1
|
Zhu D, Zhu Z, Qi H. NEAT1/microRNA 339-5p/SPI1 Axis Feedback Loop Contributes to Osteogenic Differentiation in Acute Suppurative Osteomyelitis in Children. J Inflamm Res 2023; 16:2675-2687. [PMID: 37408606 PMCID: PMC10318109 DOI: 10.2147/jir.s410339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
Objective Long non-coding RNA plays an important role in osteogenic differentiation. Nuclear enriched abundant transcript 1 (NEAT1) has been revealed to promote osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs), but the underlying regulatory mechanism remains unknown in acute suppurative osteomyelitis of children. Methods Osteogenic medium (OM) was used to induce osteogenic differentiation. Quantitative real-time PCR and Western blotting were used to evaluate gene expression. The effects of NEAT1, microRNA 339-5p (miR-339-5p), and salmonella pathogenicity island 1 (SPI1) on osteogenic differentiation were assessed in vitro using alizarin red S staining assays and alkaline phosphatase activity. Interactions between NEAT1, miR-339-5p, and SPI1 were identified using immunoprecipitation, luciferase reporter assays, and chromatin immunoprecipitation. Results During osteogenic differentiation, expression of NEAT1 was up-regulated in hBMSCs, and miR-339-5p level was down during osteogenic differentiation. Knockdown of NEAT1 reduced the osteogenic differentiation of hBMSCs, and down-regulation of miR-339-5p may counteract the effect of NEAT1 silencing. SPI1 was a target of miR-339-5p by luciferase reporter assay and was also a transcription factor of NEAT1 by chromatin immunoprecipitation. A positive NEAT1-miR-339-5p-SPI1 feedback loop was found to be present during osteogenic differentiation in hBMSCs. Conclusion It was the first study to reveal that the NEAT1-miR-339-5p-SPI1 feedback loop can promote osteogenic differentiation in hBMSCs and shed a new light on the role of NEAT1 during osteogenic differentiation.
Collapse
Affiliation(s)
- Dongsheng Zhu
- Department of Pediatric Surgery, the First People’s Hospital of Lianyungang, Affiliated to Xuzhou Medical University, Lianyungang, Jiangsu, 222000, People’s Republic of China
| | - Zhitao Zhu
- Department of Radiology, the Second People’s Hospital of Lianyungang, Lianyungang, Jiangsu, 222000, People’s Republic of China
| | - Han Qi
- Department of Emergency Surgery, the Second People’s Hospital of Lianyungang, Lianyungang, Jiangsu, 222000, People’s Republic of China
| |
Collapse
|
2
|
Sun P, Zhao W, Wang Q, Chen L, Sun K, Zhan Z, Wang J. Chemical diversity, biological activities and Traditional uses of and important Chinese herb Sophora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154054. [PMID: 35358931 DOI: 10.1016/j.phymed.2022.154054] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sophora flavescens Aiton (SF), also known as Kushen (Chinese:), has been an important species in Chinese medicine since the Qin and Han dynasties. It is also recognized as a plant resource suitable for the globalization of Chinese medicine. Traditionally, it has been used in various ethnic medical systems in East Asia, especially in China, to kill insects and dispel dampness. Sophora flavescens is commonly used for clearing heat-clearing, killing worms, and diuretic. Nowdays, accumulating studies demonstrated its anticancer and cardioprotection. OBJECTIVE OF THE REVIEW This paper aims to systematically review information on the genus, pharmacological and toxicological significance, chemical composition and biological activity of Sophora flavescens. To promoting its development and application. To summarize recent findings regarding to the metabolism, pharmacological/toxicological effects of Sophora flavescens. MATERIAL AND METHODS Online academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of "Sophora flavescens Aiton", "Ku shen", "Pharmacology", "Active ingredient", "Toxicology" and combinations to include published studies of Sophora flavescens Aiton primarily from 1970-2021. Several critical previous studies beyond this period were also included and other related terms. CONCLUSION Sophora flavescens has a broad spectrum of biological activities associated with Sophora flavescens has been considered a valuable resource in both traditional and modern medicine. However, there is a lack of in-depth studies on the medicinal uses of Sophora flavescens. Moreover, further studies on single chemical components should be conducted based on the diversity of chemical structures, significant biological activities and clinical applications. The discovery of its bioactive molecules and multi-component interactions would be of great importance for the clinical application of Sophora flavescens spp. Detailed pharmacological and toxicological studies on the classic prescriptions of Sophora flavescens are also needed. It is more beneficial to the wide application of SF plant and facilitates the worldwide promotion of modern Chinese medicine. However, an increasing number of reports indicate that the administration of Sophora flavescens has serious adverse effects. Its main toxic effects are neurotoxicity and acute toxicity, which have caused widespread concern worldwide. In addition, the alkaloids of Sophora flavescens are distributed in the heart, liver, stomach and large intestine. They are excreted from the body through gluconeogenesis, which is the mode of action of certain therapeutic mechanisms of action such as anticancer. The detailed metabolic study of alkaloids and other components of Sophora flavescens in vivo needs to be further investigated. It is important to improve the pharmacological effects and reduce the toxicity of Sophora flavescens. For this purpose, structural modification of active components of Sophora flavescens or combination with other drugs is very essential.
Collapse
Affiliation(s)
- Peng Sun
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan,250355, China
| | - Wenjie Zhao
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan,250355, China
| | - Qi Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lele Chen
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan,250355, China
| | - Kunkun Sun
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan,250355, China
| | - Zhaoshuang Zhan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan,250355, China;.
| | - Jiafeng Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan,250355, China;.
| |
Collapse
|
3
|
Ding R, Wei S, Huang M. Long non-coding RNA KCNQ1OT1 overexpression promotes osteogenic differentiation of staphylococcus aureus-infected human bone mesenchymal stem cells by sponging microRNA miR-29b-3p. Bioengineered 2022; 13:5855-5867. [PMID: 35226820 PMCID: PMC8973675 DOI: 10.1080/21655979.2022.2037898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Osteomyelitis (OM) is an orthopedic disease caused by bone infections in the bone cortex, bone marrow, periosteum, and surrounding soft tissues. Recent studies have implicated non-coding RNAs (ncRNAs) in the development of OM. However, little is known about the role of ncRNAs in the osteogenic differentiation during bone infection. In the present study, we investigated the role of KCNQ1OT1/miR-29b-3p axis in osteogenic differentiation in staphylococcus aureus (SpA)-infected human bone mesenchymal stem cells (hBMSCs). We first examined the expression of lncRNA KCNQ1OT1 and miR-29b-3p in the serum samples of OM patients and healthy controls. We also infected hBMSCs with different concentrations of SpA and studied the osteogenic differentiation after infection. Our results revealed that KCNQ1OT1 was downregulated while miR-29b-3p was upregulated in the serum samples of OM patients, as well as in SpA-infected hBMSCs. Overexpression of KCNQ1OT1 ameliorated the damage in hBMSCs caused by SpA infection. KCNQ1OT1 could support hBMSCs osteogenic differentiation by enhancing ALP activity, alizarin red S accumulation, expressions of osteogenic markers, and attenuating inflammatory responses after SpA infection. We further showed that miR-29b-3p was a downstream target of KCNQ1OT1, mediating the osteogenic differentiation of hBMSCs during SpA infection. Our data suggest that KCNQ1OT1 could ameliorate the SpA-induced suppression of osteogenic differentiation in hBMSCs by sponging miR-29b-3p. Modulating KCNQ1OT1 expression may serve as a strategy to ameliorate osteomyelitis.
Collapse
Affiliation(s)
- Ran Ding
- Department of Orthopedic Surgery, Wuhan General Hospital of People's Liberation Army, Wuhan City, China
| | - Shijun Wei
- Department of Orthopedic Surgery, Wuhan General Hospital of People's Liberation Army, Wuhan City, China
| | - Ming Huang
- Department of Orthopedic Surgery, Wuhan General Hospital of People's Liberation Army, Wuhan City, China
| |
Collapse
|
4
|
Abd-Alla HI, Souguir D, Radwan MO. Genus Sophora: a comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives. Arch Pharm Res 2021; 44:903-986. [PMID: 34907492 PMCID: PMC8671057 DOI: 10.1007/s12272-021-01354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Sophora is deemed as one of the most remarkable genera of Fabaceae, and the third largest family of flowering plants. The genus Sophora comprises approximately 52 species, 19 varieties, and 7 forms that are widely distributed in Asia and mildly in Africa. Sophora species are recognized to be substantial sources of broad spectrum biopertinent secondary metabolites namely flavonoids, isoflavonoids, chalcones, chromones, pterocarpans, coumarins, benzofuran derivatives, sterols, saponins (mainly triterpene glycosides), oligostilbenes, and mainly alkaloids. Meanwhile, extracts and isolated compounds from Sophora have been identified to possess several health-promising effects including anti-inflammatory, anti-arthritic, antiplatelets, antipyretic, anticancer, antiviral, antimicrobial, antioxidant, anti-osteoporosis, anti-ulcerative colitis, antidiabetic, anti-obesity, antidiarrheal, and insecticidal activities. Herein, the present review aims to provide comprehensive details about the phytochemicals and biological effects of Sophora species. The review spotlighted on the promising phytonutrients extracted from Sophora and their plethora of bioactivities. The review also clarifies the remaining gaps and thus qualifies and supplies a platform for further investigations of these compounds.
Collapse
Affiliation(s)
- Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
| | - Dalila Souguir
- Institut National de Recherches en Génie Rural, Eaux et Forêts (INRGREF), Université de Carthage, 10 Rue Hédi Karray, Manzeh IV, 2080, Ariana, Tunisia
| | - Mohamed O Radwan
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
5
|
Lu K, Feng Z, Yuan X, Yang Y, Jiang J, Zhang X, Zhang P. Five Novel Pterocarpan Derivatives from
Sophora flavescens. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kai‐Zhou Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Zi‐Ming Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Xiang Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Ya‐Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Jian‐Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Xu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Pei‐Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| |
Collapse
|
6
|
Dong Y, Jia G, Hu J, Liu H, Wu T, Yang S, Li Y, Cai T. Determination of Alkaloids and Flavonoids in Sophora flavescens by UHPLC-Q-TOF/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:9915027. [PMID: 34367714 PMCID: PMC8337118 DOI: 10.1155/2021/9915027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/12/2021] [Indexed: 05/05/2023]
Abstract
This study is based on UHPLC-Q-TOF/MS and fragment ions to achieve classification and identification of alkaloids and flavonoids in Sophora flavescens. By reviewing the available and relevant literature, the mass fragmentation rules of alkaloids and flavonoids were summarized. 0.1% formic acid water (A) and acetonitrile (B) were used as mobile phases. 37 chemical constituents were identified, including 13 alkaloids and 24 flavonoids. This research method offers a complete strategy based on the fragmentation information of characteristic fragment ions and neutral loss obtained by MS/MS to characterize the chemical composition of Sophora flavescens.
Collapse
Affiliation(s)
- Yaqian Dong
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Guoxiang Jia
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Jingwen Hu
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Hui Liu
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Tingting Wu
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Shenshen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yubo Li
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Ting Cai
- Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo 315010, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315010, China
| |
Collapse
|
7
|
Liu Y, Zeng W, Ma C, Wang Z, Wang C, Li S, He W, Zhang Q, Xu J, Zhou C. Maackiain dampens osteoclastogenesis via attenuating RANKL-stimulated NF-κB signalling pathway and NFATc1 activity. J Cell Mol Med 2020; 24:12308-12317. [PMID: 32939977 PMCID: PMC7686960 DOI: 10.1111/jcmm.15647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Osteolytic diseases are typified by over‐enhanced formation and resorbing function of osteoclasts and have a major impact on human health. Inhibition of osteoclastic differentiation and function is a key strategy for clinical therapy of osteolytic conditions. Maackiain is a natural compound extracted from Sophora flavescens, which has been applied to anti‐allergic and anti‐tumour treatments. The present results showed that Maackiain could restrain receptor activator of nuclear factor‐κB ligand (RANKL)‐stimulated osteoclast formation and hydroxyapatite resorption dose‐dependently, and interrupt the structures of F‐actin belts in the mature osteoclasts. It also repressed the expressions of osteoclast‐specific genes and proteins. Furthermore, Maackiain could inhibit RANKL‐stimulated NF‐κB and calcium signalling pathways, and dampen Nuclear factor of activated T cell cytoplasmic 1 activity, protein expression and translocation into the nucleus. These results revealed that Maackiain may have a potential therapeutic effect on osteoclast‐related disorders.
Collapse
Affiliation(s)
- Yuhao Liu
- The First Affiliated Hospital, Institute of Orthopedics, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Biomedical Sciences, University of Western Australia, Perth, Australia.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weizai Zeng
- Chinese Medicine Hospital of Zengcheng District, Guangzhou, China
| | - Chao Ma
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Chao Wang
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Shaobin Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- The First Affiliated Hospital, Institute of Orthopedics, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingwen Zhang
- The First Affiliated Hospital, Institute of Orthopedics, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiake Xu
- The First Affiliated Hospital, Institute of Orthopedics, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Chi Zhou
- The First Affiliated Hospital, Institute of Orthopedics, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Long GQ, Wang DD, Wang J, Jia JM, Wang AH. Chemical constituents of Sophora flavescens Ait. and cytotoxic activities of two new compounds. Nat Prod Res 2020; 36:108-113. [PMID: 32408767 DOI: 10.1080/14786419.2020.1765340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A chemical investigation of Sophora flavescens Ait. identified 6 compounds. On the basis of spectroscopic data, they were determined to be flavonoids and their analogues, among which were two previously undescribed compounds, sophoflavanone G (1) and sophoflavanone H (2). The inhibitory effects of new compounds against five human tumour cell lines were evaluated in vitro by MTT assays, which revealed potential inhibitory effects with IC50 values < 20 mM, in particular, compound 1 has shown significant cytotoxicity for several tumour cells with IC50 values around 20 mM, which was similar to cisplatin and potential to be used as tumour drugs.
Collapse
Affiliation(s)
- Guo-Qing Long
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Dong-Dong Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jing Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - An-Hua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
9
|
Jiang P, Sun Y, Cheng N. Liver metabolomic characterization of Sophora flavescens alcohol extract-induced hepatotoxicity in rats through UPLC/LTQ-Orbitrap mass spectrometry. Xenobiotica 2019; 50:670-676. [PMID: 31747812 DOI: 10.1080/00498254.2019.1687962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study aimed to observe the influence of Sophora flavescens alcohol extract (SFAE) on hepatic metabolic profiling in rats to explore the possible mechanism of hepatotoxicity induced by S. flavescens.Male Sprague-Dawley rats were randomly divided into three groups (n = 6 in each group) and administered with SFAE at different doses of 0, 1.25 and 2.5 g/kg for two weeks. Ultra-performance liquid chromatography-high resolution mass spectrometry was utilized to detect the change in the metabolites in rat liver. Principal component analysis and orthogonal partial least squares discriminant analysis were adapted to perform multivariate statistical analysis between groups and to screen the potential biomarkers. Related metabolic pathway analysis was also conducted.Results indicated that hepatic metabolites in the three groups were separated on day 14, and 25 major differential metabolites were identified. Six bile acids, four carnitines, four lysophosphatidylcholines and glutathione were closely related to hepatotoxicity. Liver metabolomic results showed that rats orally exposed to SFAE exhibited a disturbance of the metabolism of bile acids, fatty acids, glycerophospholipids and amino acids.This study provided new insights into the possible mechanism of hepatotoxicity induced by SFAE in rats.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Pharmacy, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Yancai Sun
- Department of Pharmacy, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Nengneng Cheng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Aly SH, Elissawy AM, Eldahshan OA, Elshanawany MA, Efferth T, Singab ANB. The pharmacology of the genus Sophora (Fabaceae): An updated review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153070. [PMID: 31514082 DOI: 10.1016/j.phymed.2019.153070] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND The genus Sophora (Fabaceae) represents one of the important medicinal plant genera regarding its chemical constituents and outstanding pharmacological activities. PURPOSE In this review, we surveyed the latest findings on the bioactivities of different Sophora extracts and isolated phytochemicals during the past 8 years (2011-2019) updating the latest review article in 2011. The aim of this review is to focus on the molecular pharmacology of Sophora species to provide the rationale basis for the development of novel drugs. RESULTS Sophora and its bioactive compounds possess outstanding pharmacological properties, especially as anticancer and anti-inflammatory drugs, in addition to its antioxidant, antibacterial, antifungal and antiviral properties. CONCLUSION Based on their use in traditional medicine, Sophora species exert a plethora of cellular and molecular activities, which render them as attractive candidates for rationale drug development. Randomized, placebo-controlled clinical trials are required for further integration of Sophora-based phototherapies into conventional medicine.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University, Cairo, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, 55128 Mainz, Germany.
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
11
|
Chen K, Lv ZT, Cheng P, Zhu WT, Liang S, Yang Q, Parkman VJA, Zhou CH, Jing XZ, Liu H, Wang YT, Lin H, Liao H, Chen AM. Boldine Ameliorates Estrogen Deficiency-Induced Bone Loss via Inhibiting Bone Resorption. Front Pharmacol 2018; 9:1046. [PMID: 30271347 PMCID: PMC6146032 DOI: 10.3389/fphar.2018.01046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is an enormous health problem caused by the imbalance between bone resorption and bone formation. The current therapeutic strategies for osteoporosis still have some limitations. Boldine, an alkaloid isolated from Peumus boldus, has been shown to have antioxidant and anti-inflammatory effects in vivo. For the first time, we discover that boldine has a protective effect for the estrogen deficiency-induced bone loss in mice. According to the Micro-CT and histomorphometry assays, boldine conducts this protective effect through inhibiting bone resorption without affecting bone formation in vivo. Moreover, we showed that boldine can inhibit receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation via impairing the AKT signaling pathways, while SC79 (an AKT agonist) partially rescue this effect. In conclusion, our results suggest that boldine can prevent estrogen deficiency-induced osteoporosis by inhibiting osteoclastogenesis. Thus, boldine may be served as a novel therapeutic agent for anti-osteoporotic therapy.
Collapse
Affiliation(s)
- Kun Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Zheng-tao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-tao Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Virginia-Jeni Akila Parkman
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Chen-he Zhou
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing-zhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-ting Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lin
- Department of Orthopaedic Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An-min Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Biological Engineering and Regenerative Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|