1
|
Niyangoda D, Aung ML, Qader M, Tesfaye W, Bushell M, Chiong F, Tsai D, Ahmad D, Samarawickrema I, Sinnollareddy M, Thomas J. Cannabinoids as Antibacterial Agents: A Systematic and Critical Review of In Vitro Efficacy Against Streptococcus and Staphylococcus. Antibiotics (Basel) 2024; 13:1023. [PMID: 39596719 PMCID: PMC11591022 DOI: 10.3390/antibiotics13111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Two major bacterial pathogens, Staphylococcus aureus and Streptococcus pyogenes, are becoming increasingly antibiotic-resistant. Despite the urgency, only a few new antibiotics have been approved to address these infections. Although cannabinoids have been noted for their antibacterial properties, a comprehensive review of their effects on these bacteria has been lacking. OBJECTIVE This systematic review examines the antibacterial activity of cannabinoids against S. aureus, including methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) strains, and S. pyogenes. METHODS Databases, including CINAHL, Cochrane, Medline, Scopus, Web of Science, and LILACS, were searched. Of 3510 records, 24 studies met the inclusion criteria, reporting on the minimum inhibitory concentration (MIC) and minimum bactericidal concentration of cannabinoids. RESULTS Cannabidiol (CBD) emerged as the most effective cannabinoid, with MICs ranging from 0.65 to 32 mg/L against S. aureus, 0.5 to 4 mg/L for MRSA, and 1 to 2 mg/L for VRSA. Other cannabinoids, such as cannabichromene, cannabigerol (CBG), and delta-9-tetrahydrocannabinol (Δ9-THC), also exhibited significant antistaphylococcal activity. CBD, CBG, and Δ9-THC also showed efficacy against S. pyogenes, with MICs between 0.6 and 50 mg/L. Synergistic effects were observed when CBD and essential oils from Cannabis sativa when combined with other antibacterial agents. CONCLUSION Cannabinoids' antibacterial potency is closely linked to their structure-activity relationships, with features like the monoterpene region, aromatic alkyl side chain, and aromatic carboxylic groups enhancing efficacy, particularly in CBD and its cyclic forms. These results highlight the potential of cannabinoids in developing therapies for resistant strains, though further research is needed to confirm their clinical effectiveness.
Collapse
Affiliation(s)
- Dhakshila Niyangoda
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.B.)
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Myat Lin Aung
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.B.)
| | - Mallique Qader
- Institute for Tuberculosis Research, Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Wubshet Tesfaye
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mary Bushell
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.B.)
| | - Fabian Chiong
- Department of Infectious Diseases, The Canberra Hospital, Garran, ACT 2605, Australia;
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia;
| | - Danny Tsai
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Alice Springs, NT 0870, Australia;
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia
- Pharmacy Department, Alice Springs Hospital, Central Australian Region Health Service, Alice Springs, NT 0870, Australia
| | - Danish Ahmad
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia;
| | | | - Mahipal Sinnollareddy
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA;
| | - Jackson Thomas
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.B.)
| |
Collapse
|
2
|
Niyangoda D, Muayad M, Tesfaye W, Bushell M, Ahmad D, Samarawickrema I, Sinclair J, Kebriti S, Maida V, Thomas J. Cannabinoids in Integumentary Wound Care: A Systematic Review of Emerging Preclinical and Clinical Evidence. Pharmaceutics 2024; 16:1081. [PMID: 39204426 PMCID: PMC11359183 DOI: 10.3390/pharmaceutics16081081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
This systematic review critically evaluates preclinical and clinical data on the antibacterial and wound healing properties of cannabinoids in integument wounds. Comprehensive searches were conducted across multiple databases, including CINAHL, Cochrane library, Medline, Embase, PubMed, Web of Science, and LILACS, encompassing records up to May 22, 2024. Eighteen studies met the inclusion criteria. Eleven were animal studies, predominantly utilizing murine models (n = 10) and one equine model, involving 437 animals. The seven human studies ranged from case reports to randomized controlled trials, encompassing 92 participants aged six months to ninety years, with sample sizes varying from 1 to 69 patients. The studies examined the effects of various cannabinoid formulations, including combinations with other plant extracts, crude extracts, and purified and synthetic cannabis-based medications administered topically, intraperitoneally, orally, or sublingually. Four animal and three human studies reported complete wound closure. Hemp fruit oil extract, cannabidiol (CBD), and GP1a resulted in complete wound closure in twenty-three (range: 5-84) days with a healing rate of 66-86% within ten days in animal studies. One human study documented a wound healing rate of 3.3 cm2 over 30 days, while three studies on chronic, non-healing wounds reported an average healing time of 54 (21-150) days for 17 patients by oral oils with tetrahydrocannabinol (THC) and CBD and topical gels with THC, CBD, and terpenes. CBD and tetrahydrocannabidiol demonstrated significant potential in reducing bacterial loads in murine models. However, further high-quality research is imperative to fully elucidate the therapeutic potential of cannabinoids in the treatment of bacterial skin infections and wounds. Additionally, it is crucial to delineate the impact of medicinal cannabis on the various phases of wound healing. This study was registered in PROSPERO (CRD42021255413).
Collapse
Affiliation(s)
- Dhakshila Niyangoda
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Mohammed Muayad
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
| | - Wubshet Tesfaye
- School of Pharmacy, Faculty of Health and Behavioural Sciences, University of Queensland, Queensland, QLD 4072, Australia;
| | - Mary Bushell
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
| | - Danish Ahmad
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia;
| | | | - Justin Sinclair
- Australian Natural Therapeutics Group, Byron Bay, NSW 2481, Australia;
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Shida Kebriti
- Eczanes Pharmaceuticals, Rydalmere, NSW 2116, Australia;
| | - Vincent Maida
- Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Hospice Vaughan, Woodbridge, ON L4H 3G7, Canada
| | - Jackson Thomas
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
| |
Collapse
|
3
|
Oriola AO, Kar P, Oyedeji AO. Cannabis sativa as an Herbal Ingredient: Problems and Prospects. Molecules 2024; 29:3605. [PMID: 39125010 PMCID: PMC11314114 DOI: 10.3390/molecules29153605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Cannabis sativa, otherwise known as hemp, is discussed to highlight the various problems and prospects associated with its use as an herbal ingredient. The chemical composition of hemp, with classification based on cannabinoid contents, its biological activities, current global scenarios and legality issues, economic importance, and future prospects, are discussed.
Collapse
Affiliation(s)
- Ayodeji O. Oriola
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, P/Bag X1, Mthatha 5117, South Africa;
| | - Pallab Kar
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha 5117, South Africa
| | - Adebola O. Oyedeji
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, P/Bag X1, Mthatha 5117, South Africa;
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha 5117, South Africa
| |
Collapse
|
4
|
Zagórska-Dziok M, Nowak A, Zgadzaj A, Oledzka E, Kędra K, Wiącek AE, Sobczak M. New Polymeric Hydrogels with Cannabidiol and α-Terpineol as Potential Materials for Skin Regeneration-Synthesis and Physicochemical and Biological Characterization. Int J Mol Sci 2024; 25:5934. [PMID: 38892121 PMCID: PMC11173307 DOI: 10.3390/ijms25115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Dermatology and cosmetology currently prioritize healthy, youthful-looking skin. As a result, research is being conducted worldwide to uncover natural substances and carriers that allow for controlled release, which could aid in the battle against a variety of skin illnesses and slow the aging process. This study examined the biological and physicochemical features of novel hydrogels containing cannabidiol (CBD) and α-terpineol (TER). The hydrogels were obtained from ε-caprolactone (CL) and poly(ethylene glycol) (PEG) copolymers, diethylene glycol (DEG), poly(tetrahydrofuran) (PTHF), 1,6-diisocyanatohexane (HDI), and chitosan (CHT) components, whereas the biodegradable oligomers were synthesized using the enzyme ring-opening polymerization (e-ROP) method. The in vitro release rate of the active compounds from the hydrogels was characterized by mainly first-order kinetics, without a "burst release". The antimicrobial, anti-inflammatory, cytotoxic, antioxidant, and anti-aging qualities of the designed drug delivery systems (DDSs) were evaluated. The findings indicate that the hydrogel carriers that were developed have the ability to scavenge free radicals and impact the activity of antioxidant enzymes while avoiding any negative effects on keratinocytes and fibroblasts. Furthermore, they have anti-inflammatory qualities by impeding protein denaturation as well as the activity of proteinase and lipoxygenase. Additionally, their ability to reduce the multiplication of pathogenic bacteria and inhibit the activity of collagenase and elastase has been demonstrated. Thus, the developed hydrogel carriers may be effective systems for the controlled delivery of CBD, which may become a valuable tool for cosmetologists and dermatologists.
Collapse
Affiliation(s)
- Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Faculty of Medicine, University of Information Technology and Management in Rzeszow, 2 Sucharskiego St., 35-225 Rzeszow, Poland;
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Anna Zgadzaj
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland;
| | - Ewa Oledzka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| | - Karolina Kędra
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka St., 01-224 Warsaw, Poland;
| | - Agnieszka Ewa Wiącek
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, pl. Sq. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland;
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland;
| |
Collapse
|
5
|
Luca SV, Wojtanowski K, Korona-Głowniak I, Skalicka-Woźniak K, Minceva M, Trifan A. Spent Material Extractives from Hemp Hydrodistillation as an Underexplored Source of Antimicrobial Cannabinoids. Antibiotics (Basel) 2024; 13:485. [PMID: 38927152 PMCID: PMC11201062 DOI: 10.3390/antibiotics13060485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Hemp (Cannabis sativa L.) has been used for millennia as a rich source of food and fibers, whereas hemp flowers have only recently gained an increased market interest due to the presence of cannabinoids and volatile terpenes. Currently, the hemp flower processing industry predominantly focuses on either cannabinoid or terpene extraction. In an attempt to maximize the valorization of hemp flowers, the current study aimed to evaluate the phytochemical composition and antimicrobial properties of several extracts obtained from post-distillation by-products (e.g., spent material, residual distillation water) in comparison to the essential oil and total extract obtained from unprocessed hemp flowers. A terpene analysis of the essential oil revealed 14 monoterpenes and 35 sesquiterpenes. The cannabinoid profiling of extracts showed seven acidic precursors and 14 neutral derivatives, with cannabidiol (CBD) reaching the highest concentration (up to 16 wt.%) in the spent material extract. The antimicrobial assessment of hemp EO, cannabinoid-containing extracts, and single compounds (i.e., CBD, cannabigerol, cannabinol, and cannabichromene) against a panel of 20 microbial strains demonstrated significant inhibitory activities against Gram-positive bacteria, Helicobacter pylori, and Trichophyton species. In conclusion, this work suggests promising opportunities to use cannabinoid-rich materials from hemp flower processing in functional foods, cosmetics, and pharmaceuticals with antimicrobial properties.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Krzysztof Wojtanowski
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | - Mirjana Minceva
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Adriana Trifan
- Department of Pharmacognosy-Phytotherapy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| |
Collapse
|
6
|
The Essential Oil of Citrus lumia Risso and Poit. ‘Pyriformis’ Shows Promising Antioxidant, Anti-Inflammatory, and Neuromodulatory Effects. Int J Mol Sci 2023; 24:ijms24065534. [PMID: 36982606 PMCID: PMC10058370 DOI: 10.3390/ijms24065534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/26/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Citrus lumia Risso and Poit. ‘Pyriformis’ are horticultural varieties of Citrus lumia Risso. The fruit is very fragrant and pear-shaped, with a bitter juice, a floral flavor, and a very thick rind. The flavedo shows enlarged (0.74 × 1.16 mm), spherical and ellipsoidal secretory cavities containing the essential oil (EO), visible using light microscopy, and more evident using scanning electron microscopy. The GC-FID and GC-MS analyses of the EO showed a phytochemical profile characterized by the predominance of D-limonene (93.67%). The EO showed interesting antioxidant and anti-inflammatory activities (IC50 0.07–2.06 mg/mL), as evaluated by the in vitro cell-free enzymatic and non-enzymatic assays. To evaluate the effect on the neuronal functional activity, the embryonic cortical neuronal networks grown on multi-electrode array chips were exposed to non-cytotoxic concentrations of the EO (5–200 µg/mL). The spontaneous neuronal activity was recorded and the mean firing rate, mean burst rate, percentage of spikes in a burst, mean burst durations and inter-spike intervals within a burst parameter were calculated. The EO induced strong and concentration-dependent neuroinhibitory effects, with IC50 ranging between 11.4–31.1 µg/mL. Furthermore, it showed an acetylcholinesterase inhibitory activity (IC50 0.19 mg/mL), which is promising for controlling some of the key symptoms of neurodegenerative diseases such as memory and cognitive concerns.
Collapse
|
7
|
Wu Q, Guo M, Zou L, Wang Q, Xia Y. 8,9-Dihydrocannabidiol, an Alternative of Cannabidiol, Its Preparation, Antibacterial and Antioxidant Ability. Molecules 2023; 28:445. [PMID: 36615636 PMCID: PMC9824641 DOI: 10.3390/molecules28010445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 01/06/2023] Open
Abstract
Cannabidiol (CBD) from Cannabis sativa is used in cosmetics in North America due to its antibacterial and antioxidant properties, but has been prohibited in many countries except recently; so, finding a non-intoxicating CBD alternative and elucidating the structure−function relationship of CBD analogues is becoming increasingly relevant. Herein, a set of CBD analogues including 8,9-dihydrocannabidiol (H2CBD) was synthesized, and their antibacterial, bactericidal, and antioxidant activity, as well as their structure−function relationship, were studied. The results present a catalytic selectivity near 100% towards H2CBD with a production yield of 85%. Each CBD analogue presented different antibacterial and antioxidant activity. It is revealed that the phenolic hydroxyl moiety is an essential group for CBD analogues to perform antibacterial and antioxidant activities. Among them, H2CBD presented much stronger antibacterial activity than the assayed popular antibiotics. H2CBD and Compound 4 presented very similar radical scavenging activity and inhibition on lipid oxidation to vitamin C, but better thermostability. Moreover, H2CBD presented lower toxicity to human skin fibroblasts at concentrations up to 64-fold higher than its MIC value (1.25 μg/mL) against S. aureus. Above all, in all property experiments, H2CBD presented extremely similar performance to CBD (p < 0.05), including similar time−kill kinetics curves. This research finds H2CBD to be an alternative for CBD with very high potential in the aspects of antibacterial, bactericidal, and antioxidant activity, as well as lower toxicity to human skin fibroblasts.
Collapse
Affiliation(s)
- Qi Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Maoyue Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Lianghua Zou
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Qiqi Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Krakowiak-Liwoch E, Gębka N, Skiera P. CANNABIDIOL, HOPE OR DISAPPOINTMENT? POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:268-270. [PMID: 37589114 DOI: 10.36740/merkur202303114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Cannabidiol, due to its multidirectional action, raises hope for effective therapy and improvement of the quality of life of patients in many fields of medicine. The aim of the study is to analyze selected scientific publications in terms of the possibility of using cannabinoids in the treatment of common diseases. Currently, intensive research is underway on the use and therapeutic indications of cannabinoids. The research carried out for this study is based on experiments carried out on animals, therefore further, in-depth research is needed that will definitely answer the question in the title of the presented work.
Collapse
Affiliation(s)
| | - Natalia Gębka
- DEPARTAMENT OF DERMATOLOGY, MUNICIPIAL HOSPITAL KUTNO, POLAND
| | | |
Collapse
|
9
|
Supercritical Extract of Cannabis sativa Inhibits Lung Metastasis in Colorectal Cancer Cells by Increasing AMPK and MAPKs-Mediated Apoptosis and Cell Cycle Arrest. Nutrients 2022; 14:nu14214548. [DOI: 10.3390/nu14214548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the diseases with the highest rates of prevalence and mortality despite therapeutic methods in the world. In particular, there are not enough methods to treat metastasis of CRC cells to distant organs. Cannabis sativa Linne (C. sativa) is a popular medicinal plant used by humans to treat many diseases. Recently, extracts of C. sativa have shown diverse pharmacological effects as a result of choosing different extraction methods. In this study, we performed experiments to confirm the inhibitory effect and related mechanisms of supercritical extract of C. sativa on metastatic CRC cells. The effect of SEC on the viability of CRC cell lines, CT26 and HCT116, was determined using CCK reagent. Flow cytometry was performed to confirm whether SEC can promote cell cycle arrest and apoptosis. Additionally, SEC reduced proliferation of CT26 and HCT116 cells without causing toxicity to normal colon cell line CCD-18Co cells. SEC treatment reduced colony formation in both CRC cell lines, promoted G0/G1 phase arrest and apoptosis in CT26 and HCT116 cells through AMPK activation and MAPKs such as ERK, JNK, and p38 inactivation. Moreover, oral administration of SEC decreased pulmonary metastasis of CT26 cells. Our research demonstrates the inhibitory effect of SEC on CRC cell proliferation and metastasis. Thus, SEC might have therapeutic potential for CRC treatment.
Collapse
|
10
|
New Insights on Phytochemical Features and Biological Properties of Alnus glutinosa Stem Bark. PLANTS 2022; 11:plants11192499. [PMID: 36235365 PMCID: PMC9570633 DOI: 10.3390/plants11192499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/05/2022]
Abstract
Alnus glutinosa (namely black alder or European alder) is a tree of the Betulaceae family widely spread through Europe, Southeastern Asia, the Caucasus mountains, and Western Siberia. Its bark is traditionally used for medicinal purposes as an astringent, cathartic, febrifuge, emetic, hemostatic, and tonic, suggesting that it may contain bioactive compounds useful to counteract inflammation. The aim of this study was to investigate the phytochemical profile of A. glutinosa stem bark extract (AGE) by LC-DAD-ESI-MS/MS analysis and to validate some biological activities such as antioxidant, anti-inflammatory and anti-angiogenic properties by in vitro and in vivo models (chick chorioallantoic membranes and zebrafish embryos), that can justify its use against inflammatory-based diseases. The AGE showed a high total phenols content expressed as gallic acid equivalents (0.71 g GAE/g of AGE). Diarylheptanoids have been identified as the predominant compounds (0.65 g/g of AGE) with oregonin, which alone constitutes 74.67% of the AGE. The AGE showed a strong and concentration-dependent antioxidant (IC50 0.15–12.21 µg/mL) and anti-inflammatory (IC50 5.47–12.97 µg/mL) activity. Furthermore, it showed promising anti-angiogenic activity, inhibiting both the vessel growth (IC50 23.39 µg/egg) and the release of an endogenous phosphatase alkaline enzyme (IC50 44.24 µg/embryo). In conclusion, AGE is a promising source of antioxidant, anti-inflammatory and angio-modulator compounds.
Collapse
|
11
|
Hong H, Sloan L, Saxena D, Scott DA. The Antimicrobial Properties of Cannabis and Cannabis-Derived Compounds and Relevance to CB2-Targeted Neurodegenerative Therapeutics. Biomedicines 2022; 10:1959. [PMID: 36009504 PMCID: PMC9406052 DOI: 10.3390/biomedicines10081959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Cannabinoid receptor 2 (CB2) is of interest as a much-needed target for the treatment or prevention of several neurogenerative diseases. However, CB2 agonists, particularly phytocannabinoids, have been ascribed antimicrobial properties and are associated with the induction of microbiome compositional fluxes. When developing novel CB2 therapeutics, CB2 engagement and antimicrobial functions should both be considered. This review summarizes those cannabinoids and cannabis-informed molecules and preparations (CIMPs) that show promise as microbicidal agents, with a particular focus on the most recent developments. CIMP-microbe interactions and anti-microbial mechanisms are discussed, while the major knowledge gaps and barriers to translation are presented. Further research into CIMPs may proffer novel direct or adjunctive strategies to augment the currently available antimicrobial armory. The clinical promise of CIMPs as antimicrobials, however, remains unrealized. Nevertheless, the microbicidal effects ascribed to several CB2 receptor-agonists should be considered when designing therapeutic approaches for neurocognitive and other disorders, particularly in cases where such regimens are to be long-term. To this end, the potential development of CB2 agonists lacking antimicrobial properties is also discussed.
Collapse
Affiliation(s)
- HeeJue Hong
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Lucy Sloan
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Deepak Saxena
- Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - David A. Scott
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
12
|
Occhiuto C, Aliberto G, Ingegneri M, Trombetta D, Circosta C, Smeriglio A. Comparative Evaluation of the Nutrients, Phytochemicals, and Antioxidant Activity of Two Hempseed Oils and Their Byproducts after Cold Pressing. Molecules 2022; 27:3431. [PMID: 35684369 PMCID: PMC9181874 DOI: 10.3390/molecules27113431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, there has been a growing interest in the recovery of agri-food waste within the circular economy perspective. In this study, the nutritional, phytochemical, and biological features of the cold-pressed hempseed oil (HSO) and hempseed meal (HSM) of two industrial hemp varieties (USO 31 and Futura 75, THC ≤ 0.2%) were evaluated. The HSOs showed a high total phenols and flavonoid content, which were confirmed by LC-DAD-ESI-MS analysis, with rutin as the most abundant compound (56.93-77.89 µg/100 FW). They also proved to be a rich source of tocopherols (81.69-101.45 mg/100 g FW) and of a well-balanced ω-6 to ω-3 fatty acid ratio (3:1) with USO 31, which showed the best phytochemical profile and consequently the best antioxidant activity (about two times higher than Futura 75). The HSMs still retained part of the phytochemicals identified in the HSOs (polyphenols, tocopherols, and the preserved ω-6/ω-3 fatty acids ratio) and a modest antioxidant activity. Furthermore, they showed a very interesting nutritional profile, which was very rich in proteins (29.88-31.44 g/100 g FW), crude fibers (18.39-19.67 g/100 g), and essential and non-essential amino acids. Finally, only a restrained amount of anti-nutritional factors (trypsin inhibitors, phytic acid, and condensed tannins) was found, suggesting a promising re-use of these byproducts in the nutraceutical field.
Collapse
Affiliation(s)
- Cristina Occhiuto
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy; (C.O.); (G.A.)
| | - Gianluigi Aliberto
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy; (C.O.); (G.A.)
| | - Mariarosaria Ingegneri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (M.I.); (C.C.); (A.S.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (M.I.); (C.C.); (A.S.)
| | - Clara Circosta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (M.I.); (C.C.); (A.S.)
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (M.I.); (C.C.); (A.S.)
| |
Collapse
|
13
|
Dini I, Izzo L, Ritieni A. The commercial importance of defining Δ‐9‐tetrahydrocannabinol levels in hemp. Phytother Res 2022; 36:3369-3370. [DOI: 10.1002/ptr.7476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Irene Dini
- Department of Pharmacy University of Naples Federico II Napoli Italy
| | - Luana Izzo
- Department of Pharmacy University of Naples Federico II Napoli Italy
| | - Alberto Ritieni
- Department of Pharmacy University of Naples Federico II Napoli Italy
| |
Collapse
|
14
|
Anceschi L, Codeluppi A, Brighenti V, Tassinari R, Taglioli V, Marchetti L, Roncati L, Alessandrini A, Corsi L, Pellati F. Chemical characterization of non-psychoactive Cannabis sativa L. extracts, in vitro antiproliferative activity and induction of apoptosis in chronic myelogenous leukaemia cancer cells. Phytother Res 2022; 36:914-927. [PMID: 35107862 PMCID: PMC9304126 DOI: 10.1002/ptr.7357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 01/17/2023]
Abstract
In this study, extracts from non‐psychoactive Cannabis sativa L. varieties were characterized by means of ultra high‐performance liquid chromatography coupled with high‐resolution mass spectrometry (UHPLC‐HRMS) and their antiproliferative activity was assessed in vitro. The human chronic myelogenous leukaemia cell line K562 was chosen to investigate the mechanism of cell death. The effect on the cell cycle and cell death was analysed by flow cytometry. Proteins related to apoptosis were studied by western blotting. Mechanical properties of cells were assessed using the Micropipette Aspiration Technique (MAT). The results indicated that the cannabidiol (CBD)‐rich extract inhibited cell proliferation of K562 cell line in a dose‐dependent manner and induced apoptosis via caspase 3 and 7 activation. A significant decrease in the mitochondrial membrane potential was detected, together with the release of cytochrome c into the cytosol. The main apoptotic markers were not involved in the mechanism of cell death. The extract was also able to modify the mechanical properties of cells. Thus, this hemp extract and its pure component CBD deserve further investigation for a possible application against myeloproliferative diseases, also in association with other anticancer drugs.
Collapse
Affiliation(s)
- Lisa Anceschi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Codeluppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Bioengineering-Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), Innovation Accelerator, CNR, Bologna, Italy
| | - Valentina Taglioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Lucia Marchetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Roncati
- Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy.,National Research Council (CNR), CNR-Nanoscience Institute-S3, Modena, Italy.,Biostructures and Biosystems National Institute (INBB) Inter-University Consortium, Rome, Italy
| | - Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Biostructures and Biosystems National Institute (INBB) Inter-University Consortium, Rome, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
15
|
Stefkov G, Cvetkovikj Karanfilova I, Stoilkovska Gjorgievska V, Trajkovska A, Geskovski N, Karapandzova M, Kulevanova S. Analytical Techniques for Phytocannabinoid Profiling of Cannabis and Cannabis-Based Products-A Comprehensive Review. Molecules 2022; 27:975. [PMID: 35164240 PMCID: PMC8838193 DOI: 10.3390/molecules27030975] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cannabis is gaining increasing attention due to the high pharmacological potential and updated legislation authorizing multiple uses. The development of time- and cost-efficient analytical methods is of crucial importance for phytocannabinoid profiling. This review aims to capture the versatility of analytical methods for phytocannabinoid profiling of cannabis and cannabis-based products in the past four decades (1980-2021). The thorough overview of more than 220 scientific papers reporting different analytical techniques for phytocannabinoid profiling points out their respective advantages and drawbacks in terms of their complexity, duration, selectivity, sensitivity and robustness for their specific application, along with the most widely used sample preparation strategies. In particular, chromatographic and spectroscopic methods, are presented and discussed. Acquired knowledge of phytocannabinoid profile became extremely relevant and further enhanced chemotaxonomic classification, cultivation set-ups examination, association of medical and adverse health effects with potency and/or interplay of certain phytocannabinoids and other active constituents, quality control (QC), and stability studies, as well as development and harmonization of global quality standards. Further improvement in phytocannabinoid profiling should be focused on untargeted analysis using orthogonal analytical methods, which, joined with cheminformatics approaches for compound identification and MSLs, would lead to the identification of a multitude of new phytocannabinoids.
Collapse
Affiliation(s)
- Gjoshe Stefkov
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Ivana Cvetkovikj Karanfilova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Veronika Stoilkovska Gjorgievska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Ana Trajkovska
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia;
| | - Marija Karapandzova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| | - Svetlana Kulevanova
- Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Bul. Majka Tereza 47, 1000 Skopje, North Macedonia; (G.S.); (V.S.G.); (A.T.); (M.K.); (S.K.)
| |
Collapse
|
16
|
Characterization of Ingredients Incorporated in the Traditional Mixed-Salad of the Capuchin Monks. PLANTS 2022; 11:plants11030301. [PMID: 35161282 PMCID: PMC8838144 DOI: 10.3390/plants11030301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022]
Abstract
Recipes on the composition of the “salad of the monks” (Capuchin monks) have been reported in Italy since the 17th century. Different wild edible plants were highly regarded as an important ingredient of this mixed salad. Among these, some species played a key role for both their taste and nutritional properties: Plantago coronopus L. (PC), Rumex acetosa L., Cichorium intybus L., and Artemisia dracunculus L. In the present study, the micromorphological and phytochemical features as well as the antioxidant and anti-inflammatory properties of extracts of these fresh and blanched leaves, were investigated. The extracts obtained by blanched leaves, according to the traditionally used cooking method, showed the highest content of bioactive compounds (total phenols 1202.31–10,751.88 mg GAE/100 g DW; flavonoids 2921.38–61,141.83 mg QE/100 g DW; flavanols 17.47–685.52 mg CE/100 g DW; proanthocyanidins 2.83–16.33 mg CyE/100 g DW; total chlorophyll 0.84–1.09 mg/g FW; carbohydrates 0.14–1.92 g/100 g FW) and possess the most marked antioxidant (IC50 0.30–425.20 µg/mL) and anti-inflammatory activity (IC50 240.20–970.02 µg/mL). Considering this, our results indicate that increased consumption of the investigated plants, in particular of PC, raw or cooked briefly, could provide a healthy food source in the modern diet by the recovery and enhancement of ancient ingredients.
Collapse
|