1
|
Liang Z, Jiang C, Li Y, Liu Y, Yu J, Zhang T, Alvarez PJJ, Chen W. Single-Atom Iron Can Steer Atomic Hydrogen toward Selective Reductive Dechlorination: Implications for Remediation of Chlorinated Solvents-Impacted Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11833-11842. [PMID: 38910294 DOI: 10.1021/acs.est.4c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Atomic hydrogen (H*) is a powerful and versatile reductant and has tremendous potential in the degradation of oxidized pollutants (e.g., chlorinated solvents). However, its application for groundwater remediation is hindered by the scavenging side reaction of H2 evolution. Herein, we report that a composite material (Fe0@Fe-N4-C), consisting of zerovalent iron (Fe0) nanoparticles and nitrogen-coordinated single-atom Fe (Fe-N4), can effectively steer H* toward reductive dechlorination of trichloroethylene (TCE), a common groundwater contaminant and primary risk driver at many hazardous waste sites. The Fe-N4 structure strengthens the bond between surface Fe atoms and H*, inhibiting H2 evolution. Nonetheless, H* is available for dechlorination, as the adsorption of TCE weakens this bond. Interestingly, H* also enhances electron delocalization and transfer between adsorbed TCE and surface Fe atoms, increasing the reactivity of adsorbed TCE with H*. Consequently, Fe0@Fe-N4-C exhibits high electron selectivity (up to 86%) toward dechlorination, as well as a high TCE degradation kinetic constant. This material is resilient against water matrix interferences, achieving long-lasting performance for effective TCE removal. These findings shed light on the utilization of H* for the in situ remediation of groundwater contaminated with chlorinated solvents, by rational design of earth-abundant metal-based single-atom catalysts.
Collapse
Affiliation(s)
- Zongsheng Liang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Yueyue Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Sun Y, Zheng K, Du X, Qin H, Guan X. Insights into the contrasting effects of sulfidation on dechlorination of chlorinated aliphatic hydrocarbons by zero-valent iron. WATER RESEARCH 2024; 255:121494. [PMID: 38552485 DOI: 10.1016/j.watres.2024.121494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024]
Abstract
Contrasting effects of sulfidation on contaminants reduction by zero-valent iron (ZVI) has been reported in literature but the underlying mechanisms remain unclear. Here, under well-controlled conditions, we compared the performance of ZVI and sulfidated ZVI (S-ZVI) toward a series of chlorinated compounds. Results revealed that, although S-ZVI was more reactive than ZVI toward hexachloroethane, pentachloroethane, tetrachloroethylene, and trichloroethene, sulfidation hindered the dechlorination of the other ten tested chlorinated aliphatics by a factor of 1.5-125. Moreover, S-ZVI may lead to an accumulation of toxic partially-dechlorinated products. Analogous to its effects on ZVI reactivity, sulfidation also exerted positive, negligible, or negative effects on the electron efficiency of ZVI. Solvent kinetic isotope effect analysis suggested that direct electron transfer rather than reaction with atomic hydrogen was the dominant reduction mechanism in S-ZVI system. Hence, the sulfidation enhancing effects could be expected only when direct electron transfer is the preferred reduction route for target contaminants. Furthermore, linear free energy relationships analysis indicated one-electron reduction potential could be used to predict the transformation of chlorinated ethanes by S-ZVI, whereas for chlorinated ethenes, their adsorption properties on S-ZVI determined the dechlorination process. All these findings may offer guidance for the decision-making regarding the application of S-ZVI.
Collapse
Affiliation(s)
- Yuankui Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Kaiwei Zheng
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Xueying Du
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hejie Qin
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Gong L, Chen J, Hu Y, He K, Bylaska EJ, Tratnyek PG, He F. Degradation of Chloroform by Zerovalent Iron: Effects of Mechanochemical Sulfidation and Nitridation on the Kinetics and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37339398 DOI: 10.1021/acs.est.3c02039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Chloroform (CF) is a widely used chemical reagent and disinfectant and a probable human carcinogen. The extensive literature on halocarbon reduction with zerovalent iron (ZVI) shows that transformation of CF is slow, even with nano, bimetallic, sulfidated, and other modified forms of ZVI. In this study, an alternative method of ZVI modification─involving simultaneous sulfidation and nitridation through mechanochemical ball milling─was developed and shown to give improved degradation of CF (i.e., higher degradation rate and inhibited H2 evolution reaction). The composite material (denoted as S-N(C)-ZVI) gave synergistic effects of nitridation and sulfidation on CF degradation. A complete chemical reaction network (CRN) analysis of CF degradation suggests that O-nucleophile-mediated transformation pathways may be the main route for the formation of the terminal nonchlorinated products (formate, CO, and glycolic polymers) that have been used to explain the undetected products needed for mass balance. Material characterizations of the ZVI recovered after batch experiments showed that sulfidation and nitridation promoted the formation of Fe3O4 on the S-N(C)-ZVI particles, and the effect of aging on CF degradation rates was minor for S-N(C)-ZVI. The synergistic benefits of sulfidation and nitridation on CF degradation were also observed in experiments performed with groundwater.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingting Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yao Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kai He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Eric J Bylaska
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Gong L, Zhang Z, Xia C, Zheng J, Gu Y, He F. A quantitative study of the effects of particle' properties and environmental conditions on the electron efficiency of Pd and sulfidated nanoscale zero-valent irons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158469. [PMID: 36058331 DOI: 10.1016/j.scitotenv.2022.158469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Electron efficiency (or electron selectivity, ɛe) is an important quantitative criterion for zero-valent iron treatment of organohalide contaminated groundwater. The aim of this quantitative study was the systematic exploration and comparison of the effects of the Pd/Fe and S/Fe molar ratios (i.e., [Pd/Fe] and [S/Fe]), trichloroethylene (TCE) concentrations ([TCE]), pH solution, aging time, and water matrices on the ɛe of Pd-nZVI and S-nZVI. To this end, we used TCE as a probe contaminant. The ɛe of Pd-nZVI increased and then decreased with [Pd/Fe], while that of S-nZVI increased with [S/Fe], as more hydrophobic FeS2 was formed on S-nZVI at higher [S/Fe]. The εe of S-nZVI and Pd-nZVI increased with increasing [TCE]. Specifically, the εe of S-nZVI and Pd-nZVI at [TCE] of 200 ppm increased by 24.9 % and 79.3 %, respectively, compared with that at [TCE] of 10 ppm. As the H2 evolution reaction (HER) was more sensitive to surface passivation than TCE dechlorination, the εe of S-nZVI and Pd-nZVI under alkaline conditions was higher than that under basic conditions, and increased by 11.7 % and 37.8 %, respectively, at pH 10 relative to that at pH 6. The εe also increased with the aging time of the S-nZVI and Pd-nZVI particles; the increase was by 27.2 % and 59.6 %, respectively, at aging time of 30 d compared with that of the fresh ones. The ɛe of both particles were higher in artificial groundwater (AGW) than in real groundwater (RGW). For all batch experiments, the εe of S-nZVI increased over the reaction time and tended to outperform that of Pd-nZVI, even though the εe of Pd-nZVI was higher than that of S-nZVI at the initial stage of TCE dechlorination, thereby justifying the longevity of S-nZVI.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zaizhi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenyun Xia
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yawei Gu
- School of Environmental Science and Engineering, Qilu University of Technology, Jinan, 250353, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Gao F, Ahmad S, Tang J, Zhang C, Li S, Yu C, Liu Q, Sun H. Enhanced nitrobenzene removal in soil by biochar supported sulfidated nano zerovalent iron: Solubilization effect and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153960. [PMID: 35192830 DOI: 10.1016/j.scitotenv.2022.153960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Sulfidated nano zerovalent iron (S-nZVI) is reported to be effective in removal of aqueous organic contaminants. However, little is known about its potential use in reductive degradation of soil-sorbed contaminants. In this study, biochar (BC) supported S-nZVI (S-nZVI@BC) was successfully synthesized through sulfidation and carbon loading modification, which effectively combined the solubilization characteristics of BC and high reduction characteristics of S-nZVI. Transmission electron microscopy (TEM) with an energy-dispersive X-ray spectroscopy (EDS) analysis suggested that sulfur and iron were evenly distributed throughout BC matrix. The degradation of nitrobenzene (NB) in soil was achieved more efficiently with the as-synthesized S-nZVI@BC composites. Results indicated that S-nZVI@BC with S-nZVI/BC mass ratio of 3:1, dosage of 10 mg/g exhibited superior NB removal (98%) and aniline (AN) formation (90%) efficiency within 24 h without formation of other intermediates, higher than those of S-nZVI. Meanwhile, the surface FeSX layer enhanced the antioxidant capacity of S-nZVI@BC and participated in the reduction of NB. The soil-sorbed NB decreased from 14% to 1.4%, indicating that the addition of BC played an important role in solubilization of NB from soil. Solubilization-reduction was the dominant mechanism for NB removal. This research indicated that S-nZVI@BC held the potential to enhance in-situ remediation of NB-contaminated soil.
Collapse
Affiliation(s)
- Feilong Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shakeel Ahmad
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Chengfang Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Song Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chen Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qinglong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Mo Y, Xu J, Zhu L. Molecular Structure and Sulfur Content Affect Reductive Dechlorination of Chlorinated Ethenes by Sulfidized Nanoscale Zerovalent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5808-5819. [PMID: 35442653 DOI: 10.1021/acs.est.2c00284] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sulfidized nanoscale zerovalent iron (SNZVI) with desirable properties and reactivity has recently emerged as a promising groundwater remediation agent. However, little information is available on how the molecular structure of chlorinated ethenes (CEs) affects their dechlorination by SNZVI or whether the sulfur content of SNZVI can alter their dechlorination pathway and reactivity. Here, we show that the reactivity (up to 30-fold) and selectivity (up to 70-fold) improvements of SNZVI (compared to NZVI) toward CEs depended on the chlorine number, chlorine position, and sulfur content. Low CEs (i.e., vinyl chloride and cis-1,2-dichloroethene) and high CEs (perchloroethene) tended to be dechlorinated by SNZVI primarily via atomic H and direct electron transfer, respectively, while SNZVI could efficiently and selectively dechlorinate trichloroethene and trans-1,2-dichloroethene via both pathways. Increasing the sulfidation degree of SNZVI suppressed its ability to produce atomic H but promoted electron transfer and thus altered the relative contributions of atomic H and electron transfer to the CE dechlorination, resulting in different reactivities and selectivities. These were indicated by the correlations of CE dechlorination rates and improvements with CE molecular descriptors, H2 evolution rates, and electron transfer indicators of SNZVI. These mechanistic insights indicate the importance of determining the structure-specific properties and reactivity of both SNZVI materials and their target contaminants and can lead to a more rational design of SNZVI for in situ groundwater remediation of various CEs.
Collapse
Affiliation(s)
- Yalan Mo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Brumovský M, Oborná J, Micić V, Malina O, Kašlík J, Tunega D, Kolos M, Hofmann T, Karlický F, Filip J. Iron Nitride Nanoparticles for Enhanced Reductive Dechlorination of Trichloroethylene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4425-4436. [PMID: 35263088 PMCID: PMC8988298 DOI: 10.1021/acs.est.1c08282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 05/28/2023]
Abstract
Nitriding has been used for decades to improve the corrosion resistance of iron and steel materials. Moreover, iron nitrides (FexN) have been shown to give an outstanding catalytic performance in a wide range of applications. We demonstrate that nitriding also substantially enhances the reactivity of zerovalent iron nanoparticles (nZVI) used for groundwater remediation, alongside reducing particle corrosion. Two different types of FexN nanoparticles were synthesized by passing gaseous NH3/N2 mixtures over pristine nZVI at elevated temperatures. The resulting particles were composed mostly of face-centered cubic (γ'-Fe4N) and hexagonal close-packed (ε-Fe2-3N) arrangements. Nitriding was found to increase the particles' water contact angle and surface availability of iron in reduced forms. The two types of FexN nanoparticles showed a 20- and 5-fold increase in the trichloroethylene (TCE) dechlorination rate, compared to pristine nZVI, and about a 3-fold reduction in the hydrogen evolution rate. This was related to a low energy barrier of 27.0 kJ mol-1 for the first dechlorination step of TCE on the γ'-Fe4N(001) surface, as revealed by density functional theory calculations with an implicit solvation model. TCE dechlorination experiments with aged particles showed that the γ'-Fe4N nanoparticles retained high reactivity even after three months of aging. This combined theoretical-experimental study shows that FexN nanoparticles represent a new and potentially important tool for TCE dechlorination.
Collapse
Affiliation(s)
- Miroslav Brumovský
- Department
of Environmental Geosciences (EDGE), Centre for Microbiology and Environmental
Systems Science, University of Vienna, Althanstrasse 14, UZA II, 1090 Vienna, Austria
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Department
of Forest- and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences,
Vienna, Peter-Jordan-Straße
82, 1190 Vienna, Austria
| | - Jana Oborná
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Vesna Micić
- Department
of Environmental Geosciences (EDGE), Centre for Microbiology and Environmental
Systems Science, University of Vienna, Althanstrasse 14, UZA II, 1090 Vienna, Austria
| | - Ondřej Malina
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Josef Kašlík
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Daniel Tunega
- Department
of Forest- and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences,
Vienna, Peter-Jordan-Straße
82, 1190 Vienna, Austria
- School
of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, P.R. China
| | - Miroslav Kolos
- Department
of Physics, Faculty of Science, University
of Ostrava, 701 03 Ostrava, Czech Republic
| | - Thilo Hofmann
- Department
of Environmental Geosciences (EDGE), Centre for Microbiology and Environmental
Systems Science, University of Vienna, Althanstrasse 14, UZA II, 1090 Vienna, Austria
| | - František Karlický
- Department
of Physics, Faculty of Science, University
of Ostrava, 701 03 Ostrava, Czech Republic
| | - Jan Filip
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| |
Collapse
|
8
|
Ren Y, Lee Y, Cui M, Zhou Y, Liang H, Khim J. Evaluation of self-oxidation and selectivity of iron-based reductant in anaerobic pentachlorophenol contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127322. [PMID: 34601407 DOI: 10.1016/j.jhazmat.2021.127322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Soil contamination due to chlorinated organics prompts an important environmental problem; however, the iron-based reduction materials and complicated ground environment are the main barriers to implementation and promotion of in situ soil remediation. Therefore, this study aims to evaluate the reductants zero-valent iron (ZVI) and its activated carbon composite (AC-ZVI) in terms of their self-oxidation and selectivity in soil experiments. The results indicated that saturated moisture conditions were beneficial for degradation due to the dispersal of the pollutants from soil particles. Particularly, increasing the water/soil ratio to the over-saturated state would decrease the selectivity of ZVI and AC-ZVI. Meanwhile, increasing the reductant loading decreased the selectivity of ZVI and AC-ZVI, whereas the high initial concentration increased the selectivity of AC-ZVI. In addition, the self-oxidation of ZVI (3.0 ×10-3 h-1) is 4.2 times higher than that of AC-ZVI (0.7 ×10-3 h-1), and the selectivity of AC-ZVI (48%) is 6.9 times higher than that of ZVI (7%), which confirmed that AC-ZVI is a superior iron-based amendment in saturated moisture conditions. Therefore, this study provides a reliable and feasible evaluation method for in situ remediation process, and deepens the understanding of the effects of moisture contents.
Collapse
Affiliation(s)
- Yangmin Ren
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yonghyeon Lee
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mingcan Cui
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Yongyue Zhou
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hong Liang
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Jeehyeong Khim
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Gong L, Qiu X, Cheng D, Hu Y, Zhang Z, Yuan Q, Yang D, Liu C, Liang L, He F. Coincorporation of N and S into Zero-Valent Iron to Enhance TCE Dechlorination: Kinetics, Electron Efficiency, and Dechlorination Capacity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16088-16098. [PMID: 34787396 DOI: 10.1021/acs.est.1c03784] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sulfidated zero-valent iron (S-ZVI) enhances the degradation of chlorinated hydrocarbon (CHC) in contaminated groundwater. Despite numerous studies of S-ZVI, a versatile strategy to improve its dechlorination kinetics, electron efficiency (εe), and dechlorination capacity is still needed. Here, we used heteroatom incorporation of N(C) and S by ball-milling of microscale ZVI with melamine and sulfur via nitridation and sulfidation to synthesize S-N(C)-mZVIbm particles that contain reactive Fe-NX(C) and FeS species. Sulfidation and nitridation synergistically increased the trichloroethene (TCE) dechlorination rate, with reaction constants kSA of 2.98 × 10-2 L·h-1·m-2 by S-N(C)-mZVIbm, compared to 1.77 × 10-3 and 8.15 × 10-5 L·h-1·m-2 by S-mZVIbm and N(C)-mZVIbm, respectively. Data show that sulfidation suppressed the reductive dissociation of N(C) from S-N(C)-mZVIbm, which stabilized the reactive Fe-NX(C) and reserved electrons for TCE dechlorination. In addition to lowering H2 production, S-N(C)-mZVIbm dechlorinated TCE to less reduced products (e.g., acetylene), contributing to the material's higher εe and dechlorination capacity. This synergistic effect on TCE degradation can be extended to other recalcitrant CHCs (e.g., chloroform) in both deionized and groundwater. This multiheteroatom incorporation approach to optimize ZVI for groundwater remediation provides a basis for further advances in reactive material synthesis.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaojiang Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yao Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zaizhi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qunsen Yuan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dezhi Yang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Liyuan Liang
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
10
|
Li J, Guan X, Zhang WX. Architectural Genesis of Metal(loid)s with Iron Nanoparticle in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12801-12808. [PMID: 34523344 DOI: 10.1021/acs.est.1c02458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reactions of core-shell iron nanoparticles with metal(loid)s in water can form an array of nanostructures such as Ag-seed/dendrite, As-subshell, U-yolk, Co-hollowshell, and Cs-spot. Nonetheless, there is a lack of profound understanding in the genesis of these amazing geometries. Herein, we propose a concept to unravel the interdiffusion between the core-shell iron nanoparticle and metal(loid)s, where several key interactions including the Kirkendall effect, metal(loid) character effect, and reaction condition effect are involved in determining the structure of the final solid reaction products. Particularly, the architectural growths of metal(loid)s with iron nanoparticles in water can be manipulated mutually or singly by the following factors: standard redox potential difference, magnetic property, electrical charge and conductivity, as well as the iron (hydr)oxide shell structure under different solution chemistry and operation conditions. This contribution provides a theoretical basis to rationalize the architectural genesis of various metal(loid)s with iron nanoparticles, which will benefit the real practice for synthesizing functional iron-based nanoparticles and recovering the rare/precious metal(loid)s by iron nanoparticles from water.
Collapse
Affiliation(s)
- Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Xiaohong Guan
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Wei-Xian Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
11
|
Jing Q, You W, Tong L, Xiao W, Kang S, Ren Z. Response surface design for removal of Cr(VI) by hydrogel-supported sulfidated nano zero-valent iron (S-nZVI@H). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1190-1205. [PMID: 34534116 DOI: 10.2166/wst.2021.312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a new sulfidated nanoscale zero-valent iron (S-nZVI) supported on hydrogel (S-nZVI@H) was successfully synthesized for the removal of chromium (Cr) (VI) from groundwater. The surface morphology, dispersion phenomenon and functional groups of novel S-nZVI@H were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Box-Behnken design (BBD) optimization technology based on response surface methodology (RSM) is applied to demonstrate the influence of the interaction of S-nZVI@H dose, initial Cr(VI) concentration, contact time, and initial pH with the Cr(VI) removal efficiency. The analysis of variance results (F = 118.73, P < 0.0001, R2 = 0.9916) show that the quadratic polynomial model is significant enough to reflect the close relationship between the experimental and predicted values. The predicted optimum removal conditions are: S-nZVI@H dose 9.46 g/L, initial Cr(VI) concentration 30 mg/L, contact time 40.7 min, and initial pH 5.27, and the S-nZVI@H dose is the key factor affecting the removal of Cr(VI). The predicted value (99.76%) of Cr (VI) removal efficiency is in good agreement with the experimental value (97.75%), which verifies the validity of the quadratic polynomial model. This demonstrates that RSM with appropriate BBD can be utilized to optimize the design of experiments for removal of Cr(VI).
Collapse
Affiliation(s)
- Qi Jing
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| | - Wenhui You
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| | - Le Tong
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| | - Wenyu Xiao
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| | - Siyan Kang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| | - Zhongyu Ren
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China E-mail:
| |
Collapse
|
12
|
Zhang Y, Ozcer P, Ghoshal S. A comprehensive assessment of the degradation of C1 and C2 chlorinated hydrocarbons by sulfidated nanoscale zerovalent iron. WATER RESEARCH 2021; 201:117328. [PMID: 34171646 DOI: 10.1016/j.watres.2021.117328] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Sulfidated nanoscale zerovalent iron (S-nZVI) is a promising reductant for trichloroethylene in groundwater, yet a comprehensive understanding of its degradation efficiency for other chlorinated hydrocarbons (CHCs) is lacking. In this study, we assessed the benefits of using S-nZVI for the degradation of two chlorinated methanes, three chlorinated ethanes, and four chlorinated ethenes compared to unamended nZVI, by analyzing the degradation rate constants, the maximum degradation quantity, and the degradation pathways and products under both stoichiometrically electron excess and limited conditions. The improvement in rate constants induced by sulfidation was compound specific and was more significant for chlorinated ethenes (57-707 folds) than for the other CHCs (1.0-17 folds). This is likely because of the different reduction mechanisms of each CHC and sulfidation may favor specific mechanisms associated with the reduction of chlorinated ethenes more than the others. Sulfidation of nZVI enabled either higher (3.1-24.4 folds) or comparable (0.78-0.91) maximum degradation quantity, assessed under electron limited conditions, for all the CHCs investigated, indicating the promise of S-nZVI for remediation of groundwater contaminated by CHC mixtures. Furthermore, we proposed the degradation pathways of various CHCs based on the observed degradation intermediates and products and found that sulfidation suppressed the generation of partially dechlorinated products, particularly for chlorinated methanes and ethanes, and favor degradation pathways leading to the non-chlorinated benign products. This is the first comprehensive study on the efficacy of sulfidation in improving the degradation of a suite of CHCs and the results provide valuable insight to the assessment of applicability and benefits of S-nZVI for CHC remediation.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Pinar Ozcer
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
13
|
Garcia AN, Zhang Y, Ghoshal S, He F, O'Carroll DM. Recent Advances in Sulfidated Zerovalent Iron for Contaminant Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8464-8483. [PMID: 34170112 DOI: 10.1021/acs.est.1c01251] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2021 marks 10 years since controlled abiotic synthesis of sulfidated nanoscale zerovalent iron (S-nZVI) for use in site remediation and water treatment emerged as an area of active research. It was then expanded to sulfidated microscale ZVI (S-mZVI) and together with S-nZVI, they are collectively referred to as S-(n)ZVI. Heightened interest in S-(n)ZVI stemmed from its significantly higher reactivity to chlorinated solvents and heavy metals. The extremely promising research outcomes during the initial period (2011-2017) led to renewed interest in (n)ZVI-based technologies for water treatment, with an explosion in new research in the last four years (2018-2021) that is building an understanding of the novel and complex role of iron sulfides in enhancing reactivity of (n)ZVI. Numerous studies have focused on exploring different S-(n)ZVI synthesis approaches, and its colloidal, surface, and reactivity (electrochemistry, contaminant selectivity, and corrosion) properties. This review provides a critical overview of the recent milestones in S-(n)ZVI technology development: (i) clear insights into the role of iron sulfides in contaminant transformation and long-term aging, (ii) impact of sulfidation methods and particle characteristics on reactivity, (iii) broader range of treatable contaminants, (iv) synthesis for complete decontamination, (v) ecotoxicity, and (vi) field implementation. In addition, this review discusses major knowledge gaps and future avenues for research opportunities.
Collapse
Affiliation(s)
- Ariel Nunez Garcia
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd., London, Ontario N6A 5B8, Canada
| | - Yanyan Zhang
- Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province China
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Feng He
- Institute of Environmental Chemistry and Pollution Control College of Environment, Zhejiang University of Technology 18 Chaowang Rd, Hangzhou, China 310014
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney New South Wales 2052, Australia
| |
Collapse
|
14
|
Gong L, Qiu X, Tratnyek PG, Liu C, He F. FeN X(C)-Coated Microscale Zero-Valent Iron for Fast and Stable Trichloroethylene Dechlorination in both Acidic and Basic pH Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5393-5402. [PMID: 33729752 DOI: 10.1021/acs.est.0c08176] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
FeNX in Fe single-atom catalysts can be the active site for adsorption and activation of reactants. In addition, FeNX species have been shown to facilitate electron transfer between Fe and the carbon supports used in newly developed metal-air batteries. We hypothesized that the combination of FeNX species with granular zero-valent iron (ZVI) might result in catalyzed reductive decontamination of groundwater contaminants such as trichloroethylene (TCE). Here, such materials synthesized by ball milling microscale ZVI with melamine and the resulting N species were mainly in the form of pyridinic, pyrrolic, and graphitic N. This new material (abbreviated as N-C-mZVIbm) dechlorinated TCE at higher rates than bare mZVIbm (about 3.5-fold) due to facilitated electron transfer through (or around) the surface layer of iron oxides by the newly formed Fe-NX(C). N-C-mZVIbm gave higher kTCE (0.4-1.14 day-1) than mZVIbm (0-0.4 day-1) over a wide range of pH values (4-11). Unlike most ZVI systems, kTCE for N-C-mZVIbm increased with increasing pH values. This is because the oxide layer that passivates Fe0 at a high pH is disrupted by Fe-NX(C) formed on N-C-mZVIbm, thereby allowing TCE dechlorination and HER under basic conditions. Serial respike experiments gave no evidence of decreased performance of N-C-mZVIbm, showing that the advantages of this material might remain under field applications.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaojiang Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
15
|
Pavelková A, Cencerová V, Zeman J, Antos V, Nosek J. Reduction of chlorinated hydrocarbons using nano zero-valent iron supported with an electric field. Characterization of electrochemical processes and thermodynamic stability. CHEMOSPHERE 2021; 265:128764. [PMID: 33183783 DOI: 10.1016/j.chemosphere.2020.128764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Electric field assisted remediation using nano iron has shown outstanding results as well as economic benefits during pilot applications (Černíková et al., 2020). This method is based on donating electrons to the zero-valent iron that possess an inherently strong reductive capacity. The reduction of chlorinated hydrocarbons may be characterized by a decrease in contaminants or better still by the evolution of ethene and ethane originating from the reduction of chlorinated ethenes. The evolution of ethene and ethane was observed predominantly in the vicinity of the anode despite reduction processes being expected near the cathode - the electron donor. The reduction near the anode occurred due to dissolved Fe2+ ions, whose presence was suggested by a Pourbaix diagram that combines Eh/pH values to characterize electrochemical stabilities between different species. No products of dechlorination were observed in the area of the cathode due to presence of oxidized Fe in the form of Fe3+ or Fe(OH)4-. The experimental work described in this research provides a deeper view of the processes of electrochemical reductive dechlorination using zero-valent iron and DC. It also showed an increase in the efficiency compared to the method using zero-valent iron only.
Collapse
Affiliation(s)
- Alena Pavelková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic.
| | | | - Josef Zeman
- Institute of Geological Sciences, Faculty of Science, Masaryk University in Brno, Kotláská 2, CZ-611 37, Brno, Czech Republic.
| | - Vojtech Antos
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic
| | - Jaroslav Nosek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, CZ-46117, Liberec, Czech Republic.
| |
Collapse
|
16
|
Li J, Sun Y, Zhang X, Guan X. Weak magnetic field enables high selectivity of zerovalent iron toward metalloid oxyanions under aerobic conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123330. [PMID: 32947724 DOI: 10.1016/j.jhazmat.2020.123330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
For water treatment/remediation by zerovalent iron (ZVI), of particular concern is its selectivity toward contaminants over natural non-targets (e.g., O2 and H2O/H+). Hence, the effects of weak magnetic field (WMF) on the selectivity of ZVI toward metalloid oxyanions (i.e., As(III), As(V), Sb(III), Sb(V), Se(IV) and Se(VI)) were in-depth investigated under aerobic conditions. This study unraveled that, despite the electron utilization (EU) of ZVI with and without WMF were almost identical at reaction equilibrium, the application of a WMF could enhance the specific removal capacity (SRC) of ZVI toward metalloid oxyanions from 1.8-19.0 mg/g Fe to 12.6-85.3 mg/g Fe. Particularly, the electron efficiency (EE) of ZVI with WMF for reduction of Se(IV)/Se(VI) were 3.7- to 14.1-fold greater than that without WMF. Since the WMF-induced magnetic gradient force (FΔB) can derive the movement of both Fe2+ and metalloid oxyanions, the subsequent incorporation of metalloid oxyanions with in-situ generated iron oxides can also been mediated synchronously and thus leading to an enhanced SRC of ZVI (also EE for Se(IV) and Se(VI) reduction by ZVI). In general, our findings prove that WMF should be a promising method to promote the selectivity of ZVI for water decontamination under aerobic conditions.
Collapse
Affiliation(s)
- Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yuankui Sun
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, PR China
| | - Xueying Zhang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, PR China
| | - Xiaohong Guan
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
17
|
Mohammed O, Mumford KG, Sleep BE. Effects of hydrogen gas production, trapping and bubble-facilitated transport during nanoscale zero-valent iron (nZVI) injection in porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 234:103677. [PMID: 32663719 DOI: 10.1016/j.jconhyd.2020.103677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The injection of nanoscale zero-valent iron (nZVI) can be an effective technique for the treatment of groundwater contaminants, including chlorinated solvents. However, its effectiveness can be limited by natural reductant demand (NRD) reactions, including the reduction of water resulting in the production of hydrogen gas. This study presents results from a series of laboratory experiments to investigate gas production and mobilization following the injection of nZVI solutions, along with sodium borohydride (NaBH4) that is used for nZVI synthesis. Experiments were performed in a thin, two-dimensional flow cell (22 × 34 × 1 cm3) to measure hydrogen gas volumes and local gas saturations, and to investigate the distribution of gas within and above the injection zone. An additional experiment was conducted in a larger flow cell (150 × 150 × 2 cm3) containing dissolved trichloroethene (TCE) to assess changes in aqueous flow pathways and enhanced vertical transport of TCE by mobilized gas. The results showed substantial gas production (60% to 740% of the injected solution volume) resulting in gas mobilization as a network of gas channels above the injection zone, with more gas produced from greater excess NaBH4 used during nZVI synthesis. Trapped gas saturations were sufficient to cause the diversion of aqueous flow around the nZVI injection zone. In addition, gas production and mobilization resulted in the bubble-facilitated transport of TCE, and detectable concentrations of TCE and reaction products (ethane and ethene) above the target treatment zone.
Collapse
Affiliation(s)
- Obai Mohammed
- Queen's University, Department of Civil Engineering, Kingston, Ontario K7L 3N6, Canada
| | - Kevin G Mumford
- Queen's University, Department of Civil Engineering, Kingston, Ontario K7L 3N6, Canada.
| | - Brent E Sleep
- University of Toronto, Department of Civil & Mineral Engineering, Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
18
|
Wang X, Xin J, Yuan M, Zhao F. Electron competition and electron selectivity in abiotic, biotic, and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater: A review. WATER RESEARCH 2020; 183:116060. [PMID: 32750534 DOI: 10.1016/j.watres.2020.116060] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated aliphatic hydrocarbons (CAHs) have been frequently detected in aquifers in recent years. Owing to the bioaccumulation and toxicity of CAHs, it is essential to explore high-efficiency technologies for their complete dechlorination in groundwater. At present, the most widely used abiotic and biotic remediation technologies are based on zero-valent iron (ZVI) and functional anaerobic bacteria (FAB), respectively. However, the main obstacles to the full potential of both technologies in the field include their lowered efficiencies and increased economic costs due to the co-existence of a variety of natural electron acceptors in the environment, such as dissolved oxygen (DO), nitrate (NO3-), sulfate (SO42-), ferric iron (Fe (III)), bicarbonate (HCO3-), and even water, which compete for electrons with the target contaminants. Therefore, a clear understanding of the mechanisms governing electron competition and electron selectivity is significant for the accurate evaluation of the effectiveness of both technologies under natural hydrochemical conditions. We collected data from both abiotic and biotic CAH-remediation systems, summarized the dechlorination and undesired reactions in groundwater, discussed the characterization methods and general principles of electron competition, and described strategies to improve electron selectivity in both systems. Furthermore, we reviewed the emerging ZVI-FAB coupled system, which integrates abiotic and biotic processes to enhance dechlorination performance and electron utilization efficiency. Lastly, we propose future research needs to quantitatively understand the electron competition in abiotic, biotic, and coupled systems in more detail and to promote improved electron selectivity in groundwater remediation.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fang Zhao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
19
|
Gong L, Lv N, Qi J, Qiu X, Gu Y, He F. Effects of non-reducible dissolved solutes on reductive dechlorination of trichloroethylene by ball milled zero valent irons. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122620. [PMID: 32315940 DOI: 10.1016/j.jhazmat.2020.122620] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Non-reducible solution anions have been well recognized to affect reactivity of ZVI in dechlorinating chlorinated hydrocarbons. However, their effects and corresponding functional mechanisms on electron efficiency (εe) of ZVI remain unclear. In this study, mechanochemically modified microscale sulfidated and unsulfidated ZVI particles (i.e., S-mZVIbm and mZVIbm) and trichloroethylene (TCE) were used as model particles and contaminant to explore such effects. PO43- as a corrosion promoter enhanced initial dechlorination rate by both particles. However, its passivating role as a surface complex agent became significant at the later stage of dechlorination by mZVIbm, while sulfidation alleviated this effect without inhibition of dechlorination. Compared with enhancing dechlorination, PO43- promoted hydrogen evolution reaction (HER) to a higher extent, decreasing εe for both particles by 17-73 %. HCO3- negligibly affected dechlorination by both particles, while elevated HER. Thus, HCO3- [5 mM] decreased εe for S-mZVIbm and mZVIbm by 1.9 % and 22 %. Different from PO43- and HCO3-, Cl- and SO42- showed no significant effects on dechlorination, HER, and therefore εe for both particles. These results imply that even though some co-existing anions (i.e., PO43- and HCO3-) acting as corrosion promoters could improve the dechlorination by ZVIs, they would lead to decreased εe and shortened particle reactive lifetime.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Neng Lv
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianlong Qi
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiaojiang Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yawei Gu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, 250353, PR China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
20
|
Brumovský M, Filip J, Malina O, Oborná J, Sracek O, Reichenauer TG, Andrýsková P, Zbořil R. Core-Shell Fe/FeS Nanoparticles with Controlled Shell Thickness for Enhanced Trichloroethylene Removal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35424-35434. [PMID: 32640155 PMCID: PMC7404211 DOI: 10.1021/acsami.0c08626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/07/2020] [Indexed: 05/28/2023]
Abstract
Zero-valent iron nanoparticles (nZVI) treated by reduced sulfur compounds (i.e., sulfidated nZVI, S-nZVI) have attracted increased attention as promising materials for environmental remediation. While the preparation of S-nZVI and its reactions with various groundwater contaminants such as trichloroethylene (TCE) were already a subject of several studies, nanoparticle synthesis procedures investigated so far were suited mainly for laboratory-scale preparation with only a limited possibility of easy and cost-effective large-scale production and FeS shell property control. This study presents a novel approach for synthesizing S-nZVI using commercially available nZVI particles that are treated with sodium sulfide in a concentrated slurry. This leads to S-nZVI particles that do not contain hazardous boron residues and can be easily prepared off-site. The resulting S-nZVI exhibits a core-shell structure where zero-valent iron is the dominant phase in the core, while the shell contains mostly amorphous iron sulfides. The average FeS shell thickness can be controlled by the applied sulfide concentration. Up to a 12-fold increase in the TCE removal and a 7-fold increase in the electron efficiency were observed upon amending nZVI with sulfide. Although the FeS shell thickness correlated with surface-area-normalized TCE removal rates, sulfidation negatively impacted the particle surface area, resulting in an optimal FeS shell thickness of approximately 7.3 nm. This corresponded to a particle S/Fe mass ratio of 0.0195. At all sulfide doses, the TCE degradation products were only fully dechlorinated hydrocarbons. Moreover, a nearly 100% chlorine balance was found at the end of the experiments, further confirming complete TCE degradation and the absence of chlorinated transformation products. The newly synthesized S-nZVI particles thus represent a promising remedial agent applicable at sites contaminated with TCE.
Collapse
Affiliation(s)
- Miroslav Brumovský
- Regional
Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech
Republic
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Althanstraße 14, UZA II, Vienna 1090, Austria
| | - Jan Filip
- Regional
Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech
Republic
| | - Ondřej Malina
- Regional
Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech
Republic
| | - Jana Oborná
- Regional
Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech
Republic
| | - Ondra Sracek
- Department
of Geology of Science, Palacký University
Olomouc, 17 listopadu 12, Olomouc 771 46, Czech Republic
| | - Thomas G. Reichenauer
- AIT
Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau 3430, Austria
| | - Pavlína Andrýsková
- Regional
Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech
Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech
Republic
| |
Collapse
|
21
|
Gao X, Zhang Y, Li F, Tian B, Wang X, Wang Z, Carozza JC, Zhou Z, Han H, Xu C. Surface Modulation and Chromium Complexation: All-in-One Solution for the Cr(VI) Sequestration with Bifunctional Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8373-8379. [PMID: 32421314 DOI: 10.1021/acs.est.0c00710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The sulfidation of zero valent iron (ZVI) to an Fe@FeSx (S-ZVI) composite has been intensively explored in the ZVI field. Yet, further benefits from the FeSx coating layer are seldom realized, especially those effectively using its intrinsic physical and chemical properties for elaborate design. Here, we demonstrate that in a traditional Cr(VI) sequestration reaction, the FeSx layer displays a great utility in immobilizing molecules containing hydroxyl groups (-OH) and hence, attracting Cr(VI) complexes chelated with carboxyl organics (RCOOH). Such intermolecular attraction readily promotes the diffusion of the Cr(VI) complexes to the S-ZVI surface, affording a higher reaction rate for the Cr(VI) sequestration process. In addition, the above mechanism was used to guide a rational selection of molecules incorporating both hydroxyl and carboxyl functional groups with a proper ratio and thereby, a significantly improved reaction efficiency was achieved. Furthermore, the FeSx phase was revealed to be consumed in the reaction, acting as a supplementary reductant. This work is the first to unveil the relationship between molecules with specific functionalization and the FeSx phase, providing a general rule in choosing appropriate reaction media for Cr(VI) sequestration and related reactions.
Collapse
Affiliation(s)
- Xuyan Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Fengmin Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Boyang Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhiwei Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jesse C Carozza
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Haixiang Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
22
|
Wen D, Chang NB, Wanielista MP. Assessing Nutrient Removal in Stormwater Runoff for Urban Farming with Iron filings-based Green Environmental Media. Sci Rep 2020; 10:9379. [PMID: 32523005 PMCID: PMC7287050 DOI: 10.1038/s41598-020-66159-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/13/2020] [Indexed: 01/31/2023] Open
Abstract
Ensuring urban areas have access to clean drinking water, safe food supply, and uncontaminated water bodies is essential to the good health of millions of urban residents. This paper presents the functionality of Iron Filings-based Green Environmental Media (IFGEM) in terms of nutrient removal efficiencies to support water quality management and urban farming. IFGEM uses recycled materials such as tire crumb and iron filings to help remove nutrients with essential physicochemical properties. In this study, IFGEM were proven effective and sustainable through an isotherm study, a column study of reaction kinetics, and a microstructure examination under various inlet nutrient concentration levels. IFGEMs exhibited over 90% nitrate removal, as well as 50–70% total phosphorus removal, under most inlet conditions. These promising results make IFGEM suitable for treating stormwater runoff, wastewater effluent, and agricultural discharge via varying ex situ treatment units in flexible landscape environments. In addition, the byproduct of ammonia generation permits possible reuse of spent IFGEM as soil amendments in crop land, gardens and yards, and green roofs for urban farming. Findings may help secure urban food supply chains and harmonize nutrients, soil, water, and waste management in different urban environments.
Collapse
Affiliation(s)
- Dan Wen
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Ni-Bin Chang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA.
| | - Martin P Wanielista
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
23
|
Long Q, Liu F, Yuan Y, Dai Y, Wang C, Li X, Zhang J. Enhanced degradation performance of p-chlorophenol in photo-Fenton reaction activated by nano-Fe0 encapsulated in hydrothermal carbon: Improved Fe(III)/Fe(II) cycle. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Xin J, Fan S, Yuan M, Wang X, Zhang X, Zheng X. Effects of co-existing nitrate on TCE removal by mZVI under different pollution load scenarios: Kinetics, electron efficiency and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137111. [PMID: 32059314 DOI: 10.1016/j.scitotenv.2020.137111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/04/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Microscale zero-valent iron in situ reaction zone (mZVI-IRZ) has proved to be effective and efficient for the removal of chlorinated aliphatic hydrocarbons (CAHs) from groundwater. However, nitrate (NO3-), which is ubiquitous in groundwater, affects the mZVI-based attenuation of CAHs in a complicated manner. Both the reaction rate constant (k) and electron efficiency (EE) of mZVI must be considered to comprehensively reflect the effects of NO3- on the short and long-term remediation performances of mZVI. Therefore, the influence of NO3- on trichloroethylene (TCE) removal under high-pollution-load (iron limited) and low-pollution-load (iron excess) conditions was investigated. Low concentrations of NO3- (10 and 50 mg N L-1) were found to enhance the TCE removal rate and efficiency, whereas high concentrations of NO3- (100 mg N L-1) inhibited the reaction. Although TCE removal was increased at low concentrations of NO3-, the EE of mZVI was dramatically decreased in the presence of NO3- at all concentration levels. Therefore, both the short-term TCE removal characteristics and the EE of mZVI should be considered when evaluating the long-term remediation effectiveness of mZVI-IRZ technology. The effects of NO3- on the TCE removal trends under high- and low-pollution-load scenarios were similar, but had different magnitudes. NO3- affected the TCE removal mainly by promoting mZVI corrosion, competing for electrons and affecting passivation product evolution. Our results provide guidance for the practical application of mZVI-IRZ technology.
Collapse
Affiliation(s)
- Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Shufen Fan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xuejiao Zhang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xilai Zheng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
25
|
Nunez Garcia A, Boparai HK, de Boer CV, Chowdhury AIA, Kocur CMD, Austrins LM, Herrera J, O'Carroll DM. Fate and transport of sulfidated nano zerovalent iron (S-nZVI): A field study. WATER RESEARCH 2020; 170:115319. [PMID: 31790885 DOI: 10.1016/j.watres.2019.115319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Treatment of nano zerovalent iron (nZVI) with lower valent forms of sulfur compounds (sulfidation) has the potential to increase the selectivity and reactivity of nZVI with target contaminants and to decrease inter-particle aggregation for improving its mobility. These developments help in addressing some of the long-standing challenges associated with nZVI-based remediation treatments and are of great interest for in situ applications. Herein we report results from a field-scale project conducted at a contaminated site. Sulfidated nZVI (S-nZVI) was prepared on site by first synthesizing carboxymethyl cellulose (CMC) stabilized nZVI with sodium borohydride as a reductant and then sulfidating the nZVI suspension by adding sodium dithionite. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDS) of CMC-S-nZVI, from synthesis barrels, confirms the presence of both discrete spherical nZVI-like particles (∼90 nm) as well as larger irregular structures (∼500 nm) comprising of iron sulfides. This CMC-S-nZVI suspension was gravity fed into a sandy material and monitored through multiple multi-level monitoring wells. Samples collected from upstream and downstream wells suggest very good radial and vertical iron distribution. TEM-EDS analysis from the recovered well samples also indicates the presence of both nZVI-like particles as well as the larger flake-like structures, similar to those found in the injected CMC-S-nZVI suspension. This study shows that S-nZVI stabilized with CMC can be safely synthesized on site and is highly mobile and stable in the subsurface, demonstrating for the first time the field applicability of S-nZVI.
Collapse
Affiliation(s)
- Ariel Nunez Garcia
- Department of Civil and Environmental Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - Hardiljeet K Boparai
- Department of Civil and Environmental Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada; Department of Civil and Mineral Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Cjestmir V de Boer
- Department of Civil and Environmental Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada; Netherlands Organization for Applied Research, TNO, Princetonlaan 6, 3584, CB, Utrecht, the Netherlands
| | - Ahmed I A Chowdhury
- Department of Civil and Environmental Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada; Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Chris M D Kocur
- Department of Civil and Environmental Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada; OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | | | - Jose Herrera
- Department of Chemical and Biochemical Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - Denis M O'Carroll
- Department of Civil and Environmental Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada; School of Civil and Environmental Engineering, Connected Water Initiative, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
26
|
He F, Gong L, Fan D, Tratnyek PG, Lowry GV. Quantifying the efficiency and selectivity of organohalide dechlorination by zerovalent iron. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:528-542. [PMID: 32124893 DOI: 10.1039/c9em00592g] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The efficiency and selectivity of zerovalent iron-based treatments for organohalide contaminated groundwater can be quantified by accounting for redistribution of electrons derived from oxidation of Fe0. Several types of efficiency are reviewed, including (i) the efficiency of Fe(0) utilization, εFe(0), (ii) the electron efficiency of target contaminant reduction, εe, and (iii) the electron efficiency of natural reductant demand (NRD) involving H2O, O2, and co-contaminants such as nitrate, εNRD. Selectivity can then be calculated by using εe/εNRD. Of particular interest is εe and the key to its determination is measuring the total quantity of electrons provided by Fe0 oxidation, which can be based on either the loss of Fe(0), the formation of Fe(ii)/Fe(iii), or the composition of the total reaction products. Recently, many data have accumulated on εe for the treatment of various chlorinated solvents (esp. trichloroethylene, TCE) by zerovalent iron (ZVI), and analysis of these data shows that ZVI particle properties (e.g., stabilization with polymers, bimetallic modification, sulfidation, etc.) and other operational factors have variable effects on εe. Of particular interest is that pre-exposure of ZVI to reduced sulfur species (i.e., sulfidation) consistently improves the εe of contaminant reduction, mainly by suppressing the reduction of water.
Collapse
Affiliation(s)
- Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | | | | | | |
Collapse
|
27
|
Fan P, Sun Y, Zhou B, Guan X. Coupled Effect of Sulfidation and Ferrous Dosing on Selenate Removal by Zerovalent Iron Under Aerobic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14577-14585. [PMID: 31743007 DOI: 10.1021/acs.est.9b04956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Both the reactivity and the removal capacity of zerovalent iron (ZVI) for the target contaminant are important for applying ZVI in wastewater treatment. In this study, the feasibility of combining sulfidation treatment and Fe2+ dosing (S-ZVI/Fe2+) to enhance the performance of ZVI for Se(VI) removal was comprehensively investigated under aerobic conditions. Se(VI) was first adsorbed on the surface of ZVI particles and then reduced to Se(IV) and Se(0) with Se(0) being the final product in S-ZVI/Fe2+ system. This system bore the advantages of both sulfidation treatment (S-ZVI) and Fe2+ dosing (ZVI/Fe2+) for Se(VI) removal. The amounts and rate constants of Se(VI) removal in S-ZVI/Fe2+ system were increased by 1.8-32.8 times and 11.7-194.0 times, respectively, compared to those in pristine ZVI system. Sulfidation significantly accelerated the corrosion of Fe0 thus improved the removal rate of Se(VI). The promoting effect of Fe2+ on Se(VI) sequestration by S-ZVI should be mainly associated with the following facts: Fe2+ could maintain a relatively low pH level during Se(VI) removal by S-ZVI; Compared to S-ZVI alone, the consumption of Fe0 in S-ZVI/Fe2+ by O2/H+ was slower, and thus the electron efficiency of S-ZVI was elevated; Fe2+ dosing facilitated electron transfer by forming semiconductive Fe3O4.
Collapse
Affiliation(s)
- Peng Fan
- State Key Laboratory of Pollution Control and Resources Reuse , College of Environmental Science and Engineering, Tongji University , Shanghai 200092 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
- International Joint Research Center for Sustainable Urban Water System , Tongji University , Shanghai 200092 , China
| | - Yuankui Sun
- State Key Laboratory of Pollution Control and Resources Reuse , College of Environmental Science and Engineering, Tongji University , Shanghai 200092 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
- International Joint Research Center for Sustainable Urban Water System , Tongji University , Shanghai 200092 , China
| | - Baoxue Zhou
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse , College of Environmental Science and Engineering, Tongji University , Shanghai 200092 , China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , China
- International Joint Research Center for Sustainable Urban Water System , Tongji University , Shanghai 200092 , China
| |
Collapse
|
28
|
Qin H, Guan X, Tratnyek PG. Effects of Sulfidation and Nitrate on the Reduction of N-Nitrosodimethylamine by Zerovalent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9744-9754. [PMID: 31343874 DOI: 10.1021/acs.est.9b02419] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Competition among oxidizing species in groundwater and wastewater for the reductive capacity of zerovalent iron (ZVI) makes the selectivity of ZVI for target contaminant degradation over other reduction pathways a major determinant of the feasibility of ZVI-based water treatment processes. The selectivity for reduction of contaminants over water is improved by sulfidation, but the effect of sulfidation on other competing reactions is not known. The interaction between these competing reactions was investigated using N-nitrosodimethylamine (NDMA) as the target contaminant, nitrate as a co-contaminant, and micrometer-sized ZVI with and without sulfidation. Unsulfidated ZVI reduced NDMA to dimethylamine via N,N-dimethylhydrazine, but the addition of nitrate decreased the rate of NDMA reduction and increased the quantity of intermediate observed. With sulfidated ZVI, the kinetics and products of NDMA reduction were similar to those with unsulfidated ZVI, but no inhibitory effect of nitrate was observed. Conversely, the reduction of nitrate-which dominated NDMA reduction in unsulfidated ZVI systems-was strongly inhibited by sulfidation. H2 and Fe2+ generation by sulfidated ZVI was almost independent of nitrate concentration. Therefore, sulfidation improved the efficiency of NDMA reduction by ZVI in the presence of nitrate mainly by inhibiting nitrate reduction. The shift in selectivity of ZVI for NDMA over nitrate upon sulfidation was due to replacement of Fe0/FexOy surface sites with FeS.
Collapse
Affiliation(s)
- Hejie Qin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P.R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P.R. China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P.R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P.R. China
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health , Oregon Health & Science University , 3181 SW Sam Jackson Park Road , Portland , Oregon 97239 , United States
| |
Collapse
|
29
|
Fan P, Li L, Sun Y, Qiao J, Xu C, Guan X. Selenate removal by Fe 0 coupled with ferrous iron, hydrogen peroxide, sulfidation, and weak magnetic field: A comparative study. WATER RESEARCH 2019; 159:375-384. [PMID: 31121405 DOI: 10.1016/j.watres.2019.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/21/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Dosing ferrous ions (ZVI/Fe2+), combining with oxidants (e.g., H2O2) (ZVI/H2O2), sulfidation treatment (S-ZVI), and introducing a weak magnetic field (ZVI/WMF) have been widely used to enhance the performance of zerovalent iron (ZVI) for reductive removal of contaminants. Taking Se(VI) as a probe contaminant, this study systematically compared the performances of different ZVI systems (i.e., ZVI/Fe2+, ZVI/H2O2, S-ZVI, and ZVI/WMF) for contaminant removal. All the four tested methods could greatly improve the performance of ZVI for Se(VI) removal. Se(VI) was removed by S-ZVI at S/Fe molar ratio of 0.05 with a much greater rate constant than other enhanced-ZVI technologies while the maximum amount of Se(VI) removal was obtained in ZVI/Fe2+ system with Fe2+ applied at 0.5 mM among the four tested enhanced-ZVI technologies at initial pH 6.0. In addition, Se(VI) removal by ZVI/Fe2+ was least influenced by initial pH compared to the other tested enhanced-ZVI systems, implying its good adaptability of pH. The application of these tested methods could significantly increase the electron efficiency from ∼0.5% to 4.06-8.72% and Fe2+ application was much more efficient in enhancing the electron efficiency than the other three methods. Finally, the perspective of these enhanced-ZVI technologies was compared in terms of their reactivity, selectivity, chemical cost, and pH adaptability and some suggestions for their possible application were provided.
Collapse
Affiliation(s)
- Peng Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 200092, China
| | - Yuankui Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China
| | - Chunhua Xu
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
30
|
Gu Y, Gong L, Qi J, Cai S, Tu W, He F. Sulfidation mitigates the passivation of zero valent iron at alkaline pHs: Experimental evidences and mechanism. WATER RESEARCH 2019; 159:233-241. [PMID: 31100577 DOI: 10.1016/j.watres.2019.04.061] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Groundwater pH is one of the most important geochemical parameters in controlling the interfacial reactions of zero-valent iron (ZVI) with water and contaminants. Ball milled, microscale ZVI (mZVIbm) efficiently dechlorinated TCE at initial stage (<24 h) at pH 6-7 but got passivated at later stage due to pH rise caused by iron corrosion. At pH > 9, mZVIbm almost completely lost its reactivity. In contrast, ball milled, sulfidated microscale ZVI (S-mZVIbm) didn't experience any reactivity loss during the whole reaction stage across pH 6-10 and could efficiently dechlorinate TCE at pH 10 with a reaction rate of 0.03 h-1. Increasing pH from 6 to 9 also enhanced electron utilization efficiency from 0.95% to 5.3%, and from 3.2% to 22%, for mZVIbm and S-mZVIbm, respectively. SEM images of the reacted particles showed that the corrosion product layer on S-mZVIbm had a puffy/porous structure while that on mZVIbm was dense, which may account for the mitigated passivation of S-mZVIbm under alkaline pHs. Density functional theory calculations show that covered S atoms on the Fe(100) surface weaken the interactions of H2O molecules with Fe surfaces, which renders the sulfidated Fe surface inefficient for H2O dissociation and resistant to surface passivation. The observation from this study provides important implication that natural sulfidation of ZVI may largely contribute to the long-term (>10 years) efficiency of TCE decontamination by permeable reactive barriers with pore water pH above 9.
Collapse
Affiliation(s)
- Yawei Gu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jianlong Qi
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shichao Cai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenxin Tu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
31
|
Černík M, Nosek J, Filip J, Hrabal J, Elliott DW, Zbořil R. Electric-field enhanced reactivity and migration of iron nanoparticles with implications for groundwater treatment technologies: Proof of concept. WATER RESEARCH 2019; 154:361-369. [PMID: 30822596 DOI: 10.1016/j.watres.2019.01.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
The extensive use of nanoscale zero-valent iron (nZVI) particles for groundwater treatment has been limited, in part, because of their non-selective reactivity and low mobility in aquatic environments. Herein, we describe and explore progressive changes in the reactivity and migration of aqueous dispersed nZVI particles under an applied DC electric field. Due to the applied electric field with an intensity of about 1 V cm-1, the solution oxidation-reduction potential (ORP) remained as low as -200 mV for at least 32 days, which was in agreement with the persistence of the reduced iron species (mainly Fe(II)), and led to substantially prolonged reactivity of the original nZVI. The treatment of chlorinated ethenes (DCE > PCE > TCE) was markedly faster, individual CHC compounds were eliminated with the same kinetics and no lesser-chlorinated intermediates were accumulated, following thus the direct dechlorination scheme. When nZVI-dispersion flows towards the anode through vertical laboratory columns filled with quartz sand, significant enhancement of nZVI migration was recorded because of lower extent of nanoparticle aggregation and increased repulsion forces between the nanoparticles and the surface of silica dioxide. The results of this study have significant consequences for groundwater remediation, mainly for the treatment of slowly degradable DCE in real CHC contaminated groundwater, where it could improve the reactivity, the longevity and the migration of nZVI particles.
Collapse
Affiliation(s)
- Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, CZ-46117, Liberec, Czech Republic
| | - Jaroslav Nosek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, CZ-46117, Liberec, Czech Republic
| | - Jan Filip
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic.
| | - Jaroslav Hrabal
- MEGA a.s., Pod Vinicí 87, CZ-47127, Stráž pod Ralskem, Czech Republic
| | | | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
32
|
Rodrigues R, Betelu S, Colombano S, Masselot G, Tzedakis T, Ignatiadis I. Elucidating the dechlorination mechanism of hexachloroethane by Pd-doped zerovalent iron microparticles in dissolved lactic acid polymers using chromatography and indirect monitoring of iron corrosion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7177-7194. [PMID: 30652270 DOI: 10.1007/s11356-019-04128-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
The degradation mechanism of the pollutant hexachloroethane (HCA) by a suspension of Pd-doped zerovalent iron microparticles (Pd-mZVI) in dissolved lactic acid polymers and oligomers (referred to as PLA) was investigated using gas chromatography and the indirect monitoring of iron corrosion by continuous measurements of pH, oxidation-reduction potential (ORP), and conductivity. The first experiments took place in the absence of HCA, to understand the evolution of the Pd-mZVI/PLA/H2O system. This showed that the evolution of pH, ORP, and conductivity is related to changes in solution chemistry due to iron corrosion and that the system is initially cathodically controlled by H+ mass transport to Pd surfaces because of the presence of an extensive PLA layer. We then investigated the effects of Pd-mZVI particles, temperature, initial HCA concentration, and PLA content on the Pd-mZVI/PLA/HCA/H2O system, to obtain a better understanding of the degradation mechanism. In all cases, HCA dechlorination first requires the production of atomic hydrogen H*-involving the accumulation of tetrachloroethylene (PCE) as an intermediate-before its subsequent reduction to non-chlorinated C2 and C4 compounds. The ratio between Pd-mZVI dosage, initial HCA concentration, and PLA content affects the rate of H* generation as well as the rate-determining step of the process. A pseudo-first-order equation can be applied when Pd-mZVI dosage is much higher than the theoretical stoichiometry (600 mg for [HCA]0 = 5-20 mg L-1). Our results indicate that the HCA degradation mechanism includes mass transfer, sorption, surface reaction with H*, and desorption of the product.
Collapse
Affiliation(s)
- Romain Rodrigues
- BRGM (French Geological Survey), 3 avenue Claude Guillemin, 45060, Orléans Cedex 2, France.
- ADEME (French Environment and Energy Management Agency), 20 avenue du Grésillé, 49000, Angers Cedex 1, France.
- LGC (Chemical Engineering Laboratory), 118 route de Narbonne, 31062, Toulouse Cedex 9, France.
- Iris Instruments, 1 Avenue Buffon, 45100, Orléans, France.
| | - Stéphanie Betelu
- BRGM (French Geological Survey), 3 avenue Claude Guillemin, 45060, Orléans Cedex 2, France
| | - Stéfan Colombano
- BRGM (French Geological Survey), 3 avenue Claude Guillemin, 45060, Orléans Cedex 2, France
| | - Guillaume Masselot
- ADEME (French Environment and Energy Management Agency), 20 avenue du Grésillé, 49000, Angers Cedex 1, France
| | - Theodore Tzedakis
- LGC (Chemical Engineering Laboratory), 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Ioannis Ignatiadis
- BRGM (French Geological Survey), 3 avenue Claude Guillemin, 45060, Orléans Cedex 2, France
| |
Collapse
|
33
|
Zou H, Hu E, Yang S, Gong L, He F. Chromium(VI) removal by mechanochemically sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:419-426. [PMID: 30199686 DOI: 10.1016/j.scitotenv.2018.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/26/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Mechanochemically sulfidated microscale zero valent iron (S-mZVIbm) is a promising groundwater remediation material as it has been proven to be not only efficient in dechlorinating chlorinated compounds but also amenable to up-scaling. Yet, its efficiency in treating metal contaminants remains barely studied. In this study, we investigated the mechanism and efficiencies of Cr(VI) removal by S-mZVIbm and its effect on TCE dechlorination as a co-contaminant. The Cr(VI) removal by S-mZVIbm was mainly a chemisorption process and its kinetics was well fitted by a pseudo-second-order model. Alkaline pH inhibited Cr(VI) removal while dissolved oxygen slightly depressed the Cr(VI) removal. The Cr(VI) removal rapidly formed a non-conductive layer on S-mZVIbm surface to hinder further electron transfer from Fe0 core before H+ was able to accept any electrons to produce H2, which resulted in 100% electron efficiencies of Cr(VI) removal but <1% of Fe0 utilization efficiency. The presence of Cr(VI) also dramatically inhibited the dechlorination of TCE and its electron efficiency as a co-contaminant by passivating the FeS surface. Therefore, Cr(VI) is likely to be an electron sink if present for remediation of other contaminants in groundwater.
Collapse
Affiliation(s)
- Haowen Zou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Erdan Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shangyuan Yang
- R&D Center of Zhejiang Zone-King Environment Co., Ltd, Hangzhou, 310014, China
| | - Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
34
|
Chen X, Lv X, Yang Q, Wang Y, Jin X, Wang J, Yang Z. Dechlorination of carbon tetrachloride by Nanoscale Nickeled Zero-Valent Iron @ Multi-Walled Carbon Nanotubes: Impact of reaction conditions, kinetics and mechanism. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao Chen
- Beijing Key Laboratory of Water Resources & Environmental Engineering; China University of Geosciences (Beijing); Beijing 100083 China
| | - Xiaofan Lv
- Beijing Key Laboratory of Water Resources & Environmental Engineering; China University of Geosciences (Beijing); Beijing 100083 China
| | - Qi Yang
- Beijing Key Laboratory of Water Resources & Environmental Engineering; China University of Geosciences (Beijing); Beijing 100083 China
| | - Yeyao Wang
- China National Environmental Monitoring Center; Beijing 100012 China
| | - Xin Jin
- Beijing Key Laboratory of Water Resources & Environmental Engineering; China University of Geosciences (Beijing); Beijing 100083 China
| | - Jing Wang
- Foreign Economic Cooperation Office, Ministry of Enviromental Protection; Beijing 100035 China
| | - Zhilin Yang
- Beijing Key Laboratory of Water Resources & Environmental Engineering; China University of Geosciences (Beijing); Beijing 100083 China
| |
Collapse
|
35
|
Qin H, Guan X, Bandstra JZ, Johnson RL, Tratnyek PG. Modeling the Kinetics of Hydrogen Formation by Zerovalent Iron: Effects of Sulfidation on Micro- and Nano-Scale Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13887-13896. [PMID: 30381947 DOI: 10.1021/acs.est.8b04436] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The hydrogen evolution reaction (HER) that generates H2 from the reduction of H2O by Fe0 is among the most fundamental of the processes that control reactivity in environmental systems containing zerovalent iron (ZVI). To develop a comprehensive kinetic model for this process, a large and high-resolution data set for HER was measured using five types of ZVI pretreated by acid-washing and/or sulfidation (in pH 7 HEPES buffer). The data were fit to four alternative kinetic models using nonlinear regression analysis applied to the whole data set simultaneously, which allowed some model parameters to be treated globally across multiple experiments. The preferred model uses two independent reactive phases to match the two-stage character of most HER data, with rate constants ( k's) for each phase fitted globally by iron type and phase quantities ( S's) fitted as fully local (independent) parameters. The first, faster stage was attributed to a reactive mineral intermediate (RMI) phase like Fe(OH)2, which may form in all experiments during preequilibration, but is rapidly consumed, leaving the second, slower stage of HER, which is due to reaction of Fe0. In addition to providing a deterministic model to explain the kinetics of HER by ZVI over a wide range of conditions, the results provide an improved quantitative basis for comparing the effects of sulfidation on ZVI.
Collapse
Affiliation(s)
- Hejie Qin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P.R. China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P.R. China
| | - Joel Z Bandstra
- Department of Mathematics, Engineering, and Computer Science , Saint Francis University , P.O. Box 600, Loretto , Pennsylvania 15940 , United States
| | - Richard L Johnson
- OHSU-PSU School of Public Health , Oregon Health & Science University , 3181 SW Sam Jackson Park Road , Portland , Oregon 97239 , United States
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health , Oregon Health & Science University , 3181 SW Sam Jackson Park Road , Portland , Oregon 97239 , United States
| |
Collapse
|
36
|
Bhattacharjee S, Ghoshal S. Optimal Design of Sulfidated Nanoscale Zerovalent Iron for Enhanced Trichloroethene Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11078-11086. [PMID: 30188121 DOI: 10.1021/acs.est.8b02399] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sulfidated nanoscale zerovalent iron (S-nZVI) has the potential to be a cost-effective remediation agent for a wide range of environmental pollutants, including chlorinated solvents. Various synthesis approaches have yielded S-nZVI consisting of a Fe0 (or Fe0/S0) core and FeS shell, which are significantly more reactive to trichloroethene (TCE) than nZVI. However, their reactivity is not as high as palladium-doped nZVI (Pd-nZVI). We synthesized S-nZVI by the co-precipitation of FeS and Fe0 by using Na2S during the borohydride reduction of FeSO4 (S-nZVIco). This resulted in FeS structures bridging the nZVI core and the surface, as confirmed by electron microscopy and X-ray analyses. The TCE degradation capacity of up to 0.46 mol TCE/mol Fe0 was obtained for S-nZVIco at a high S loading and was comparable to Pd-nZVI but 60% higher than the currently most reactive S-nZVI, in which FeS only coats the nZVI (S-nZVIpost). The high TCE degradation was due to complete utilization of Fe0 (2 e-/mol Fe0) toward the formation of acetylene. Although Pd-nZVI yielded 3 e-/mol Fe0, TCE degradation was comparable because it reduced acetylene further to ethene and ethane. Under Fe0-limited conditions, the S-nZVIco TCE degradation rate was 16 times higher than that of Pd-nZVI (0.5 wt % Pd) and 90 times higher than that of S-nZVIpost.
Collapse
Affiliation(s)
- Sourjya Bhattacharjee
- Department of Civil Engineering , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering , McGill University , Montreal , Quebec H3A 0C3 , Canada
| |
Collapse
|
37
|
He F, Li Z, Shi S, Xu W, Sheng H, Gu Y, Jiang Y, Xi B. Dechlorination of Excess Trichloroethene by Bimetallic and Sulfidated Nanoscale Zero-Valent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8627-8637. [PMID: 29952547 DOI: 10.1021/acs.est.8b01735] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoscale zerovalent iron (nZVI) likely finds its application in source zone remediation. Two approaches to modify nZVI have been reported: bimetal (Fe-Me) and sulfidated nZVI (S-nZVI). However, previous research has primarily focused on enhancing particle reactivity with these two modifications under more plume-like conditions. In this study, we systematically compared the trichloroethene (TCE) dechlorination pathway, rate, and electron selectivity of Fe-Me (Me: Pd, Ni, Cu, and Ag), S-nZVI, and nZVI with excess TCE simulating source zone conditions. TCE dechlorination on Fe-Me was primarily via hydrogenolysis while that on S-nZVI and nZVI was mainly via β-elimination. The surface-area normalized TCE reduction rate ( k'SA) of Fe-Pd, S-nZVI, Fe-Ni, Fe-Cu, and Fe-Ag were ∼6800-, 190-, 130-, 20-, and 8-fold greater than nZVI. All bimetallic modification enhanced the competing hydrogen evolution reaction (HER) while sulfidation inhibited HER. Fe-Cu and Fe-Ag negligibly enhanced electron utilization efficiency (εe) while Fe-Pd, Fe-Ni, and S-nZVI dramatically increased εe from 2% to ∼100%, 69%, and 72%, respectively. Adsorbed atomic hydrogen was identified to be responsible for the TCE dechlorination on Fe-Me but not on S-nZVI. The enhanced dechlorination rate along with the reduced HER of S-nZVI can be explained by that FeS conducting major electrons mediated TCE dechlorination while Fe oxides conducting minor electrons mediated HER.
Collapse
Affiliation(s)
- Feng He
- College of Environment , Zhejiang University of Technology , Hangzhou 310014 , China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Zhenjie Li
- College of Environment , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Shasha Shi
- College of Environment , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Wenqiang Xu
- College of Environment , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Hanzhen Sheng
- College of Environment , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Yawei Gu
- College of Environment , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| |
Collapse
|
38
|
Su Y, Jassby D, Song S, Zhou X, Zhao H, Filip J, Petala E, Zhang Y. Enhanced Oxidative and Adsorptive Removal of Diclofenac in Heterogeneous Fenton-like Reaction with Sulfide Modified Nanoscale Zerovalent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6466-6475. [PMID: 29767520 DOI: 10.1021/acs.est.8b00231] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sulfidation of nanoscale zerovalent iron (nZVI) has shown some fundamental improvements on reactivity and selectivity toward pollutants in dissolved-oxygen (DO)-stimulated Fenton-like reaction systems (DO/S-nZVI system). However, the pristine microstructure of sulfide-modified nanoscale zerovalent iron (S-nZVI) remains uncovered. In addition, the relationship between pollutant removal and the oxidation of the S-nZVI is largely unknown. The present study confirms that sulfidation not only imparts sulfide and sulfate groups onto the surface of the nanoparticle (both on the oxide shell and on flake-like structures) but also introduces sulfur into the Fe(0) core region. Sulfidation greatly inhibits the four-electron transfer pathway between Fe(0) and oxygen but facilitates the electron transfer from Fe(0) to surface-bound Fe(III) and consecutive single-electron transfer for the generation of H2O2 and hydroxyl radical. In the DO/S-nZVI system, slight sulfidation (S/Fe molar ratio = 0.1) is able to nearly double the oxidative removal efficacy of diclofenac (DCF) (from 17.8 to 34.2%), whereas moderate degree of sulfidation (S/Fe molar ratio = 0.3) significantly enhances both oxidation and adsorption of DCF. Furthermore, on the basis of the oxidation model of S-nZVI, the DCF removal process can be divided into two steps, which are well modeled by parabolic and logarithmic law separately. This study bridges the knowledge gap between pollutant removal and the oxidation process of chemically modified iron-based nanomaterials.
Collapse
Affiliation(s)
- Yiming Su
- State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , China
- Department of Civil and Environmental Engineering , University of California , Los Angeles , California 90095 , United States
| | - David Jassby
- Department of Civil and Environmental Engineering , University of California , Los Angeles , California 90095 , United States
| | - Shikun Song
- State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education , Tongji University , Shanghai 200092 , China
| | - Hongying Zhao
- School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Jan Filip
- Regional Centre of Advanced Technologies and Materials , Palacký University Olomouc , Šlechtitelů 27 , 783 71 Olomouc Czech Republic
| | - Eleni Petala
- Regional Centre of Advanced Technologies and Materials , Palacký University Olomouc , Šlechtitelů 27 , 783 71 Olomouc Czech Republic
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education , Tongji University , Shanghai 200092 , China
| |
Collapse
|
39
|
Velimirovic M, Auffan M, Carniato L, Micić Batka V, Schmid D, Wagner S, Borschneck D, Proux O, von der Kammer F, Hofmann T. Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:1619-1627. [PMID: 29111242 DOI: 10.1016/j.scitotenv.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/27/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
Milled zerovalent iron (milled ZVI) particles have been recognized as a promising agent for groundwater remediation because of (1) their high reactivity with chlorinated aliphatic hydrocarbons, organochlorine pesticides, organic dyes, and a number of inorganic contaminants, and (2) a possible greater persistance than the more extensively investigated nanoscale zerovalent iron. We have used laboratory-scale batch degradation experiments to investigate the effect that hydrogeochemical conditions have on the corrosion of milled ZVI and on its ability to degrade trichloroethene (TCE). The observed pseudo first-order degradation rate constants indicated that the degradation of TCE by milled ZVI is affected by groundwater chemistry. The apparent corrosion rates of milled ZVI particles were of the same order of magnitude for hydrogeochemical conditions representative for two contaminated field sites (133-140mmolkg-1day-1, indicating a milled ZVI life-time of 128-135days). Sulfate enhances milled ZVI reactivity by removing passivating iron oxides and hydroxides from the Fe0 surface, thus increasing the number of reactive sites available. The organic matter content of 1.69% in the aquifer material tends to suppress the formation of iron corrosion precipitates. Results from scanning electron microscopy, X-ray diffraction, and iron K-edge X-ray adsorption spectroscopy suggest that the corrosion mechanisms involve the partial dissolution of particles followed by the formation and surface precipitation of magnetite and/or maghemite. Numerical corrosion modeling revealed that fitting iron corrosion rates and hydrogen inhibitory terms to hydrogen and pH measurements in batch reactors can reduce the life-time of milled ZVI particles by a factor of 1.2 to 1.7.
Collapse
Affiliation(s)
- Milica Velimirovic
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstraße 14, 1090 Vienna, Austria
| | - Melanie Auffan
- Aix-Marseille Univ, CNRS, IRD, Coll de France, CEREGE, Aix en Provence, France
| | - Luca Carniato
- Department of Water Resources, Delft University of Technology, Delft, The Netherlands
| | - Vesna Micić Batka
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstraße 14, 1090 Vienna, Austria
| | - Doris Schmid
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstraße 14, 1090 Vienna, Austria
| | - Stephan Wagner
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstraße 14, 1090 Vienna, Austria; Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Daniel Borschneck
- Aix-Marseille Univ, CNRS, IRD, Coll de France, CEREGE, Aix en Provence, France
| | - Olivier Proux
- Observatoire des Sciences de l'Univers de Grenoble (OSUG), UMS 832 CNRS, Univ. Grenoble Alpes, F-38041 Grenoble, France
| | - Frank von der Kammer
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstraße 14, 1090 Vienna, Austria
| | - Thilo Hofmann
- University of Vienna, Department of Environmental Geosciences and Environmental Science Research Network, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
40
|
Fan D, Gilbert EJ, Fox T. Current state of in situ subsurface remediation by activated carbon-based amendments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 204:793-803. [PMID: 28233638 DOI: 10.1016/j.jenvman.2017.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/19/2017] [Accepted: 02/07/2017] [Indexed: 05/22/2023]
Abstract
The last decade has seen a growing interest in applying activated carbon (AC)-based amendments for in situ subsurface remediation of organic contaminants such as chlorinated solvents and petroleum hydrocarbons. This remedial technology has been promoted by several major AC-based product vendors on the market. These products involve impregnation or co-application of chemical or biological additives to facilitate various contaminant degradation processes in conjunction with contaminant adsorption. During field applications, rapid contaminant removal and limited rebound after emplacement have often been reported and considered as two major advantages for this remedial technology. Nevertheless, questions remain to be answered regarding its true effectiveness and longevity given the lack of subsequent field characterizations and evidence of the degradation process, especially biodegradation. Additional uncertainties reside in how subsurface heterogeneity may affect the design, implementation and performance monitoring of this technology. In light of these uncertainties, this review presents an independent analysis that focuses on both the scientific and practical aspects of AC-based remedial technology for in situ subsurface remediation by gathering and synthesizing the scientific knowledge and practical lessons from a broad range of contaminant removal processes involving adsorption and/or degradation. The analysis showed that the scientific soundness of combining adsorption and degradation proposed for all the AC-based products is well supported by the literature on ex situ treatment. However, the in situ effectiveness might be affected by additional factors, such as geological heterogeneity, amendment transport and distribution, and total contaminant mass, which require more thorough and quantitative evaluation. Overall, the technology may provide a viable tool in addressing major remediation challenges encountered in current practice, such as mitigation of back diffusion from residual sources in low permeability zones and treatment of low concentration plumes.
Collapse
Affiliation(s)
- Dimin Fan
- Oak Ridge Institute for Science and Education (ORISE) Fellow at the U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, Arlington, VA, 22201, USA.
| | - Edward J Gilbert
- Office of Superfund Remediation and Technology Innovation, U.S Environmental Protection Agency, Arlington, VA 22202, USA
| | - Tom Fox
- Colorado Department of Labor and Employment, Division of Oil and Public Safety (OPS), Denver, CO 80202, USA
| |
Collapse
|
41
|
Li J, Zhang X, Sun Y, Liang L, Pan B, Zhang W, Guan X. Advances in Sulfidation of Zerovalent Iron for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13533-13544. [PMID: 29135239 DOI: 10.1021/acs.est.7b02695] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sulfidation has gained increasing interest in recent years for improving the sequestration of contaminants by zerovalent iron (ZVI). In view of the bright prospects of the sulfidated ZVI (S-ZVI), this review comprehensively summarized the latest developments in sulfidation of ZVI, particularly that of nanoscale ZVI (S-nZVI). The milestones in development of S-ZVI technology including its background, enlightenment, synthesis, characterization, water remediation and treatment, etc., are summarized. Under most circumstances, sulfidation can enhance the sequestration of various organic compounds and metal(loid)s by ZVI to various extents. In particular, the reactivity of S-ZVI toward contaminants is strongly dependent on S/Fe molar ratio, sulfidation method, and solution chemistry. Additionally, sulfidation can improve the selectivity of ZVI toward targeted contaminant over water under anaerobic conditions. The mechanisms of sulfidation-induced improvement in contaminants sequestration by ZVI are also summarized. Finally, this review identifies the current knowledge gaps and future research needs of S-ZVI for environmental application.
Collapse
Affiliation(s)
- Jinxiang Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092, P.R. China
| | - Xueying Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092, P.R. China
| | - Yuankui Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092, P.R. China
| | - Liping Liang
- College of Life Science, Shaoxing University , Shaoxing 312000, P.R. China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University , Nanjing 210023, Jiangsu P.R. China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University , Nanjing 210023, Jiangsu P.R. China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092, P.R. China
| |
Collapse
|
42
|
Fan D, Lan Y, Tratnyek PG, Johnson RL, Filip J, O'Carroll DM, Nunez Garcia A, Agrawal A. Sulfidation of Iron-Based Materials: A Review of Processes and Implications for Water Treatment and Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13070-13085. [PMID: 29035566 DOI: 10.1021/acs.est.7b04177] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Iron-based materials used in water treatment and groundwater remediation-especially micro- and nanosized zerovalent iron (nZVI)-can be more effective when modified with lower-valent forms of sulfur (i.e., "sulfidated"). Controlled sulfidation for this purpose (using sulfide, dithionite, etc.) is the main topic of this review, but insights are derived by comparison with related and comparatively well-characterized processes such as corrosion of iron in sulfidic waters and abiotic natural attenuation by iron sulfide minerals. Material characterization shows that varying sulfidation protocols (e.g., concerted or sequential) and key operational variables (e.g., S/Fe ratio and sulfidation duration) result in materials with structures and morphologies ranging from core-shell to multiphase. A meta-analysis of available kinetic data for dechlorination under anoxic conditions, shows that sulfidation usually increases dechlorination rates, and simultaneously hydrogen production is suppressed. Therefore, sulfidation can greatly improve the efficiency of utilization of reducing equivalents for contaminant removal. This benefit is most likely due to inhibited corrosion as a result of sulfidation. Sulfidation may also favor desirable pathways of contaminant removal, such as (i) dechlorination by reductive elimination rather than hydrogenolysis and (ii) sequestration of metals as sulfides that could be resistant to reoxidation. Under oxic conditions, sulfidation is shown to enhance heterogeneous catalytic oxidation of contaminants. These net effects of sulfidation on contaminant removal by iron-based materials may substantially improve their practical utility for water treatment and remediation of contaminated groundwater.
Collapse
Affiliation(s)
- Dimin Fan
- Oak Ridge Institute for Science and Education (ORISE) Fellow, Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, 2777 Crystal Drive, Arlington, Virginia 22202, United States
| | - Ying Lan
- OHSU-PSU School of Public Health, Oregon Health & Science University , 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University , 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Richard L Johnson
- OHSU-PSU School of Public Health, Oregon Health & Science University , 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Jan Filip
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc , Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Connected Water Initiative, University of New South Wales , Manly Vale, New South Wales 2093, Australia
| | - Ariel Nunez Garcia
- Department of Civil and Environmental Engineering, Western University , 1151 Richmond St., London, Ontario Canada
| | - Abinash Agrawal
- Department of Earth and Environmental Sciences, Wright State University, Wright State University , 3640 Colonel Glenn Highway, Dayton, Ohio 45435, United States
| |
Collapse
|
43
|
Gu Y, Wang B, He F, Bradley MJ, Tratnyek PG. Mechanochemically Sulfidated Microscale Zero Valent Iron: Pathways, Kinetics, Mechanism, and Efficiency of Trichloroethylene Dechlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12653-12662. [PMID: 28984446 DOI: 10.1021/acs.est.7b03604] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In water treatment processes that involve contaminant reduction by zerovalent iron (ZVI), reduction of water to dihydrogen is a competing reaction that must be minimized to maximize the efficiency of electron utilization from the ZVI. Sulfidation has recently been shown to decrease H2 formation significantly, such that the overall electron efficiency of (or selectivity for) contaminant reduction can be greatly increased. To date, this work has focused on nanoscale ZVI (nZVI) and solution-phase sulfidation agents (e.g., bisulfide, dithionite or thiosulfate), both of which pose challenges for up-scaling the production of sulfidated ZVI for field applications. To overcome these challenges, we developed a process for sulfidation of microscale ZVI by ball milling ZVI with elemental sulfur. The resulting material (S-mZVIbm) exhibits reduced aggregation, relatively homogeneous distribution of Fe and S throughout the particle (not core-shell structure), enhanced reactivity with trichloroethylene (TCE), less H2 formation, and therefore greatly improved electron efficiency of TCE dechlorination (εe). Under ZVI-limited conditions (initial Fe0/TCE = 1.6 mol/mol), S-mZVIbm gave surface-area normalized reduction rate constants (k'SA) and εe that were ∼2- and 10-fold greater than the unsulfidated ball-milled control (mZVIbm). Under TCE-limited conditions (initial Fe0/TCE = 2000 mol/mol), sulfidation increased kSA and εe ≈ 5- and 50-fold, respectively. The major products from TCE degradation by S-mZVIbm were acetylene, ethene, and ethane, which is consistent with dechlorination by β-elimination, as is typical of ZVI, iron oxides, and/or sulfides. However, electrochemical characterization shows that the sulfidated material has redox properties intermediate between ZVI and Fe3O4, mostly likely significant coverage of the surface with FeS.
Collapse
Affiliation(s)
- Yawei Gu
- College of Environment, Zhejiang University of Technology , Hangzhou 310014, China
| | - Binbin Wang
- College of Environment, Zhejiang University of Technology , Hangzhou 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology , Hangzhou 310014, China
| | - Miranda J Bradley
- School of Public Health, Oregon Health & Science University 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Paul G Tratnyek
- School of Public Health, Oregon Health & Science University 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
44
|
Qin H, Li J, Yang H, Pan B, Zhang W, Guan X. Coupled Effect of Ferrous Ion and Oxygen on the Electron Selectivity of Zerovalent Iron for Selenate Sequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5090-5097. [PMID: 28358503 DOI: 10.1021/acs.est.6b04832] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although the electron selectivity (ES) of zerovalent iron (ZVI) for target contaminant and its utilization ratio (UR) decide the removal capacity of ZVI, little effort has been made to improve them. Taking selenate [Se(VI)] as a target contaminant, this study investigated the coupled influence of aeration gas and Fe(II) on the ES and UR of ZVI. Oxygen was necessary for effective removal of Se(VI) by ZVI without Fe(II) addition. Due to the application of 1.0 mM Fe(II), the ES of ZVI was increased from 3.2-3.6% to 6.2-6.8% and the UR of ZVI was improved by 5.0-19.4% under aerobic conditions, which resulted in a 100-180% increase in the Se(VI) removal capacity by ZVI. Se(VI) reduction by Fe0 was a heterogeneous redox reaction, and the enrichment of Se(VI) on ZVI surface was the first step of electron transfer from Fe0 core to Se(VI). Oxygen promoted the generation of iron (hydr)oxides, which facilitated the enrichment of Se(VI) on the ZVI particle surface. Therefore, the high oxygen fraction (25-50%) in the purging gas resulted in only a slight decrease in the ES of ZVI. Fe(II) addition resulted in a pH drop and promoted the generation of lepidocrocite and magnetite, which benefited Se(VI) adsorption and the following electron transfer from underlying Fe0 to surface-located Se(VI).
Collapse
Affiliation(s)
- Hejie Qin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, P.R. China
| | - Jinxiang Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, P.R. China
| | - Hongyi Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, P.R. China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University , Nanjing 210023, Jiangsu, P.R. China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University , Nanjing 210023, Jiangsu, P.R. China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, P.R. China
- Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University , Guangzhou 510632, Guandong, P.R. China
| |
Collapse
|