1
|
Yan Z, Wu M, Hu B, Yao M, Zhang L, Lu Q, Pang J. Electrospun UiO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples. J Chromatogr A 2018; 1542:19-27. [DOI: 10.1016/j.chroma.2018.02.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 01/04/2023]
|
2
|
Chaves AR, Moura BH, Caris JA, Rabelo D, Queiroz MEC. The development of a new disposable pipette extraction phase based on polyaniline composites for the determination of levels of antidepressants in plasma samples. J Chromatogr A 2015; 1399:1-7. [DOI: 10.1016/j.chroma.2015.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 11/26/2022]
|
3
|
Yang W, Kernstock R, Simmons N, Alak A. Guanidinated protein internal standard for immunoaffinity-liquid chromatography/tandem mass spectrometry quantitation of protein therapeutics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1489-1500. [PMID: 24861599 DOI: 10.1002/rcm.6924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE A protein internal standard (IS) is essential and superior to a peptide IS to achieve reproducible results in the quantitation of protein therapeutics using immunoaffinity-liquid chromatography/tandem mass spectrometry (LC/MS/MS). Guanidination has been used as a protein post-modification technique for more than half a century. A decade ago, the modification was applied to lysine-ending peptides to enhance their MALDI responses and peptide sequencing coverage. However, rarely has tryptic digestion of guanidinated proteins been investigated, likely due to the early conclusion that trypsin did not hydrolyze peptide bonds involving homoarginine in guanidinated proteins. In this study, the opposite was observed. Guanidinated lysine residues of proteins did not hinder the access of trypsin allowing for proteolytic digestion. Based on this observation, a new concept of internal standard, named Guanidinated Protein Internal Standard (GP-IS), was proposed for LC/MS/MS quantitation of protein therapeutics. METHODS The GP-IS is prepared by treating a portion of the therapeutic protein (analyte) with guanidine to convert arginine residues in the protein into homoarginine residues. After tryptic digestion, the GP-IS produces a series of homoarginine-ending peptides plus another series of arginine-ending peptides. One of the homoarginine-ending peptides, which corresponds to the analyte surrogate (lysine-ending) peptide, was chosen as a peptide internal standard (GP-PIS) for LC/MS/MS quantitation. RESULTS Using this GP-IS approach, a sensitive and robust immunoaffinity-LC/MS/MS assay was developed and fully validated with a linearity range from 10 to 1000 ng/mL using 200 μL of human serum for the quantitation of an Astellas protein drug in clinical development. CONCLUSIONS The proposed strategy allows LC/MS/MS to play an ever-increasing role in bioanalytical support for protein therapeutics development because of its capability of completely tracking all variations from the beginning to the end of sample analysis, easier preparation compared to isotope-labeled protein-IS, and greater flexibility for changing to alternate analyte surrogate peptides.
Collapse
Affiliation(s)
- Wenchu Yang
- Bioanalysis-US, Astellas Research Institute of America, Skokie, IL, 60077, USA
| | | | | | | |
Collapse
|
4
|
Zhang W, Long J, Zhang C, Cai N, Liu Z, Wang Y, Wang X, Chen P, Liang S. A method combining SPITC and ¹⁸O labeling for simultaneous protein identification and relative quantification. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:400-408. [PMID: 24809901 DOI: 10.1002/jms.3357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
The relative quantification and identification of proteins by matrix-assisted laser desorption ionization time-of-flight MS is very important in /MS is very important in protein research and is usually conducted separately. Chemical N-terminal derivatization with 4-sulphophenyl isothiocyanate facilitates de novo sequencing analysis and accurate protein identification, while (18)O labeling is simple, specific and widely applicable among the isotopic labeling methods used for relative quantification. In the present study, a method combining 4-sulphophenyl isothiocyanate derivatization with (18)O isotopic labeling was established to identify and quantify proteins simultaneously in one experiment. Reaction conditions were first optimized using a standard peptide (fibrin peptide) and tryptic peptides from the model protein (bovine serum albumin). Under the optimized conditions, these two independent labeling steps show good compatibility, and the linear relativity of quantification within the ten times dynamic range was stable as revealed by correlation coefficient analysis (R(2) value = 0.998); moreover, precursor peaks in MS/MS spectrum could provide accurate quantitative information, which is usually acquired from MS spectrum, enabling protein identification and quantification in a single MS/MS spectrum. Next, this method was applied to native peptides isolated from spider venoms. As expected, the de novo sequencing results of each peptide matched with the known sequence precisely, and the measured quantitative ratio of each peptide corresponded well with the theoretical ratio. Finally, complex protein mixtures of spider venoms from male and female species with unknown genome information were analyzed. Differentially expressed proteins were successfully identified, and their quantitative information was also accessed. Taken together, this protein identification and quantification method is simple, reliable and efficient, which has a good potential in the exploration of peptides/proteins from species with unknown genome.
Collapse
Affiliation(s)
- Wenlong Zhang
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sun N, Han Y, Yan H, Song Y. A self-assembly pipette tip graphene solid-phase extraction coupled with liquid chromatography for the determination of three sulfonamides in environmental water. Anal Chim Acta 2014; 810:25-31. [DOI: 10.1016/j.aca.2013.12.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022]
|
6
|
Abstract
The last two decades have provided analysts with more sensitive technology, enabling scientists from all analytical fields to see what they were not able to see just a few years ago. This increased sensitivity has allowed drug detection at very low concentrations and testing in unconventional samples (e.g., hair, oral fluid and sweat), where despite having low analyte concentrations has also led to a reduction in sample size. Along with this reduction, and as a result of the use of excessive amounts of potentially toxic organic solvents (with the subsequent environmental pollution and costs associated with their proper disposal), there has been a growing tendency to use miniaturized sampling techniques. Those sampling procedures allow reducing organic solvent consumption to a minimum and at the same time provide a rapid, simple and cost-effective approach. In addition, it is possible to get at least some degree of automation when using these techniques, which will enhance sample throughput. Those miniaturized sample preparation techniques may be roughly categorized in solid-phase and liquid-phase microextraction, depending on the nature of the analyte. This paper reviews recently published literature on the use of microextraction sampling procedures, with a special focus on the field of forensic toxicology.
Collapse
|
7
|
Svačinová J, Novák O, Plačková L, Lenobel R, Holík J, Strnad M, Doležal K. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. PLANT METHODS 2012; 8:17. [PMID: 22594941 PMCID: PMC3492005 DOI: 10.1186/1746-4811-8-17] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/30/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND We have developed a new analytical approach for isolation and quantification of cytokinins (CK) in minute amounts of fresh plant material, which combines a simple one-step purification with ultra-high performance liquid chromatography-fast scanning tandem mass spectrometry. RESULTS Plant tissue samples (1-5 mg FW) were purified by stop-and-go-microextraction (StageTip purification), which previously has only been applied for clean-up and pre-concentration of peptides. We found that a combination of two reverse phases and one cation-exchange phase, was the best tool, giving a total extraction recovery higher than 80%. The process was completed by a single chromatographic analysis of a wide range of naturally occurring cytokinins (bases, ribosides, O- and N-glucosides, and nucleotides) in 24.5 minutes using an analytical column packed with sub-2-microne particles. In multiple reaction monitoring mode, the detection limits ranged from 0.05 to 5 fmol and the linear ranges for most cytokinins were at least five orders of magnitude. The StageTip purification was validated and optimized using samples of Arabidopsis thaliana seedlings, roots and shoots where eighteen cytokinins were successfully determined. CONCLUSIONS The combination of microextraction with one-step high-throughput purification provides fast, effective and cheap sample preparation prior to qualitative and quantitative measurements. Our procedure can be used after modification also for other phytohormones, depending on selectivity, affinity and capacity of the selected sorbents.
Collapse
Affiliation(s)
- Jana Svačinová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, v.v.i., Šlechtitelů 11, Olomouc, CZ-783 71, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, v.v.i., Šlechtitelů 11, Olomouc, CZ-783 71, Czech Republic
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Lenka Plačková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, v.v.i., Šlechtitelů 11, Olomouc, CZ-783 71, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, CZ 783 71, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, v.v.i., Šlechtitelů 11, Olomouc, CZ-783 71, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, CZ 783 71, Czech Republic
| | - Josef Holík
- Isotope Laboratory, Institute of Experimental Botany ASCR, v.v.i., Vídeňská 1083, Prague, 142 20, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, v.v.i., Šlechtitelů 11, Olomouc, CZ-783 71, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, CZ 783 71, Czech Republic
| | - Karel Doležal
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, v.v.i., Šlechtitelů 11, Olomouc, CZ-783 71, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, Olomouc, CZ 783 71, Czech Republic
| |
Collapse
|
8
|
Alwael H, Connolly D, Clarke P, Thompson R, Twamley B, O'Connor B, Paull B. Pipette-tip selective extraction of glycoproteins with lectin modified gold nano-particles on a polymer monolithic phase. Analyst 2011; 136:2619-28. [DOI: 10.1039/c1an15137a] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
García-Murria MJ, Valero ML, Sánchez del Pino MM. Simple chemical tools to expand the range of proteomics applications. J Proteomics 2010; 74:137-50. [PMID: 21074642 DOI: 10.1016/j.jprot.2010.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/08/2010] [Accepted: 11/03/2010] [Indexed: 12/26/2022]
Abstract
Proteomics is an expanding technology with potential applications in many research fields. Even though many research groups do not have direct access to its main analytical technique, mass spectrometry, they can interact with proteomics core facilities to incorporate this technology into their projects. Protein identification is the analysis most frequently performed in core facilities and is, probably, the most robust procedure. Here we discuss a few chemical reactions that are easily implemented within the conventional protein identification workflow. Chemical modification of proteins with N-hydroxysuccinimide esters, 4-sulfophenyl isothiocyanate, O-methylisourea or through β-elimination/Michael addition can be easily performed in any laboratory. The reactions are quite specific with almost no side reactions. These chemical tools increase considerably the number of applications and have been applied to characterize protein-protein interactions, to determine the N-terminal residues of proteins, to identify proteins with non-sequenced genomes or to locate phosphorylated and O-glycosylated.
Collapse
Affiliation(s)
- María Jesús García-Murria
- Laboratorio de Proteómica, Centro de Investigación Príncipe Felipe, Avda, Autopista del Saler 16, 46012 Valencia, Spain
| | | | | |
Collapse
|
10
|
Lesur A, Varesio E, Hopfgartner G. Protein Quantification by MALDI-Selected Reaction Monitoring Mass Spectrometry Using Sulfonate Derivatized Peptides. Anal Chem 2010; 82:5227-37. [DOI: 10.1021/ac100602d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine Lesur
- Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Emmanuel Varesio
- Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Gérard Hopfgartner
- Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| |
Collapse
|
11
|
Franck J, El Ayed M, Wisztorski M, Salzet M, Fournier I. On-Tissue N-Terminal Peptide Derivatizations for Enhancing Protein Identification in MALDI Mass Spectrometric Imaging Strategies. Anal Chem 2009; 81:8305-17. [DOI: 10.1021/ac901043n] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Franck
- MALDI Imaging Team, Laboratoire de Neuroimmunologie des Annélides, CNRS-FRE 2933, Université de Lille1, IFR 147, Bâtiment SN3, 1er étage, F-59655 Villeneuve d’Ascq Cedex, France
| | - M. El Ayed
- MALDI Imaging Team, Laboratoire de Neuroimmunologie des Annélides, CNRS-FRE 2933, Université de Lille1, IFR 147, Bâtiment SN3, 1er étage, F-59655 Villeneuve d’Ascq Cedex, France
| | - M. Wisztorski
- MALDI Imaging Team, Laboratoire de Neuroimmunologie des Annélides, CNRS-FRE 2933, Université de Lille1, IFR 147, Bâtiment SN3, 1er étage, F-59655 Villeneuve d’Ascq Cedex, France
| | - M. Salzet
- MALDI Imaging Team, Laboratoire de Neuroimmunologie des Annélides, CNRS-FRE 2933, Université de Lille1, IFR 147, Bâtiment SN3, 1er étage, F-59655 Villeneuve d’Ascq Cedex, France
| | - I. Fournier
- MALDI Imaging Team, Laboratoire de Neuroimmunologie des Annélides, CNRS-FRE 2933, Université de Lille1, IFR 147, Bâtiment SN3, 1er étage, F-59655 Villeneuve d’Ascq Cedex, France
| |
Collapse
|
12
|
Applications of chemical tagging approaches in combination with 2DE and mass spectrometry. Methods Mol Biol 2009; 519:83-101. [PMID: 19381578 DOI: 10.1007/978-1-59745-281-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Chemical modification reactions play an important role in various protocols for mass-spectrometry-based proteome analysis; this applies to both gel-based and gel-free proteomics workflows. In combination with two-dimensional gel electrophoresis (2DE), the addition of "tags" by means of chemical reactions serves several purposes. Potential benefits include increased sensitivity or sequence coverage for peptide mass fingerprinting and improved peptide fragmentation for de novo sequencing studies. Tagging strategies can also be used to obtain complementary quantitative information in addition to densitometry, and they may be employed for the study of post-translational modifications. In combination with the unique advantages of 2DE as a separation technique, such approaches provide a powerful toolbox for proteomic research. In this review, relevant examples from recent literature will be given to illustrate the capabilities of chemical tagging approaches, and methodological requirements will be discussed.
Collapse
|
13
|
Rinalducci S, Roepstorff P, Zolla L. De novo sequence analysis and intact mass measurements for characterization of phycocyanin subunit isoforms from the blue-green alga Aphanizomenon flos-aquae. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:503-515. [PMID: 19053161 DOI: 10.1002/jms.1526] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, partial characterization of the primary structure of phycocyanin from the cyanobacterium Aphanizomenon flos-aquae (AFA) was achieved by mass spectrometry de novo sequencing with the aid of chemical derivatization. Combining N-terminal sulfonation of tryptic peptides by 4-sulfophenyl isothiocyanate (SPITC) and MALDI-TOF/TOF analyses, facilitated the acquisition of sequence information for AFA phycocyanin subunits. In fact, SPITC-derivatized peptides underwent facile fragmentation, predominantly resulting in y-series ions in the MS/MS spectra and often exhibiting uninterrupted sequences of 20 or more amino acid residues. This strategy allowed us to carry out peptide fragment fingerprinting and de novo sequencing of several peptides belonging to both alpha- and beta-phycocyanin polypeptides, obtaining a sequence coverage of 67% and 75%, respectively. The presence of different isoforms of phycocyanin subunits was also revealed; subsequently Intact Mass Measurements (IMMs) by both MALDI- and ESI-MS supported the detection of these protein isoforms. Finally, we discuss the evolutionary importance of phycocyanin isoforms in cyanobacteria, suggesting the possible use of the phycocyanin operon for a correct taxonomic identity of this species.
Collapse
Affiliation(s)
- Sara Rinalducci
- Department of Environmental Sciences, University of Tuscia, Viterbo, Italy
| | | | | |
Collapse
|
14
|
Koyama J, Takeuchi A, Tode C, Shimizu M, Morita I, Nobukawa M, Nobukawa M, Kobayashi N. Development of an LC-ESI–MS/MS method for the determination of histamine: Application to the quantitative measurement of histamine degranulation by KU812 cells. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:207-12. [DOI: 10.1016/j.jchromb.2008.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 11/27/2022]
|
15
|
Oleksiewicz MB, Kjeldal HO, Klenø TG. Identification of stool proteins in C57BL/6J mice by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. Biomarkers 2008; 10:29-40. [PMID: 16097391 DOI: 10.1080/13547500500038775] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Gastrointestinal disease is a major cause of mortality in humans and animals, and the detection of disease-associated protein in stool is an established diagnostic method in this context. Yet, no data currently exists about the protein composition of mammalian faeces. Using a newly developed two-dimensional (2D) gel method, 28 of the most abundant proteins in murine faeces were identified. Mammalian faeces contains protein from multiple species (from the individual, from gastrointestinal bacteria, from food, etc.). Yet, it was found that the majority of mouse stool proteins were of mouse origin, with a minority of proteins being derived from food (in particular soybean glycinin and conglycinin) and bacteria (flagellin). Most mouse proteins were proteases and saccharidases derived from the exocrine pancreas. In addition, two unexpected mouse proteins were identified: one was a newly described mucin-like protein from intestinal goblet cells (FcgammaBP); the other was the secreted form of carbonic anhydrase (type VI) from salivary gland. The data suggest that 2D analysis of faecal protein is likely to provide meaningful information about the physiological stage of the gastrointestinal tract. Compared with studies based on biopsies, faecal protein analysis may reduce the number of laboratory animals, and might also allow quicker bridging from animal studies to humans, where biopsy material is more difficult to obtain and is less relevant for general practice use.
Collapse
Affiliation(s)
- M B Oleksiewicz
- Department of Virology and Molecular Toxicology, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark.
| | | | | |
Collapse
|
16
|
Sanggaard KW, Sonne-Schmidt CS, Krogager TP, Kristensen T, Wisniewski HG, Thøgersen IB, Enghild JJ. TSG-6 transfers proteins between glycosaminoglycans via a Ser28-mediated covalent catalytic mechanism. J Biol Chem 2008; 283:33919-26. [PMID: 18820257 DOI: 10.1074/jbc.m804240200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of the interaction between Bikunin proteins, tumor necrosis factor-stimulated gene-6 protein (TSG-6), and glycosaminoglycans have revealed a unique catalytic activity where TSG-6/heavy chain 2 transfer heavy chain subunits between glycosaminoglycan chains. The activity is mediated by TSG-6/heavy chain 2 and involves a transient SDS stable interaction between TSG-6 and the heavy chain to be transferred. The focus of this study was to characterize the molecular structure of this cross-link to gain further insight into the catalytic mechanism. The result showed that the C-terminal Asp residue of the heavy chains forms an ester bond to Ser(28) beta-carbon of TSG-6 suggesting that this residue plays a role during catalysis.
Collapse
Affiliation(s)
- Kristian W Sanggaard
- Center for Insoluble Protein Structures (inSPIN) and Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
17
|
Lee X, Hasegawa C, Kumazawa T, Shinmen N, Shoji Y, Seno H, Sato K. Determination of tricyclic antidepressants in human plasma using pipette tip solid‐phase extraction and gas chromatography–mass spectrometry. J Sep Sci 2008; 31:2265-71. [DOI: 10.1002/jssc.200700627] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Zhang X, Rogowska-Wrzesinska A, Roepstorff P. On-target sample preparation of 4-sulfophenyl isothiocyanate-derivatized peptides using AnchorChip Targets. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:346-359. [PMID: 17968850 DOI: 10.1002/jms.1327] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
De novo sequencing of tryptic peptides by post source decay (PSD) or collision induced dissociation (CID) analysis using MALDI TOF-TOF instruments is due to the easy interpretation facilitated by the introduction of N-terminal sulfonated derivatives. Recently, a stable and cheap reagent, 4-sulfophenyl isothiocyanate (SPITC), has been successfully used for N-terminal derivatization. Previously described methods have always used desalting and concentration by reverse-phase chromatography prior to mass spectrometric analysis. Here we present an on-target sample preparation method based on AnchorChip target technology. The method was optimized for reduction of by-products and sensitivity with SPITC-derivatized tryptic BSA peptides, and successfully applied to protein identification from silver-stained two-dimensional electrophoretic gels of fish liver extracts. The method is simple and sensitive and allowed protein identification based on de novo sequencing and BLAST search from species with limited sequence information.
Collapse
Affiliation(s)
- Xumin Zhang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK 5230 Odense M, Denmark
| | | | | |
Collapse
|
19
|
León IR, Neves-Ferreira AGC, Valente RH, Mota EM, Lenzi HL, Perales J. Improved protein identification efficiency by mass spectrometry using N-terminal chemical derivatization of peptides from Angiostrongylus costaricensis, a nematode with unknown genome. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:1363-74. [PMID: 17902111 DOI: 10.1002/jms.1324] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.
Collapse
Affiliation(s)
- Ileana R León
- Department of Physiology and Pharmacodynamics, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Hasegawa C, Kumazawa T, Lee XP, Marumo A, Shinmen N, Seno H, Sato K. Pipette tip solid-phase extraction and gas chromatography – mass spectrometry for the determination of methamphetamine and amphetamine in human whole blood. Anal Bioanal Chem 2007; 389:563-70. [PMID: 17641881 DOI: 10.1007/s00216-007-1460-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/19/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
Methamphetamine and amphetamine were extracted from human whole blood samples using pipette tip solid-phase extraction (SPE) with MonoTip C(18) tips, on which C(18)-bonded monolithic silica gel was fixed. Human whole blood (0.1 mL) containing methamphetamine and amphetamine, with N-methylbenzylamine as an internal standard, was mixed with 0.4 mL of distilled water and 50 microL of 5 M sodium hydroxide solution. After centrifugation, the supernatant was extracted to the C(18) phase of the tip (pipette tip volume, 200 microL) by 25 repeated aspirating/dispensing cycles using a manual micropipettor. Analytes retained in the C(18) phase were eluted with methanol by five repeated aspirating/dispensing cycles. After derivatization with trifluoroacetic anhydride, analytes were measured by gas chromatography - mass spectrometry with selected ion monitoring in the positive-ion electron impact mode. Recoveries of methamphetamine and amphetamine spiked into whole blood were more than 87.6 and 81.7%, respectively. Regression equations for methamphetamine and amphetamine showed excellent linearity in the range of 0.5-100 ng/0.1 mL. The limits of detection for methamphetamine and amphetamine were 0.15 and 0.11 ng/0.1 mL, respectively. Intra- and interday coefficients of variation for both stimulants were not greater than 9.6 and 13.8%, respectively. The determination of methamphetamine and amphetamine in autopsy whole blood samples is presented, and was shown to validate the present methodology.
Collapse
Affiliation(s)
- Chika Hasegawa
- Department of Legal Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Tokyo 142-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Cindrić M, Cepo T, Galić N, Bukvić-Krajacić M, Tomczyk N, Vissers JPC, Bindila L, Peter-Katalinić J. Structural characterization of PEGylated rHuG-CSF and location of PEG attachment sites. J Pharm Biomed Anal 2007; 44:388-95. [PMID: 17448619 DOI: 10.1016/j.jpba.2007.02.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 02/24/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
Mass spectrometry structural characterization is an essential tool in validating the quality of PEG-rHu-proteins. However, in either case top-down or bottom-up fashion, the interference of high intensity PEG signals on MS detection or detrimental influence of PEG on protein structure, leads to incomplete structural characterization. We propose here a method that permits complete and reliable structural characterization of PEGylated recombinant human granulocyte-colony stimulating factor (rHuG-CSF). The approach includes on-column 2-methoxy-4,5-dihydro-1H-imidazole derivatization of digested PEG rHuG-CSF and subsequent LC/MS investigation. By comparing the LC/MS retention of derivatized and underivatized digested PEG rHuG-CSF, location of the PEG attachment within rHuG-CSF could be deduced. Besides, the protein sequence coverage and position of the disulfide bridges was fully deducible from the MS data interpretation. Additionally, ultra performance liquid chromatography-mass spectrometry-to-the-E (UPLC-MS(E)) was introduced for analysis of label-free digested PEG rHuG-CSF here to enable high resolution and mass accuracy of MS detection and facilitate deep structural insights of peptides.
Collapse
Affiliation(s)
- Mario Cindrić
- Pliva-Research & Development Ltd., Analytics, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
León IR, Neves-Ferreira AGC, Valente RH, Mota EM, Lenzi HL, Perales J. Improved protein identification efficiency by mass spectrometry using N-terminal chemical derivatization of peptides from Angiostrongylus costaricensis, a nematode with unknown genome. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:781-92. [PMID: 17511016 DOI: 10.1002/jms.1214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Matrix-assisted laser desorption ionization (MALDI), Peptide Mass Fingerprinting (PMF) and MALDI-MS/MS ion search (using MASCOT) have become the preferred methods for high-throughput identification of proteins. Unfortunately, PMF can be ambiguous, mainly when the genome of the organism under investigation is unknown and the quality of spectra generated is poor and does not allow confident identification. The post-source decay (PSD) fragmentation of singly charged tryptic peptide ions generated by MALDI-TOF/TOF typically results in low fragmentation efficiency and/or complex spectra, including backbone fragmentation ions (series b and y), internal fragmentation etc. Interpreting these data either manually and/or using de novo sequencing software can frequently be a challenge. To overcome this limitation when studying the proteome of adult Angiostrongylus costaricensis, a nematode with unknown genome, we have used chemical N-terminal derivatization of the tryptic peptides with 4-sulfophenyl isothiocyanate (SPITC) prior to MALDI-TOF/TOF MS. This methodology has recently been reported to enhance the quality of MALDI-TOF/TOF-PSD data, allowing the obtainment of complete sequence of most of the peptides and thus facilitating de novo peptide sequencing. Our approach, consisting of SPITC derivatization along with manual spectra interpretation and Blast analysis, was able to positively identify 76% of analyzed samples, whereas MASCOT analysis of derivatized samples, MASCOT analysis of nonderivatized samples and PMF of nonderivatized samples yielded only 35, 41 and 12% positive identifications, respectively. Moreover, de novo sequencing of SPITC modified peptides resulted in protein sequences not available in NCBInr database paving the way to the discovery of new protein molecules.
Collapse
Affiliation(s)
- Ileana R León
- Department of Physiology and Pharmacodynamics, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Kumazawa T, Hasegawa C, Lee XP, Hara K, Seno H, Suzuki O, Sato K. Simultaneous determination of methamphetamine and amphetamine in human urine using pipette tip solid-phase extraction and gas chromatography–mass spectrometry. J Pharm Biomed Anal 2007; 44:602-7. [PMID: 17267160 DOI: 10.1016/j.jpba.2006.12.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/19/2006] [Accepted: 12/24/2006] [Indexed: 11/19/2022]
Abstract
Methamphetamine and amphetamine were extracted from human urine samples using pipette tip solid-phase extraction (SPE) with MonoTip C18 tips (pipette tip volume, 200 microl), in which C18-bonded monolithic silica gel was fixed. A sample of human urine (0.5 ml) containing methamphetamine, amphetamine, and N-methylbenzylamine as internal standard (IS), was mixed with 25 microl of 1M sodium hydroxide solution. The mixture was extracted into the C18 phase of the SPE tip by 25 repeated aspirating/dispensing cycles using a manual micropipettor. Analytes retained in the C18 phase were then eluted with methanol by five repeated aspirating/dispensing cycles. After derivatization with trifluoroacetic anhydride, analytes were measured by gas chromatography/mass spectrometry with selected ion monitoring in the positive-ion electron impact mode. Recoveries of methamphetamine, amphetamine, and IS spiked into urine were more than 82.9, 82.2, and 78.2%, respectively. Regression equations for methamphetamine and amphetamine showed excellent linearity in the range of 0.25-200 ng/0.5 ml. Limit of detection was 0.04 ng/0.5 ml for methamphetamine and 0.05 ng/0.5 ml for amphetamine. Intra- and inter-day coefficients of variations for both stimulants were not greater than 10.8%. The data obtained from actual determination of methamphetamine and amphetamine in autopsy urine samples are also presented for validation of the method.
Collapse
Affiliation(s)
- Takeshi Kumazawa
- Department of Legal Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
DeAngelis YM, Saunders CW, Johnstone KR, Reeder NL, Coleman CG, Kaczvinsky JR, Gale C, Walter R, Mekel M, Lacey MP, Keough TW, Fieno A, Grant RA, Begley B, Sun Y, Fuentes G, Youngquist RS, Xu J, Dawson TL. Isolation and expression of a Malassezia globosa lipase gene, LIP1. J Invest Dermatol 2007; 127:2138-46. [PMID: 17460728 DOI: 10.1038/sj.jid.5700844] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dandruff and seborrheic dermatitis (D/SD) are common hyperproliferative scalp disorders with a similar etiology. Both result, in part, from metabolic activity of Malassezia globosa and Malassezia restricta, commensal basidiomycete yeasts commonly found on human scalps. Current hypotheses about the mechanism of D/SD include Malassezia-induced fatty acid metabolism, particularly lipase-mediated breakdown of sebaceous lipids and release of irritating free fatty acids. We report that lipase activity was detected in four species of Malassezia, including M. globosa. We isolated lipase activity by washing M. globosa cells. The isolated lipase was active against diolein, but not triolein. In contrast, intact cells showed lipase activity against both substrates, suggesting the presence of at least another lipase. The diglyceride-hydrolyzing lipase was purified from the extract, and much of its sequence was determined by peptide sequencing. The corresponding lipase gene (LIP1) was cloned and sequenced. Confirmation that LIP1 encoded a functional lipase was obtained using a covalent lipase inhibitor. LIP1 was differentially expressed in vitro. Expression was detected on three out of five human scalps, as indicated by reverse transcription-PCR. This is the first step in a molecular description of lipid metabolism on the scalp, ultimately leading toward a test of its role in D/SD etiology.
Collapse
Affiliation(s)
- Yvonne M DeAngelis
- 1The Procter & Gamble Company, Miami Valley Innovation Center, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wilson JJ, Brodbelt JS. Infrared multiphoton dissociation for enhanced de novo sequence interpretation of N-terminal sulfonated peptides in a quadrupole ion trap. Anal Chem 2007; 78:6855-62. [PMID: 17007506 DOI: 10.1021/ac060760d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infrared multiphoton dissociation (IRMPD) of N-terminal sulfonated peptides improves de novo sequencing capabilities in a quadrupole ion trap mass spectrometer. Not only does IRMPD promote highly efficient dissociation of the N-terminal sulfonated peptides but also the entire series of y ions down to the y(1) fragment may be detected due to alleviation of the low-mass cutoff problem associated with conventional collisional activated dissociation (CAD) methods in a quadrupole ion trap. Commercial de novo sequencing software was applied for the interpretation of CAD and IRMPD MS/MS spectra collected for seven unmodified peptides and the corresponding N-terminal sulfonated species. In most cases, the additional information obtained by N-terminal sulfonation in combination with IRMPD provided significant improvements in sequence identification. The software sequence tag results were combined with a commercial database searching algorithm to interpret sequence information of a tryptic digest on alpha-casein s1. Energy-variable CAD studies confirmed a 30-40% reduction in the critical energies of the N-terminal sulfonated peptides relative to unmodified peptides. This reduction in dissociation energy facilitates IRMPD in a quadrupole ion trap.
Collapse
Affiliation(s)
- Jeffrey J Wilson
- Department of Chemistry and Biochemistry, 1 University Station A5300, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
26
|
Hedström M, Grey CE, Gáspár S, Mattiasson B. Miniaturized on-line digestion system for the sequential identification and characterization of protein analytes. J Chromatogr A 2007; 1146:17-22. [PMID: 17320884 DOI: 10.1016/j.chroma.2006.12.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 12/19/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
A miniaturized on-column digestion system constructed for the sequential analysis of semi-purified protein analytes is presented. By utilizing fused silica capillary (diameter 150microm) packed with a zone of trypsin-modified Eupergit C beads and a second zone of reversed-phase C18 material, a linear column set-up was constructed. The protein analytes (pmol amounts) were first digested in the 600nl trypsin reactor portion of the system. Next, the generated peptides were trapped in the C18 column shaped as an electrospray emitter. Finally, after washing the matrix free from salts and other hydrophilic impurities present in the sample, peptides were eluted. A stepwise increased concentration profile of organic solvent, created by a dual syringe pump system, promoted the release of bound peptides, which were identified by electrospray ionization MS/MS. This approach proved to be very efficient, achieving almost complete digestion of the proteins studied, with suitable operational stability maintained for more than 1 week. Further, a small nebulizer was designed and fitted to the electrospray emitter. A significant improvement of the spray stability was observed and droplet build-up on the capillary was avoided, even at flow rates well above 1500nl/min. The proteins chloroperoxidase, staphylococcal enterotoxin B and protein A (injection volume 0.3microl, salt concentration 0.2-1M) were sequentially digested, desalted, eluted, detected and conclusively identified by bioinformatics web tools with an analytical cycle time of 10min.
Collapse
Affiliation(s)
- Martin Hedström
- Department of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | | | | | | |
Collapse
|
27
|
Schuchardt S, Sickmann A. Protein identification using mass spectrometry: a method overview. EXS 2007; 97:141-70. [PMID: 17432267 DOI: 10.1007/978-3-7643-7439-6_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
With the introduction of soft ionization techniques such as Matrix Assisted Laser Desorption Ionization (MALDI), and Electrospray Ionization (ESI), proteins have become accessible to mass spectrometric analyses. Since then, mass spectrometry has become the method of choice for sensitive, reliable and inexpensive protein and peptide identification. With the increasing number of full genome sequences for a variety of organisms and the numerous protein databases constructed thereof, all the tools necessary for the high-throughput protein identification with mass spectrometry are in place. This chapter highlights the different mass spectrometric techniques currently applied in proteome research by giving a brief overview of methods for identification of posttranslational modifications and discussing their suitability of strategies for automated data analysis.
Collapse
Affiliation(s)
- Sven Schuchardt
- Fraunhofer Institute of Toxicology and Experimental Medicine, Drug Research and Medical Biotechnology, Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany.
| | | |
Collapse
|
28
|
Ito A, Okamura TA, Masui K, Kaneko M, Masui R, Ake K, Kuramitsu S, Yamaguchi M, Kuyama H, Ando E, Norioka S, Nakazawa T, Tsunasawa S, Yamamoto H, Ueyama N. High sequence-coverage detection of proteolytic peptides using a bis(terpyridine)ruthenium(ii) complex. Analyst 2007; 132:358-64. [PMID: 17554416 DOI: 10.1039/b610284k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of a bis(terpyridine)ruthenium(ii) complex for peptide labeling (Ru-CO labeling) supplied high intensity peaks in mass spectrometry (MS) analysis that overcame the contribution of protonation or sodiated adduction to peptides. Ru-CO-labeled insulin A- and B-chains were detected simultaneously in comparable peak abundance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The mass spectra of chymotryptic peptide fragments of Ru-CO-labeled insulin also simultaneously indicated both N-terminal fragment ions, and amino acid sequences were determined easily by matrix-assisted laser desorption/ionization post-source-decay (MALDI-PSD). The sensitivity of detecting Ru-CO-labeled peptide fragment ions was not dependent on the length or the sequences of the peptides. The Ru-CO labeling method was applied to tryptic myoglobin fragments. The method indicated that each fragment ion is detected nearly equal in abundance and enabled the desired fragment ions to be distinguished from matrix clusters or their in-source fragments in lower mass regions. The desired fragment ions can be found in the mass region higher than 670.70 (= Ru-CO). This method provided a high sequence coverage (96%) by peptide mass fingerprinting (PMF). Application of this method to a protein mixture (myoglobin, lysozyme and ubiquitin) successfully achieved high sequence-coverage characterization (>90%) of these proteins simultaneously.
Collapse
Affiliation(s)
- Akihiro Ito
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ito A, Okamura TA, Yamamoto H, Ueyama N, Yamaguchi M, Kuyama H, Ando E, Tsunasawa S, Ake K, Masui R, Kuramitsu S, Nakazawa T, Norioka S. Simultaneous detection of N-terminal fragment ions in a protein mixture using a ruthenium(II) complex. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:2647-53. [PMID: 17659652 DOI: 10.1002/rcm.3126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Use of a bis(terpyridine)ruthenium(II) derivative as an N-terminal labeling reagent resulted in the simultaneous detection and individual determination of all the N-terminal fragments of the proteins in a mixture without requiring any separation. All of the N-termini of the guanidinated proteins were labeled selectively by the ruthenium complex (<Ru>-CO-labeling). After chymotryptic digestion, the fragments were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and post-source decay (PSD). The <Ru>-CO moiety exclusively enhanced N-terminal fragment ions in mass spectra and enabled easy N-terminal sequencing. In a mixture containing three different proteins (lysozyme, ubiquitin, and insulin), all of the N-terminal fragment ions labeled with the ruthenium complex were found to produce uniformly intense peaks without the detection of the other unlabeled fragments. The N-terminal sequences of these ions were determined individually by PSD analysis. Application to unknown proteins from Thermus thermophilus HB8 with two-dimensional electrophoretic separation resulted in the successful determination of the N-terminal sequence and easy identification of the target protein.
Collapse
Affiliation(s)
- Akihiro Ito
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Alley WR, Mechref Y, Klouckova I, Novotny MV. Improved Collision-Induced Dissociation Analysis of Peptides by Matrix-Assisted Laser Desorption/Ionization Tandem Time-of-Flight Mass Spectrometry through 3-Sulfobenzoic Acid Succinimidyl Ester Labeling. J Proteome Res 2006; 6:124-32. [PMID: 17203956 DOI: 10.1021/pr0602747] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sulfonation reagent, a succinimidyl ester of 3-sulfobenzoic acid, has been synthesized for effective peptide sequencing. It is capable of incorporating an additional mobile proton into the peptide backbone, thus, facilitating efficient collision-induced dissociation. This reagent is easily and inexpensively prepared in short time. Tandem mass spectra of the guanidinated and reagent-sulfonated peptides consist mainly of the y-ion series with higher intensities than those observed for solely guanidinated peptides. These enhanced tandem MS attributes significantly improved MASCOT total-ion scores, thus, allowing more confident peptide sequencing. This derivatization was also very effective for the analysis of tryptic digest of human blood serum proteins separated by two-dimensional gel electrophoresis. When used in LC-MALDI/MS/MS format, this type of derivatization does not adversely affect chromatographic efficiencies.
Collapse
Affiliation(s)
- William R Alley
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
31
|
Kumazawa T, Hasegawa C, Lee XP, Marumo A, Shimmen N, Ishii A, Seno H, Sato K. Pipette tip solid-phase extraction and gas chromatography–mass spectrometry for the determination of mequitazine in human plasma. Talanta 2006; 70:474-8. [DOI: 10.1016/j.talanta.2006.02.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 02/21/2006] [Accepted: 02/21/2006] [Indexed: 11/17/2022]
|
32
|
Olson MT, Epstein JA, Yergey AL. De novo peptide sequencing using exhaustive enumeration of peptide composition. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1041-1049. [PMID: 16735127 DOI: 10.1016/j.jasms.2006.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 03/09/2006] [Accepted: 03/13/2006] [Indexed: 05/09/2023]
Abstract
We introduce the use of a peptide composition lookup table indexed by residual mass and number of amino acids for de novo sequencing of polypeptides. Polypeptides of 1600 Daltons (Da) or more can be sequenced effectively through exhaustive compositional analysis of MS/MS spectra obtained by unimolecular decomposition (without CID) in a MALDI TOF/TOF despite a fragment mass accuracy of 50 mDa. Peaks are referenced against the lookup table to obtain a complete profile of amino acid combinations, and combinations are assembled into series of increasing length. Concatenating the differences between successive entries in compositional series yields peptide sequences that can be scored and ranked according to signal intensity. While the current work involves measurements acquired on MALDI TOF-TOF, such general treatment of the data anticipates extension to other types of mass analyzers.
Collapse
Affiliation(s)
- Matthew T Olson
- Laboratory of Cellular and Molecular Biophysics, NICHD, NIH, Bethesda, Maryland, USA
| | | | - Alfred L Yergey
- Laboratory of Cellular and Molecular Biophysics, NICHD, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
33
|
Guillaume E, Panchaud A, Affolter M, Desvergnes V, Kussmann M. Differentially isotope-coded N-terminal protein sulphonation: combining protein identification and quantification. Proteomics 2006; 6:2338-49. [PMID: 16526082 DOI: 10.1002/pmic.200500527] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most proteomic labelling technologies intend to improve protein quantification and/or facilitate (de novo) peptide sequencing. We present here a novel stable-isotope labelling method to simultaneously identify and quantify protein components in complex mixtures by specifically derivatizing the N-terminus of proteins with 4-sulphophenyl isothiocyanate (SPITC). Our approach combines protein identification with quantification through differential isotope-coded labelling at the protein N-terminus prior to digestion. The isotope spacing of 6 Da (unlabelled vs. six-fold 13C-labelled tag) between derivatized peptide pairs enables the detection on different MS platforms (MALDI and ESI). Optimisation of the reaction conditions using SPITC was performed on three model proteins. Improved detection of the N-terminally derivatized peptide compared to the native analogue was observed in negative-ion MALDI-MS. Simpler fragmentation patterns compared to native peptides facilitated protein identification. The 13C-labelled SPITC resulted in convenient peptide pair spacing without isotopic overlap and hence facilitated relative quantification by MALDI-TOF/TOF and LC-ESI-MS/MS. The combination of facilitated identification and quantification achieved by differentially isotope-coded N-terminal protein tagging with light/heavy SPITC represents, to our knowledge, a new approach to quantitative proteomics.
Collapse
Affiliation(s)
- Elisabeth Guillaume
- Department of Bioanalytical Science, Functional Genomics Group, Nestlé Research Centre, Nestec, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Hasegawa C, Kumazawa T, Lee XP, Fujishiro M, Kuriki A, Marumo A, Seno H, Sato K. Simultaneous determination of ten antihistamine drugs in human plasma using pipette tip solid-phase extraction and gas chromatography/mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:537-43. [PMID: 16419026 DOI: 10.1002/rcm.2335] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ten antihistamine drugs, diphenhydramine, orphenadrine, chlorpheniramine, diphenylpyraline, triprolidine, promethazine, homochlorcyclizine, cyproheptadine, cloperastine and clemastine, have been found to be extractable from human plasma samples using MonoTip C18 tips, inside which C18- bonded monolithic silica gel was fixed. Human plasma (0.1 mL) containing the ten antihistamines was mixed with 0.4 mL of distilled water and 25 microL of a 1 M potassium phosphate buffer (pH 8.0). After centrifugation of the mixture, the supernatant fraction was extracted to the C18 phase of the tip by 25 repeated aspirating/dispensing cycles using a manual micropipettor. The analytes retained on the C18 phase were then eluted with methanol by five repeated aspirating/dispensing cycles. The eluate was injected into a gas chromatography (GC) injector without evaporation and reconstitution steps, and was detected by a mass spectrometer with selected ion monitoring in the positive-ion electron impact mode. The separation of the ten drugs from each other and from impurities was generally satisfactory using a DB-1MS column (30 m x 0.32 mm i.d., film thickness 0.25 microm). The recoveries of the ten antihistamines spiked into plasma were 73.8-105%. The regression equations for the ten antihistamines showed excellent linearity with detection limits of 0.02-5.0 ng/0.1 mL. The within-day and day-to-day coefficients of variation for plasma were not greater than 9.9%. The data obtained from determination of diphenhydramine and chlorpheniramine in human plasma after oral administration of the drugs are also presented.
Collapse
Affiliation(s)
- Chika Hasegawa
- Department of Legal Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Salih E. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. MASS SPECTROMETRY REVIEWS 2005; 24:828-846. [PMID: 15538747 DOI: 10.1002/mas.20042] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The general fields of biological sciences have seen phenomenal transformations in the past two decades at the level of data acquisition, understanding biological processes, and technological developments. Those advances have been made partly because of the advent of molecular biology techniques (which led to genomics) coupled to the advances made in mass spectrometry (MS) to provide the current capabilities and developments in proteomics. However, our current knowledge that approximately 30,000 human genes may code for up to 1 million or more proteins disengage the interface between the genome sequence database algorithms and MS to generate a major interest in independent de novo MS/MS sequence determination. Significant progress has been made in this area through procedures to covalently modify peptide N- and C-terminal amino-acids by sulfonation and guanidination to permit rapid de novo sequence determination by MS/MS analysis. A number of strategies that have been developed to perform qualitative and quantitative proteomics range from 2D-gel electrophoresis, affinity tag reagents, and stable-isotope labeling. Those procedures, combined with MS/MS peptide sequence analysis at the subpicomole level, permit the rapid and effective identification and quantification of a large number of proteins within a given biological sample. The identification of proteins per se, however, is not always sufficient to interpret biological function because many of the naturally occurring proteins are post-translationally modified. One such modification is protein phosphorylation, which regulates a large array of cellular biochemical pathways of the biological system. Traditionally, the study of phosphoprotein structure-function relationships involved classical protein chemistry approaches that required protein purification, peptide mapping, and the identification of the phosphorylated peptide regions and sites by N-terminal sequence analysis. Recent advances made in mass spectrometry have clearly revolutionized the studies of phosphoprotein biochemistry, and include the development of specific strategies to preferentially enrich phosphoproteins by covalent-modifications that incorporate affinity tags that use the physicochemical properties of phosphoaminoacids. The phosphoserine/phosphothreonine-containing proteins/peptides are derivatized under base-catalyzed conditions by thiol agents; mono- and di-thiol reagents both have been used in such studies. The thiol agent may have: (i) an affinity tag for protein enrichment; (ii) stable-isotopic variants for relative quantitation; or (iii) a combination of the moieties in (i) and (ii). These strategies and techniques, together with others, are reviewed, including their practical application to the study of phosphoprotein biochemistry and structure-function. The consensus of how classical protein chemistry and current MS technology overlap into special case of proteomics, namely "phosphoproteomics," will be discussed.
Collapse
Affiliation(s)
- Erdjan Salih
- Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopaedic Surgery, Harvard Medical School and Children's Hospital Boston, Boston, MA 02115, USA. Erdjan.Salih@Gardenof knowledge.org
| |
Collapse
|
36
|
Wei H, Dean SL, Parkin MC, Nolkrantz K, O'Callaghan JP, Kennedy RT. Microscale sample deposition onto hydrophobic target plates for trace level detection of neuropeptides in brain tissue by MALDI-MS. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1338-46. [PMID: 16217843 DOI: 10.1002/jms.916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A sample preparation method that combines a modified target plate with a nanoscale reversed-phase column (nanocolumn) was developed for detection of neuropeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A gold-coated MALDI plate was modified with an octadecanethiol (ODT) self-assembled monolayer to create a hydrophobic surface that could concentrate peptide samples into a approximately 200-500-microm diameter spot. The spot sizes generated were comparable to those obtained for a substrate patterned with 200-microm hydrophilic spots on a hydrophobic substrate. The sample spots on the ODT-coated plate were 100-fold smaller than those formed on an unmodified gold plate with a 1-microl sample and generated 10 to 50 times higher mass sensitivity for peptide standards by MALDI-TOF MS. When the sample was deposited on an ODT-modified plate from a nanocolumn, the detection limit for peptides was as low as 20 pM for 5-microl samples corresponding to 80 amol deposited. This technique was used to analyze extracts of microwave-fixed tissue from rat brain striatum. Ninety-eight putative peptides were detected including several that had masses matching neuropeptides expected in this brain region such as substance P, rimorphin, and neurotensin. Twenty-three peptides had masses that matched peaks detected by capillary liquid chromatography with electrospray ionization MS.
Collapse
Affiliation(s)
- Hui Wei
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ito A, Okamura TA, Yamamoto H, Ueyama N, Ake K, Masui R, Kuramitsu S, Tsunasawa S. Distinction of Leu and Ile Using a Ruthenium(II) Complex by MALDI-LIFT-TOF/TOF-MS Analysis. Anal Chem 2005; 77:6618-24. [PMID: 16223248 DOI: 10.1021/ac050534o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The novel N-terminal labeling method using a ruthenium(II) complex derivative characteristically indicated a(n) and d(n) (N-terminal) fragment ions in high sensitivity by MS/MS analysis (MALDI-LIFT or ESI-CID). Although these fragment ions depended on a fragmentation process by MS/MS analytical methods to some degree, each case indicated similar side-chain cleavage patterns. The labeling method allows accurate distinction of amino acid residues by MS/MS analysis even if the residues are structural isomers such as leucine and isoleucine. The method was applied to long-chain peptides and provided easy and rapid N-terminal sequencing.
Collapse
Affiliation(s)
- Akihiro Ito
- Department of Macromolecular Science and Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Døskeland AP. A method for simple identification of signature peptides derived from polyUb-K48 and K63 by MALDI-TOF MS and chemically assisted MS/MS fragmentation. Amino Acids 2005; 30:99-103. [PMID: 16044192 DOI: 10.1007/s00726-005-0227-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 05/10/2005] [Indexed: 11/26/2022]
Abstract
A simple method is described to identify signature peptides derived from polyubiquitin (polyUb) chains. The method is based on MALDI-TOF MS/MS analysis after chemically assisted fragmentation, and works on peptides isolated from polyacrylamide gels. PolyUb chains branched at K48 and K63 were chosen as models for Ub-protein conjugates. They were resolved by SDS-PAGE, and their tryptic peptides (in-gel-trypsinolysis) derivatized with 3-sulfopropinic acid NHSester to obtain chemically assisted fragmentation during the MS/MS analysis. PolyUb-K63 produced a single peptide identified as (55)TLSDYNIQK(63) (GG)ESTLHLVLR(72). PolyUb-K48 produced two branched signature peptides identified as (43)LIFAGK(48)(GG)QLEDGR(54) and (43)LIFAGK(48)(LRGG)QLEDGR(54). The recovery of signature peptide with LRGG as branched chain underscores the need to take limited proteolysis into account in the search for detection of ubiquitinated peptides in proteomics studies. In conclusion, a simple method has been described allowing the identification of signature peptides, which are diagnostic markers of the majority of polyUb-conjugated proteins. In principle, the method should be applicable also for other more rare signature peptides.
Collapse
Affiliation(s)
- A P Døskeland
- Department of Biomedicine, Division for Biochemistry and Molecular Biology, University of Bergen, Bergen, Norway.
| |
Collapse
|
39
|
Pashkova A, Chen HS, Rejtar T, Zang X, Giese R, Andreev V, Moskovets E, Karger BL. Coumarin Tags for Analysis of Peptides by MALDI-TOF MS and MS/MS. 2. Alexa Fluor 350 Tag for Increased Peptide and Protein Identification by LC-MALDI-TOF/TOF MS. Anal Chem 2005; 77:2085-96. [PMID: 15801742 DOI: 10.1021/ac048375g] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The goal of this study was the development of N-terminal tags to improve peptide identification using high-throughput MALDI-TOF/TOF MS. Part 1 of the study was focused on the influence of derivatization on the intensities of MALDI-TOF MS signals of peptides. In part 2, various derivatization approaches for the improvement of peptide fragmentation efficiency in MALDI-TOF/TOF MS are explored. We demonstrate that permanent cation tags, while significantly improving signal intensity in the MS mode, lead to severe suppression of MS/MS fragmentation, making these tags unsuitable for high-throughput MALDI-TOF/TOF MS analysis. In the present work, it was found that labeling with Alexa Fluor 350, a coumarin tag containing a sulfo group, along with guanidation of epsilon-amino groups of Lys, could enhance unimolecular fragmentation of peptides with the formation of a high-intensity y-ion series, while the peptide intensities in the MS mode were not severely affected. LC-MALDI-TOF/TOF MS analysis of tryptic peptides from the SCX fractions of an E. coli lysate revealed improved peptide scores, a doubling of the total number of peptides, and a 30% increase in the number of proteins identified, as a result of labeling. Furthermore, by combining the data from native and labeled samples, confidence in correct identification was increased, as many proteins were identified by different peptides in the native and labeled data sets. Additionally, derivatization was found not to impair chromatographic behavior of peptides. All these factors suggest that labeling with Alexa Fluor 350 is a promising approach to the high-throughput LC-MALDI-TOF/TOF MS analysis of proteomic samples.
Collapse
Affiliation(s)
- Anna Pashkova
- Barnett Institute and Department of Chemistry, Northeastern University, 341 Mugar, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cockrill SL, Foster KL, Wildsmith J, Goodrich AR, Dapron JG, Hassell TC, Kappel WK, Scott GBI. Efficient micro-recovery and guanidination of peptides directly from MALDI target spots. Biotechniques 2005; 38:301-4. [PMID: 15727137 DOI: 10.2144/05382pt02] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A method is presented for the recovery and subsequent guanidination of tryptic peptides from samples previously spotted on a matrix-assisted laser desorption/ionization (MALDI) target. The procedure is shown to have applicability to both in-solution and in-gel digests, yielding improved confidence in protein identification and sequence coverage in all instances. Recovery from the plate is essentially quantitative, with no residual analyte observed on the target spot. The technique is rapid, simple, and has extended applicability to other processing steps, including (but not limited to) derivatization for specific peptide studies or enzymatic treatment for subsequent profiling of posttranslational modifications. This method circumvents the failure of an initial analysis to generate suitable information and is particularly relevant for the analysis of precious samples.
Collapse
|
41
|
Flensburg J, Tangen A, Prieto M, Hellman U, Wadensten H. Chemically-assisted fragmentation combined with multi-dimensional liquid chromatography and matrix-assisted laser desorption/ionization post source decay, matrix-assisted laser desorption/ionization tandem time-of flight or matrix-assisted laser desorption/ionization tandem mass spectrometry for improved sequencing of tryptic peptides. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2005; 11:169-79. [PMID: 16046801 DOI: 10.1255/ejms.734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Derivatization of tryptic peptides using an Ettan CAF matrix-assisted laser desorption/ionization (MALDI) sequencing kit in combination with MALDI-post source decay (PSD) is a fast, accurate and convenient way to obtain de novo or confirmative peptide sequencing data. CAF (chemically assisted fragmentation) is based on solid-phase derivatization using a new class of water stable sulfonation agents, which strongly improves PSD analysis and simplifies the interpretation of acquired spectra. The derivatization is performed on solid supports, ZipTip(microC18, limiting the maximum peptide amount to 5 microg. By performing the derivatization in solution enabled the labeling of tryptic peptides derived from 100 microg of protein. To increase the number of peptides that could be sequenced, derivatized peptides were purified using multidimensional liquid chromatography (MDLC) prior to MALDI sequencing. Following the first dimension strong cation exchange (SCX) chromatography step, modified peptides were separated using reversed-phase chromatography (RPC). During the SCX clean up step, positively charged peptides are retained on the column while properly CAF-derivatized peptides (uncharged) are not. A moderately complex tryptic digest, prepared from six different proteins of equimolar amounts, was CAF-derivatized and purified by MDLC. Fractions from the second dimension nano RPC step were automatically sampled and on-line dispensed to MALDI sample plates and analyzed using MALDI mass spectrometry fragmentation techniques. All proteins in the derivatized protein mixture digest were readily identified using MALDI-PSD or MALDI tandem mass spectrometry (MS/MS). More than 40 peptides were unambiguously sequenced, representing a seven-fold increase in the number of sequenced peptides in comparison to when the CAF-derivatized protein mix digest was analyzed directly (no MDLC-separation) using MALDI-PSD. In conclusion, MDLC purification of CAF-derivatized peptides significantly increases the success rate for de novo and confirmative sequencing using various MALDI fragmentation techniques. This new approach is not only applicable to single protein digests but also to more complex digests and could, thus, be an alternative to electrospray ionization MS/MS for peptide sequencing.
Collapse
Affiliation(s)
- John Flensburg
- Amersham Biosciences AB, GE Healthcare, Björkgatan 30, SE-751 84 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
42
|
Juhlin KD, Swift DD, Lacey MP, Correa PE, Keough TW. Data requirements for protein identification using chemically-assisted fragmentation and tandem mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2005; 11:161-7. [PMID: 16046800 DOI: 10.1255/ejms.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Many laboratories identify proteins by searching tandem mass spectrometry data against genomic or protein sequence databases. These database searches typically use the measured peptide masses or the derived peptide sequence and, in this paper, we focus on the latter. We study the minimum peptide sequence data requirements for definitive protein identification from protein sequence databases. Accurate mass measurements are not needed for definitive protein identification, even when a limited amount of sequence data is available for searching. This information has implications for the mass spectrometry performance (and cost), data base search strategies and proteomics research.
Collapse
Affiliation(s)
- Kenton D Juhlin
- The Procter & Gamble Company, PO Box 538707, Cincinnati, OH 45253-8707, USA
| | | | | | | | | |
Collapse
|
43
|
Laremore TN, Weber DM, Choma CT. An evaluation of the utility of in vacuo methylation for mass-spectrometry-based analyses of peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:2045-54. [PMID: 15988721 DOI: 10.1002/rcm.2026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In vacuo trimethylation of the N-terminus of a lyophilized peptide with methyl iodide was previously reported to enhance the peptide's signal in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and to suppress alkali adduct formation in electrospray ionization mass spectrometry (ESI-MS). Both the signal enhancement and alkali adduct suppression observed for methylated peptides are believed to be due to the permanent positive charge on the N-terminus of the peptide resulting from the formation of a quaternary ammonium moiety. The present work evaluates the general utility of the in vacuo methylation procedure for the MS analysis of peptides, and specifically addresses the issue of whether the methylation of nucleophilic sites other than the N-terminal amine affects the MALDI signal of modified peptides. This work establishes that, although certain side-chain modifications are inevitable using present reaction conditions, the derivatization leads to significant MALDI-MS signal improvement. The experimental results demonstrate that the N-terminal trimethylammonium derivatives of peptides exhibit MALDI signals comparable to or exceeding those of arginine-containing standards such as angiotensin I. The advantages and limitations of the in vacuo methylation procedure are discussed.
Collapse
Affiliation(s)
- Tatiana N Laremore
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180-3590, USA
| | | | | |
Collapse
|
44
|
Onischenko EA, Gubanova NV, Kieselbach T, Kiseleva EV, Hallberg E. Annulate lamellae play only a minor role in the storage of excess nucleoporins in Drosophila embryos. Traffic 2004; 5:152-64. [PMID: 15086791 DOI: 10.1111/j.1600-0854.2004.0166.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nuclear pore complexes (NPCs), multiprotein assemblies embedded in the nuclear envelope, conduct nucleo-cytoplasmic traffic of macromolecules. Mimics of NPCs, called annulate lamellae pore complexes (ALPCs), are usually found in cytoplasmic membranous stacks in oocytes and early embryonic cells. They are believed to constitute storage compartments for excess premade nucleoporins. To evaluate the extent to which ALPCs store nucleoporins in early embryonic cells we took advantage of syncytial Drosophila embryos, containing both AL and rapidly proliferating nuclei in the common cytoplasm. Electron microscopic morphometric analysis showed that the number of ALPCs did not decrease to compensate for the growing number of NPCs during syncytial development. We performed Western blot analysis to quantify seven different nucleoporins and analyzed their intraembryonal distribution by confocal microscopy and subcellular fractionation. Syncytial embryos contained a large maternally contributed stockpile of nucleoporins. However, even during interphases, only a small fraction of the excess nucleoporins was assembled into ALPCs, whereas the major fraction was soluble and contained at least one phosphorylated nucleoporin. We conclude that in Drosophila embryos ALPCs play only a minor role in storing the excess maternally contributed nucleoporins. Factors that may prevent nucleoporins from assembly into ALPCs are discussed.
Collapse
Affiliation(s)
- Evgeny A Onischenko
- Section for Natural Sciences, Södertörns University College, SE-14189. Huddinge, Sweden
| | | | | | | | | |
Collapse
|
45
|
Yamaguchi M, Nakazawa T, Kuyama H, Obama T, Ando E, Okamura TA, Ueyama N, Norioka S. High-Throughput Method for N-Terminal Sequencing of Proteins by MALDI Mass Spectrometry. Anal Chem 2004; 77:645-51. [PMID: 15649066 DOI: 10.1021/ac048776w] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A high-throughput method for sequencing of N termini of proteins by using postsource decay (PSD) of matrix-assisted laser desorption/ionization mass spectrometry has been developed. After a protein blotted on the PVDF membrane was successively reduced, S-alkylated, and guanidinated, its N-amino group was coupled to biotinylcysteic acid. The protein was then extracted from the membrane and digested with trypsin. The derivatized N-terminal fragment was then specifically isolated from the tryptic digest with avidin resins, and its de novo sequencing was successfully performed by PSD utilizing a sulfonic acid group introduced to the N terminus.
Collapse
Affiliation(s)
- Minoru Yamaguchi
- Life Science Laboratory, Shimadzu Corporation, Kyoto 604-8511, Japan, Department of Chemistry, Nara Women's University, Nara 630-8506, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Reinders J, Lewandrowski U, Moebius J, Wagner Y, Sickmann A. Challenges in mass spectrometry-based proteomics. Proteomics 2004; 4:3686-703. [PMID: 15540203 DOI: 10.1002/pmic.200400869] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During the last decade, protein analysis and proteomics have been established as new tools for understanding various biological problems. As the identification of proteins after classical separation techniques, such as two-dimensional gel electrophoresis, have become standard methods, new challenges arise in the field of proteomics. The development of "functional proteomics" combines functional characterization, like regulation, localization and modification, with the identification of proteins for deeper insight into cellular functions. Therefore, different mass spectrometric techniques for the analysis of post-translational modifications, such as phosphorylation and glycosylation, have been established as well as isolation and separation methods for the analysis of highly complex samples, e.g. protein complexes or cell organelles. Furthermore, quantification of protein levels within cells is becoming a focus of interest as mass spectrometric methods for relative or even absolute quantification have currently not been available. Protein or genome databases have been an essential part of protein identification up to now. Thus, de novo sequencing offers new possibilities in protein analytical studies of organisms not yet completely sequenced. The intention of this review is to provide a short overview about the current capabilities of protein analysis when addressing various biological problems.
Collapse
Affiliation(s)
- Joerg Reinders
- Protein Mass Spectrometry and Functional Proteomics Group, Rudolf-Virchow-Center for Experimental Biomedicine Julius-Maximilians-University of Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
47
|
Samyn B, Debyser G, Sergeant K, Devreese B, Van Beeumen J. A case study of de novo sequence analysis of N-sulfonated peptides by MALDI TOF/TOF mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1838-1852. [PMID: 15589760 DOI: 10.1016/j.jasms.2004.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 08/09/2004] [Accepted: 08/10/2004] [Indexed: 05/24/2023]
Abstract
The simplicity and sensitivity of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry have increased its application in recent years. The most common method of "peptide mass fingerprint" analysis often does not provide robust identification. Additional sequence information, obtained by post-source decay or collision induced dissociation, provides additional constraints for database searches. However, de novo sequencing by mass spectrometry is not yet common practice, most likely because of the difficulties associated with the interpretation of high and low energy CID spectra. Success with this type of sequencing requires full sequence coverage and demands better quality spectra than those typically used for data base searching. In this report we show that full-length de novo sequencing is possible using MALDI TOF/TOF analysis. The interpretation of MS/MS data is facilitated by N-terminal sulfonation after protection of lysine side chains (Keough et al., Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 7131-7136). Reliable de novo sequence analysis has been obtained using sub-picomol quantities of peptides and peptide sequences of up to 16 amino acid residues in length have been determined. The simple, predictable fragmentation pattern allows routine de novo interpretation, either manually or using software. Characterization of the complete primary structure of a peptide is often hindered because of differences in fragmentation efficiencies and in specific fragmentation patterns for different peptides. These differences are controlled by various structural parameters including the nature of the residues present. The influence of the presence of internal Pro, acidic and basic residues on the TOF/TOF fragmentation pattern will be discussed, both for underivatized and guanidinated/sulfonated peptides.
Collapse
Affiliation(s)
- Bart Samyn
- Department of Biochemistry, Physiology, and Microbiology, Laboratory of Protein Biochemistry and Protein Engineering, University of Gent, K.L Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
48
|
Flensburg J, Haid D, Blomberg J, Bielawski J, Ivansson D. Applications and performance of a MALDI-ToF mass spectrometer with quadratic field reflectron technology. ACTA ACUST UNITED AC 2004; 60:319-34. [PMID: 15345299 DOI: 10.1016/j.jbbm.2004.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new matrix-assisted laser desorption/ionization time of flight mass spectrometer (MALDI-ToF MS), developed specifically for the identification and characterization of proteins and peptides in proteomic investigations, is described. The mass spectrometer which can be integrated with the 2-D gel electrophoresis workflow is a bench-top instrument, enabling rapid, reliable and unattended protein identification in low-, as well as high-throughput proteomics applications. To obtain precise information on peptide sequences, the instrument utilizes a timed ion gate and a unique quadratic field reflectron (Z2 technology), allowing single-run, post-source decay (PSD) of selected peptides. In this study, the performance of the instrument in reflectron, PSD and linear mode, respectively, was investigated. The results showed that the limit of detection for a single peptide in reflectron mode was 125 amol with a signal to noise ratio exceeding 20. Average mass resolution for peptides larger than 2000 u was around 13,000 full width, half maximum (FWHM). The limit for protein identification during peptide mass fingerprinting (PMF) was 500 amol with a sequence coverage of 18%. Mass error during PMF analysis was less than 15 ppm for 17 out of 25 (68%) identified peptides. In PSD mode, a complete series of y-ions of a CAF-derivatized peptide could be obtained from 3.75 fmol of material. The average mass error of PSD-generated fragments was less than 0.14 u. Finally, in linear mode, intact proteins with molecular masses greater than 300,000 u were detected with mass errors below 0.2%.
Collapse
Affiliation(s)
- John Flensburg
- Amersham Biosciences AB, Björkgatan 30, SE-751 84 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
49
|
Amini A, Olofsson IM. Analysis of calcitonin and its analogues by capillary zone electrophoresis and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry. J Sep Sci 2004; 27:675-85. [PMID: 15387462 DOI: 10.1002/jssc.200401722] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Capillary zone electrophoretic (CZE) separations and mass spectrometric analysis of salmon calcitonin and related analogues were performed to generate electrophoresis and mass fingerprints for quality control of the recombinant polypeptide pharmaceutical salmon calcitonin. The calcitonins and their corresponding tryptic digests were successfully separated by CZE at low pH in fused silica capillaries dynamically modified with poly-cationic polymers. The poly-cationic modified inner surface of the fused silica capillaries generated a strong anionic electroosmotic flow (EOF). Analytes of negative, neutral, and positive charge were all swept through the capillary toward the positive electrode. Compared to Polybrene-coated capillaries, capillaries coated with PEI showed a markedly slower but much more stable electroosmotic flow. The migration order of the analytes was predicted by comparing approximate values of the charge to (molecular mass)2/3 ratios. The predicted migration order was confirmed by off-line analysis of CZE fractions with matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS).
Collapse
Affiliation(s)
- Ahmad Amini
- Medical Products Agency, Laboratory, Box 26, Dag Hammarskjölds väg 42, 751 03 Uppsala, Sweden.
| | | |
Collapse
|
50
|
Terry DE, Umstot E, Desiderio DM. Optimized sample-processing time and peptide recovery for the mass spectrometric analysis of protein digests. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:784-794. [PMID: 15144968 DOI: 10.1016/j.jasms.2004.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 02/06/2004] [Accepted: 02/06/2004] [Indexed: 05/24/2023]
Abstract
Proteomics requires an optimized level of sample-processing, including a minimal sample-processing time and an optimal peptide recovery from protein digests, in order to maximize the percentage sequence coverage and to improve the accuracy of protein identification. The conventional methods of protein characterization from one-dimensional or two-dimensional gels include the destaining of an excised gel piece, followed by an overnight in-gel enzyme digestion. The aims of this study were to determine whether: (1) stained gels can be used without any destaining for trypsin digestion and mass spectrometry (MS); (2) tryptic peptides can be recovered from a matrix-assisted laser desorption/ionization (MALDI) target plate for a subsequent analysis with liquid chromatography (LC) coupled to an electrospray ionization (ESI) quadrupole ion trap MS; and (3) an overnight in-gel digestion is necessary for protein characterization with MS. These three strategies would significantly improve sample throughput. Cerebrospinal fluid (CSF) was the model biological fluid used to develop these methods. CSF was desalted by gel filtration, and CSF proteins were separated by two-dimensional gel electrophoresis (2DGE). Proteins were visualized with either silver, Coomassie, or Stains-All (counterstained with silver). None of the gels was destained. Protein spots were in-gel trypsin digested, the tryptic peptides were purified with ZipTip, and the peptides were analyzed with MALDI and ESI MS. Some of the samples that were spotted onto a wax-coated MALDI target plate were recovered and analyzed with ESI MS. All three types of stained gels were compatible with MALDI and ESI MS without any destaining. In-gel trypsin digestion can be performed in only 10-60 min for protein characterization with MS, the sample can be recovered from the MALDI target plate for use in ESI MS, and there was a 90% reduction in sample-processing time from overnight to ca. 3 h.
Collapse
Affiliation(s)
- Doris E Terry
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, The University of Tennessee Center for Health Science, Memphis, 38163, USA.
| | | | | |
Collapse
|