1
|
Broberg MN, Ohlsson RT, Bondesson U, Pettersson C, Tidstedt B, Thevis M, Hedeland M. A multivariate data analysis approach for the investigation of in vitro derived metabolites of ACP-105 in comparison with human in vivo metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1231:123927. [PMID: 37972465 DOI: 10.1016/j.jchromb.2023.123927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Selective androgen receptor modulators (SARMs) such as ACP-105 are prohibited in sports due to their anabolic properties. ACP-105 has in previous equine studies shown to undergo extensive metabolism, which makes its metabolite profile important to investigate in humans, since the metabolism is unknown in this species. The aims of the study were to systematically optimize in vitro microsome incubations for improved metabolite yield and to utilize a multivariate data analysis (MVDA) approach to aid the metabolite discovery. Microsomes together with S9 fractions were used at optimal conditions, both with and without phase II additives. Furthermore, the relevance of the in vitro derived metabolites was evaluated as analytical targets in doping control by comparison with results from a human post-administration urine sample collected after a single dose of 100 µg ACP-105. All samples were analyzed with liquid chromatography - Orbitrap mass spectrometry. The use of the systematical optimization and MVDA greatly simplified the search and a total of 18 in vitro metabolites were tentatively identified. The yield of the two main monohydroxylated isomers increased by 24 and 10 times, respectively. In the human urine sample, a total of seven metabolites of ACP-105, formed by a combination of hydroxylations and glucuronic acid conjugations, were tentatively identified. The main metabolites were two monohydroxylated forms that are suggested as analytical targets for human doping control after hydrolysis. All the in vivo metabolites could be detected with the MVDA approach on the in vitro models, demonstrating its usefulness for prediction of the in vivo metabolite profile.
Collapse
Affiliation(s)
- Malin Nilsson Broberg
- Department of Medicinal Chemistry, Uppsala University, Box 574, 75123 Uppsala, Sweden
| | | | - Ulf Bondesson
- Department of Medicinal Chemistry, Uppsala University, Box 574, 75123 Uppsala, Sweden
| | - Curt Pettersson
- Department of Medicinal Chemistry, Uppsala University, Box 574, 75123 Uppsala, Sweden
| | - Börje Tidstedt
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), 75189 Uppsala, Sweden
| | - Mario Thevis
- Institute of Biochemistry, Center for Preventive Doping Research, German Sport University, 50933 Cologne, Germany
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Uppsala University, Box 574, 75123 Uppsala, Sweden.
| |
Collapse
|
2
|
Wagener F, Naumann N, Göldner V, Görgens C, Guddat S, Karst U, Thevis M. Comparison of in vitro approaches for predicting the metabolism of the selective androgen receptor modulator RAD140. Anal Bioanal Chem 2023; 415:5657-5669. [PMID: 37421437 PMCID: PMC10473985 DOI: 10.1007/s00216-023-04835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
The identification of metabolites allows for the expansion of possible targets for anti-doping analysis. Especially for novel substances such as selective androgen receptor modulators (SARMs), information on metabolic fate is scarce. Novel approaches such as the organ on a chip technology may provide a metabolic profile that resembles human in vivo samples more closely than approaches that rely on human liver fractions only. In this study, the SARM RAD140 was metabolized by means of subcellular human liver fractions, human liver spheroids in an organ on a chip platform, and electrochemical (EC) conversion. The resulting metabolites were analyzed with LC-HRMS/MS and compared to a human doping control urine sample that yielded an adverse analytical finding for RAD140. A total of 16 metabolites were detected in urine, while 14, 13, and 7 metabolites were detected in samples obtained from the organ on a chip experiment, the subcellular liver fraction, and EC experiments, respectively. All tested techniques resulted in the detection of RAD140 metabolites. In the organ on a chip samples, the highest number of metabolites were detected. The subcellular liver fractions and organ on a chip techniques are deemed complementary to predict metabolites of RAD140, as both techniques produce distinct metabolites that are also found in an anonymized human in vivo urine sample.
Collapse
Affiliation(s)
- Felicitas Wagener
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Nana Naumann
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster, Germany
| | - Christian Görgens
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Sven Guddat
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Münster, Germany
| | - Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne, Germany.
| |
Collapse
|
3
|
Wagener F, Euler L, Görgens C, Guddat S, Thevis M. Human In Vivo Metabolism and Elimination Behavior of Micro-Dosed Selective Androgen Receptor Modulator RAD140 for Doping Control Purposes. Metabolites 2022; 12:metabo12070666. [PMID: 35888790 PMCID: PMC9325264 DOI: 10.3390/metabo12070666] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
RAD140 is a selective androgen receptor modulator which has been abused in sporting competitions. Its use is prohibited by the World Anti-Doping Agency (WADA) for athletes at all times. In addition to its illicit use, adverse analytical findings of RAD140 in doping control samples might result from other scenarios, e.g., the ingestion of contaminated dietary supplements. The differentiation between samples resulting from such contamination scenarios and intentional doping presents a considerable challenge, as little is known about the metabolism and elimination behavior of RAD140 in humans. In this study, six micro-dose excretion studies with five adult male volunteers each were conducted, and urine samples were analyzed by means of LC-HRMS/MS. Multiple metabolites, firstly detected in human urine, are described in this study. The sample preparation included an enzymatic hydrolysis step, which facilitated the estimation of RAD140 concentrations in urine. The elimination profiles and detection times for six metabolites as well as the intact drug are presented. The method was extensively characterized and deemed fit-for-purpose. The metabolite ratios were investigated for their predictive power in estimating the dose of RAD140 intake. The presented data will aid in better case result management in future doping cases involving RAD140.
Collapse
Affiliation(s)
- Felicitas Wagener
- Institute of Biochemistry/Center for Preventive Doping Research, German Sports University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (F.W.); (L.E.); (C.G.); (S.G.)
| | - Luisa Euler
- Institute of Biochemistry/Center for Preventive Doping Research, German Sports University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (F.W.); (L.E.); (C.G.); (S.G.)
| | - Christian Görgens
- Institute of Biochemistry/Center for Preventive Doping Research, German Sports University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (F.W.); (L.E.); (C.G.); (S.G.)
| | - Sven Guddat
- Institute of Biochemistry/Center for Preventive Doping Research, German Sports University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (F.W.); (L.E.); (C.G.); (S.G.)
| | - Mario Thevis
- Institute of Biochemistry/Center for Preventive Doping Research, German Sports University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (F.W.); (L.E.); (C.G.); (S.G.)
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), 50933 Cologne, Germany
- Correspondence:
| |
Collapse
|
4
|
Cutler C, Viljanto M, Taylor P, Hincks P, Biddle S, Van Eenoo P. Identification of equine in vitro metabolites of seven non-steroidal selective androgen receptor modulators for doping control purposes. Drug Test Anal 2021; 14:349-370. [PMID: 34714606 DOI: 10.1002/dta.3189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 11/09/2022]
Abstract
Selective androgen receptor modulators, SARMs, are a large class of compounds developed to provide therapeutic anabolic effects with minimal androgenic side effects. A wide range of these compounds are available to purchase online and thus provide the potential for abuse in sports. Knowledge of the metabolism of these compounds is essential to aid their detection in doping control samples. In vitro models allow a quick, cost-effective response where administration studies are yet to be carried out. In this study, the equine phase I metabolism of the non-steroidal SARMs GSK2881078, LGD-2226, LGD-3303, PF-06260414, ACP-105, RAD-140 and S-23 was investigated using equine liver microsomes. Liquid chromatography coupled to a QExactive Orbitrap mass spectrometer allowed identification of metabolites with high resolution and mass accuracy. Three metabolites were identified for both GSK2881078 and LGD-2226, four for LGD-3303 and RAD-140, five for PF-06260414, twelve for ACP-105 and ten for S-23. The equine metabolism of GSK-2881078, LGD-2226, LGD-3303 and PF-06260414 is reported for the first time. Although the equine metabolism of ACP-105, RAD-140 and S-23 has previously been reported, the results obtained in this study have been compared with published data.
Collapse
Affiliation(s)
- Charlotte Cutler
- LGC Ltd, Fordham, UK.,Doping Control Laboratory, Ghent University (UGent), Ghent, Belgium
| | | | | | | | | | - Peter Van Eenoo
- Doping Control Laboratory, Ghent University (UGent), Ghent, Belgium
| |
Collapse
|
5
|
Broberg MN, Knych H, Bondesson U, Pettersson C, Stanley S, Thevis M, Hedeland M. Investigation of Equine In Vivo and In Vitro Derived Metabolites of the Selective Androgen Receptor Modulator (SARM) ACP-105 for Improved Doping Control. Metabolites 2021; 11:metabo11020085. [PMID: 33535528 PMCID: PMC7912737 DOI: 10.3390/metabo11020085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023] Open
Abstract
Selective Androgen Receptor Modulators (SARMs) have anabolic properties but less adverse effects than anabolic androgenic steroids. They are prohibited in both equine and human sports and there have been several cases of SARMs findings reported over the last few years. The aim of this study was to investigate the metabolite profile of the SARM ACP-105 (2-chloro-4-[(3-endo)-3-hydroxy-3-methyl-8-azabicyclo[3.2.1]oct-8-yl]-3-methylbenzonitrile) in order to find analytical targets for doping control. Oral administration of ACP-105 was performed in horses, where blood and urine samples were collected over a time period of 96 h. The in vivo samples were compared with five in vitro incubation models encompassing Cunninghamella elegans, microsomes and S9 fractions of both human and equine origin. The analyses were performed using ultra-high performance liquid chromatography coupled to high resolution Q ExactiveTM OrbitrapTM mass spectrometry (UHPLC-HRMS). A total of 21 metabolites were tentatively identified from the in vivo experiments, of which several novel glucuronides were detected in plasma and urine. In hydrolyzed urine, hydroxylated metabolites dominated. The in vitro models yielded several biotransformation products, including a number of monohydroxylated metabolites matching the in vivo results. The suggested analytical target for equine doping control in plasma is a dihydroxylated metabolite with a net loss of two hydrogens. In urine, the suggested targets are two monohydroxylated metabolites after hydrolysis with β-glucuronidase, selected both due to prolongation of the detection time and the availability of reference material from the in vitro models.
Collapse
Affiliation(s)
- Malin Nilsson Broberg
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden; (M.N.B.); (U.B.); (C.P.)
| | - Heather Knych
- Kenneth L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Ulf Bondesson
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden; (M.N.B.); (U.B.); (C.P.)
- Department of Chemistry, Environment and Feed Hygiene, National Veterinary Institute (SVA), SE-75189 Uppsala, Sweden
| | - Curt Pettersson
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden; (M.N.B.); (U.B.); (C.P.)
| | - Scott Stanley
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA;
| | - Mario Thevis
- Institute of Biochemistry, Center for Preventive Doping Research, German Sport University, 50933 Cologne, Germany;
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden; (M.N.B.); (U.B.); (C.P.)
- Correspondence: ; Tel.: +46-18-471-4340
| |
Collapse
|
6
|
Cheung HW, Wong KS, To NS, Bond AJ, Farrington AF, Prabhu A, Curl P, Wan TSM, Ho ENM. Label-free proteomics for discovering biomarker candidates of RAD140 administration to castrated horses. Drug Test Anal 2021; 13:1034-1047. [PMID: 33277807 DOI: 10.1002/dta.2988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022]
Abstract
Selective androgen receptor (AR) modulators (SARMs) are potent anabolic agents with a high potential of misuse in horseracing and equestrian sports. In this study, we applied label-free proteomics to discover plasma protein biomarkers in geldings (castrated horses) after administration with a popular SARM named RAD140. Tryptic peptides were prepared from plasma samples and analyzed by nano-flow ultrahigh-performance liquid chromatography-high-resolution tandem mass spectrometry (nano-UHPLC-HRMS/MS) using data-independent acquisition (DIA) method. Orthogonal projection on latent structure-discriminant analysis (OPLS-DA) has led to the development of a predictive model that could discriminate RAD140-administered samples from control samples and could also correctly classify 18 out of 19 in-training horses as control samples. The model comprises 75 proteins with variable importance in projection (VIP) score above 1. Gene Ontology (GO) enrichment analysis and literature review have identified upregulation of AR-regulated clusterin, and proteins associated with inflammation (haptoglobin, cluster of differentiation 14 [CD14], and inter-alpha-trypsin inhibitor heavy chain 4 [ITIH4]) and erythropoiesis (glycosylphosphatidylinositol-specific phospholipase D1 [GPLD1]) after RAD140 administration. Their changes were confirmed by selected reaction monitoring (SRM) experiments. Similar effects have been reported by the use of androgens and other SARMs. This is the first reported study that describes the use of a proteomic biomarker approach to detect horses that have been administered with RAD140 by applying label-free proteomic profiling of plasma samples. These results support the concept of a biomarker-driven approach to enhance the doping control of RAD140 and potentially other SARMs in the future.
Collapse
Affiliation(s)
- Hiu Wing Cheung
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Kin-Sing Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Ning Sum To
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Amanda J Bond
- Equestrian Affairs, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Adrian F Farrington
- Department of Veterinary Clinical Services, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Anil Prabhu
- Department of Veterinary Regulation, Welfare and Biosecurity Policy, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Peter Curl
- Department of Veterinary Regulation, Welfare and Biosecurity Policy, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Terence S M Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, Hong Kong, China
| |
Collapse
|
7
|
Stacchini C, Botrè F, Comunità F, de la Torre X, Dima AP, Ricci M, Mazzarino M. Simultaneous detection of different chemical classes of selective androgen receptor modulators in urine by liquid chromatography-mass spectrometry-based techniques. J Pharm Biomed Anal 2020; 195:113849. [PMID: 33383501 DOI: 10.1016/j.jpba.2020.113849] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Analytical procedures to detect the misuse of selective androgen receptor modulators in human urine, targeting either the parent drugs and/or their main metabolites, were developed and validated. In detail, 19 target compounds belonging to 9 different chemical classes were considered: arylpropionamide (i.e., andarine (S4), ostarine (S22), S1, S6, S9 and S23), diarylhydantoin (i.e., GLPG0492), indole (i.e., LY2452473, GSK2881078), isoquinoline-carbonyle (i.e., PF-02620414), phenyl-oxadiazole (i.e., RAD140), pyrrolidinyl-benzonitrile (i.e., LGD4033), quinolinone (i.e., LGD2226, LGD3303), steroidal (i.e., Cl-4AS-1, MK0773 and TFM-4AS-1), and tropanol (i.e., AC-262536 and ACP105) derivatives. The metabolites of the target compounds considered were enzymatically synthesized by using human liver microsomes. Sample pre-treatment included enzymatic hydrolysis followed by liquid-liquid extraction at neutral pH. The instrumental analysis was performed by ultra-high-performance liquid chromatography coupled to either high- or low-resolution mass spectrometry. Validation was performed according to the ISO 17025 and the World Anti-Doping Agency guidelines. The analyses carried out on negative samples confirmed the method's selectivity, not showing any significant interferences at the retention times of the analytes of interest. Detection capability was determined in the range of 0.1-1.0 ng/mL for the screening procedure and 0.2-1.0 ng/mL for the confirmation procedure (except for GLPG0492 and GSK2881078). The recovery was greater than 80 % for all analytes, and the matrix effect was smaller than 35 %. The method also matched the criteria of the World Anti-Doping Agency in terms of repeatability of the relative retention times (CV% < 1.0) and of the relative abundances of the selected ion transitions (performed only in the case of triple quadrupole, CV% < 15), ensuring the correct identification of all the analytes considered. Urine samples containing andarine, ostarine, or LGD4033 were used to confirm the actual applicability of the selected analytical strategies. All target compounds (parent drugs and their main metabolites) were detected and correctly identified.
Collapse
Affiliation(s)
- Carlotta Stacchini
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy; Dipartimento Chimica e Tecnologia del farmaco, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00161, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy; ISSUL - Institute of Sport Sciences, University of Lausanne, Synathlon - Quartier Centre, 1015, Lausanne, Switzerland.
| | - Fabio Comunità
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy
| | - Anna Pia Dima
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy
| | - Matteo Ricci
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy
| | - Monica Mazzarino
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti, 1, 00197, Rome, Italy
| |
Collapse
|
8
|
Cutler C, Viljanto M, Taylor P, Habershon-Butcher J, Muir T, Biddle S, Van Eenoo P. Equine metabolism of the selective androgen receptor modulator AC-262536 in vitro and in urine, plasma and hair following oral administration. Drug Test Anal 2020; 13:369-385. [PMID: 32959959 DOI: 10.1002/dta.2932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023]
Abstract
AC-262536 is one of a number of selective androgen receptor modulators that are being developed by the pharmaceutical industry for treatment of a range of clinical conditions including androgen replacement therapy. Though not available therapeutically, selective androgen receptor modulators are widely available to purchase online as (illegal) supplement products. The growth- and bone-promoting effects, along with fewer associated negative side effects compared with anabolic-androgenic steroids, make these compounds a significant threat with regard to doping control in sport. The aim of this study was to investigate the metabolism of AC-262536 in the horse following in vitro incubation and oral administration to two Thoroughbred horses, in order to identify the most appropriate analytical targets for doping control laboratories. Urine, plasma and hair samples were collected and analysed for parent drug and metabolites. Liquid chromatography-high-resolution mass spectrometry was used for in vitro metabolite identification and in urine and plasma samples. Nine phase I metabolites were identified in vitro; four of these were subsequently detected in urine and three in plasma, alongside the parent compound in both matrices. In both urine and plasma samples, the longest detection window was observed for an epimer of the parent compound, which is suggested as the best target for detection of AC-262536 administration. AC-262536 and metabolites were found to be primarily glucuronide conjugates in both urine and plasma. Liquid chromatography-tandem mass spectrometry analysis of post-administration hair samples indicated incorporation of parent AC-262536 into the hair following oral administration. No metabolites were detected in the hair.
Collapse
Affiliation(s)
- Charlotte Cutler
- Sports and Specialised Analytical Services, LGC Ltd, Cambridgeshire, UK
| | - Marjaana Viljanto
- Sports and Specialised Analytical Services, LGC Ltd, Cambridgeshire, UK
| | - Polly Taylor
- Sports and Specialised Analytical Services, LGC Ltd, Cambridgeshire, UK
| | | | - Tessa Muir
- British Horseracing Authority, London, UK.,Racing Victoria Ltd, Flemington, Victoria, Australia
| | - Simon Biddle
- Sports and Specialised Analytical Services, LGC Ltd, Cambridgeshire, UK
| | - Peter Van Eenoo
- Laboratory of Doping Control, University of Ghent, Ghent, Belgium
| |
Collapse
|
9
|
Subhahar MB, Karakka Kal AK, Philip M, K Karatt T, N I, Vazhat RA, M P MA. Detection and identification of ACP-105 and its metabolites in equine urine using LC/MS/MS after oral administration. Drug Test Anal 2020; 13:299-317. [PMID: 32852865 DOI: 10.1002/dta.2918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
ACP-105 is a novel nonsteroidal selective androgen receptor modulator (SARM) with a tissue-specific agonist effect and does not have side effects associated with the use of common androgens. This research reports a comprehensive study for the detection of ACP-105 and its metabolites in racehorses after oral administration (in vivo) and postulating its structures using mass spectrometric techniques. To obtain the metabolic profile of ACP-105, a selective and reliable LC-MS/MS method was developed. The chemical structures of the metabolites were determined based on their fragmentation pattern, accurate mass, and retention time. Under the current experimental condition, a total of 19 metabolites were detected in ACP-105 drug administered equine urine samples. The study results suggest the following: (1) ACP-105 is prone to oxidation, which gives corresponding monohydroxylated, dihydroxylated, and trihydroxylated metabolites; (2) along with oxidation, there is a possibility of elimination of water molecule (dehydration) from the third position of the tropine moiety, resulting in the dehydrated analogs of corresponding monohydroxylated, dihydroxylated, and trihydroxylated metabolites; (3) from the study on the metabolites using LC-MS/MS, it is clear that the fragmentation pattern is identical and a great number of fragment ions are common in all the metabolites and the parent drug. (4) The ACP-105 and its metabolites were detected for up to 72 h; thus, the result is a valuable tool for evaluating its use and/or misuse in sport.
Collapse
Affiliation(s)
| | | | - Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Ibrahimwaseem N
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Ramees Abdulla Vazhat
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Muhammed Ajeebsanu M P
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| |
Collapse
|
10
|
So YM, Wong JKY, Choi TLS, Prabhu A, Stewart B, Farrington AF, Robinson P, Wan TSM, Ho ENM. Metabolic studies of selective androgen receptor modulators RAD140 and S-23 in horses. Drug Test Anal 2020; 13:318-337. [PMID: 32853476 DOI: 10.1002/dta.2920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 01/27/2023]
Abstract
This paper describes the studies of the in vitro biotransformation of two selective androgen receptor modulators (SARMs), namely, RAD140 and S-23, and the in vivo metabolism of RAD140 in horses using ultra-high performance liquid chromatography-high resolution mass spectrometry. in vitro metabolic studies of RAD140 and S-23 were performed using homogenised horse liver. The more prominent in vitro biotransformation pathways for RAD140 included hydrolysis, hydroxylation, glucuronidation and sulfation. Metabolic pathways for S-23 were similar to those for other arylpropionamide-based SARMs. The administration study of RAD140 was carried out using three retired thoroughbred geldings. RAD140 and the majority of the identified in vitro metabolites were detected in post-administration urine samples. For controlling the misuse of RAD140 in horses, RAD140 and its metabolite in sulfate form gave the longest detection time in hydrolysed urine and could be detected for up to 6 days post-administration. In plasma, RAD140 itself gave the longest detection time of up to 13 days. Apart from RAD140 glucuronide, the metabolites of RAD140 described herein have never been reported before.
Collapse
Affiliation(s)
- Yat-Ming So
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Jenny K Y Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Timmy L S Choi
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Anil Prabhu
- Department of Veterinary Regulation, Welfare & Biosecurity Policy, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Brian Stewart
- Department of Veterinary Regulation, Welfare & Biosecurity Policy, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Adrian F Farrington
- Department of Veterinary Clinical Services, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Paul Robinson
- Department of Veterinary Clinical Services, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Terence S M Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| |
Collapse
|
11
|
Thevis M, Schänzer W. Detection of SARMs in doping control analysis. Mol Cell Endocrinol 2018; 464:34-45. [PMID: 28137616 DOI: 10.1016/j.mce.2017.01.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 11/27/2022]
Abstract
The class of selective androgen receptor modulators (SARMs) has been the subject of intense and dedicated clinical research over the past two decades. Potential therapeutic applications of SARMs are manifold and focus particularly on the treatment of conditions manifesting in muscle loss such as general sarcopenia, cancer-associated cachexia, muscular dystrophy, etc. Consequently, based on the substantial muscle- and bone-anabolic properties of SARMs, these agents constitute substances with significant potential for misuse in sport and have therefore been added to the Word Anti-Doping Agency's (WADA's) Prohibited List in 2008. Since then, numerous adverse analytical findings have been reported for various different SARMs, which has underlined the importance of proactive and preventive anti-doping measures concerning emerging drugs such as these anabolic agents, which have evidently been misused in sport despite the fact that none of these SARMs has yet received full clinical approval. In this review, analytical data on SARMs generated in the context of research conducted for sports drug testing purposes are summarized and state-of-the-art test methods aiming at intact drugs as well as diagnostic urinary metabolites are discussed. Doping control analytical approaches predominantly rely on chromatography hyphenated to mass spectrometry, which have allowed for appropriately covering the considerable variety of pharmacophores present in SARMs such as the non-steroidal representatives ACP-105, BMS-564929, GLPG0492 (DT-200), LG-121071, LGD-2226, LGD-4033/VK 5211, ostarine/enobosarm, RAD-140, S-40503, etc. as well as steroidal compounds such as MK-0773 and YK-11.
Collapse
Affiliation(s)
- Mario Thevis
- German Sport University Cologne, Center for Preventive Doping Research/Institute of Biochemistry, Am Sportpark Muengersdorf 6, 50933 Cologne, Germany; European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany.
| | - Wilhelm Schänzer
- German Sport University Cologne, Center for Preventive Doping Research/Institute of Biochemistry, Am Sportpark Muengersdorf 6, 50933 Cologne, Germany
| |
Collapse
|
12
|
Wu W, Chu Y, Wang S, Sun X, Zhang J, Wang Y, Chen X. Investigation of metabolic profile of pimavanserin in rats by ultrahigh-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:269-276. [PMID: 29105858 DOI: 10.1002/rcm.8025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Pimavanserin, a selective serotonin 2A receptor inverse agonist, is a promising candidate for treating Parkinson's disease psychosis. Our previous study revealed that there might be the presence of extensive metabolites of pimavanserin in rats. However, the metabolic fate of pimavanserin in vivo remains unknown. Thus, it is essential to develop an efficient method to investigate the metabolic profile of pimavanserin in rats. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to date has the highest mass measurement accuracy and resolution of any mass spectrometry platform. METHODS After a single intragastric administration of pimavanserin at a dose of 50 mg kg-1 , plasma, bile, urine and feces were collected from rats. A novel and efficient strategy was developed to analyze the metabolic profile of pimavanserin in vivo based on ultrahigh-performance liquid chromatography (UHPLC) coupled with FT-ICR-MS. RESULTS A total of 23 metabolites were detected and tentatively identified through comparing their mass spectrometry profiles with those of pimavanserin. These metabolites were found in feces (22), bile (21), rat urine (16) and plasma (15). Results demonstrated that metabolic pathways of pimavanserin in rats included dehydrogenation, demethylation, deethylation, depropylation, debutylation, hydroxylation, dihydroxylation and trihydroxylation. CONCLUSIONS A total of 22 phase I metabolites of pimavanserin were detected and tentatively identified. This report presents the first study of screening and identification of the metabolites of pimavanserin. The UHPLC/FT-ICR-MS method is a powerful tool for exploring and identifying metabolites in complex biological samples.
Collapse
Affiliation(s)
- Wenying Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanjie Chu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shixiao Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaoyang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jingjing Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yannian Wang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaohui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
13
|
Thevis M, Schänzer W. Analytical approaches for the detection of emerging therapeutics and non-approved drugs in human doping controls. J Pharm Biomed Anal 2014; 101:66-83. [DOI: 10.1016/j.jpba.2014.05.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 01/19/2023]
|
14
|
Sobolevsky T, Krotov G, Dikunets M, Nikitina M, Mochalova E, Rodchenkov G. Anti-doping analyses at the Sochi Olympic and Paralympic Games 2014. Drug Test Anal 2014; 6:1087-101. [PMID: 25312500 DOI: 10.1002/dta.1734] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 12/25/2022]
Abstract
The laboratory anti-doping services during XXII Winter Olympic and XI Paralympic games in Sochi in 2014 were provided by a satellite laboratory facility located within the strictly secured Olympic Park. This laboratory, established and operated by the personnel of Antidoping Center, Moscow, has been authorized by the World Anti-Doping Agency (WADA) to conduct doping control analyses. The 4-floor building accommodated the most advanced analytical instrumentation and became a place of attraction for more than 50 Russian specialists and 25 foreign experts, including independent observers. In total, 2134 urine and 479 blood samples were delivered to the laboratory and analyzed during the Olympic Games (OG), and 403 urine and 108 blood samples - during the Paralympic Games (PG). The number of erythropoietin tests requested in urine was 946 and 166 at the OG and PG, respectively. Though included in the test distribution plan, a growth hormone analysis was cancelled by the Organizing Committee just before the Games. Several adverse analytical findings have been reported including pseudoephedrine (1 case), methylhexaneamine (4 cases), trimetazidine (1 case), dehydrochloromethyltestosterone (1 case), clostebol (1 case), and a designer stimulant N-ethyl-1-phenylbutan-2-amine (1 case).
Collapse
Affiliation(s)
- Tim Sobolevsky
- Moscow Antidoping Centre, 105005 Moscow, Elizavetinsky per. 10, Russia
| | | | | | | | | | | |
Collapse
|
15
|
Geyer H, Schänzer W, Thevis M. Anabolic agents: recent strategies for their detection and protection from inadvertent doping. Br J Sports Med 2014; 48:820-6. [PMID: 24632537 PMCID: PMC4033149 DOI: 10.1136/bjsports-2014-093526] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
According to the World Anti-Doping Agency (WADA) Prohibited List, anabolic agents consist of exogenous anabolic androgenic steroids (AAS), endogenous AAS and other anabolic agents such as clenbuterol and selective androgen receptor modulators (SARMs). Currently employed strategies for their improved detection include the prolongation of the detection windows for exogenous AAS, non-targeted and indirect analytical approaches for the detection of modified steroids (designer steroids), the athlete's biological passport and isotope ratio mass spectrometry for the detection of the misuse of endogenous AAS, as well as preventive doping research for the detection of SARMs. The recent use of these strategies led to 4-80-fold increases of adverse analytical findings for exogenous AAS, to the detection of the misuse of new designer steroids, to adverse analytical findings of different endogenous AAS and to the first adverse analytical findings of SARMs. The strategies of the antidoping research are not only focused on the development of methods to catch the cheating athlete but also to protect the clean athlete from inadvertent doping. Within the past few years several sources of inadvertent doping with anabolic agents have been identified. Among these are nutritional supplements adulterated with AAS, meat products contaminated with clenbuterol, mycotoxin (zearalenone) contamination leading to zeranol findings, and natural products containing endogenous AAS. The protection strategy consists of further investigations in case of reasonable suspicion of inadvertent doping, publication of the results, education of athletes and development of methods to differentiate between intentional and unintentional doping.
Collapse
Affiliation(s)
- Hans Geyer
- Institute of Biochemistry, Center for Preventive Doping Research, German Sport University Cologne, , Cologne, Germany
| | | | | |
Collapse
|
16
|
Thevis M, Thomas A, Piper T, Krug O, Delahaut P, Schänzer W. Liquid chromatography-high resolution/ high accuracy (tandem) mass spectrometry-based identification of in vivo generated metabolites of the selective androgen receptor modulator ACP-105 for doping control purposes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:73-83. [PMID: 24881457 DOI: 10.1255/ejms.1236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Selective androgen receptor modulators (SARMs) represent an emerging class of therapeutics which have been prohibited in sport as anabolic agents according to the regulations of the World Anti-Doping Agency (WADA) since 2008. Within the past three years, numerous adverse analytical findings with SARMs in routine doping control samples have been reported despite missing clinical approval of these substances. Hence, preventive doping research concerning the metabolism and elimination of new therapeutic entities of the class of SARMs are vital for efficient and timely sports drug testing programs as banned compounds are most efficiently screened when viable targets (for example, characteristic metabolites) are identified. In the present study, the metabolism of ACP-105, a novel SARM drug candidate, was studied in vivo in rats. Following oral administration, urine samples were collected over a period of seven days and analyzed for metabolic products by Liquid chromatography-high resolution/high accuracy (tandem) mass spectrometry. Samples were subjected to enzymatic hydrolysis prior to liquid-liquid extraction and a total of seven major phase-I metabolites were detected, three of which were attributed to monohydroxylated and four to bishydroxylated ACP-105. The hydroxylation sites were assigned by means of diagnostic product ions and respective dissociation pathways of the analytes following positive or negative ionization and collisional activation as well as selective chemical derivatization. The identified metabolites were used as target compounds to investigate their traceability in a rat elimination urine samples study and monohydroxylated and bishydroxylated species were detectable for up to four and six days post-administration, respectively.
Collapse
|
17
|
Thevis M, Kuuranne T, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2013; 6:164-84. [DOI: 10.1002/dta.1591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/06/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Doping Control Laboratory; United Medix Laboratories; Höyläämötie 14 00380 Helsinki Finland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6 50933 Cologne Germany
| |
Collapse
|