1
|
Xu Y, Xia D, Deng S, Liang M. Isoimperatorin Inhibits Angiogenesis by Suppressing VEGFR2 Signaling Pathway. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07561-5. [PMID: 38363479 DOI: 10.1007/s10557-024-07561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Angiogenesis involves in many pathological processes, including tumor metastasis, diabetic retinopathy, and rheumatoid arthritis. Therefore, identifying therapeutic drugs that target angiogenesis may be a promising strategy for disease treatment. Isoimperatorin is a furanocoumarin with anti-inflammatory and anti-microbial effects. However, the impacts of isoimperatorin on angiogenesis and its underlying mechanisms remain unclear. This study aimed to verify its effects on vascular endothelial growth factor (VEGF)-induced endothelial angiogenesis. METHODS We employed various assays including 5-ethynyl-2'-deoxyuridine incorporation assay, transwell migration assay, wound healing assay, tube formation assay, and Western blot to evaluate the effects of isoimperatorin on angiogenesis in vitro. Additionally, we utilized Western blot and immunofluorescence analysis to examine the activation of vascular endothelial growth factor receptor (VEGFR) 2 and its downstream signaling pathways following isoimperatorin treatment. To further validate the anti-angiogenic effects of isoimperatorin in vivo, we conducted a matrigel plug assay and established an orthotopic tumor model. RESULTS We demonstrated that pretreatment with isoimperatorin inhibited VEGF-induced endothelial cell proliferation, migration, and tube formation. Isoimperatorin also suppressed angiogenesis in vivo in a matrigel plug assay and in an orthotopic tumor model. Our results revealed that isoimperatorin exhibited anti-angiogenic effects via inhibiting VEGFR2 and its downstream signaling pathways activation. CONCLUSIONS Our study showed that isoimperatorin suppressed angiogenesis by targeting the VEGFR2 signaling pathway and could be a potential therapeutic agent for targeting angiogenesis.
Collapse
Affiliation(s)
- Yating Xu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Xia
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
- Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Deng
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China.
- Hubei clinical research center for metabolic and cardiovascular disease, Huazhong University of Science and Technology, Wuhan, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China.
- Hubei clinical research center for metabolic and cardiovascular disease, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Houeze EA, Wang Y, Zhou Q, Zhang H, Wang X. Comparison study of Beninese and Chinese herbal medicines in treating COVID-19. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116172. [PMID: 36773790 PMCID: PMC9911150 DOI: 10.1016/j.jep.2023.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The worldwide use of natural remedies is an alternative therapeutic solution to strengthen immunity, fight, and prevent this disease. The rapid spread of the coronavirus disease worldwide has promoted the search for therapeutic solutions following different approaches. China and Benin have seen the use of natural remedies such as Chinese herbal medicine and local endemic plants as alternative solutions in treating COVID-19. AIM OF THE STUDY The present study was designed to identify the prevalence of medicinal plant use in four municipalities of Benin most affected by COVID-19 and compare them with traditional Chinese medicine and finally verify the efficacy of the main components of the six plants most frequently used, via in vitro experiments. MATERIALS AND METHODS This study targeting market herbalists and traditional healers was conducted in the form of an ethnomedicinal survey in four representative communities (Cotonou, Abomey-Calavi, Zè, and Ouidah) of southern Benin. The chemical compositions of the six most commonly used herbs were investigated using network pharmacology. Network-based global prediction of disease genes and drug, target, function, and pathway enrichment analysis of the top six herbs was conducted using databases including IPA and visualised using Cytoscape software. The natural botanical drugs involved three medicines and three formulas used in the treatment of COVID-19 in China from the published literature were compared with the top six botanical drugs used in Benin to identify similarities between them and guide the clinical medication in both countries. Finally, the efficacy of the common ingredients in six plants was verified by measuring the viability of BEAS-2B cells and the release of inflammatory factors after administration of different ingredients. Binding abilities of six components to COVID-19 related targets were verified by molecular docking. RESULTS According to the medication survey investigation, the six most used herbs were Citrus aurantiifolia (13.18%), Momordica charantia (7.75%), Ocimum gratissimum (7.36%), Crateva adansonii (6.59%), Azadirachta indica (5.81%), and Zanthoxylum zanthoxyloides (5.42%). The most represented botanical families were Rutaceae, Lamiaceae, Cucurbitaceae, Meliaceae, and Capparaceae. The network pharmacology of these six herbal plants showed that the flavonoids quercetin, kaempferol, and β-sitosterol were the main active ingredients of the Benin herbal medicine. Chinese and Beninese herbal medicine are similar in that they have the same targets and pathways in inflammation and oxidative stress relief. Mild COVID-19-related targets come from C. aurantiifolia and M. charantia, and severe COVID-19-related targets come from A. indica A. Juss. Cell viability and enzyme-linked immunosorbent assay results confirmed that six major compounds could protect BEAS-2B cells against injury by inhibiting the expression of inflammatory factors, among which quercetin and isoimperatorin were more effective. Docking verified that the six compounds have good binding potential with COVID-19 related targets. CONCLUSIONS These results suggest that Benin herbal medicine and Chinese herbal medicine overlap in compounds, targets, and pathways to a certain extent. Among the commonly used plants in Benin, C. aurantiifolia and M. charantia may have a good curative effect on the treatment of mild COVID-19, while for severe COVID-19, A. indica can be added on this basis.
Collapse
Affiliation(s)
- Elisabeth A Houeze
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qian Zhou
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Han Zhang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiaoying Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
3
|
Li H, Deng W, Qin Q, Lin Y, Liu T, Mo G, Shao Y, Tang Y, Yuan K, Xu L, Li Y, Zhang S. Isoimperatorin attenuates bone loss by inhibiting the binding of RANKL to RANK. Biochem Pharmacol 2023; 211:115502. [PMID: 36921635 DOI: 10.1016/j.bcp.2023.115502] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Osteoporosis, an immune disease characterized by bone mass loss and microstructure destruction, is often seen in postmenopausal women. Isoimperatorin (ISO), a bioactive, natural furanocoumarin isolated from many traditional Chinese herbal medicines, has therapeutic effects against various diseases; however, its effect on bone homeostasis remains unclear. In this study, we investigated the effect of ISO on the differentiation and activation of osteoclast and its molecular mechanism in vitro, and evaluated the effect of ISO on bone metabolism by ovariectomized (OVX) rat model. In vitro experiments showed that ISO affected RANKL-induced MAPK, NFAT, NFATc1 trafficking and expression, osteoclast F-actin banding, osteoclast-characteristic gene expression, ROS inhibitory activity, and calcium oscillations, NF-κB signaling pathway. In vivo experiments showed that oral administration of ISO effectively reduced bone loss caused by ovariectomy and retained bone mass.Collectively, ISO inhibits RANK/RANKL binding, thereby reducing the activity of NFATc1, calcium, and ROS and inhibiting osteoclast generation. In addition, ISO protects bone mass by slowing osteoclast production and downregulating NFATc1 gene and protein expression in the bone tissue microenvironment and inhibits OVX-induced bone loss in vivo.
Collapse
Affiliation(s)
- HaiShan Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Deng
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - QiuLi Qin
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - YueWei Lin
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Teng Liu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - GuoYe Mo
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Shao
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - YongChao Tang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai Yuan
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - LiangLiang Xu
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - YongXian Li
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - ShunCong Zhang
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Network Pharmacology and Molecular Docking Analyses Unveil the Mechanisms of Yiguanjian Decoction against Parkinson’s Disease from Inner/Outer Brain Perspective. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4758189. [PMID: 36237735 PMCID: PMC9552692 DOI: 10.1155/2022/4758189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
Objective This study aims to explore the pharmacodynamic mechanism of Yiguanjian (YGJ) decoction against Parkinson's disease (PD) through integrating the central nervous (inner brain) and peripheral system (outer brain) relationship spectrum. Methods The active components of YGJ were achieved from the TCMSP, TCMID, and TCM@Taiwan databases. The blood-brain barrier (BBB) permeability of the active components along with their corresponding targets was evaluated utilizing the existing website, namely, SwissADME and SwissTargetPrediction. The targets of PD were determined through database retrieval. The interaction network was constructed upon the STRING database, followed by the visualization using Cytoscape software. Then, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on potential targets. Finally, the molecular docking approach was employed to assess the binding affinity between key components and key targets. Results Overall, we identified 79 active components, 128 potential targets of YGJ, and 97 potential targets of YGJ-BBB potentially suitable for the treatment of PD. GO and KEGG analyses showed that the YGJ treatment of PD mainly relied on PI3K-Akt pathway while the YGJ-BBB was mostly involved in endocrine resistance. The molecular docking results displayed high affinity between multiple compounds and targets in accordance with previous observations. Conclusions Our study unveiled the potential mechanisms of YGJ against PD from a systemic perspective: (1) for the YGJ, they have potential exerting effects on the peripheral system and inhibiting neuronal apoptosis through regulating the PI3K-Akt pathway; (2) for the YGJ-BBB, they can directly modulate endocrine resistance of the central nervous and holistically enhance body resistance to PD along with YGJ on PI3K-Akt pathway.
Collapse
|
5
|
Hong JH, Lee YC. Anti-Inflammatory Effects of Cicadidae Periostracum Extract and Oleic Acid through Inhibiting Inflammatory Chemokines Using PCR Arrays in LPS-Induced Lung inflammation In Vitro. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060857. [PMID: 35743888 PMCID: PMC9225349 DOI: 10.3390/life12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
In this study, we aimed to evaluate the anti-inflammatory effects and mechanisms of CP and OA treatments in LPS-stimulated lung epithelial cells on overall chemokines and their receptors using PCR arrays. In addition, we aimed to confirm those effects and mechanisms in LPS-stimulated lung macrophages on some chemokines and cytokines. In our study, CP treatments significantly inhibited the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL6, CCL9, CCL11, CCL17, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL10, TNF-α, and IL-6, while markedly suppressing NF-κB p65 nuclear translocation and the phosphorylations of PI3K p55, Akt, Erk1/2, p38, and NF-κB p65 in LPS-stimulated lung epithelial cells. CP treatments also significantly decreased the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, and CXCL2, while markedly inhibiting phospho-PI3K p55 and iNOS expression in LPS-stimulated lung macrophages. Likewise, OA treatments significantly suppressed the inflammatory mediators CCL2, CCL3, CCL4, CCL5, CCL8, CCL11, CXCL1, CXCL3, CXCL5, CXCL7, CXCL10, CCRL2, TNF-α, and IL-6, while markedly reducing the phosphorylations of PI3K p85, PI3K p55, p38, JNK, and NF-κB p65 in LPS-stimulated lung epithelial cells. Finally, OA treatments significantly inhibited the inflammatory mediators CCL2, CCL5, CCL17, CXCL1, CXCL2, TNF-α, and IL-6, while markedly suppressing phospho-PI3K p55, iNOS, and Cox-2 in LPS-stimulated lung macrophages. These results prove that CP and OA treatments have anti-inflammatory effects on the inflammatory chemokines and cytokines by inhibiting pro-inflammatory mediators, including PI3K, Akt, MAPKs, NF-κB, iNOS, and Cox-2. These findings suggest that CP and OA are potential chemokine-based therapeutic substances for treating the lung and airway inflammation seen in allergic disorders.
Collapse
Affiliation(s)
| | - Young-Cheol Lee
- Correspondence: ; Tel.: +82-33-730-0672; Fax: +82-33-730-0653
| |
Collapse
|
6
|
Wang C, Hou Y, Ge S, Lu J, Wang X, Lv Y, Wang N, He H. Synthetic imperatorin derivatives alleviate allergic reactions via mast cells. Biomed Pharmacother 2022; 150:112982. [PMID: 35483187 DOI: 10.1016/j.biopha.2022.112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022] Open
Abstract
Anaphylaxis is a severe systemic allergic reaction that exhibits multiple clinical symptoms. The Mas-related G protein-coupled receptor X2 (MRGPRX2) is recognized as a key cell receptor mediating allergic diseases and drug-induced anaphylactoid reactions. Thus, it has been a promising target for preventing and treating these reactions. Based on the potential activity of imperatorin and active structural feature of MRGPRX2, we first demonstrated that the synthetic imperatorin derivatives (IDs) could significantly inhibit MRGPRX2 agonist-induced degranulation and cytokine release in LAD2 cells, as well as alleviate local and systemic anaphylaxis in mice. The IC50 value of the most promising compound is an order of magnitude lower than that of imperatorin. IDs were further identified to display anti-pseudo-allergic activity by binding MRGPRX2 with the tertiary nitrogen substructures, just liking the reported MRGPRX2-ligand. These results would propose evidence for discovery of agents for treating MCs-dependent allergic disorders.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yajing Hou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shuai Ge
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiayu Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiangjun Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuexin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Nan Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huaizhen He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
7
|
Zhao YB, Yang SH, Shen J, Deng K, Li Q, Wang Y, Cui W, Ye H. Interaction between regulatory T cells and mast cells via IL-9 and TGF-β production. Oncol Lett 2020; 20:360. [PMID: 33133260 PMCID: PMC7590434 DOI: 10.3892/ol.2020.12224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Research on the immunosuppression of cancer cells has attracted much attention in recent years. The present study sought to provide a new strategy for tumor immunotherapy targeting mast cells by studying the mechanisms underlying mast cell function in cancer immunosuppression. Between January 2015 and December 2017, the tumor tissues of 40 patients with gastric cancer (GC) were collected and grouped in Lihuili Hospital of Ningbo City, China. Pathological sections were prepared and an immunofluorescence assay was performed to analyze the expression of forkhead Box Protein P3 (FOXP3), tryptase, TGFβ1, TGF-βR, IL-9, IL-9R and Oxford 40 ligand (OX40L). Then, the correlations between FOXP3 and tryptase, TGFβ1 and tryptase expression, and the expression of OX40L in patients with GC with different stages were analyzed. The results revealed that high levels of mast cells were present in patients GC, and tryptase and FOXP3 expressions were positively correlated. Mast cells regulate T regulatory (reg) cells in the gastric tumor microenvironment by secreting TGFβ1. Tregs, in turn, promote the survival of mast cells in the tumor microenvironment by producing IL-9. Furthermore, OX40L expression in mast cells was significantly associated with Tumor-Node-Metastasis staging of GC. Overall, the present study reported a positive feedback system that functions through TGFβ1 and IL-9 to allow cross-talk between Tregs and mast cells. Moreover, OX40L may be a potential target for the diagnosis and treatment of GC. These results may provide a new strategy for tumor immunotherapy targeting mast cells.
Collapse
Affiliation(s)
- Yi-Bin Zhao
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Shao-Hui Yang
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jie Shen
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Ke Deng
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Qi Li
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Yu Wang
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Wei Cui
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Hua Ye
- Department of Gastroenterology, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|