/j.msec.2021.112078] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 01/21/2023]
Abstract
Soy isoflavone genistein (Gen) exerts beneficial effects against prostate cancer cells in vitro and in vivo. However, its use as a chemoprevention/therapeutic agent is largely limited due to its low bioavailability. In this study we synthesized two variants of a new delivery system, genistein-gold nanoparticles conjugates Gen@AuNPs1 and Gen@AuNPs2, by an environmentally friendly method, using a dual role of Gen to reduce Au3+ and stabilize the formed AuNPs, with no additional component. The formation of Gen@AuNPs was confirmed via UV-Vis spectroscopy, FTIR, and Raman spectra measurements. The spherical shape and uniform size of Gen@AuNPs1 and Gen@AuNPs2 (10 ± 2 and 23 ± 3 nm, respectively), were determined by transmission electron microscopy. The nano-conjugates also varied in hydrodynamic diameter (65.0 ± 1.7 and 153.0 ± 2.2 nm) but had similar negative zeta potential (-35.0 ± 2.5 and -37.0 ± 1.6 mV), as measured by dynamic light scattering. The Gen loading was estimated to be 46 and 48%, for Gen@AuNPs1 and Gen@AuNPs2, respectively. The antiproliferative activities of GenAuNPs were confirmed by MTT test in vitro on three malignant prostate carcinoma cell lines (PC3, DU 145, and LNCaP), while selectivity toward malignant phenotype was confirmed using non-cancerous MRC-5 cells. Flow cytometric analysis showed that the inhibition on cell proliferation of more potent Gen@AuNPs1 nano-conjugate is comparable with the effects of free Gen. In conclusion, the obtained results, including physicochemical characterization of newly synthesized AuNPs loaded with Gen, cytotoxicity, and IC50 assessments, indicate their stability and bioactivity as an antioxidant and anti-prostate cancer agent, with low toxicity against human primary cells.
Collapse
Affiliation(s)
- Vesna V Vodnik
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia.
| | - Marija Mojić
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Una Stamenović
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Mojca Otoničar
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Vladimir Ajdžanović
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Mirjana M Marković
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Tanja Barudžija
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Branko Filipović
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Verica Milošević
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| |
Collapse
|
40
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
41
|
Dietary supplementation with daidzein and Chinese herbs, independently and combined, improves laying performance, egg quality and plasma hormone levels of post-peak laying hens. Poult Sci 2021; 100:101115. [PMID: 33975040 PMCID: PMC8131741 DOI: 10.1016/j.psj.2021.101115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
This experiment examined the separate and combined effects of daidzein (Da) and Chinese herbs (CH) on laying performance and egg quality of post-peak laying hens. Additionally, we explored potential mechanisms of action for these 2 additives by examining plasma hormone levels. After 4 wk of acclimation to caging, 60-week-old Hyline Brown hens (360) were selected and randomly divided into 4 groups with 6 replicates and 15 chickens per replicate. The following 4 dietary groups were utilized: 1) control group (basal diet); 2) Da group (basal diet + 0.03 kg/t DA); 3) CH group (basal diet +0.6 kg/t CH); 4) Da + CH group (basal diet + 0.03 kg/t Da + 0.6 kg/t CH). Data were analyzed in a completely randomized design with a 2×2 factorial arrangement of treatments. Egg production and FCR treatment averages were analyzed in the following 3 phases: wk 1-4, 5-8, and 1-8 of treatment administration. Results revealed that Da increased egg production but decreased FCR (P < 0.05) for wk 1-8 and especially during wk 5-8 (P < 0.05). CH decreased FCR in wk 1-4 and 5-8 (P < 0.05), but increased egg production only during wk 5-8 (P < 0.05). Da increased Haugh units (P < 0.05) on wk 4 and 8; CH increased Haugh units (P < 0.05) but decreased yolk ratio (P < 0.05) on wk 4 and 8. Da increased the plasma levels of T3, PROG, FSH, LH and E2 (P < 0.05); CH increased the plasma level of T3 (P < 0.05). Additionally, Da x CH interactions existed for albumen height, Haugh units, albumen ratio and the level of T3 on wk 8 (P < 0.05), indicating that the combination of Da and CH was more effective than administration of either of these dietary components independently. In conclusion, Da and CH, both independently and in combination, increase laying performance, egg quality and plasma hormones levels in post-peak laying hens. Therefore, these treatments may be able to provide prolonged economic benefits to aged laying hens.
Collapse
|
42
|
Fonseca CCND, Cezar LC, Franco PC, Simões RS, Sasso GRDS, Simões MDJ, Florencio-Silva R. Effects of soy isoflavones extract on the lipid profile and uterus in ovariectomized rats. Gynecol Endocrinol 2021; 37:177-184. [PMID: 33043731 DOI: 10.1080/09513590.2020.1832068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022] Open
Abstract
AIM Although soy isoflavones (ISO) have been shown to relief postmenopausal symptoms, it remains inconclusive whether ISO can improve lipid-profile without uterotrophic effects under estrogen-deficiency. Thus, we investigated the effects of ISO on lipid-profile and uterus of ovariectomized (Ovx) rats. MATERIALS AND METHODS Twenty-five adult rats were Ovx or Sham-operated (Sham) and assigned into five groups: Sham and Ovx groups, administered with vehicle solutions; Ovx-E, treated with 10 µg/kg of 17β-Estradiol; Ovx-ISO, treated with 200 mg/kg of ISO; Ovx-E + ISO, treated with estradiol + ISO combined. After fifty days of treatments, rats were euthanized and uterine horns were processed for histomorphometry or to collagen fibers and glycosaminoglycans evaluations. Blood samples were collected to evaluate levels of triglycerides, total cholesterol (TC) and its fractions (HDL/VLDL). Data were subjected to statistical analysis (p < .05). RESULTS Uterus weight was lower in Ovx group than the Sham and Ovx-E groups, whereas it was similar between Ovx and Ovx-ISO groups. Histomorphometry showed atrophic uterus in Ovx and Ovx-ISO groups, whereas uterotrophic effects were noticed in Ovx-E and Ovx-E + ISO groups. Collagen fibers-birefringence was higher in Sham, Ovx, and Ovx-ISO groups than in Ovx-E and Ovx-E + ISO groups. Sulfated glycosaminoglycans content was similar among Sham, Ovx, and Ovx-ISO groups, while it was higher in estrogen-treated groups; total glycosaminoglycans content was similar among groups. TC and HDL was higher in Ovx-ISO group, whereas VLDL and triglycerides levels was higher in Ovx-E + ISO group and similar among other groups. CONCLUSION Soy isoflavones at 200 mg/kg have slight beneficial effects on lipid-profile without uterotrophic effects in Ovx rats.
Collapse
Affiliation(s)
- Caio Cesar Navarrete da Fonseca
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Escola Paulista de Medicina, Universidade Federal de São Paulo - EPM/UNIFESP, São Paulo, Brasil
| | - Luana Carvalho Cezar
- Departamento de Patologia Experimental e Comparada, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brasil
| | - Paulo Celso Franco
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Escola Paulista de Medicina, Universidade Federal de São Paulo - EPM/UNIFESP, São Paulo, Brasil
| | - Ricardo Santos Simões
- Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brasil
| | - Gisela Rodrigues da Silva Sasso
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Escola Paulista de Medicina, Universidade Federal de São Paulo - EPM/UNIFESP, São Paulo, Brasil
- Departamento de Ginecologia - Escola Paulista de Medicina, Universidade Federal de São Paulo - EPM/UNIFESP, São Paulo, Brasil
| | - Manuel de Jesus Simões
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Escola Paulista de Medicina, Universidade Federal de São Paulo - EPM/UNIFESP, São Paulo, Brasil
- Departamento de Ginecologia - Escola Paulista de Medicina, Universidade Federal de São Paulo - EPM/UNIFESP, São Paulo, Brasil
| | - Rinaldo Florencio-Silva
- Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, Escola Paulista de Medicina, Universidade Federal de São Paulo - EPM/UNIFESP, São Paulo, Brasil
| |
Collapse
|
43
|
Lu R, Zheng Z, Yin Y, Jiang Z. Genistein prevents bone loss in type 2 diabetic rats induced by streptozotocin. Food Nutr Res 2021; 64:3666. [PMID: 33447176 PMCID: PMC7778425 DOI: 10.29219/fnr.v64.3666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 01/03/2023] Open
Abstract
Background Diabetic osteoporosis has become a severe public health problem in the aging societies. Genistein has been reported to play an important role in preventing and treating metabolic diseases via its anti-inflammatory, antioxidant, anti-estrogenic, and estrogen-like functions. Objective We aimed to investigate whether genistein exerts bone-protective effect on diabetic rats induced by 35 mg/kg streptozotocin (STZ) plus a 4-week high-fat diet. Design Sprague–Dawley rats were randomly divided into four groups: (1) control group, (2) type 2 diabetes mellitus (T2DM) model group, (3) T2DM with 10 mg/kg genistein, and (4) T2DM with 30 mg/kg genistein. After an 8-week treatment with genistein, the femurs, tibias, and blood were collected from all rats for further analysis. Results Genistein at 10 mg/kg showed little effect on diabetic osteoporosis, whereas genistein at 30 mg/kg significantly improved glucose and bone metabolisms compared with diabetic rats. Our results showed that 30 mg/kg genistein significantly increased bone mineral density, serum osteocalcin, and bone alkaline phosphatase. Genistein also effectively lowered fasting blood glucose, tartrate-resistant acid phosphatase 5b, tumor necrosis factor-α, interleukin-6, and numbers of adipocytes and osteoclasts. Compared with the T2DM group, protein levels of receptor activator of nuclear factor κB ligand (RANKL) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were decreased, while protein levels of osteoprotegerin (OPG), β-catenin, and runt-related transcription factor 2 (Runx-2) were increased after genistein intervention. Conclusion Genistein could effectively improve abnormal bone metabolism in STZ-induced diabetic rats; the underlying molecular mechanisms might be related to OPG/RANKL, PPAR-γ, and β-catenin/Runx-2 pathways.
Collapse
Affiliation(s)
- Rongrong Lu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zicong Zheng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yimin Yin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhuoqin Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
44
|
Dhot J, Prat V, Ferron M, Aillerie V, Erraud A, Rozec B, Waard MD, Gauthier C, Lauzier B. Implications of a Soy-Based Diet for Animal Models. Int J Mol Sci 2021; 22:E774. [PMID: 33466650 PMCID: PMC7828739 DOI: 10.3390/ijms22020774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/29/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
The use of animal models in fundamental or pre-clinical research remains an absolute requirement for understanding human pathologies and developing new drugs. In order to transpose these results into clinical practice, many parameters must be taken into account to limit bias. Attention has recently been focused on the sex, age or even strain of each animal, but the impact of diet has been largely neglected. Soy, which is commonly used in the diet in varying quantities can affect their physiology. In order to assess whether the presence of soy can impact the obtained results, we studied the impact of a soy-based diet versus a soy-free diet, on diastolic function in a rat model based on transgenic overexpression of the β3-adrenergic receptors in the endothelium and characterized by the appearance of diastolic dysfunction with age. Our results show that the onset of diastolic dysfunction is only observed in transgenic male rats fed with a soy-free diet in the long term. Our study highlights the importance of the diet's choice in the study design process, especially regarding the proportion of soy, to correctly interpret the outcome as low-cost diets are more likely to be highly concentrated in soy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Benjamin Lauzier
- Université de Nantes, CHU Nantes, CNRS, INSERM, L’institut du Thorax, F-44000 Nantes, France; (J.D.); (V.P.); (M.F.); (V.A.); (A.E.); (B.R.); (M.D.W.); (C.G.)
| |
Collapse
|
45
|
Germinated Soybean Embryo Extract Ameliorates Fatty Liver Injury in High-Fat Diet-Fed Obese Mice. Pharmaceuticals (Basel) 2020; 13:ph13110380. [PMID: 33187321 PMCID: PMC7696473 DOI: 10.3390/ph13110380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Soybean is known to have diverse beneficial effects against human diseases, including obesity and its related metabolic disorders. Germinated soybean embryos are enriched with bioactive phytochemicals and known to inhibit diet-induced obesity in mice, but their effect on non-alcoholic fatty liver disease (NAFLD) remains unknown. Here, we germinated soybean embryos for 24 h, and their ethanolic extract (GSEE, 15 and 45 mg/kg) was administered daily to mice fed with a high-fat diet (HFD) for 10 weeks. HFD significantly increased the weight of the body, liver and adipose tissue, as well as serum lipid markers, but soyasaponin Ab-rich GSEE alleviated these changes. Hepatic injury and triglyceride accumulation in HFD-fed mice were attenuated by GSEE via decreased lipid synthesis (SREBP1c) and increased fatty acid oxidation (p-AMPKα, PPARα, PGC1α, and ACOX) and lipid export (MTTP and ApoB). HFD-induced inflammation (TNF-α, IL-6, IL-1β, CD14, F4/80, iNOS, and COX2) was normalized by GSEE in mice livers. In adipose tissue, GSEE downregulated white adipose tissue (WAT) differentiation and lipogenesis (PPARγ, C/EBPα, and FAS) and induced browning genes (PGC1α, PRDM16, CIDEA, and UCP1), which could also beneficially affect the liver via lowering adipose tissue-related circulating lipid levels. Thus, our results suggest that GSEE can prevent HFD-induced NAFLD via inhibition of hepatic inflammation and restoration of lipid metabolisms in both liver and adipose tissue.
Collapse
|
46
|
Saito H, Toyoda Y, Hirata H, Ota-Kontani A, Tsuchiya Y, Takada T, Suzuki H. Soy Isoflavone Genistein Inhibits an Axillary Osmidrosis Risk Factor ABCC11: In Vitro Screening and Fractional Approach for ABCC11-Inhibitory Activities in Plant Extracts and Dietary Flavonoids. Nutrients 2020; 12:E2452. [PMID: 32824087 PMCID: PMC7468911 DOI: 10.3390/nu12082452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Axillary osmidrosis (AO) is a common chronic skin condition characterized by unpleasant body odors emanating from the armpits, and its aetiology is not fully understood. AO can seriously impair the psychosocial well-being of the affected individuals; however, no causal therapy has been established for it other than surgical treatment. Recent studies have revealed that human ATP-binding cassette transporter C11 (ABCC11) is an AO risk factor when it is expressed in the axillary apocrine glands-the sources of the offensive odors. Hence, identifying safe ways to inhibit ABCC11 may offer a breakthrough in treating AO. We herein screened for ABCC11-inhibitory activities in 34 natural products derived from plants cultivated for human consumption using an in vitro assay system to measure the ABCC11-mediated transport of radiolabeled dehydroepiandrosterone sulfate (DHEA-S-an ABCC11 substrate). The water extract of soybean (Glycine max) was found to exhibit the strongest transport inhibition. From this extract, via a fractionation approach, we successfully isolated and identified genistein, a soy isoflavone, as a novel ABCC11 inhibitor with a half-maximal inhibitory concentration value of 61.5 μM. Furthermore, we examined the effects of other dietary flavonoids on the ABCC11-mediated DHEA-S transport to uncover the effects of these phytochemicals on ABCC11 function. While further human studies are needed, our findings here about the natural compounds will help develop a non-surgical therapy for AO.
Collapse
Affiliation(s)
- Hiroki Saito
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| | - Hiroshi Hirata
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
| | - Ami Ota-Kontani
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
| | - Youichi Tsuchiya
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| |
Collapse
|
47
|
Lazarin RA, Falcão HG, Ida EI, Berteli MN, Kurozawa LE. Rotating-Pulsed Fluidized Bed Drying of Okara: Evaluation of Process Kinetic and Nutritive Properties of Dried Product. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02500-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
The effect of a randomized 12-week soy drink intervention on everyday mood in postmenopausal women. Menopause 2020; 26:867-873. [PMID: 30889093 DOI: 10.1097/gme.0000000000001322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Dietary soy may improve menopausal symptoms, and subsequently mediate mood. This novel study examines various doses of dietary soy drink on everyday mood stability and variability in postmenopausal women. METHODS Community-dwelling women (n = 101), within 7 years postmenopause, consumed daily either a low (10 mg, n = 35), medium (35 mg, n = 37), or high (60 mg, n = 29) dose of isoflavones, for 12 weeks. Menopausal symptoms and repeated measures of everyday mood (positive [PA] and negative [NA] affect) (assessed at four time points per day for 4 consecutive days, using The Positive and Negative Affect Schedule) were completed at baseline and follow-up. RESULTS The dietary soy intervention had no effect on everyday mood stability (for PA [F{2,70} = 0.95, P = 0.390] and NA [F{2,70} = 0.72, P = 0.489]) or variability (for PA [F{2,70} = 0.21, P = 0.807] and for NA [F{2,70} = 0.15, P = 0.864]), or on menopausal symptoms (for vasomotor [F{2,89} = 2.83, P = 0.064], psychological [F{2,88} = 0.63, P = 0.535], somatic [F{2,89} = 0.32, P = 0.729], and total menopausal symptoms [F{2,86} = 0.79, P = 0.458]). There were between-group differences with the medium dose reporting higher PA (low, mean 24.2, SD 6; and medium, mean 29.7, SD 6) and the low dose reporting higher NA (P = 0. 048) (low, mean 11.6, SD 2; and high, mean 10.6, SD 1) in mood scores. Psychological (baseline M = 18 and follow-up M = 16.5) and vasomotor (baseline M = 4.2 and follow-up M = 3.6) scores declined from baseline to follow-up for the overall sample. CONCLUSIONS Soy isoflavones had no effect on mood at any of the doses tested. Future research should focus on the menopause transition from peri to postmenopause as there may be a window of vulnerability, with fluctuating hormones and increased symptoms which may affect mood.
Collapse
|
49
|
Higher dietary soy intake appears inversely related to breast cancer risk independent of estrogen receptor breast cancer phenotypes. Heliyon 2020; 6:e04228. [PMID: 32642579 PMCID: PMC7334424 DOI: 10.1016/j.heliyon.2020.e04228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/05/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022] Open
Abstract
The relationship between soy intake (SI) and breast cancer (BC) has been widely investigated with limited information on the significance of hormone receptor status of BC on the association. This study assessed the relationship between SI and BC risk in the context of oestrogen receptor (ER) status of BC. We meta-analyzed data from published studies on SI and BC after a methodical search of EMBASE, PubMed and Cochrane Library through December 2019. Summary estimates with 95% confidence intervals (CI) were presented using a random-effects model. Eighteen (5 cohorts and 13 case-control) studies, were included in this meta-analysis and SI was inversely associated with BC risk [OR (95%) for highest vs. lowest soy food intake = 0.88 (0.84-0.92), P < 0.001, I 2 = 76.1%, Egger's p-value = 0.425] among all women. The inverse relationship was stronger among premenopausal women [OR (95%) = 0.79 (0.71-0.87), P < 0.001, I 2 = 77.3%, Egger's p-value = 0.644]. In addition, SI was inversely associated with BC risk among ER-negative (-) BC women [OR (95%) = 0.71 (0.57-0.90), P = 0.013, I 2 = 72.0%, Egger's p-value = 0.355] and among ER-positive (+) BC women [OR (95%) = 0.87 (0.79-0.96), P = 0.008 I 2 = 74.6%, Egger's p-value = 0.061]. SI appears inversely associated with BC risk, with a stronger inverse association among pre-menopausal and ER-negative BC women.
Collapse
|
50
|
Berhow MA, Singh M, Bowman MJ, Price NPJ, Vaughn SF, Liu SX. Quantitative NIR determination of isoflavone and saponin content of ground soybeans. Food Chem 2020; 317:126373. [PMID: 32087514 DOI: 10.1016/j.foodchem.2020.126373] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 01/16/2023]
Abstract
Over 3200 discrete soybean samples were obtained from production locations around the United States during the years 2012-2016. Ground samples were scanned on near infrared spectrometers (NIRS) and analyzed by HPLC for total isoflavone and total saponin composition, as well as total carbohydrate composition. Multiple Linear Regression (MLR) analysis of preprocessed spectral data was used to develop optimized models to predict isoflavone content. The selection of a suitable calibration model was based on a high regression coefficient (R2), and lower standard error of calibration (SEC) values. Robust validated predictions were obtained for isoflavones, however less than robust calibrations were obtained for the total saponins. The correlations were not as robust for predicting the carbohydrate composition. NIRS is a suitable, rapid, nondestructive method to determine isoflavone composition in ground soybeans. Useful isoflavone composition predictions for large numbers of soybean samples can be obtained from quickly obtained NIRS scans.
Collapse
Affiliation(s)
- Mark A Berhow
- Functional Foods Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, United States(1).
| | - Mukti Singh
- Functional Foods Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, United States(1)
| | - Michael J Bowman
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, United States
| | - Neil P J Price
- Renewable Product Technology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, United States
| | - Steven F Vaughn
- Functional Foods Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, United States(1)
| | - Sean X Liu
- Functional Foods Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, United States(1)
| |
Collapse
|