1
|
Wang X, Wu L, Zhang W, Qiu S, Xu Z, Wan H, He J, Wang W, Wang M, Yin Q, Shi Y, Gao R, Xiang L, Yang W. Multi-omics analysis reveals promiscuous O-glycosyltransferases involved in the diversity of flavonoid glycosides in Periploca forrestii (Apocynaceae). Comput Struct Biotechnol J 2024; 23:1106-1116. [PMID: 38495554 PMCID: PMC10940802 DOI: 10.1016/j.csbj.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Flavonoid glycosides are widespread in plants, and are of great interest owing to their diverse biological activities and effectiveness in preventing chronic diseases. Periploca forrestii, a renowned medicinal plant of the Apocynaceae family, contains diverse flavonoid glycosides and is clinically used to treat rheumatoid arthritis and traumatic injuries. However, the mechanisms underlying the biosynthesis of these flavonoid glycosides have not yet been elucidated. In this study, we used widely targeted metabolomics and full-length transcriptome sequencing to identify flavonoid diversity and biosynthetic genes in P. forrestii. A total of 120 flavonoid glycosides, including 21 C-, 96 O-, and 3 C/O-glycosides, were identified and annotated. Based on 24,123 full-length coding sequences, 99 uridine diphosphate sugar-utilizing glycosyltransferases (UGTs) were identified and classified into 14 groups. Biochemical assays revealed that four UGTs exhibited O-glycosyltransferase activity toward apigenin and luteolin. Among them, PfUGT74B4 and PfUGT92A8 were highly promiscuous and exhibited multisite O-glycosylation or consecutive glycosylation activities toward various flavonoid aglycones. These four glycosyltransferases may significantly contribute to the diversity of flavonoid glycosides in P. forrestii. Our findings provide a valuable genetic resource for further studies on P. forrestii and insights into the metabolic engineering of bioactive flavonoid glycosides.
Collapse
Affiliation(s)
- Xiaotong Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China
| | - Lan Wu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wanran Zhang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhichao Xu
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China
| | - Huihua Wan
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiang He
- Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China
| | - Wenting Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mengyue Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuhua Shi
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ranran Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Xiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi 830000, China
| | - Weijun Yang
- Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China
| |
Collapse
|
2
|
Duong TKY, Nguyen NN, Nguyen NT, Tran HD, Nguyen KPP, Nguyen THT, Vo TN, Nguyen TAT. Jasminanthoside - a new pregnane-steroid from Jasminanthes tuyetanhiae. Nat Prod Res 2024; 38:3112-3117. [PMID: 37221814 DOI: 10.1080/14786419.2023.2216343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
A new pregnane steroid, jasminanthoside (1), together with three known compounds, telosmoside A7 (2), syringaresinol (3), and methyl 6-deoxy-3-O-methyl-β-D-allopyranosyl-(1→4)-β-D-oleandropyranoside (4) were isolated from the ethyl acetate extract of Jasminanthes tuyetanhiae roots collected in Vietnam. Their chemical structures were elucidated by NMR and MS spectroscopic data analysis along with the comparison of their data with the published ones in the literature. Although 4 was a known compound, its full NMR data were reported for the first time. All isolated compounds, evaluated for their α-glucosidase inhibition, showed activities stronger than the positive control acarbose. Among them, 1 was the best with the IC50 value of 7.41 ± 0.59 µM.
Collapse
Affiliation(s)
- Thi-Kim-Yen Duong
- Department of Chemistry-Biochemistry Fundamental, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Nhat-Nam Nguyen
- Department of Organic Chemistry, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ngoc-Tin Nguyen
- Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - Huu-Duy Tran
- Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - Kim-Phi-Phung Nguyen
- Department of Organic Chemistry, University of Science, Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thi-Hoai-Thu Nguyen
- Faculty of Basic Sciences, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thi-Nga Vo
- Department of Chemical Technology, Ho Chi Minh University of Technology and Education, Ho Chi Minh City, Vietnam
| | - Thi-Anh-Tuyet Nguyen
- Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Soares Ribeiro Nogueira T, Gonçalves Curcino Vieira M, Rodrigues da Silva Robaina R, Braz-Filho R, da Costa Gontijo D, Braga de Oliveira A, Curcino Vieira IJ. An update review on monoterpene indole alkaloids and biological activities of Tabernaemontana species occurring in Brazil. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117921. [PMID: 38369065 DOI: 10.1016/j.jep.2024.117921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/06/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Tabernaemontana genus belongs to the Apocynaceae family of which 30 species are found in Brazil. Some Tabernaemontana species are used by Brazilian indigenous people and other communities, or are listed in the Yanomami Pharmacopeia. Ethnopharmacological data include use(s) for muscle problems, depressed sternum, back pain, abscess, indigestion, eye irritation, earache, itching, vaginal discharge, as an aid for older people who are slow and forgetful, mosquito and snake bites, infection by the human botfly larvae, calmative, and fever. Obviously, many of these uses are attributed to the alkaloids found in Tabernaemontana species. AIM OF THE REVIEW The aim is to gather information on Tabernaemontana species occurring in Brazil, as sources of monoterpene indole alkaloids (MIAs). In addition, we aim to collect reported experimental demonstrations of their biological activity, which may provide the foundation for further studies, including phytochemistry, the development of medicinal agents, and validation of phytopreparations. MATERIAL AND METHODS The Brazilian Flora 2020 database was used as source for Tabernamontana species occurring in Brazil. The literature review on these species was collected from Web of Science, Scopus, PubMed, and Scifinder. The keywords included names and synonyms of Tabernaemontana species found in Brazil, which were validated by the Word Flora Online Plant List. RESULTS A literature survey covering the time frame from 1960 until June 2023 resulted in 121 MIAs, including 48 not yet reported in the last review published in 2016. Some alkaloid extracts, fractions, and isolated alkaloids present evidenced biological activity, such as anticancer, anti-inflammatory, antinociceptive, antimicrobial, antiparasitic, antiviral, and against snake venoms, among others. Notably, ethnopharmacological based information has been the basis of some reports on Tabernaemontana species. CONCLUSIONS Our literature survey shows that Tabernaemontana species present bioactive MIAs, such as voacamine and affinisine, demonstrating significant cytotoxicity activity against several tumoral cell lines. Those compounds can be considered promising candidates in the search for new anticancer drugs. However, the Amazonian plant biome is increasingly damaged, which may lead to the extinction of biological diversity. This threat may also affect Tabernaemontana species, which have scarcely been investigated regarding the potential of their phytochemicals for the development of new drugs.
Collapse
Affiliation(s)
- Thalya Soares Ribeiro Nogueira
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Avenida Alberto Lamego, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Milena Gonçalves Curcino Vieira
- Instituto Federal de Educação, Ciência e Tecnologia Fluminense, campus Campos-Centro, Rua Dr. Siqueira, 273, Parque Tamandaré, Campos dos Goytacazes, Rio de Janeiro, 28030-130, Brazil
| | - Renata Rodrigues da Silva Robaina
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Avenida Alberto Lamego, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - Raimundo Braz-Filho
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Avenida Alberto Lamego, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil; Universidade Federal Rural do Rio de Janeiro, Departamento de Química Orgânica, Instituto de Química, Seropédica, Rio de Janeiro, 20000-000, Brazil
| | - Douglas da Costa Gontijo
- Universidade de Brasília, Instituto de Química, Asa Norte, 70910-900, Brasília, Distrito Federal, Brazil
| | - Alaíde Braga de Oliveira
- Faculdade de Fármácia, Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
| | - Ivo José Curcino Vieira
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Avenida Alberto Lamego, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| |
Collapse
|
4
|
da Silva YC, da Silva Gomes G, Antonio ADS, Pimentel Rosado C, Pereira HMG, Kazumy de Lima Yamaguchi K, Teodoro AJ, da Veiga Júnior VF. Chemical composition and antioxidant activity of the Amazonian fruit Ambelania acida Aubl. Nat Prod Res 2024:1-5. [PMID: 38767203 DOI: 10.1080/14786419.2024.2354861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Aqueous and hydroalcoholic extracts from the pulp of Ambelania acida Aubl. (Apocynaceae) fruits were subjected to analysis through UHPLC-HRMS and antioxidant potential using the TPC, DPPH, ABTS, FRAP, and ORAC assays. A putative identification of the compounds carried out by comparison of the fragmentation spectra revealed the predominance of the monoterpene indole alkaloids tabersonine, pseudocopsinine, ajmalicine, and strictosidine. Additionally, gallic acid, caffeic acid, citric acid, 3-O-p-coumaroylquinic acid, chlorogenic acid, catechin, ellagic acid, eschweilenol C (ellagic acid deoxyhexoside), and sucrose were identified. In face of the phenolic compounds observed, hydroalcoholic extract showed a higher antioxidant activity compared to the aqueous extract, observed at TPC (108.85 mg GAE/100g), FRAP (0.73 µmol Fe2SO4/g), DPPH (1221.76 µmol TE/g), ABTS (3460.00 µmol TE/g), and ORAC assays (120.47 µmol TE/g). These findings underscore the abundant presence of bioactive compounds, including phenolics and alkaloids, in an edible Amazonian fruit.
Collapse
Affiliation(s)
- Yasmin Cunha da Silva
- Chemical Engineering Section, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Geziane da Silva Gomes
- Institute of Health and Biotechnology, Federal University of Amazonas, Coari, AM, Brazil
| | - Ananda da Silva Antonio
- Laboratory for the Support of Technological Development, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Henrique Marcelo Gualberto Pereira
- Laboratory for the Support of Technological Development, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Anderson Junger Teodoro
- Faculty of Nutrition, Fluminense Federal University Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
5
|
Silva VBD, Almeida-Bezerra JW, Novais MHG, Farias NS, Coelho JJ, Ribeiro PRV, Canuto KM, Coutinho HDM, Morais-Braga MFB, Oliveira AFMD. Chemical composition, antifungal, and anti-virulence action of the stem bark of Hancornia speciosa Gomes (Apocynaceae) against Candida spp. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117506. [PMID: 38012976 DOI: 10.1016/j.jep.2023.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hancornia speciosa Gomes is a fruit and medicinal species used for treating infectious diseases of the genitourinary system. However, its mechanism of action against microbes is still not fully understood. Infections in the genitourinary system caused by Candida spp. are associated with its fungal resistance and pathogenicity. New plant-derived compounds are an alternative to fight these Candida infections. AIM OF THE STUDY The objective of this study was to evaluate the anti-Candida effects of extracts of the stem bark of H. speciosa. This research investigated the chemical composition of sulfuric ether (EEHS) and methanolic (MEHS) extracts, their drug-modifying action on fluconazole, and their anti-virulence action on the morphological transition of Candida species. MATERIALS AND METHODS The extracts (EEHS and MEHS) of the stem bark of H. speciosa were chemically characterized via qualitative phytochemical screening and by liquid chromatography coupled with mass spectrometry (UPLC-MS-ESI-QTOF). The extracts were evaluated regarding their antifungal effects and fluconazole-modifying activity against Candida albicans, Candida krusei, and Candida tropicalis using the broth microdilution method. Additionally, the study evaluated the inhibition of fungal virulence in Candida species through morphological transition assays. RESULTS The phytochemical screening revealed the presence of anthocyanidins, anthocyanins, aurones, catechins, chalcones, flavones, flavonols, flavanones, leucoanthocyanidins, tannins (condensed and pyrogallic), and xanthones in both extracts of the stem bark of H. speciosa. The UPLC-MS-ESI-QTOF analysis identified the same compounds in both extracts, predominating phenolic compounds. Some compounds were first time recorded in this species: gluconic acid, cinchonain IIb, cinchonain Ib isomer, and lariciresinol hexoside isomers. Most of the intrinsic antifungal activity was observed for the MEHS against C. krusei (IC50: 58.41 μg/mL). At subinhibitory concentrations (MC/8), the EEHS enhanced the action of fluconazole against all Candida strains. The MEHS exhibited greater efficacy than fluconazole inhibiting C. krusei growth. The EEHS completely inhibited hyphae appearance and reduced pseudohyphae formation in C. albicans. CONCLUSION The stem bark of H. speciosa is a rich source of bioactive compounds, especially phenolic. Phenolic compounds can have important roles in fighting infectious diseases of the genitourinary system, such as candidiasis. The extracts of H. speciosa improved the action of the drug fluconazole against Candida species, inhibited hyphae appearance, and reduced pseudohyphae formation. The results of this study can support the development of new therapeutics against resistant strains of Candida.
Collapse
Affiliation(s)
- Viviane Bezerra da Silva
- Department of Botany, Universidade Federal de Pernambuco - UFPE, Rua Professor Moraes Rego, s/n, Recife, Pernambuco, 50.670-901, Brazil.
| | - José Weverton Almeida-Bezerra
- Department of Botany, Universidade Federal de Pernambuco - UFPE, Rua Professor Moraes Rego, s/n, Recife, Pernambuco, 50.670-901, Brazil
| | - Maria Hellena Garcia Novais
- Department of Biological Sciences, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Naiza Saraiva Farias
- Department of Biological Sciences, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Janerson José Coelho
- Animal Science Department, Universidade Estadual do Maranhão - UEMA, São Luís, Maranhão, Brazil
| | - Paulo Riceli Vasconcelos Ribeiro
- Multi-User Natural Products Chemistry Laboratory - LMQPN, Embrapa Agroindustria Tropical, Rua Dra. Sara Mesquita, 2270, Fortaleza, Ceará, 60511-110, Brazil
| | - Kirley Marques Canuto
- Multi-User Natural Products Chemistry Laboratory - LMQPN, Embrapa Agroindustria Tropical, Rua Dra. Sara Mesquita, 2270, Fortaleza, Ceará, 60511-110, Brazil
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | | | | |
Collapse
|
6
|
Al-Otibi F. The Antifungal Activities of Silver Nano-Aggregates Biosynthesized from the Aqueous Extract and the Alkaline Aqueous Fraction of Rhazya stricta against Some Fusarium Species. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:88. [PMID: 38202544 PMCID: PMC10780319 DOI: 10.3390/nano14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Rhazya stricta is a major medicinal species used in indigenous medicinal herbal medications in South Asia, the Middle East, Iran, and Iraq to treat a variety of ailments. The current study aimed to investigate the antifungal properties of biosynthesized silver nanoparticles (AgNPs) made from R. stricta aqueous extract and its alkaline aqueous fraction. Fourier transform infrared spectroscopy (FTIR), UV-vis spectrophotometry, dynamic light scattering (DLS), and transmitted electron microscopy (TEM) were used to characterize AgNPs. The produced extracts and AgNPs were tested for their antifungal efficacy against four Fusarium spp. All of the characterization experiments proved the biosynthesis of targeted AgNPs. FTIR showed a wide distribution of hydroxyl, amino, carboxyl, and alkyl functional groups among all preparations. The DLS results showed that the produced Aq-AgNPs and the Alk-AgNPs had an average size of 95.9 nm and 54.04 nm, respectively. On the other hand, TEM results showed that the Aq-AgNPs and Alk-AgNPs had average diameters ranging from 21 to 90 nm and 7.25 to 25.32 nm. Both AgNPs absorbed UV light on average at 405 nm and 415 nm, respectively. Regarding the fungicidal activity, the highest doses of Aq-extract and Aq-AgNPs inhibited the mycelial growth of F. incarnatum (19.8%, 87.5%), F. solani (28.1%, 72.3%), F. proliferatum (37.5%, 75%), and F. verticillioides (27.1%, 62.5%), respectively (p < 0.001). Interestingly, the Alk-fraction had stronger inhibition than the biosynthesized AgNPs, which resulted in complete inhibition at the doses of 10% and 20% (p < 0.001). Furthermore, microscopic analysis demonstrated that both AgNPs caused obvious morphological alterations in the treated organisms when compared to the control. In conclusion, R. stricta's Aq-extract, alkaline fraction, and their biosynthesized AgNPs show substantial antifungal efficacy against several Fusarium spp. It is the first study to highlight the prospective biological activities of R. stricta Aq-extract and its alkaline fraction against F. incarnatum, F. proliferatum, and F. verticillioides. In addition, it is the first opportunity to deeply investigate the ultrastructural changes induced in the Fusarium species treated with R. stricta crude Aq-extract and its biosynthesized AgNPs. More studies are required to investigate their biological effect against other Fusarium or fungal species.
Collapse
Affiliation(s)
- Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
7
|
El-Hefny M, Mohamed AA, Abdelkhalek A, Salem MZM. Productivity and Phytochemicals of Asclepias curassavica in Response to Compost and Silver Nanoparticles Application: HPLC Analysis and Antibacterial Activity of Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2274. [PMID: 37375900 DOI: 10.3390/plants12122274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
The application of compost and metallic nanoparticles has a significant impact on the productivity and chemical composition of horticulture plants. In two subsequent growing seasons, 2020 and 2021, the productivity of Asclepias curassavica L. plants treated with various concentrations of silver nanoparticles (AgNPs) and compost was assessed. In the pot experiments, the soil was amended with 25% or 50% compost, and the plants were sprayed with 10, 20, and 30 mg/L of AgNPs. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and dynamic light scattering (DLS) were used to characterize AgNPs. The TEM measurements of AgNPs showed that the particles had spherical forms and ranged in size from roughly 5 to 16 nm. Leaf methanol extracts (LMEs) were prepared from the treated plants and assayed against the growth of two soft rot bacteria, Dickeya solani and Pectobacterium atrosepticum. The maximum plant height, diameter, number of branches/plant, total fresh weight (g), total dry weight (g), and leaf area (cm2) was recorded when levels of 25% compost + AgNPs 20 mg/L, 25% compost, or 50% + AgNPs 20 mg/L, 25% compost + AgNPs 30 mg/L or 50% compost + AgNPs 20 mg/L, 50% compost + AgNPs 20 mg/L, 50% compost + AgNPs 30 or 20 mg/L, and 25% compost + AgNPs 30 mg/L, respectively, were applied. The plants treated with 25% or 50% compost + 30 mg/L AgNPs showed a high chlorophyll content, while the plants treated with 50% compost + AgNPs 30 mg/L or 20 mg/L showed the highest extract percentages. The highest inhibition zones (IZs), 2.43 and 2.2 cm, against the growth of D. solani were observed in the LMEs (4000 mg/L) extracted from the plants treated with compost (v/v) + AgNPs (mg/L) at the levels of 50% + 30 and 25% + 30, respectively. The highest IZs, 2.76 and 2.73 cm, against the growth of P. atrosepticum were observed in the LMEs (4000 mg/L) extracted from the plants treated at the levels of 50% + 30 and 25% + 30, respectively. Several phenolic compounds such as syringic acid, p-coumaric acid, chlorogenic acid, cinnamic acid, ellagic acid, caffeic acid, benzoic acid, gallic acid, ferulic acid, salicylic acid, pyrogallol, and catechol, as well as flavonoid compounds such as 7-hydroxyflavone, naringin, rutin, apigenin, quercetin, kaempferol, luteolin, hesperidin, catechin, and chrysoeriol, were identified in the LMEs as analyzed by HPLC with different concentrations according to the treatment of compost + AgNPs used for the plants. In conclusion, the specific criteria that were utilized to measure the growth of A. curassavica revealed the novelty of compost and AgNPs combination treatments, particularly at a concentration of 50% compost + AgNPs 30 mg/L or 20 mg/L, which is better for the growth and phytochemical production of A. curassavica in the field.
Collapse
Affiliation(s)
- Mervat El-Hefny
- Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Abeer A Mohamed
- Plant Pathology Institute, Agricultural Research Center (ARC), Alexandria 21616, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt
| | - Mohamed Z M Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
8
|
Traditional Importance, Phytochemistry, Pharmacology, and Toxicological Attributes of the Promising Medicinal Herb Carissa spinarum L. SEPARATIONS 2023. [DOI: 10.3390/separations10030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Carissa spinarum L. (Apocynaceae), commonly known as Garna or Jungli Karonda, has a rich history of use in indigenous traditional medicinal systems owing to its tremendous medicinal and nutritional benefits. The present review aims to discuss the traditional uses, ethnopharmacology, bioactive composition, toxicity analysis, and biotechnological applications of Carissa spinarum L. (CS) to identify the gap between current applications and research conducted on this plant. We collected the literature published before December 2022 on the phytochemical composition, pharmacological properties, and biotechnological applications of CS. Literature in English from scientific databases such as Google Scholar, PubMed, ScienceDirect, Springer, and Wiley, along with books on CS, was analyzed and summarized to prepare this review. The plant taxonomy was verified using the “World Flora Online” database (http://www.worldfloraonline.org/). The in vitro and in vivo pharmacological studies on CS revealed its anthelmintic, anticonvulsant, anti-arthritic, anti-inflammatory, antimicrobial, antioxidant, antidiabetic, hepatoprotective, vasorelaxant, antihypertensive, antitumor, wound-healing, anti-venom, and antipyretic effects. Toxicological studies on CS also indicated the absence of any adverse effects even at high doses after oral administration. Although CS showed remarkable therapeutic activities against several diseases—such as diabetes, cancer, inflammation, and hepatitis B virus—there are several drawbacks in previous reports, including the lack of information on the drug dose, standards, controls, and mechanism of action of the extract or the phytocompounds responsible for its activity. Extensive research with proper in vivo or in vitro model systems is required to validate its reported activities.
Collapse
|
9
|
Rajhans S, Pandya H. Phytochemical Characterization and Antioxidant Potential of Latex Extracts of Cardiotoxic Plants - <I>Cascabela thevetia</I> (L.) Lippold and <I>Plumeria alba</I> L. Toxicol Int 2023. [DOI: 10.18311/ti/2022/v29i4/30892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
The Apocynaceae family has been noted for their traditional and conventional medicinal properties for ages. The characteristic feature of this family is the milky sap or latex that is present in almost all the species. Many of the plants belonging to this family are a rich source of important drugs and are known for their pharmacological properties. Among the pharmacological properties, the antioxidant property is one that is known to protect against many chronic diseases including heart diseases and cancer. Two plants of the family i.e., Cascabela thevetia (L.) Lippold and Plumeria alba L. have been considered in the present experiment. Globally much research work has been conducted based on the different parts of these plants but, very little data is available on the latex portion. Hence in the present study, an attempt has been made to evaluate the phytochemical constituents present in the plants. Further, the total phenolic and flavonoid content and their correlation with the antioxidant potential have been evaluated.
Collapse
|
10
|
Corrêa PG, Moura LGS, Amaral ACF, Almeida MMHD, Souza FDCDA, Aguiar JPL, Aleluia RL, Silva JRDA. Evaluation of the Amazonian fruit Ambelania acida: Chemical and nutritional studies. J Food Sci 2023; 88:757-771. [PMID: 36633002 DOI: 10.1111/1750-3841.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
Ambelania acida is native to the Amazon region, with few published studies of its fruits. We examined the proximate composition of its fruits, including minerals, fatty acids, volatile organic compounds (VOCs), as well as its antioxidant capacity. The protein contents (2.61%) of the pulp and seeds (13.6%) were higher than observed in other taxa of the family or in other tropical fruits. Peel and pulp showed high contents of potassium, calcium, and magnesium, and the potassium content in the pulp was 1125 mg/100 g. The peel had higher contents of total phenolics, tannins, and ortho-diphenols than the pulp, as well as better antioxidant activity as evidenced by 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), and Fe2+ chelating activity assays. GC-MS analyses identified 42 VOCs in the peel and pulp, with more than 90% being classified as terpenes. Eleven types of fatty acids were identified in the lipid fractions of the peel, pulp, and seeds. Linoleic acid, an essential fatty acid for humans, was the principal fatty acid in the edible portion of the fruit, therefore, evidencing its nutritionally significant profile for the fruits when considering the relationship among polyunsaturated, saturated, and monounsaturated fatty acids. The information gathered here indicates that this native fruit is a healthy food source and its cultivation and consumption should be stimulated.
Collapse
Affiliation(s)
- Pollyane Gomes Corrêa
- Chromatography Laboratory, Chemistry Department, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Ana Claudia Fernandes Amaral
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maíra Martins H de Almeida
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisca das Chagas do Amaral Souza
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, Amazonas, Brazil
| | - Jaime Paiva Lopes Aguiar
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, Amazonas, Brazil
| | - Renê Lemos Aleluia
- Laboratory of Plant Genetics and Toxicology, Department of Biological Sciences Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | | |
Collapse
|
11
|
Li S, Han LL, Huang KP, Ma YH, Guo LL, Guo Y, Ran X, Yao YG, Hao XJ, Luo R, Zhang Y. New Monoterpenoid Indole Alkaloids from Tabernaemontana crassa Inhibit β-Amyloid42 Production and Phospho-Tau (Thr217). Int J Mol Sci 2023; 24:1487. [PMID: 36675001 PMCID: PMC9862887 DOI: 10.3390/ijms24021487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Eleven monoterpenoid indole alkaloids, including three new ones, tabercrassines A-C (1-3), were isolated from the seeds of Tabernaemontana crassa. Tabercrassine A (1) is an ibogan-ibogan-type bisindole alkaloid which is formed by the polymerization of two classic ibogan-type monomers through a C3 unit aliphatic chain. Their structures were established by extensive analysis of HRESIMS, NMR, and ECD spectra. Cellular assays showed that alkaloids 1-3 all reduce Aβ42 production and inhibit phospho-tau (Thr217), a new biomarker of Alzheimer's disease [AD] associated with BACE1-, NCSTN-, GSK3β-, and CDK5-mediated pathways, suggesting these alkaloids' potential against AD.
Collapse
Affiliation(s)
- Sheng Li
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ling-Ling Han
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ke-Pu Huang
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ye-Han Ma
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ling-Li Guo
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yarong Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoqian Ran
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Jiang Hao
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Yu Zhang
- Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
12
|
Corrêa PG, Moura LGS, Amaral ACF, do Amaral Souza FDC, Aguiar JPL, Aleluia RL, de Andrade Silva JR. Chemical and nutritional characterization of Ambelania duckei (Apocynaceae) an unexplored fruit from the Amazon region. Food Res Int 2023; 163:112290. [PMID: 36596195 DOI: 10.1016/j.foodres.2022.112290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Ambelania duckei Markgr is a species of the Apocynaceae family, native to the Amazon region that is unexplored from a nutritional point of view and studied in relation to its chemical constituents. This work presents an unprecedented study of the proximate composition, lipid profile, a chromatographic analysis, and the antioxidant activity of extracts obtained from the pulp, peel and seeds of the fruit. The results showed that potassium, calcium, and magnesium stood out as the most abundant key minerals in the fruit peel and pulp, with an emphasis on the potassium present in the fruit pulp at 1750.0 mg/100 g. The peel had the highest content of total phenolics (374.86 mg/g), flavonoids (15.54 mg/g), tannins (27.45 mg/g) and O-diphenols (379.36 mg/g; 645.71 mg/g). The antioxidant activity (AA) was highest in the peel compared to the pulp in the DPPH, ABTS, and ORAC tests showing: IC50 of 29.82; 43.67; and 407.13 µg/mL, respectively but a lower activity for the Fe2+ chelator. The analysis of the lipid fractions from the peel, pulp, and seeds of the A. duckei fruit resulted in 14 types of fatty acids. The major fatty acids found in the three parts of the fruit were oleic acid (peel, 22.52 %), palmitic acid (pulp, 17.34 %), and linoleic acid (seeds, 47.99 %). The lipid profile and nutritional aspects had a PUFA/SFA ratio (0.4-1.8) in the different parts of the A. duckei fruit; the atherogenic and thrombogenic indexes were higher in the peel (1.23) and pulp (0.62), respectively. The ratio between the hypocholesterolemic and hypercholesterolemic fatty acids (0.5 - 3.8) calculated for the fruit are within the desirable range for a nutritious food. The chromatographic analysis of the volatile organic compounds (VOCs) from the peel and pulp of the fruit, identified 74 VOCs, of which 60.9 % are related to terpenes, and emit notes such as cucumber, green, fatty, floral, and mint, due to the presence of substances with OAVs > 10, especially α-ionone, 1,8-cineole, 2,4-decadienal, and dodecanal. The analysis of the MS and MS/MS spectra of the chromatograms obtained by LC- QTOF-HRMS led to the identification of 26 compounds in the peel, seeds and pulp of A. duckei, such as fatty acids, phenolic acid, flavonoids, proanthocyanidins, alkaloids, and terpenoids. The results show that the pulp of A. duckei has potential as nourishing food and the nutritional and chemical aspects of the peel can be applied to commercial applications.
Collapse
Affiliation(s)
- Pollyane Gomes Corrêa
- Chromatography Laboratory, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Ana Claudia Fernandes Amaral
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Francisca das Chagas do Amaral Souza
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, AM, Brazil
| | - Jaime Paiva Lopes Aguiar
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, AM, Brazil
| | - Renê Lemos Aleluia
- Laboratory of Plant Genetics and Toxicology, Department of Biological Sciences Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | | |
Collapse
|
13
|
Kumar S, Kumari D, Singh B. Genus Rauvolfia: A review of its ethnopharmacology, phytochemistry, quality control/quality assurance, pharmacological activities and clinical evidence. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115327. [PMID: 35504505 DOI: 10.1016/j.jep.2022.115327] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants are from the genus Rauvolfia Plum. ex L. (Apocynaceae), which is represented by 74 species with many synonyms, and distributed worldwide, especially in the Asian, and African continents. Traditionally, some of them are used for the treatment of various disorders related to the central nervous system (CNS), cardiovascular diseases (CVD), and as an antidote due to the presence of monoterpene indole alkaloids (MIAs) such as ajmaline (144), ajmalicine (164) serpentine (182), yohimbine (190) and reserpine (214). AIM The present review provides comprehensive summarization and critical analysis of the traditional to modern applications of Rauvolfia species, and the major focus was to include traditional uses, phytochemistry, quality control, pharmacological properties, as well as clinical evidence that may be useful in the drug discovery process. MATERIALS AND METHODS Information related to traditional uses, chemical constituents, separation techniques/analytical methods, and pharmacological properties of the genus Rauvolfia were obtained using electronic databases such as Web of Science, Scopus, SciFinder, PubMed, PubChem, ChemSpider, and Google Scholar between the years 1949-2021. The scientific name of the species and its synonyms were checked with the information of The Plant List. RESULTS A total of seventeen Rauvolfia species have been traditionally explored for various therapeutic applications, out of which the roots of R. serpentina and R. vomitoria are used most commonly for the treatment of many diseases. About 287 alkaloids, seven terpenoids, nine flavonoids, and four phenolic acids have been reported in different parts of the forty-three species. Quality control (QC)/quality assurance (QA) of extracts/herbal formulations of Rauvolfia species was analyzed by qualitative and quantitative methods based on the major MIAs such as compounds 144, 164, 182, 190, and 214 using HPTLC, HPLC, and HPLC-MS. The various extracts of different plant parts of thirteen Rauvolfia species are explored for their pharmacological properties such as antimicrobial, antioxidant, antiprotozoal, antitrypanosomal, antipsychotic, cardioprotective, cholinesterase inhibitory, and hepatoprotective. Of which, clinical trials of herbal formulations/extracts of R. serpentina and MIAs have been reported for CVD, CNS, antihypertensive therapy, antidiabetic effects, and psoriasis therapy, while the extracts and phytoconstituents of remaining Rauvolfia species are predominantly significant, owning them to be additional attention for further investigation under clinical trials and QC/QA. CONCLUSION The present communication has provided a comprehensive, systematic, and critically analyzed vision into the traditional uses, phytochemistry, and modern therapeutic applications of the genus Rauvolfia are validated by scientific evidence. In addition, different plant parts from this genus, especially raw and finished herbal products of the roots of R. serpentina have been demonstrated for the QC/QA.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Ma. Kanshiram Government Degree College, Ninowa, Farrukhabad, 209602, India; Chhatrapati Shahu Ji Maharaj University (CSJM) Kanpur, Kalyanpur, 208024, Uttar Pradesh, India.
| | - Diksha Kumari
- Botanic Garden Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Bikarma Singh
- Botanic Garden Division, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
14
|
Palumbo F, Draga S, Scariolo F, Gabelli G, Sacilotto GB, Gazzola M, Barcaccia G. First genomic insights into the Mandevilla genus. FRONTIERS IN PLANT SCIENCE 2022; 13:983879. [PMID: 36051302 PMCID: PMC9426028 DOI: 10.3389/fpls.2022.983879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Mandevilla (Apocynaceae) is a greatly appreciated genus in the world ornamental market. In this study, we attempted to address the poor genetic knowledge and the huge taxonomic gaps existing in this genus by analyzing a collection of 55 accessions. After cytometrically determining the triploid genome size (1,512.64 Mb) of a reference sample (variety "Mandevilla 2001"), the plastidial genome (cpDNA, 0.18 Mb) and a draft of the nuclear genome (nuDNA, 207 Mb) were assembled. While cpDNA was effective in reconstructing the phylogenesis of the Apocynaceae family based on a DNA superbarcoding approach, the nuDNA assembly length was found to be only 41% of the haploid genome size (506 Mb, predicted based on the K-mer frequency distribution). Its annotation enabled the prediction of 37,811 amino acid sequences, of which 10,562 resulted full length proteins. Among them, we identified nine proteins whose orthologs (in Catharanthus roseus) are involved in the biosynthesis of monoterpene indole alkaloids (MIAs), including catharanthine, tabersonine, and vincadifformine. The nuclear genome draft was also useful to develop a highly informative (average polymorphism information content, PIC = 0.62) set of 23 simple sequence repeat (SSR) markers that was validated on the Mandevilla collection. These results were integrated with cytometric measurements, nuclear ITS1 haplotyping and chloroplast DNA barcoding analyses to assess the origin, divergence and relationships existing among the 55 accessions object of the study. As expected, based on the scarce information available in the literature, the scenario was extremely intricate. A reasonable hypothesis is that most of the accessions represent interspecific hybrids sharing the same species as maternal parent (i.e., Mandevilla sanderi).
Collapse
Affiliation(s)
- Fabio Palumbo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padua, Italy
| | - Samela Draga
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padua, Italy
| | - Francesco Scariolo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padua, Italy
| | - Giovanni Gabelli
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padua, Italy
| | | | | | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padua, Italy
| |
Collapse
|
15
|
Aissa A, Panda SK, hu H, Kameli A, Luyten W. Phytochemical Screening, Antibacterial, Antifungal, and Anthelmintic Activity Against Plant Pathogens of two Algerian Plants: Pergularia tomentosa L. and Forsskaolea tenacissima L. from Oued Mzab (Northern Algerian Sahara). CURRENT BIOACTIVE COMPOUNDS 2022; 18. [DOI: 10.2174/1573407218666211223113527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 07/15/2023]
Abstract
Background:
Plants are an abundant natural source of potential chemical compounds;
they have been widely used in various industries, such as pharmaceuticals, cosmetics, and food.
This work aims to study two Saharan medicinal plants by evaluating the activity of plant extract
against bacterial and fungal plant pathogens as well as against the model nematode Caenorhabditis
(C.) elegans.
Methods:
The antimicrobial activity of plant extracts against plants pathogen was assessed in a 96-
well plate assay by calculating the percentage of inhibition of bacteria. The antifungal activity
against plant pathogenic fungi was evaluated by the agar diffusion method, and inhibition was calculated
by measuring the diameter of the inhibition zone. Anthelmintic activity was evaluated by
calculating the average movement of C. elegans worms. Preliminary phytochemical screening was
realized with HPTLC.
Results:
Hexane and ethyl acetate extract of Pergularia tomentosa showed broad-spectrum antimicrobial
activity. This plant has the potential to act as a broad-spectrum antibacterial biopesticide.
Hexane extract of Forsskaolea tenacissima exhibited good activity against one fungus. The extracts
of Pergularia tomentosa showed good activity against Caenorhabditis elegans, and the extracts
of Forsskaolea tenacissima exhibited a low activity. Preliminary phytochemical screening
with HPTLC shows that both plants are rich in steroids and flavonoids.
Conclusion:
Our study shows that the studied plants may possess a broad-spectrum antibacterial effect
with narrow-spectrum antifungal properties which can offer more sustainable crop protection
with a much safer environmental and human health impact. Plant extracts that inhibited C. elegans
could provide a starting point for the development of new anthelmintic drugs.
Collapse
Affiliation(s)
- Abdallah Aissa
- Laboratoire Ethnobotanique et Substances Naturelles (ESN) Département des Sciences Naturelles, ENS Kouba, Algiers,
Algeria
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59,
box 2465, 3000Leuven, Belgium
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques
(CRAPC), BP384, Bou-Ismail, RP 42004, Tipaza, Algeria
| | - Sujogya Kumar Panda
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59,
box 2465, 3000Leuven, Belgium
- Center of Environment, Climate Change and Public
Health, Utkal University, Vani Vihar, Bhubaneswar-751004, Odisha, India
| | - Haibo hu
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59,
box 2465, 3000Leuven, Belgium
- National Engineering Research Center
for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan
Medical University, Ganzhou 341000, China
| | - Abdelkrim Kameli
- Laboratoire Ethnobotanique et Substances Naturelles (ESN) Département des Sciences Naturelles, ENS Kouba, Algiers,
Algeria
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59,
box 2465, 3000Leuven, Belgium
| |
Collapse
|
16
|
Deshpande AM, Sastry KV, Bhise SB. A Contemporary Exploration of Traditional Indian Snake Envenomation Therapies. Trop Med Infect Dis 2022; 7:108. [PMID: 35736986 PMCID: PMC9227218 DOI: 10.3390/tropicalmed7060108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/31/2022] Open
Abstract
Snakebite being a quick progressing serious situation needs immediate and aggressive therapy. Snake venom antiserum is the only approved and effective treatment available, but for selected snake species only. The requirement of trained staff for administration and serum reactions make the therapy complicated. In tropical countries where snakebite incidence is high and healthcare facilities are limited, mortality and morbidities associated with snake envenomation are proportionately high. Traditional compilations of medical practitioners' personal journals have wealth of plant-based snake venom antidotes. Relatively, very few plants or their extractives have been scientifically investigated for neutralization of snake venom or its components. None of these investigations presents enough evidence to initiate clinical testing of the agents. This review focuses on curating Indian traditional snake envenomation therapies, identifying plants involved and finding relevant evidence across modern literature to neutralize snake venom components. Traditional formulations, their method of preparation and dosing have been discussed along with the investigational approach in modern research and their possible outcomes. A safe and easily administrable small molecule of plant origin that would protect or limit the spread of venom and provide valuable time for the victim to reach the healthcare centre would be a great lifesaver.
Collapse
Affiliation(s)
- Adwait M. Deshpande
- Sinhgad Institute of Pharmaceutical Sciences, 309/310, Kusgaon (BK), Lonavala 410401, India;
| | - K. Venkata Sastry
- Alliance Institute of Advanced Pharmaceutical & Health Sciences, Patel Nagar, Kukatpally, Hyderabad 500085, India;
| | - Satish B. Bhise
- Sinhgad Institute of Pharmaceutical Sciences, 309/310, Kusgaon (BK), Lonavala 410401, India;
- Arogyalabh Foundation, Bibvewadi, Pune 411037, India
| |
Collapse
|
17
|
Kumar P, Bhushan A, Gupta P, Gairola S. Comparative morpho-anatomical standardization and chemical profiling of root drugs for distinction of fourteen species of family Apocynaceae. BOTANICAL STUDIES 2022; 63:12. [PMID: 35467168 PMCID: PMC9038984 DOI: 10.1186/s40529-022-00342-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The root drugs of the family Apocynaceae are medicinally important and used in Indian Systems of Medicine (ISM). There is often a problem of misidentification and adulteration of genuine samples with other samples in the market trade. Keeping in view the adulteration problem of raw drug material, comparative macroscopic and microscopic (qualitative and quantitative) characterisation and chemical analysis (TLC and LC-MS profiling) of a total of 14 economically important root drugs of family Apocynaceae were done for practical and rapid identification. A total of 33 qualitative botanical characteristics of root samples were subjected to Principal Component Analysis (PCA) and Cluster analysis to identify taxonomically significant characteristics in the distinction of root drug samples at the species level. RESULTS Comparative qualitative and quantitative data on morphological, macroscopic, and microscopic characters were generated for the studied 14 species. Despite the similarity in some root characters, a combined study involving the surface, anatomical, and powder features helped distinguish root samples at the species level. The relative relationship between selected species was represented as clustering or grouping in the dendrogram. PCA analysis determined significant characters leading to species grouping and identification. Results showed that clustering of xylem vessels in cross-section, pore size, and distribution in the cut root, the shape of starch grains, the thickness of cork zone were among the most notable characters in species distinction. Chemical profiling revealed unique fingerprints and content of chemical compounds, which were significant in identification of root drug samples. CONCLUSIONS The comparative botanical standards and chemical profiles developed in the present study can be used as future reference standards for the quick, easy, and correct identification of root drug samples to be used in the herbal drug industry. Further, the identified significant microscopic characters have the potential for taxonomic studies in species delimitation.
Collapse
Affiliation(s)
- Pankaj Kumar
- Plant Sciences & Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Anil Bhushan
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Prasoon Gupta
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Sumeet Gairola
- Plant Sciences & Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
18
|
Narayanankutty A, Kunnath K, Jose B, Ramesh V, Rajagopal R, Alfarhan A, Al-Ansari A. Analysis of the chemical composition of root essential oil from Indian sarsaparilla ( Hemidesmus indicus) and its application as an ecofriendly insecticide and pharmacological agent. Saudi J Biol Sci 2021; 28:7248-7252. [PMID: 34867028 PMCID: PMC8626244 DOI: 10.1016/j.sjbs.2021.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/30/2022] Open
Abstract
The Indian sarsaparilla (Hemidesmus indicus) is a commonly used plant in Indian traditional medicine of Ayurveda for the preparation of various non-alcoholic beverages. However, limited studies are available on the essential oil of H. indicus roots (HRO); therefore, the study evaluated the antioxidant, anti-inflammatory and antidiabetic activities of H. indicus root essential oil as well as insecticide potential against the common pests of stored food materials (Sitophilus oryzae, Callosobruchus maculatus and Tribolium castaneum). The repellant efficacy of HRO was found to be high against S. oryzae (8.21 ± 0.55 μg/mL). Likewise, the fumigant potential was also observed for HRO against these pests; the higher activities were observed against S. oryzae and C. maculatus (32.46 ± 1.42 and 35.18 ± 1.62 μg/L). Besides, the essential oil was also found to be active as a contact poison, however, against all the three pests, the toxicity was above 100 μg/mm3, being the highest against C. maculatus (122.8 ± 3.57 μg/mm3). To analyze the possible effect of the essential oil on grains, the different grains were allowed to germinate and compared to that of normal; thus, the non-toxic nature of HRO against the stored products is also confirmed. The essential oil shown to have DPPH hydrogen peroxide and ABTS radical scavenging, nitric oxide scavenging potential, and inhibition of lipoxgenase, alpha-amylase and alpha-glucosidase. Overall, the present study concludes that the H. indicus may be a suitable repellant and fumigant agent against different pests of stored products and a possible antioxidant, anti-inflammatory, and anti-diabetic agent.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Kerala, India
| | | | - Boby Jose
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Kerala, India
| | - Varsha Ramesh
- Department of Biotechnology, Deakin University, Victoria, Australia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
- Corresponding author.
| | - Abdullah Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
19
|
Albeshri A, Baeshen NA, Bouback TA, Aljaddawi AA. A Review of Rhazya stricta Decne Phytochemistry, Bioactivities, Pharmacological Activities, Toxicity, and Folkloric Medicinal Uses. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112508. [PMID: 34834871 PMCID: PMC8619226 DOI: 10.3390/plants10112508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 05/04/2023]
Abstract
The local medicinal plant Rhazya stricta Decne is reviewed for its folkloric medicinal, phytochemical, pharmacological, biological, and toxicological features. R. stricta has been used widely in different cultures for various medical disorders. The phytochemical studies performed on the R. stricta extract revealed many alkaloidal and fatty acid compounds. Moreover, several flavonoid and terpenoid compounds were also detected. Pharmacological activates of R. stricta extracts are approved to possess antimicrobial, antioxidant, anticancer, antidiabetic, and antihypertensive activities. Additionally, R. stricta extract was found to hold biological activates such as larvicidal and phytoremediation activates R. stricta extract was found to be toxic, genotoxic, and mutagenic. R. stricta contains novel phytochemical compounds that have not been investigated pharmacologically. Further research is needed through in vitro and in vivo experiments to pave the road for these compounds for medical, veterinary, and ecological uses.
Collapse
Affiliation(s)
- Abdulaziz Albeshri
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (N.A.B.); (T.A.B.); (A.A.A.)
- Correspondence:
| | - Nabih A. Baeshen
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (N.A.B.); (T.A.B.); (A.A.A.)
| | - Thamer A. Bouback
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (N.A.B.); (T.A.B.); (A.A.A.)
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah A. Aljaddawi
- Department of Biological Science, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia; (N.A.B.); (T.A.B.); (A.A.A.)
| |
Collapse
|
20
|
Herrera-Calderón O, Calero-Armijos LL, Cardona-G W, Herrera-R A, Moreno G, Algarni MA, Alqarni M, El-Saber Batiha G. Phytochemical Screening of Himatanthus sucuuba (Spruce) Woodson (Apocynaceae) Latex, In Vitro Cytotoxicity and Incision Wound Repair in Mice. PLANTS 2021; 10:plants10102197. [PMID: 34686006 PMCID: PMC8541601 DOI: 10.3390/plants10102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Himatanthus sucuuba, also known as "Bellaco caspi", is a medicinal plant whose latex, stem bark, and leaves possess phenolic acids, lupeol, β-dihydro-plumbericinic acid, plumericin, and plumeride, among other components. Some of these have been linked to such biological activities as antiulcer, anti-inflammatory, and wound healing. The aim of this study was to determine the phytochemical compounds of H. sucuuba latex, as well as its in vitro cytotoxicity and wound healing effect in mice. Latex was collected in the province of Iquitos, Peru. Phytochemical analysis was carried out with UPLC-ESI-MS/MS. The cytotoxicity was evaluated on two colon tumor cell lines (SW480 and SW620) and non-malignant cells (human keratinocytes, HaCaT, and Chinese hamster ovary, CHO-K1). The mice were distributed into two groups, as follows: Group I-control (n = 10; without treatment); II-(n = 10) H. sucuuba latex; wounds were induced with a scalpel in the dorsal-cervical area and treatments were applied topically twice a day on the incision for 10 days. Molecular docking was carried out on the glycogen synthase kinase 3β protein. Twenty-four chemical compounds were determined, mainly flavonoid-type compounds. Latex did not have a cytotoxic effect on tumor cells with IC50 values of more than 500 µg/mL. The latex had a regenerative effect on wounds in mice. Acacetin-7-O-neohesperidoside had the best docking score of -9.9 kcal/mol. In conclusion, H. sucuuba latex had a wound healing effect in mice, as confirmed by histological study. However, a non-cytotoxic effect was observed on colon tumor cells SW480 and SW620.
Collapse
Affiliation(s)
- Oscar Herrera-Calderón
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 15001, Peru;
- Correspondence: ; Tel.: +51-956-550-510
| | - Lisbeth Lucia Calero-Armijos
- Department of Pharmacology, Bromatology, Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 15001, Peru;
| | - Wilson Cardona-G
- Química de Plantas Colombianas, Faculty of Exact and Natural Sciences, Institute of Chemistry, University of Antioquia (UdeA), Calle 70 No. 52–21, Medellín 1226, Colombia; (W.C.-G.); (A.H.-R.); (G.M.)
| | - Angie Herrera-R
- Química de Plantas Colombianas, Faculty of Exact and Natural Sciences, Institute of Chemistry, University of Antioquia (UdeA), Calle 70 No. 52–21, Medellín 1226, Colombia; (W.C.-G.); (A.H.-R.); (G.M.)
| | - Gustavo Moreno
- Química de Plantas Colombianas, Faculty of Exact and Natural Sciences, Institute of Chemistry, University of Antioquia (UdeA), Calle 70 No. 52–21, Medellín 1226, Colombia; (W.C.-G.); (A.H.-R.); (G.M.)
| | - Majed A. Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22515, Egypt;
| |
Collapse
|
21
|
Singh B, Nathawat S, Sharma RA. Ethnopharmacological and phytochemical attributes of Indian Tinospora species: A comprehensive review. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
22
|
Acyl Quinic Acid Derivatives Screened Out from Carissa spinarum by SOD-Affinity Ultrafiltration LC-MS and Their Antioxidative and Hepatoprotective Activities. Antioxidants (Basel) 2021; 10:antiox10081302. [PMID: 34439550 PMCID: PMC8389231 DOI: 10.3390/antiox10081302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Carissa spinarum Linn. has been utilized both in the food industry and as a traditional medicine for various ailments, while the responsible chemical components and action mechanisms of its antioxidative and hepatoprotective activities remain unclear. In this work, at least 17 quinic acid derivatives as potential ligands for the superoxide dismutase (SOD) enzyme from Carissa spinarum L. were screened out using the bio-affinity ultrafiltration with liquid chromatography mass spectrometry (UF–LC/MS), and 12 of them (1–12), including, three new ones (1–3), were further isolated by phytochemical methods and identified by high resolution electrospray ionization mass spectrometry (HR-ESI-MS) and extensive nuclear magnetic resonance (NMR) spectroscopic analysis. All of these isolated compounds were evaluated for their antioxidant activities by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) methods. As a result, compounds 4 and 6–11 displayed similar or better antioxidant activities compared to vitamin C, which is in good agreement with the bio-affinity ultrafiltration with SOD enzyme. Then, these compounds, 4 and 6–11, with better antioxidant activity were further explored to protect the L02 cells from H2O2-induced oxidative injury by reducing the reactive oxygen species (ROS) and Malondialdehyde (MDA) production and activating the SOD enzyme. To the best of our knowledge, this is the first report to use an efficient ultrafiltration approach with SOD for the rapid screening and identification of the SOD ligands directly from a complex crude extract of Carissa spinarum, and to reveal its corresponding active compounds with good antioxidative and hepatoprotective activities.
Collapse
|
23
|
Biological and Chemical Assessment of Ochrosia elliptica Labill Leaves. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-04986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Liu Y, Zhang Y, Muema FW, Kimutai F, Chen G, Guo M. Phenolic Compounds from Carissa spinarum Are Characterized by Their Antioxidant, Anti-Inflammatory and Hepatoprotective Activities. Antioxidants (Basel) 2021; 10:antiox10050652. [PMID: 33922451 PMCID: PMC8145564 DOI: 10.3390/antiox10050652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Carissa spinarum has been traditionally used for the treatment of various diseases due to its different pharmacological activities. However, the active compounds responsible for its potentially specific activities have rarely been explored. To this end, the ethyl acetate (EA) fraction was screened out and selected for further phytochemical isolation because of its promising activities in preliminary 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and COX-2 inhibition assays. As a result, 10 compounds (1−10), including a new one (5), were isolated, with eight of these being identified as phenolic compounds, as expected. Compound 9 possessed an IC50 value of 16.5 ± 1.2 µM, which was lower than that of positive control (vitamin C, 25.5 ± 0.3 µM) in the DPPH assay, and compounds 2, 6, 7 and 9 showed better total antioxidant capacity than vitamin C in the FRAP assay. Meanwhile, compounds 1−6 and 9 also had IC50 values of less than 1.0 µM, which was even better than the positive control indomethacin in the COX-2 inhibition assay. In this context, compounds 2 and 9 were further evaluated to exhibit clear hepatoprotective activities by improving the L02 cell viability and reducing ROS production using a H2O2-induced L02 cell injury model. This study provides initial evidence revealing the most potent phenolic compounds from the root bark of C. spinarum responsible for its antioxidant, anti-inflammatory and hepatoprotective activities.
Collapse
Affiliation(s)
- Ye Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongli Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Felix Wambua Muema
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Festus Kimutai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingquan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (Y.L.); (Y.Z.); (F.W.M.); (F.K.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: ; Tel.: +86-027-87700850
| |
Collapse
|
25
|
Major Bioactive Alkaloids and Biological Activities of Tabernaemontana Species (Apocynaceae). PLANTS 2021; 10:plants10020313. [PMID: 33562893 PMCID: PMC7915066 DOI: 10.3390/plants10020313] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 01/28/2023]
Abstract
Several species belonging to the genus Tabernaemontana have been well researched and utilized for their wide-ranging biological activities. A few of the most prominent species include Tabernaemontana divaricata, Tabernaemontana catharinensis, Tabernaemontana crassa, and Tabernaemontana elegans. These species and many others within the genus often display pharmacological importance, which is habitually related to their chemical constituents. The secondary metabolites within the genus have demonstrated huge medicinal potential for the treatment of infections, pain, injuries, and various diseases. Regardless of the indispensable reports and properties displayed by Tabernaemontana spp., there remains a wide variety of plants that are yet to be considered or examined. Thus, an additional inclusive study on species within this genus is essential. The current review aimed to extensively analyze, collate, and describe an updated report of the current literature related to the major alkaloidal components and biological activities of species within the genus Tabernaemontana.
Collapse
|
26
|
Lv YN, Yang CY, Shi LC, Zhang ZL, Xu AS, Zhang LX, Li XL, Li HT. Identification of medicinal plants within the Apocynaceae family using ITS2 and psbA-trnH barcodes. Chin J Nat Med 2021; 18:594-605. [PMID: 32768166 DOI: 10.1016/s1875-5364(20)30071-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Indexed: 02/02/2023]
Abstract
To ensure the safety of medications, it is vital to accurately authenticate species of the Apocynaceae family, which is rich in poisonous medicinal plants. We identified Apocynaceae species by using nuclear internal transcribed spacer 2 (ITS2) and psbA-trnH based on experimental data. The identification ability of ITS2 and psbA-trnH was assessed using specific genetic divergence, BLAST1, and neighbor-joining trees. For DNA barcoding, ITS2 and psbA-trnH regions of 122 plant samples of 31 species from 19 genera in the Apocynaceae family were amplified. The PCR amplification for ITS2 and psbA-trnH sequences was 100%. The sequencing success rates for ITS2 and psbA-trnH sequences were 81% and 61%, respectively. Additional data involved 53 sequences of the ITS2 region and 38 sequences of the psbA-trnH region were downloaded from GenBank. Moreover, the analysis showed that the inter-specific divergence of Apocynaceae species was greater than its intra-specific variations. The results indicated that, using the BLAST1 method, ITS2 showed a high identification efficiency of 97% and 100% of the samples at the species and genus levels, respectively, via BLAST1, and psbA-trnH successfully identified 95% and 100% of the samples at the species and genus levels, respectively. The barcode combination of ITS2/psbA-trnH successfully identified 98% and 100% of samples at the species and genus levels, respectively. Subsequently, the neighbor joining tree method also showed that barcode ITS2 and psbA-trnH could distinguish among the species within the Apocynaceae family. ITS2 is a core barcode and psbA-trnH is a supplementary barcode for identifying species in the Apocynaceae family. These results will help to improve DNA barcoding reference databases for herbal drugs and other herbal raw materials.
Collapse
Affiliation(s)
- Ya-Na Lv
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong 666100, China; Key Laborartory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China
| | - Chun-Yong Yang
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong 666100, China; Key Laborartory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China
| | - Lin-Chun Shi
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Zhong-Lian Zhang
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong 666100, China; Key Laborartory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China
| | - An-Shun Xu
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong 666100, China; Key Laborartory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China
| | - Li-Xia Zhang
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong 666100, China; Key Laborartory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China; Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xue-Lan Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong 666100, China; Key Laborartory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China; Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Hai-Tao Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong 666100, China; Key Laborartory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China; Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
27
|
Dey P. The pharmaco-toxicological conundrum of oleander: Potential role of gut microbiome. Biomed Pharmacother 2020; 129:110422. [DOI: 10.1016/j.biopha.2020.110422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 02/08/2023] Open
|
28
|
Santos CLG, Angolini CFF, Neves KOG, Costa EV, de Souza ADL, Pinheiro MLB, Koolen HHF, da Silva FMA. Molecular networking-based dereplication of strictosidine-derived monoterpene indole alkaloids from the curare ingredient Strychnos peckii. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 3:e8683. [PMID: 31783430 DOI: 10.1002/rcm.8683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Monoterpene indole alkaloids (MIAs) are a large group of biologically active compounds produced by hundreds of plant species in numerous plant families, such as Apocynaceae, Loganiaceae and Rubiaceae. Although this diversity is biosynthetically intermediated by strictosidine, there are no works focused on the fragmentation patterns under collision-induced dissociation of strictosidine-derived alkaloids. METHODS Initially, the alkaloid fingerprint of Strychnos peckii was established using leaf spray with tandem mass spectrometry (LS-MS/MS). Then, high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC/MS/MS) analyses were carried out to focus on the patterns of neutral losses in product ion scan experiments with the leaf aqueous extract. Finally, the product ion spectra from a set of presumable strictosidine-type derivatives were analyzed and organized via molecular networking (MN), and dereplicated by manual interpretation of MS/MS spectra. RESULTS LS-MS/MS allowed the tentative identification of strictosidine-derived alkaloids in the leaves of S. peckii, showing useful neutral losses for the dereplication of strictosidine analogues by HPLC/MS/MS experiments. The use of MN combined with manual interpretation of the fragmentation patterns highlighted characteristic fragmentation pathways, and allowed the tentative identification of strictosidine, desoxycordifoline, strictosidinic acid, 10-hydroxystrictosidine, 5-carboxystrictosidine, lyaloside, 3,4-dehydrostrictosidine and strictosidine lactam. CONCLUSIONS The use of MN combined with the analysis of the fragmentation patterns proved to be a useful strategy for the dereplication of strictosidine-derived MIAs from S. peckii, highlighting known and unprecedented structures, as well as useful diagnostic product ions. Therefore, this workflow is an effective approach for the characterization of strictosidine-type alkaloids in future dereplication works.
Collapse
Affiliation(s)
- Carla L G Santos
- Central Analítica - Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, AM, 69077-000, Brazil
| | - Célio F F Angolini
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, 09210-580, Brazil
| | - Kidney O G Neves
- Central Analítica - Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, AM, 69077-000, Brazil
| | - Emmanoel V Costa
- Departamento de Química, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69077-000, Brazil
| | - Afonso D L de Souza
- Central Analítica - Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, AM, 69077-000, Brazil
- Departamento de Química, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69077-000, Brazil
| | - Maria Lúcia B Pinheiro
- Central Analítica - Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, AM, 69077-000, Brazil
- Departamento de Química, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69077-000, Brazil
| | - Hector H F Koolen
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, AM, 69050-010, Brazil
| | - Felipe M A da Silva
- Central Analítica - Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, AM, 69077-000, Brazil
- Departamento de Química, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69077-000, Brazil
| |
Collapse
|
29
|
Taxonomic Implication of Integrated Chemical, Morphological, and Anatomical Attributes of Leaves of Eight Apocynaceae Taxa. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12090334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Up to now, the taxonomic conflict of the Apocynaceae family has attracted the attention of scientists and researchers worldwide. Recently, this family was divided into five subfamilies. The present study aims to investigate the implication of interlacing macro-, micro-morphological, anatomical, and chemical characteristics of the leaves of eight Apocynaceae plants (Adenium obesum, Dipladenia boliviensis, Carissacarandas, Nerium oleander, Asclepias curassavica, Calotropisprocera, Acokanthera oblongifolia, and Thevetia neriifolia), and to provide valuable taxonomic differentiation of these species. The macro-morphological investigation includes shape, apex, base, and venation of leaves, while the micro-morphological study includes leaf epidermal cells, stomata, and trichomes. The anatomical features of the leaf blade were studied by scanning electron microscope (SEM). Additionally, the chemical composition of the silylated methanolic extract was analyzed by Gas chromatography–mass spectroscopy (GC-MS). Sixty-three compounds were characterized from the silylated extracts of the eight plants, where quinic acid, sucrose, D-pinitol, and D-(−)-fructopyranose were determined as major compounds. The Principal Component Analysis (PCA) based on the chemical composition revealed a significant chemical correlation among all species with the presence of sugars and amino acids, as well as phenolic acids and iridoid glycosides. The cluster analysis, based on all merged characters, showed that the eight species can be categorized into three clusters. The first cluster comprises A.obesum, A. curassavica, and T. neriifolia, while the second cluster contains D. boliviensis, N. oleander, A. oblongifolia, and C. carandas, and the third cluster consists of C. procera alone. This cluster revealed some similarities to the recent classification of Apocynaceae, while it showed inconsistency regarding A.obesum, C. procera, and N. oleander. Due to the obtained inconsistent data and observed variation among the studied species, further study is recommended for more characterization of these species, based on additional parameters, including molecular characteristics, particularly A.obesum, C. procera, and N. oleander.
Collapse
|
30
|
Gudise V, Chowdhury B, Manjappa AS. Antidiabetic and antihyperlipidemic effects of Argyreia pierreana and Matelea denticulata: Higher activity of the micellar nanoformulation over the crude extract. J Tradit Complement Med 2020; 11:259-267. [PMID: 34012872 PMCID: PMC8116714 DOI: 10.1016/j.jtcme.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 07/17/2020] [Accepted: 08/01/2020] [Indexed: 01/01/2023] Open
Abstract
Background and aim Herbal medicine combined with nanotechnology is widely proposed to improve the oral bioavailability, reduce the required dose and side effects, and improve the pharmacological efficacy of extracts. Thus, this study evaluated the in vivo antidiabetic and antihyperlipidemic activities of ethanolic leaf extracts of Argyreia pierreana (AP) and Matelea denticulata (MP) plants in comparison with their micellar nanoformulations. Materials and methods The mixed micelles (MMs) loaded with crude extracts (CEs) of AP and MD (AP-MMs and MD-MMs) were prepared using a film dispersion technique. Type 2 diabetes was induced in rats using high-fat diet (HFD) and low-dose (35 mg/kg) streptozotocin (STZ) injection. The pharmacological actions of CEs, AP-MMs and MD-MMs were determined in type 2 diabetic Sprague-Dawley rats. Results Oral treatments with low-dose AP-MMs and MD-MMs having a mean particle size of 163 ± 10 nm and 145 ± 8 nm respectively, resulted in significantly decreased fasting blood glucose level and increased serum insulin, glucokinase levels, and normalized the elevated levels of hemoglobin A1C and glucose-6-phosphatase. Both extracts significantly decreased serum total cholesterol, triglycerides, and low-density lipoprotein, as well as elevated high-density lipoprotein levels. Additionally, improvements in antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and malondialdehyde levels were evidenced clearly in tested vital organs (brain, heart, liver). Conclusion This is the first report of the antidiabetic and antihyperlipidemic activities of ethanolic leaf extracts of AP and MP plants. Our findings indicate the potential utility of nanotechnology in improving the oral therapeutic efficacy of herbal extracts.
Collapse
Affiliation(s)
- Venkataiah Gudise
- Department of Pharmacology, SSJ College of Pharmacy, Vattinagulapally, Gandipet, Hyderabad-500075, Telangana State, India
| | - Bimalendu Chowdhury
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur-760010, Odisha, India
| | - Arehalli S Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar-416113, Maharashtra, India
| |
Collapse
|
31
|
Pham THT, Nguyen VK, Tran TN, Pham VC, Huynh GH, Phan TTT, Nguyen NN, Le TTA, Sichaem J, Nguyen KPP, Duong TH. Telosmoside A 21, a new steroid glycoside from the roots of Jasminanthes tuyetanhiae. Nat Prod Res 2020; 36:348-355. [PMID: 32586131 DOI: 10.1080/14786419.2020.1784173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A new glycoside, telosmoside A21 (1) and two known compounds, telosmoside A6 (2) and telosmoside A1 (3), were isolated from the roots of Jasminanthes tuyetanhiae. The structure of compound 1 was identified from its spectroscopic data and by comparison with the literature.
Collapse
Affiliation(s)
- Thi-Hoa-Tham Pham
- Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - Van-Kieu Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam
| | - Thanh-Nha Tran
- Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - Van-Can Pham
- Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - Gia Hao Huynh
- Department of Organic Chemistry, University of Science, National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thi Truong Tu Phan
- Department of Organic Chemistry, University of Science, National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nhat Nam Nguyen
- Department of Organic Chemistry, University of Science, National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thi Tuyet Anh Le
- Middle Vietnam Research and Manufacturing Organic Medicinal Herb Centre in Phu Yen province, Phu Yen, Vietnam
| | - Jirapast Sichaem
- Research Unit in Natural Products Chemistry and Bioactivities, Faculty of Science and Technology, Thammasat University Lampang Campus, Lampang, Thailand
| | - Kim-Phi-Phung Nguyen
- Department of Organic Chemistry, University of Science, National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuc-Huy Duong
- Department of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| |
Collapse
|
32
|
Song L, Ni D, Jia S, Pi R, Dong S, Yang F, Tang J, Liu S. C(sp2)–H Bond Multiple Functionalization in Air for Construction of Tetrahydrocarbazoles with Continuous Quaternary Carbons and Polycyclic Diversification. Org Lett 2020; 22:1846-1851. [DOI: 10.1021/acs.orglett.0c00145] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Longlong Song
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dan Ni
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shikun Jia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Rou Pi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Suzhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
33
|
Amparo TR, Seibert JB, Vieira PMDA, Teixeira LFM, Santos ODHD, de Souza GHB. Herbal medicines to the treatment of skin and soft tissue infections: advantages of the multi-targets action. Phytother Res 2019; 34:94-103. [PMID: 31713305 DOI: 10.1002/ptr.6519] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
The research for new treatments of skin and soft tissue infections (SSTIs) is important due to their high prevalence and number of hospitalizations. The purpose of this review is to address the pathophysiology of SSTIs to highlight the advantages of herbal medicines to their treatment, showing examples of species and compounds with multi-targets action. SSTIs have a complex physiopathology involving the microorganism, as well as inflammation and difficult healing. Therefore, antimicrobial, anti-inflammatory, antioxidant and healing activities are an approach possible for their treatment. Herbal medicines have a wide diversity of biological compounds, mainly phenolic compounds that may act on different targets and also have synergism between them. Therefore, a single medicine may have the four key activities that allied allow eliminating the infection, control the inflammation process and accelerating the healing process, preventing complications with chronic infections.
Collapse
Affiliation(s)
- Tatiane Roquete Amparo
- Programa de Pós graduação em Ciências Farmacêuticas, CIPHARMA, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Janaína Brandão Seibert
- Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Paula Melo de Abreu Vieira
- Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.,Programa de Pós Graduação em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Luiz Fernando Medeiros Teixeira
- Programa de Pós graduação em Ciências Farmacêuticas, CIPHARMA, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Orlando David Henrique Dos Santos
- Programa de Pós graduação em Ciências Farmacêuticas, CIPHARMA, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.,Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Gustavo Henrique Bianco de Souza
- Programa de Pós graduação em Ciências Farmacêuticas, CIPHARMA, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.,Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
34
|
Ekalu A, Ayo RGO, Habila JD, Hamisu I. A mini-review on the phytochemistry and biological activities of selected Apocynaceae plants. JOURNAL OF HERBMED PHARMACOLOGY 2019. [DOI: 10.15171/jhp.2019.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This review aims at studying the phytochemistry and biological activities of some selected Apocynaceae plants. Eleven members of this family were reviewed for their phytochemistry and biological activities. Interestingly, the commonly isolated compounds reported from Mondia whitei (Hook.f.) Skeels, Secondatia floribunda A. DC, Carissa carandas, Tabernaemontana divaricate, Nerium oleander, Wrightia tinctoria, Tabernaemontana divaricate, Alstonia scholaris, Carrisa spinarum Linn, Thevetia peruviana and Caralluma lasiantha were triterpenoids, flavonoids, phytosterols, cardiac glycosides and lignans. All of them exhibited remarkable biological activities, mostly similar to each other. This review provides a detailed insight into the pharmacological activities of these selected members of this family.
Collapse
Affiliation(s)
- Abiche Ekalu
- Department of Chemistry, Nigerian Army School of Education, Ilorin, Kwara, Nigeria
| | | | - James Dama Habila
- Department of Chemistry, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Ibrahim Hamisu
- Department of Chemistry, Ahmadu Bello University Zaria, Kaduna, Nigeria
| |
Collapse
|
35
|
Kim R, Ferreira AJ, Beaudry CM. Total Synthesis of Leuconoxine, Melodinine E, and Mersicarpine through a Radical Translocation–Cyclization Cascade. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ryan Kim
- Department of Chemistry Oregon State University 153 Gilbert Hall Corvallis OR 97333 USA
| | - Andrew J. Ferreira
- Department of Chemistry Oregon State University 153 Gilbert Hall Corvallis OR 97333 USA
| | | |
Collapse
|
36
|
Kim R, Ferreira AJ, Beaudry CM. Total Synthesis of Leuconoxine, Melodinine E, and Mersicarpine through a Radical Translocation–Cyclization Cascade. Angew Chem Int Ed Engl 2019; 58:12595-12598. [DOI: 10.1002/anie.201907455] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Ryan Kim
- Department of Chemistry Oregon State University 153 Gilbert Hall Corvallis OR 97333 USA
| | - Andrew J. Ferreira
- Department of Chemistry Oregon State University 153 Gilbert Hall Corvallis OR 97333 USA
| | | |
Collapse
|
37
|
Mabaleha MB, Zietsman PC, Wilhelm A, Bonnet SL. Ethnobotanical Survey of Medicinal Plants Used to Treat Mental Illnesses in the Berea, Leribe, and Maseru Districts of Lesotho. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19864215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mental illnesses (MIs) such as anxiety, epilepsy, major depression, schizophrenia, sleep disorder, and pain influence the quality of life severely. According to the World Health Organization Atlas for Mental Health (2014), the formal health sector in Lesotho has only 13.7 mental health workers per 100 000 of the population, which breaks down to 0.1 psychiatrist and other medical doctors, 0.3 psychologists, 4.7 nurses, and 5.2 social workers. Traditional health practitioners (THPs) have always played a significant role in the prevention and treatment of MIs, via utilization of Lesotho’s vast diversity of plants. This investigation aims to determine which medicinal plants are used for the treatment of MIs in the Berea, Leribe, and Maseru districts of Lesotho. A combination of unstructured and semistructured one-on-one interviews were conducted with 27 THPs. They were interviewed about the status of MIs in Lesotho, diagnostic methods, medicinal plants used, and preparation and administration of the herbal remedies in the treatment of MIs. A total of 43 different plant species (indigenous and exotic) were indicated by the THPs as commonly used to treat neurological disorders. With the exception of one unidentified plant, the plants represented 26 families and 42 genera. The most common families are the Asteraceae (9 species), Fabaceae (5 species), and Rosaceae (3 species). The most cited plant species were Morella serrata (Myricaceae) (26%), followed by Xysmalobium undulatum (Asclepiadaceae) (22%), and Afroaster hispidus (Asteraceae) (15%). This survey provides, for the first time, a database of Lesotho’s medicinal plants that are used to treat MIs.
Collapse
Affiliation(s)
| | | | - Anke Wilhelm
- Department of Chemistry, University of the Free State, South Africa
| | - Susan L. Bonnet
- Department of Chemistry, University of the Free State, South Africa
| |
Collapse
|
38
|
Two new sarpagine-type indole alkaloids and antimalarial activity of 16-demethoxycarbonylvoacamine from Tabernaemontana macrocarpa Jack. J Nat Med 2019; 73:820-825. [PMID: 31140017 DOI: 10.1007/s11418-019-01317-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Two new sarpagine-type indole alkaloids (1 and 2), together with five known alkaloids; 12-methoxy-4-methylvoachalotine (3), 16-demethoxycarbonylvoacamine (4), isositsirikine (5), affinisine (6), affinine (7), were isolated from the bark of Tabernaemontana macrocarpa Jack. The structures of these alkaloids were determined based on spectroscopic data, chemical correlation, and comparison with the literature. 16-Demethoxycarbonylvoacamine (4) showed antiplasmodial activities against Plasmodium falciparum 3D7 and cytotoxic activities against human cell line, HepG2 cells.
Collapse
|
39
|
de Almeida VL, Silva CG, Silva AF, Campana PRV, Foubert K, Lopes JCD, Pieters L. Aspidosperma species: A review of their chemistry and biological activities. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:125-140. [PMID: 30395977 DOI: 10.1016/j.jep.2018.10.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Species of Aspidosperma are known popularly as "peroba, guatambu, carapanaúba, pau-pereiro" and "quina". The genus can be found in the Americas, mainly between Mexico and Argentina. Many species of Aspidosperma are used by the population in treating cardiovascular diseases, malaria, fever, diabetes and rheumatism. The phytochemical aspects of the species of the genus Aspidosperma have been studied extensively. The monoterpene indole alkaloids are the main secondary metabolites in Aspidosperma species, and about 250 of them have been isolated showing a considerable structural diversity. Several of them have showed some important pharmacological activities. Aspidosperma subincanum Mart. and Aspidosperma tomentosum Mart. (Apocynaceae) are Brazilian species widely used by the population to treat diabetes mellitus, hypercholesterolemia. The pharmacological activities of both species have been investigated and the biological properties described can be related to their isolated indole alkaloids. However, more pharmacological studies are needed in order to justify the use of these species in folk medicine. In this review, we present reports mainly focused on chemical and biological studies and their relationship with the ethnopharmacological use of both Aspidosperma species. AIM OF THE STUDY The aim of this review is to present their ethnopharmacological use as correlated to their biological activities as described for the extracts and isolated compounds from Aspidosperma subincanum Mart. and Aspidosperma tomentosum Mart. In addition, some aspects related to the biosynthetic pathways are discussed, also NMR assignments and some synthesis information about indole alkaloids from both Aspidosperma species are included. MATERIAL AND METHODS The bibliographic search was made in theses and dissertations using some databases such as NDLTD (Networked Digital Library of Theses and Dissertations), OATD (Open Access Theses and Dissertations) and Google Scholar. More data were gathered from books, Brazilian journals and articles available on electronic databases such as, Google Scholar, PubChem, Scifinder, Web of Science, SciELO, PubMed and Science Direct. Additionally, the Google Patents and Espacenet Patent Search (EPO) were also consulted. The keywords Aspidosperma, A. subincanum, A. tomentosum, indole alkaloids were used in the research. The languages were restricted to Portuguese, English and Spanish and references were selected according to their relevance. RESULTS A. subincanum Mart. and A. tomentosum Mart. (Apocynaceae) are Brazilian species widely used by the population to treat a few diseases. Extracts and isolated compounds of both species have shown antitumor and antimalarial activities. The antitumor activity of isolated compounds has been extensively studied. However, the antiplasmodial activity needs to be investigated further as well as the anti-inflammatory, anti-hyperlipidemic and anorexigenic activities. From A. subincanum twenty-one indole alkaloids were isolated and some of them have been extensively studied. From the leaves and bark of A. tomentosum four alkaloids and one flavonoid were isolated. Furthermore, CG-MS analysis of seeds, branches, leaves and arils identified nine indole alkaloids. Stemmadenine has been proposed as a precursor of indole alkaloids obtained from some species of Aspidosperma. Many of the biosynthetic steps have been characterized at the enzymatic level and appropriate genes have been identified, however, other steps have yet to be investigated and they are still controversial. Some isolated alkaloids from A. subincanum and A. tomentosum were identified only by mass spectrometry. In many cases, their NMR data was either not available or was incomplete. The described meta-analysis of the available NMR data revealed that the chemical shifts belonging to the indole ring might be used to characterize this class of alkaloids within complex matrices such as plant extracts. The biological activities and the structural complexity of these compounds have stimulated the interest of many groups into their synthesis. In this review, some information about the synthesis of indole alkaloids and their derivatives was presented. CONCLUSIONS A. subincanum and A. tomentosum are used by the population of Brazil to treat many diseases. A few biological activities described for the extracts and isolated compounds of both species are in agreement with the ethnopharmacological use for others species of Aspidosperma, such as, antimalarial, the treatment of diabetes and other illnesses. These species are sources of leading compounds which can be used for developing new drugs. In addition, other biological activities reported and suggested by ethnopharmacological data have yet to be investigated and could be an interesting area in the search for new bioactive compounds.
Collapse
Affiliation(s)
- Vera Lúcia de Almeida
- Serviço de Fitoquímica e Prospecção Farmacêutica, Divisão de Ciência e Inovação, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Cláudia Gontijo Silva
- Serviço de Fitoquímica e Prospecção Farmacêutica, Divisão de Ciência e Inovação, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Andréia Fonseca Silva
- Herbário PAMG, Departamento de Pesquisa, Empresa de Pesquisa Agropecuária de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Kenn Foubert
- Natural Products & Food Research and Analysis, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Júlio César Dias Lopes
- Chemoinformatics group (NEQUIM), Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luc Pieters
- Natural Products & Food Research and Analysis, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|