1
|
Musumeci L, Russo C, Schumacher U, Lombardo GE, Maugeri A, Navarra M. The pro-differentiating capability of a flavonoid-rich extract of Citrus bergamia juice prompts autophagic death in THP-1 cells. Sci Rep 2024; 14:19971. [PMID: 39198517 PMCID: PMC11358463 DOI: 10.1038/s41598-024-70656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic neoplasm, characterized by a blockage of differentiation and an unconstrained proliferation of immature myeloid cells. Recently, the survival of leukemia patients has increased thanks to the use of differentiating agents, though these may cause serious side effects. Hence, the search for safer differentiating compounds is necessary. Our aim was to assess the pro-differentiating effects of a flavonoid-rich extract of bergamot juice (BJe) in human monocytic leukemia THP-1 cells, an in vitro AML model. For the first time, we showed that treatment with BJe induced differentiation of THP-1 cells, changes in cell morphology and increased expression of differentiation-associated surface antigens CD68, CD11b and CD14. Moreover, BJe enhanced protein levels of autophagy-associated markers, such as Beclin-1 and LC3, as well as induced the phosphorylation of the MAPKs JNK, ERK and p38, hence suggesting a potential mechanism underlying its antiproliferative effects. Indeed, parallel experiments highlighted that BJe was able to hamper THP-1 cell growth. In conclusion, our study suggests that BJe induces the differentiation of THP-1 cells and reduces their proliferation, highlighting its potential in differentiation therapy of AML.
Collapse
Affiliation(s)
- Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Medical School Berlin, 10117, Berlin, Germany
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| | - Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, 98168, Messina, Italy.
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, Messina, Italy
| |
Collapse
|
2
|
Muscarà C, Speciale A, Molonia MS, Salamone FL, Saija A, Cimino F. Intestinal epithelial differentiation and barrier function is promoted in vitro by a Cynara cardunculus L. leaf extract through AMPK pathway activation. Nat Prod Res 2024:1-11. [PMID: 39058646 DOI: 10.1080/14786419.2024.2384080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Gut epithelial barrier perturbation leads to leaky gut syndrome and permeation of substances activating immune response. Polyphenols can improve intestinal barrier function and represent candidates for preventing development of leaky gut. Herein, we evaluated in vitro the molecular mechanisms involved in the protective effects of a polyphenol-rich extract from leaves of Cynara cardunculus L. (CCLE) on intestinal barrier function and integrity on Caco-2 human epithelial cells. Treatment with CCLE from seeding until complete differentiation improved intestinal function by increasing trans-epithelial electrical resistance (TEER), reducing paracellular permeability to fluorescein, and promoting faster recovery of tight junctions (TJ) assembly in the Ca2+ switch assay. CCLE stimulated epithelial cell differentiation inducing alkaline phosphatase activity and TJ proteins. These CCLE-induced effects were attributed to activation of AMP-activated protein kinase (AMPK) pathway. Our data support the use of Cynara cardunculus L. leaves, an agricultural co-product rich in bioactive polyphenols, for the health of intestinal epithelium.
Collapse
Affiliation(s)
- Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Lombardo GE, Russo C, Maugeri A, Navarra M. Sirtuins as Players in the Signal Transduction of Citrus Flavonoids. Int J Mol Sci 2024; 25:1956. [PMID: 38396635 PMCID: PMC10889095 DOI: 10.3390/ijms25041956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Sirtuins (SIRTs) belong to the family of nicotine adenine dinucleotide (NAD+)-dependent class III histone deacetylases, which come into play in the regulation of epigenetic processes through the deacetylation of histones and other substrates. The human genome encodes for seven homologs (SIRT1-7), which are localized into the nucleus, cytoplasm, and mitochondria, with different enzymatic activities and regulatory mechanisms. Indeed, SIRTs are involved in different physio-pathological processes responsible for the onset of several human illnesses, such as cardiovascular and neurodegenerative diseases, obesity and diabetes, age-related disorders, and cancer. Nowadays, it is well-known that Citrus fruits, typical of the Mediterranean diet, are an important source of bioactive compounds, such as polyphenols. Among these, flavonoids are recognized as potential agents endowed with a wide range of beneficial properties, including antioxidant, anti-inflammatory, hypolipidemic, and antitumoral ones. On these bases, we offer a comprehensive overview on biological effects exerted by Citrus flavonoids via targeting SIRTs, which acted as modulator of several signaling pathways. According to the reported studies, Citrus flavonoids appear to be promising SIRT modulators in many different pathologies, a role which might be potentially evaluated in future therapies, along with encouraging the study of those SIRT members which still lack proper evidence on their support.
Collapse
Affiliation(s)
- Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| | - Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| |
Collapse
|
4
|
Russo C, Lombardo GE, Bruschetta G, Rapisarda A, Maugeri A, Navarra M. Bergamot Byproducts: A Sustainable Source to Counteract Inflammation. Nutrients 2024; 16:259. [PMID: 38257152 PMCID: PMC10819577 DOI: 10.3390/nu16020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Chronic inflammation is the result of an acute inflammatory response that fails to eliminate the pathogenic agent or heal the tissue injury. The consequence of this failure lays the foundations to the onset of several chronic ailments, including skin disorders, respiratory and neurodegenerative diseases, metabolic syndrome, and, eventually, cancer. In this context, the long-term use of synthetic anti-inflammatory drugs to treat chronic illnesses cannot be tolerated by patients owing to the severe side effects. Based on this, the need for novel agents endowed with anti-inflammatory effects prompted to search potential candidates also within the plant kingdom, being recognized as a source of molecules currently employed in several therapeutical areas. Indeed, the ever-growing evidence on the anti-inflammatory properties of dietary polyphenols traced the route towards the study of flavonoid-rich sources, such as Citrus bergamia (bergamot) and its derivatives. Interestingly, the recent paradigm of the circular economy has promoted the valorization of Citrus fruit waste and, in regard to bergamot, it brought to light new evidence corroborating the anti-inflammatory potential of bergamot byproducts, thus increasing the scientific knowledge in this field. Therefore, this review aims to gather the latest literature supporting the beneficial role of both bergamot derivatives and waste products in different models of inflammatory-based diseases, thus highlighting the great potentiality of a waste re-evaluation perspective.
Collapse
Affiliation(s)
- Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (C.R.); (G.E.L.); (A.R.); (M.N.)
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (C.R.); (G.E.L.); (A.R.); (M.N.)
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, Viale G. Palatucci, 98168 Messina, Italy;
| | - Antonio Rapisarda
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (C.R.); (G.E.L.); (A.R.); (M.N.)
| | - Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, Viale G. Palatucci, 98168 Messina, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (C.R.); (G.E.L.); (A.R.); (M.N.)
| |
Collapse
|
5
|
Adorisio S, Muscari I, Fierabracci A, Thi Thuy T, Marchetti MC, Ayroldi E, Delfino DV. Biological effects of bergamot and its potential therapeutic use as an anti-inflammatory, antioxidant, and anticancer agent. PHARMACEUTICAL BIOLOGY 2023; 61:639-646. [PMID: 37067190 PMCID: PMC10114982 DOI: 10.1080/13880209.2023.2197010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Context: Bergamot, mainly produced in the Ionian coastal areas of Southern Italy (Calabria), has been used since 1700 for its balsamic and medicinal properties. Phytochemical profiling has confirmed that bergamot juices are rich in flavonoids, including flavone and flavanone glycosides which are responsible for its beneficial effects.Objective: Recently, it was shown that the combination of natural compounds with conventional treatments improves the efficacy of anticancer therapies. Natural compounds with anticancer properties attack cancerous cells without being toxic to healthy cells. Bergamot can induce cytotoxic and apoptotic effects and prevent cell proliferation in various cancer cells.Methods: In this review, the antiproliferative, pro-apoptotic, anti-inflammatory, and antioxidant effects of bergamot are described. Information was compiled from databases such as PubMed, Web of Science, and Google Scholar using the key words 'bergamot' accompanied by 'inflammation' and, 'cancer' for data published from 2015-2021.Results: In vitro and in vivo studies provided evidence that different forms of bergamot (extract, juice, essential oil, and polyphenolic fraction) can affect several mechanisms that lead to anti-proliferative and pro-apoptotic effects that decrease cell growth, as well as anti-inflammatory and antioxidant effects.Conclusions: Considering the effects of bergamot and its new formulations, we affirm the importance of its rational use in humans and illustrate how bergamot can be utilized in clinical applications. Numerous studies evaluated the effect of new bergamot formulations that can affect the absorption and, therefore, the final effects by altering the therapeutic profile of bergamot and enhancing the scientific knowledge of bergamot.
Collapse
Affiliation(s)
| | - Isabella Muscari
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | | | - Trinh Thi Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology Cau Giay, Graduate University of Science and Technology, Ha Noi, Vietnam
| | - Maria Cristina Marchetti
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Emira Ayroldi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | | |
Collapse
|
6
|
Pierdomenico M, Cicero AFG, Veronesi M, Fogacci F, Riccioni C, Benassi B. Effect of Citrus bergamia extract on lipid profile: A combined in vitro and human study. Phytother Res 2023; 37:4185-4195. [PMID: 37312672 DOI: 10.1002/ptr.7897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/15/2023]
Abstract
With the aim of characterising the hypo-lipidemic function of the Brumex™ ingredient obtained from the whole fruit of Citrus bergamia, a combined pre-clinical and clinical study was conducted. In the HepG2 experimental model, we first demonstrated that Brumex™ does not trigger any significant alteration in cell viability over the tested concentration range of 1-2000 μg/mL (4 and 24 h). By stimulating the phosphorylation of AMP-activated protein kinase (AMPK) at threonine 172, Brumex™ significantly reduces both cholesterol and triglyceride (TG) intracellular content of HepG2 cells and impairs the expression levels of lipid synthesis-related genes (namely, SREBF1c, SREBF2, ACACA, SCD1, HMGCR and FASN). In vitro data have been validated in a dedicated double-blind, placebo-controlled, randomised clinical trial performed in 50 healthy moderately hyper-cholesterolemic subjects, undergoing supplementation with either Brumex™ (400 mg) or placebo for 12 weeks. Clinical and blood laboratory data were evaluated at the baseline and at the end of the trial. Brumex™ positively impacted on both plasma lipid pattern and liver enzymes compared with the placebo, mainly in terms of significant reduction of total cholesterol (TC), TG, low-density lipoprotein-cholesterol (LDL-C), non-high-density lipoprotein-cholesterol (non-HDL-C), apolipoprotein B100 (ApoB), fasting plasma glucose (FPG), glutamic-oxaloacetic transaminase (GOT), glutamate pyruvate transaminase (GPT) and gamma-glutamyl-transferase (gGT).
Collapse
Affiliation(s)
- Maria Pierdomenico
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Arrigo F G Cicero
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Deptartment, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Maddalena Veronesi
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Deptartment, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Federica Fogacci
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Deptartment, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | - Barbara Benassi
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
7
|
Inflammation and Obesity: The Pharmacological Role of Flavonoids in the Zebrafish Model. Int J Mol Sci 2023; 24:ijms24032899. [PMID: 36769222 PMCID: PMC9917473 DOI: 10.3390/ijms24032899] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
A Mediterranean-style diet is highly encouraged thanks to its healthy food pattern, which includes valuable nutraceuticals such as polyphenols. Among these, flavonoids are associated with relevant biological properties through which they prevent or fight the onset of several human pathologies. Globally, the enhanced incidence of overweight and obese people has caused a dramatic increase in comorbidities, raising the need to provide better therapies. Therefore, the development of sophisticated animal models of metabolic dysregulation has allowed for a deepening of knowledge on this subject. Recent advances in using zebrafish (Danio rerio) as model for metabolic disease have yielded fundamental insights into the potential anti-obesity effects of flavonoids. Chronic low-grade inflammation and immune system activation seem to characterize the pathogenesis of obesity; thus, their reduction might improve the lipid profile of obese patients or prevent the development of associated metabolic illnesses. In this review, we highlight the beneficial role of flavonoids on obesity and related diseases linked to their anti-inflammatory properties. In light of the summarized studies, we suggest that anti-inflammatory therapies could have a relevant place in the prevention and treatment of obesity and metabolic disorders.
Collapse
|
8
|
Targets Involved in the Anti-Cancer Activity of Quercetin in Breast, Colorectal and Liver Neoplasms. Int J Mol Sci 2023; 24:ijms24032952. [PMID: 36769274 PMCID: PMC9918234 DOI: 10.3390/ijms24032952] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Phytochemicals have long been effective partners in the fight against several diseases, including cancer. Among these, flavonoids are valuable allies for both cancer prevention and therapy since they are known to influence a large panel of tumor-related processes. Particularly, it was revealed that quercetin, one of the most common flavonoids, controls apoptosis and inhibits migration and proliferation, events essential for the development of cancer. In this review, we collected the evidence on the anti-cancer activity of quercetin exploring the network of interactions between this flavonol and the proteins responsible for cancer onset and progression focusing on breast, colorectal and liver cancers, owing to their high worldwide incidence. Moreover, quercetin proved to be also a potentiating agent able to push further the anti-cancer activity of common employed anti-neoplastic agents, thus allowing to lower their dosages and, above all, to sensitize again resistant cancer cells. Finally, novel approaches to delivery systems can enhance quercetin's pharmacokinetics, thus boosting its great potentiality even further. Overall, quercetin has a lot of promise, given its multi-target potentiality; thus, more research is strongly encouraged to properly define its pharmaco-toxicological profile and evaluate its potential for usage in adjuvant and chemoprevention therapy.
Collapse
|
9
|
Russo C, Maugeri A, De Luca L, Gitto R, Lombardo GE, Musumeci L, De Sarro G, Cirmi S, Navarra M. The SIRT2 Pathway Is Involved in the Antiproliferative Effect of Flavanones in Human Leukemia Monocytic THP-1 Cells. Biomedicines 2022; 10:biomedicines10102383. [PMID: 36289647 PMCID: PMC9598940 DOI: 10.3390/biomedicines10102383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) represents the most alarming hematological disease for adults. Several genetic modifications are known to be pivotal in AML; however, SIRT2 over-expression has attracted the scientific community’s attention as an unfavorable prognostic marker. The plant kingdom is a treasure trove of bioactive principles, with flavonoids standing out among the others. On this line, the aim of this study was to investigate the anti-leukemic properties of the main flavanones of Citrus spp., exploring the potential implication of SIRT2. Naringenin (NAR), hesperetin (HSP), naringin (NRG), and neohesperidin (NHP) inhibited SIRT2 activity in the isolated recombinant enzyme, and more, the combination between NAR and HSP. In monocytic leukemic THP-1 cells, only NAR and HSP induced antiproliferative effects, altering the cell cycle. These effects may be ascribed to SIRT2 inhibition since these flavonoids reduced its gene expression and hampered the deacetylation of p53, known sirtuin substrate, and contextually modulated the expression of the downstream cell cycle regulators p21 and cyclin E1. Additionally, these two flavanones proved to interact with the SIRT2 inhibitory site, as shown by docking simulations. Our results suggest that both NAR and HSP may act as anti-leukemic agents, alone and in combination, via targeting the SIRT2/p53/p21/cyclin E1 pathway, thus encouraging deeper investigations.
Collapse
Affiliation(s)
- Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Fondazione “Prof. Antonio Imbesi”, 98123 Messina, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence:
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
10
|
Molecular Pathways Involved in the Anti-Cancer Activity of Flavonols: A Focus on Myricetin and Kaempferol. Int J Mol Sci 2022; 23:ijms23084411. [PMID: 35457229 PMCID: PMC9026553 DOI: 10.3390/ijms23084411] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/22/2022] Open
Abstract
Natural compounds have always represented valuable allies in the battle against several illnesses, particularly cancer. In this field, flavonoids are known to modulate a wide panel of mechanisms involved in tumorigenesis, thus rendering them worthy candidates for both cancer prevention and treatment. In particular, it was reported that flavonoids regulate apoptosis, as well as hamper migration and proliferation, crucial events for the progression of cancer. In this review, we collect recent evidence concerning the anti-cancer properties of the flavonols myricetin and kaempferol, discussing their mechanisms of action to give a thorough overview of their noteworthy capabilities, which are comparable to those of their most famous analogue, namely quercetin. On the whole, these flavonols possess great potential, and hence further study is highly advised to allow a proper definition of their pharmaco-toxicological profile and assess their potential use in protocols of chemoprevention and adjuvant therapies.
Collapse
|
11
|
Montano L, Maugeri A, Volpe MG, Micali S, Mirone V, Mantovani A, Navarra M, Piscopo M. Mediterranean Diet as a Shield against Male Infertility and Cancer Risk Induced by Environmental Pollutants: A Focus on Flavonoids. Int J Mol Sci 2022; 23:ijms23031568. [PMID: 35163492 PMCID: PMC8836239 DOI: 10.3390/ijms23031568] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
The role of environmental factors in influencing health status is well documented. Heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, dioxins, pesticides, ultrafine particles, produced by human activities put a strain on the body’s entire defense system. Therefore, together with public health measures, evidence-based individual resilience measures are necessary to mitigate cancer risk under environmental stress and to prevent reproductive dysfunction and non-communicable diseases; this is especially relevant for workers occupationally exposed to pollutants and/or populations residing in highly polluted areas. The Mediterranean diet is characterized by a high intake of fruits and vegetables rich in flavonoids, that can promote the elimination of pollutants in tissues and fluids and/or mitigate their effects through different mechanisms. In this review, we collected evidence from pre-clinical and clinical studies showing that the impairment of male fertility and gonadal development, as well as cancers of reproductive system, due to the exposure of organic and inorganic pollutants, may be counteracted by flavonoids.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL), 84124 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Maria Grazia Volpe
- Institute of Food Sciences, National Research Council, CNR, 83100 Avellino, Italy;
| | - Salvatore Micali
- Urology Department, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Vincenzo Mirone
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80126 Naples, Italy;
| | - Alberto Mantovani
- Department of Food, Safety, Nutrition and Veterinary public health, Italian National Health Institute, 00161 Roma, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence:
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
| |
Collapse
|
12
|
Elmeligy S, Hathout RM, Khalifa SA, El-Seedi HR, Farag MA. Pharmaceutical manipulation of citrus flavonoids towards improvement of its bioavailability and stability. A mini review and a meta-analysis study. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Cadmium-Induced Kidney Injury in Mice Is Counteracted by a Flavonoid-Rich Extract of Bergamot Juice, Alone or in Association with Curcumin and Resveratrol, via the Enhancement of Different Defense Mechanisms. Biomedicines 2021; 9:biomedicines9121797. [PMID: 34944613 PMCID: PMC8698830 DOI: 10.3390/biomedicines9121797] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
Cadmium (Cd) represents a public health risk due to its non-biodegradability and long biological half-life. The main target of Cd is considered the kidney, where it accumulates. No effective treatment for Cd poisoning is available so that several therapeutic approaches were proposed to prevent damages after Cd exposure. We evaluated the effects of a flavonoid-rich extract of bergamot juice (BJe), alone or in association with curcumin (Cur) and resveratrol (Re), in the kidney of mice exposed to cadmium chloride (CdCl2). Male mice were administered with CdCl2 and treated with Cur, Re, or BJe alone or in combination for 14 days. The kidneys were processed for biochemical, structural and morphometric evaluation. Cd treatment significantly increased urea nitrogen and creatinine levels, along with tp53, Bax, Nos2 and Il1b mRNA, while reduced that of Bcl2, as well as glutathione (GSH) content and glutathione peroxidase (GPx) activity. Moreover, Cd caused damages to glomeruli and tubules, and increased Nrf2, Nqo1 and Hmox1 gene expression. Cur, Re and BJe at 40 mg/kg significantly improved all parameters, while BJe at 20 mg/kg showed a lower protective effect. After treatment with the associations of the three nutraceuticals, all parameters were close to normal, thus suggesting a new potential strategy in the protection of renal functions in subjects exposed to environmental toxicants.
Collapse
|
14
|
Russo C, Maugeri A, Lombardo GE, Musumeci L, Barreca D, Rapisarda A, Cirmi S, Navarra M. The Second Life of Citrus Fruit Waste: A Valuable Source of Bioactive Compounds. Molecules 2021; 26:5991. [PMID: 34641535 PMCID: PMC8512617 DOI: 10.3390/molecules26195991] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Citrus fruits (CF) are among the most widely cultivated fruit crops throughout the world and their production is constantly increasing along with consumers' demand. Therefore, huge amounts of waste are annually generated through CF processing, causing high costs for their disposal, as well as environmental and human health damage, if inappropriately performed. According to the most recent indications of an economic, environmental and pharmaceutical nature, CF processing residues must be transformed from a waste to be disposed to a valuable resource to be reused. Based on a circular economy model, CF residues (i.e., seeds, exhausted peel, pressed pulp, secondary juice and leaves) have increasingly been re-evaluated to also obtain, but not limited to, valuable compounds to be employed in the food, packaging, cosmetic and pharmaceutical industries. However, the use of CF by-products is still limited because of their underestimated nutritional and economic value, hence more awareness and knowledge are needed to overcome traditional approaches for their disposal. This review summarizes recent evidence on the pharmacological potential of CF waste to support the switch towards a more environmentally sustainable society.
Collapse
Affiliation(s)
- Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
- Fondazione “Prof. Antonio Imbesi”, 98123 Messina, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Antonio Rapisarda
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| |
Collapse
|
15
|
Molecular Basis of Interactions between the Antibiotic Nitrofurantoin and Human Serum Albumin: A Mechanism for the Rapid Drug Blood Transportation. Int J Mol Sci 2021; 22:ijms22168740. [PMID: 34445446 PMCID: PMC8395721 DOI: 10.3390/ijms22168740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/30/2022] Open
Abstract
Nitrofurantoin is an antimicrobial agent obtained through the addition of a nitro group and a side chain containing hydantoin to a furan ring. The interactions of the antibiotic with human serum albumin (HSA) have been investigated by fluorescence, UV-VIS, Fourier transform infrared spectroscopy (FTIR) spectroscopy, and protein-ligand docking studies. The fluorescence studies indicate that the binding site of the additive involves modifications of the environment around Trp214 at the level of subdomain IIA. Fluorescence and UV-VIS spectroscopy, displacement studies, and FTIR experiments show the association mode of nitrofurantoin to HSA, suggesting that the primary binding site of the antibiotic is located in Sudlow’s site I. Molecular modeling suggests that nitrofurantoin is involved in the formation of hydrogen bonds with Trp214, Arg218, and Ser454, and is located in the hydrophobic cavity of subdomain IIA. Moreover, the curve-fitting results of the infrared Amide I’ band indicate that the binding of nitrofurantoin induces little change in the protein secondary structure. Overall, these data clarify the blood transportation process of nitrofurantoin and its rapid transfer to the kidney for its elimination, hence leading to a better understanding of its biological effects and being able to design other molecules, based on nitrofurantoin, with a higher biological potential.
Collapse
|
16
|
Testai L, De Leo M, Flori L, Polini B, Braca A, Nieri P, Pistelli L, Calderone V. Contribution of irisin pathway in protective effects of mandarin juice (Citrus reticulata Blanco) on metabolic syndrome in rats fed with high fat diet. Phytother Res 2021; 35:4324-4333. [PMID: 33942395 PMCID: PMC8453895 DOI: 10.1002/ptr.7128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 02/01/2023]
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Abbate F, Maugeri A, Laurà R, Levanti M, Navarra M, Cirmi S, Germanà A. Zebrafish as a Useful Model to Study Oxidative Stress-Linked Disorders: Focus on Flavonoids. Antioxidants (Basel) 2021; 10:antiox10050668. [PMID: 33922976 PMCID: PMC8147052 DOI: 10.3390/antiox10050668] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022] Open
Abstract
The zebrafish is considered one of the most versatile experimental animal models. The transparency of the embryos, the small size, the rapid development and the homology with higher vertebrates have made the zebrafish a valuable model also for drug screening. Its use is closely related for the determination of bioactivity, toxicity and off-target side effects of novel drug candidates, which also allows a thorough evaluation of new targets; thus, it may represent a suitable model for drug screening and the optimization of novel candidates. Flavonoids are polyphenolic compounds widely present in fruits, vegetables and cereals. Polyphenols are important for both plants and humans, considering their involvement in defense mechanisms, particularly against oxidative stress. They protect plants from biotic and abiotic stressors and prevent or treat oxidative-based human diseases. For these reasons, polyphenols are used as nutraceuticals, functional foods and supplements by the pharmaceutical industry. Therefore, the most relevant findings on zebrafish as a useful experimental model to study oxidative stress-linked disorders, focusing on the biological activities of flavonoids, are here summarized and reviewed.
Collapse
Affiliation(s)
- Francesco Abbate
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.L.); (M.L.); (A.G.)
- Correspondence: (F.A.); (S.C.)
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.M.); (M.N.)
| | - Rosaria Laurà
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.L.); (M.L.); (A.G.)
| | - Maria Levanti
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.L.); (M.L.); (A.G.)
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.M.); (M.N.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (A.M.); (M.N.)
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Correspondence: (F.A.); (S.C.)
| | - Antonino Germanà
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.L.); (M.L.); (A.G.)
| |
Collapse
|
18
|
Ferlazzo N, Micali A, Marini HR, Freni J, Santoro G, Puzzolo D, Squadrito F, Pallio G, Navarra M, Cirmi S, Minutoli L. A Flavonoid-Rich Extract from Bergamot Juice, Alone or in Association with Curcumin and Resveratrol, Shows Protective Effects in a Murine Model of Cadmium-Induced Testicular Injury. Pharmaceuticals (Basel) 2021; 14:ph14050386. [PMID: 33919028 PMCID: PMC8142973 DOI: 10.3390/ph14050386] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
It is known that cadmium damages testis structure and functionality. We examined the effects of nutraceuticals such as a flavonoid-rich extract of bergamot juice (BJe), alone or in association with curcumin (Cur) and resveratrol (Re), on mice testicular dysfunction caused by cadmium chloride (CdCl2). Controversial data on the protective effects of Cur and Re are available, while no evidence on the possible role of BJe exists. Adult male C57 BL/6J mice were administered with CdCl2 and treated with Cur, Re, or BJe alone or in combination for 14 days. Then, testes were removed and processed for molecular, structural, and immunohistochemical analyses. CdCl2 increased the mRNA of IL-1β, TNF-α, p53, and BAX while reduced that of Bcl-2 and induced tubular lesions and apoptosis of germinal cells. Cur, Re, and BJe at 40 mg/kg significantly improved all of these parameters and events, although BJe at 20 mg/kg showed a lower protective effect. The association of Cur, Re, and BJe at both doses of 50/20/20 and 100/20/40 mg/kg brought each parameter close to those of the control. Our results indicate that the nutraceuticals employed in this study and their associations exert a positive action against Cd-induced testicular injury, suggesting a possible protection of testis functionality in subjects exposed to environmental toxicants.
Collapse
Affiliation(s)
- Nadia Ferlazzo
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Antonio Micali
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (F.S.); (G.P.); (L.M.)
| | - Josè Freni
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Giuseppe Santoro
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Domenico Puzzolo
- Department of Biomedical, Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (N.F.); (A.M.); (J.F.); (G.S.); (D.P.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (F.S.); (G.P.); (L.M.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (F.S.); (G.P.); (L.M.)
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Correspondence:
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (F.S.); (G.P.); (L.M.)
| |
Collapse
|
19
|
Bergamottin and 5-Geranyloxy-7-methoxycoumarin Cooperate in the Cytotoxic Effect of Citrus bergamia (Bergamot) Essential Oil in Human Neuroblastoma SH-SY5Y Cell Line. Toxins (Basel) 2021; 13:toxins13040275. [PMID: 33920139 PMCID: PMC8069240 DOI: 10.3390/toxins13040275] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/23/2023] Open
Abstract
The plant kingdom has always been a treasure trove for valuable bioactive compounds, and Citrus fruits stand out among the others. Bergamottin (BRG) and 5-geranyloxy-7-methoxycoumarin (5-G-7-MOC) are two coumarins found in different Citrus species with well-acknowledged pharmacological properties. Previously, they have been claimed to be relevant in the anti-proliferative effects exerted by bergamot essential oil (BEO) in the SH-SY5Y human neuroblastoma cells. This study was designed to verify this assumption and to assess the mechanisms underlying the anti-proliferative effect of both compounds. Our results demonstrate that BRG and 5-G-7-MOC are able to reduce the proliferation of SH-SY5Y cells, inducing apoptosis and increasing cell population in sub-G0/G1 phase. Moreover, we demonstrated the pro-oxidant activity of the two coumarins that increased reactive oxygen species and impaired mitochondrial membrane potential. From a molecular point of view, BRG and 5-G-7-MOC were able to modulate apoptosis related factors at both protein and gene levels. Lastly, we evaluated the synergistic effect of their combination, finding that the highest synergy was observed at a concentration ratio similar to that occurring in the BEO, supporting our initial hypothesis. Taken together, our results deepen the knowledge regarding the effect of BRG and 5-G-7-MOC in SH-SY5Y cells, emphasizing the relevance of their cooperation in achieving this effect.
Collapse
|
20
|
A Flavonoid-Rich Extract of Mandarin Juice Counteracts 6-OHDA-Induced Oxidative Stress in SH-SY5Y Cells and Modulates Parkinson-Related Genes. Antioxidants (Basel) 2021; 10:antiox10040539. [PMID: 33808343 PMCID: PMC8066648 DOI: 10.3390/antiox10040539] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is a degenerative disorder of the nervous system due to unceasing impairment of dopaminergic neurons situated in the substantia nigra. At present, anti-PD drugs acting on dopamine receptors are mainly symptomatic and have only very limited neuroprotective effects, whereas drugs slowing down neurodegeneration of dopaminergic neurons and deterioration of clinical symptoms are not yet available. Given that, the development of more valuable pharmacological strategies is highly demanded. Comprehensive research on innovative neuroprotective drugs has proven that anti-inflammatory and antioxidant molecules from food sources may prevent and/or counteract neurodegenerative diseases, such as PD. The present study was aimed at the evaluation the protective effect of mandarin juice extract (MJe) against 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma cell death. Treatment of differentiated SH-SY5Y cells with 6-OHDA brought cell death, and specifically, apoptosis, which was significantly inhibited by the preincubation with MJe through caspase 3 blockage and the modulation of p53, Bax, and Bcl-2 genes. In addition, it showed antioxidant properties in abiotic models as well as in vitro, where it reduced both reactive oxygen and nitrogen species induced by 6-OHDA, along with restored mitochondrial membrane potential, and prevented the oxidative DNA damage evoked by 6-OHDA. Furthermore, MJe restored the impaired balance of SNCA, LRRK2, PINK1, parkin, and DJ-1 gene levels, PD-related factors, caused by 6-OHDA oxidative stress. Overall, these results indicate that MJe exerts neuroprotective effects against 6-OHDA-induced cell death in SH-SY5Y cells by mechanisms involving both the specific interaction with intracellular pathways and its antioxidant capability. Our study suggests a novel possible strategy to prevent and/or ameliorate neurodegenerative diseases, such as PD.
Collapse
|
21
|
Cirmi S, Celano M, Lombardo GE, Maggisano V, Procopio A, Russo D, Navarra M. Oleacein inhibits STAT3, activates the apoptotic machinery, and exerts anti-metastatic effects in the SH-SY5Y human neuroblastoma cells. Food Funct 2021; 11:3271-3279. [PMID: 32219291 DOI: 10.1039/d0fo00089b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several studies published in the last decade suggest that the beneficial role of extra-virgin olive oil (EVOO) in human health is mostly attributable to the main secoiridoid derivatives (oleuropein, oleocanthal, and oleacein). Anti-cancer properties have also been demonstrated for certain compounds present in small quantities in EVOO, including oleuropein and hydroxytyrosol, which have been extensively studied, while minor attention has been given to the most abundant secoiridoid oleacein. The aim of our research was to study the molecular mechanisms underlying the anti-proliferative and anti-metastatic capacity of oleacein in the SH-SY5Y human neuroblastoma cell line. Our results demonstrate that oleacein is able to reduce the proliferation of the SH-SY5Y cells by blocking the cell cycle in the S phase and inducing apoptotic cell death through the increase in both Bax and p53 as well as a reduction in the Bcl-2 expression and STAT3 phosphorylation. Moreover, oleacein caused reduction in the SH-SY5Y cell adhesion and migration. Overall, these findings indicate that oleacein exerts anti-cancer effects against neuroblastoma cells, suggesting a promising role as a candidate against this type of cancer.
Collapse
Affiliation(s)
- Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, I-98168 Messina, Italy.
| | - Marilena Celano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | | | - Valentina Maggisano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Antonio Procopio
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Diego Russo
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, I-98168 Messina, Italy.
| |
Collapse
|
22
|
Montalbano G, Maugeri A, Guerrera MC, Miceli N, Navarra M, Barreca D, Cirmi S, Germanà A. A White Grape Juice Extract Reduces Fat Accumulation through the Modulation of Ghrelin and Leptin Expression in an In Vivo Model of Overfed Zebrafish. Molecules 2021; 26:molecules26041119. [PMID: 33672773 PMCID: PMC7924606 DOI: 10.3390/molecules26041119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
A caloric surplus and a sedentary lifestyle are undoubtedly known to be the leading causes of obesity. Natural products represent valuable allies to face this problematic issue. This study was planned to assess the effect of a white grape (Vitis vinifera) juice extract (WGJe) in diet-induced obese zebrafish (Danio rerio). Fish were divided into four different diet groups: (i) normally fed (NF); (ii) overfed (OF); (iii) WGJe-supplemented NF (5 mL/L in fish water); (iv) WGJe-supplemented OF. Body mass index (BMI) was extrapolated each week. After the fourth week, euthanized zebrafish were processed for both microscopic evaluations and gene expression analyses. OF zebrafish showed higher BMI values with respect to NF counterparts, an effect that was hindered by WGJe treatment. Moreover, histological analyses showed that the area of the adipose tissue, as well as the number, size, and density of adipocytes was significantly higher in OF fish. On the other hand, WGJe was able to avoid these outcomes both at the subcutaneous and visceral levels, albeit to different extents. At the gene level, WGJe restored the altered levels of ghrelin and leptin of OF fish both in gut and brain. Overall, our results support the anti-obesity property of WGJe, suggesting its potential role in weight management.
Collapse
Affiliation(s)
- Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (G.M.); (M.C.G.); (A.G.)
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; (A.M.); (N.M.); (M.N.); (D.B.)
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (G.M.); (M.C.G.); (A.G.)
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; (A.M.); (N.M.); (M.N.); (D.B.)
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; (A.M.); (N.M.); (M.N.); (D.B.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; (A.M.); (N.M.); (M.N.); (D.B.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; (A.M.); (N.M.); (M.N.); (D.B.)
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Correspondence: or
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (G.M.); (M.C.G.); (A.G.)
| |
Collapse
|
23
|
Visalli G, Facciolà A, Laganà P, Di Pietro A. Food chemoprevention and air pollution: the health comes with eating. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:471-479. [PMID: 32573482 DOI: 10.1515/reveh-2019-0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Ambient air pollution is known to be an important causative agent of many non-communicable diseases, mainly due to fine particulate matter (PM2.5). According to Global Burden Disease study in 2015, the estimated premature deaths caused by PM2.5 were 4.2 million. Besides deaths, airborne pollution's effect on human health also has dramatic economic and social costs, contributing greatly to disability-adjusted life-year (DALY). To reduce the health impact is necessary a double approach, which includes the improvement of air quality and food chemoprevention, aimed at enhancing the homeostatic abilities of exposed subjects. The scavenging, antioxidant, and anti-inflammatory properties of nutraceuticals effectively counteract the pathogenic mechanisms common in almost all non-communicable diseases associated with air pollutants. Moreover, several bioactive compounds of food modulate, by epigenetic mechanisms, the metabolism of xenobiotics, favouring conjugation reactions and promoting excretion. This narrative review summarize the numerous pieces of evidence collected in the last decades by observational and experimental studies which underline the chemopreventive role of flavonoids, contained in several fruits and consumer beverages (wine, tea, etc.), and isothiocyanate sulforaphane, contained in the cruciferous vegetables belonging to the genus Brassica. These bioactive compounds, enhancing the individual homeostatic abilities, reduce the harmful effects of airborne pollution.
Collapse
Affiliation(s)
- Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morpho Functional Imaging, University of Messina, Messina, Italy
| | - Alessio Facciolà
- Epidemiology Operative Unit, Department of Prevention, Health Provincial Agency, Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dental Sciences and Morpho Functional Imaging, University of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morpho Functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
24
|
Lombardo GE, Cirmi S, Musumeci L, Pergolizzi S, Maugeri A, Russo C, Mannucci C, Calapai G, Navarra M. Mechanisms Underlying the Anti-Inflammatory Activity of Bergamot Essential Oil and Its Antinociceptive Effects. PLANTS 2020; 9:plants9060704. [PMID: 32492797 PMCID: PMC7356015 DOI: 10.3390/plants9060704] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Renewed interest in natural products as potential source of drugs led us to investigate on both the anti-inflammatory and anti-nociceptive activity of Citrus bergamia Risso et Poiteau (bergamot) essential oil (BEO). Carrageenan-induced paw edema in rats was used as an experimental model of inflammation. Because of the toxicity of furocoumarins, we performed our study by using the BEO fraction deprived of these compounds (BEO-FF). Treatment with BEO-FF led to a significant inhibition of paw edema induced by a sub-plantar injection of carrageenan. Moreover, histological examination of BEO-FF-treated rat paw biopsies showed a reduction of pathological changes typical of edema. Pre-treatment with BEO-FF significantly reduced interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels in the paw homogenates, as well as nitrite/nitrate and prostaglandin E2 (PGE2) content in exudates. In addition, BEO-FF possesses antioxidant properties, as determined by cell-free assays. Furthermore, results of the writhing test showed that BEO-FF elicited a pronounced analgesic response, as demonstrated by a significant inhibition of constrictions in mice receiving acetic acid, with respect to control animals, whereas the results of the hot plate test suggested that the supra-spinal analgesia participates in the anti-nociceptive effect of BEO-FF. Our study indicates that BEO-FF exerts anti-inflammatory and anti-nociceptive effects, and suggests its potential role as an anti-edemigen and analgesic drug.
Collapse
Affiliation(s)
- Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
| | - Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
- Fondazione “Prof. Antonio Imbesi”, 98168 Messina, Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
- Fondazione “Prof. Antonio Imbesi”, 98168 Messina, Italy
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy; (C.M.); (G.C.)
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy; (C.M.); (G.C.)
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (G.E.L.); (S.C.); (L.M.); (S.P.); (A.M.); (C.R.)
- Correspondence: ; Tel.: +39-090-676-6431
| |
Collapse
|
25
|
Cirmi S, Randazzo B, Russo C, Musumeci L, Maugeri A, Montalbano G, Guerrera MC, Lombardo GE, Levanti M. Anti-inflammatory effect of a flavonoid-rich extract of orange juice in adult zebrafish subjected to Vibrio anguillarum-induced enteritis. Nat Prod Res 2020; 35:5350-5353. [PMID: 32338069 DOI: 10.1080/14786419.2020.1758096] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Inflammation-related pathologies remain a serious health problem with high costs for the community. Citrus flavonoids are known to possess important pharmacological properties, including anti-inflammatory activity. In this study we evaluated the effects of a flavonoid-rich extract of orange juice (OJe) in an experimental model of enteritis induced by Vibrio anguillarum in adult zebrafish (Danio rerio). Administration of V. anguillarum through live feed (Artemia nauplii) for three consecutive days caused evident signs of enteritis in zebrafish. Three days of treatment with OJe before the pathogenic insult resulted in a remarkable reduction of tissue inflammatory events as well as a molecular down-regulation of the inflammatory genes such as IL-1β, IL-6 and TNFα. Our data suggest that OJe counteracts the inflammation of zebrafish intestinal mucosa, indicating that the pool of flavonoids present in orange juice could be useful for the prevention of enteritis.
Collapse
Affiliation(s)
- Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Basilio Randazzo
- Department of Sea Science, University Polytechnic of Marche, Ancona, Italy
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Fondazione "Prof. Antonio Imbesi", Messina, Italy
| | - Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
26
|
Ferlazzo N, Cirmi S, Maugeri A, Russo C, Lombardo GE, Gangemi S, Calapai G, Mollace V, Navarra M. Neuroprotective Effect of Bergamot Juice in 6-OHDA-Induced SH-SY5Y Cell Death, an In Vitro Model of Parkinson's Disease. Pharmaceutics 2020; 12:pharmaceutics12040326. [PMID: 32260543 PMCID: PMC7238189 DOI: 10.3390/pharmaceutics12040326] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Much evidence suggests that both oxidative stress and apoptosis play a key role in the pathogenesis of Parkinson’s disease (PD). The present study aims to evaluate the protective effect of bergamot juice (BJ) against 6-hydroxydopamine (6-OHDA)- or H2O2-induced cell death. Treatment of differentiated SH-SY5Y human neuroblastoma cells with 6-OHDA or H2O2 resulted in cell death that was significantly reduced by the pre-treatment with BJ. The protective effects of BJ seem to correlate with the reduction of intracellular reactive oxygen species and nitric oxide generation caused by 6-OHDA or H2O2. BJ also attenuated mitochondrial dysfunction, caspase-3 activation, imbalance of pro- and anti-apoptotic proteins, MAPKs activation and reduced NF-ĸB nuclear translocation evoked by neurotoxic agents. Additionally, BJ exhibited excellent antioxidant capability in cell-free assays. Collectively, our results suggest that BJ exerts neuroprotective effect through the interplay with specific cell targets and its antioxidant activity, making it worthy of consideration for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (N.F.); (S.C.); (A.M.); (C.R.); (G.E.L.)
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (N.F.); (S.C.); (A.M.); (C.R.); (G.E.L.)
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (N.F.); (S.C.); (A.M.); (C.R.); (G.E.L.)
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (N.F.); (S.C.); (A.M.); (C.R.); (G.E.L.)
- Fondazione “Prof. Antonio Imbesi”, 98100 Messina, Italy
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (N.F.); (S.C.); (A.M.); (C.R.); (G.E.L.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy;
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy;
| | - Vincenzo Mollace
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (N.F.); (S.C.); (A.M.); (C.R.); (G.E.L.)
- Correspondence:
| |
Collapse
|