1
|
Eldesouki RE, Kishk RM, Abd El-Fadeal NM, Mahran RI, Kamel N, Riad E, Nemr N, Kishk SM, Mohammed EAM. Association of IL-10-592 C > A /-1082 A > G and the TNFα -308 G > A with susceptibility to COVID-19 and clinical outcomes. BMC Med Genomics 2024; 17:40. [PMID: 38287362 PMCID: PMC10826193 DOI: 10.1186/s12920-023-01793-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/31/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Variation in host immune responses to SARS-CoV-2 is regulated by multiple genes involved in innate viral response and cytokine storm emergence like IL-10 and TNFa gene polymorphisms. We hypothesize that IL-10; -592 C > A and - 1082 A > G and TNFa-308 G > A are associated with the risk of SARS-COV2 infections and clinical outcome. METHODS Genotyping, laboratory and radiological investigations were done to 110 COVID-19 patients and 110 healthy subjects, in Ismailia, Egypt. RESULTS A significant association between the - 592 A allele, A containing genotypes under all models (p < 0.0001), and TNFa A allele with risk to infection was observed but not with the G allele of the - 1082. The - 592 /-1082 CG and the - 592 /-1082/ -308 CGG haplotypes showed higher odds in COVID-19 patients. Severe lung affection was negatively associated with - 592, while positive association was observed with - 1082. Higher D-dimer levels were strongly associated with the - 1082 GG genotype. Survival outcomes were strongly associated with the GA genotype of TNFa. -308 as well as AGG and AAA haplotypes. CONCLUSION IL-10 and TNFa polymorphisms should be considered for clinical and epidemiological evaluation of COVID-19 patients.
Collapse
Affiliation(s)
- Raghda E Eldesouki
- Genetics Unit, Histology Department, Faculty of Medicine, Suez Canal University, 41522, Ismailia, Egypt.
| | - Rania M Kishk
- Microbiology and immunology Department, Faculty of Medicine, Suez Canal University, Ismaila, Egypt
| | - Noha M Abd El-Fadeal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismaila, Egypt
- Biochemistry Department, Ibn Sina National College for Medical Studies, Jeddah, Kingdom of Saudi Arabia
| | - Rama I Mahran
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismaila, Egypt
| | - Noha Kamel
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, Ismaila, Egypt
| | - Eman Riad
- Pulmonology Unit, Internal Medicine Department, Faculty of Medicine, Suez Canal University, Ismaila, Egypt
| | - Nader Nemr
- Endemic and Infectious Diseases Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Safaa M Kishk
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
2
|
Al-Eitan LN, ElMotasem MFM, Khair IY, Alahmad SZ. Vaccinomics: Paving the Way for Personalized Immunization. Curr Pharm Des 2024; 30:1031-1047. [PMID: 38898820 DOI: 10.2174/0113816128280417231204085137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/15/2023] [Indexed: 06/21/2024]
Abstract
Vaccines are one of the most important medical advancements in human history. They have been successfully used to control and limit the spread of many of the lethal diseases that have plagued us, such as smallpox and polio. Previous vaccine design methodologies were based on the model of "isolate-inactivateinject", which amounts to giving the same vaccine dose to everyone susceptible to infection. In recent years, the importance of how the host genetic background alters vaccine response necessitated the introduction of vaccinomics, which is aimed at studying the variability of vaccine efficacy by associating genetic variability and immune response to vaccination. Despite the rapid developments in variant screening, data obtained from association studies is often inconclusive and cannot be used to guide the new generation of vaccines. This review aims to compile the polymorphisms in HLA and immune system genes and examine the link with their immune response to vaccination. The compiled data can be used to guide the development of new strategies for vaccination for vulnerable groups. Overall, the highly polymorphic HLA locus had the highest correlation with vaccine response variability for most of the studied vaccines, and it was linked to variation in multiple stages of the immune response to the vaccines for both humoral and cellular immunity. Designing new vaccine technologies and immunization regiments to accommodate for this variability is an important step for reaching a vaccinomics-based approach to vaccination.
Collapse
Affiliation(s)
- Laith Naser Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Moh'd Fahmi Munib ElMotasem
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Iliya Yacoub Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saif Zuhair Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
3
|
Xu H, Chen P, Guo S, Shen X, Lu Y. Progress in etiological diagnosis of viral meningitis. Front Neurol 2023; 14:1193834. [PMID: 37583954 PMCID: PMC10423822 DOI: 10.3389/fneur.2023.1193834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/05/2023] [Indexed: 08/17/2023] Open
Abstract
In recent years, with the rapid development of molecular biology techniques such as polymerase chain reaction and molecular biochip, the etiological diagnosis of viral encephalitis has a very big step forward. At present, the etiological examination of viral meningitis mainly includes virus isolation, serological detection and molecular biological nucleic acid detection. This article reviews the progress in etiological diagnosis of viral meningitis.
Collapse
Affiliation(s)
- Hongyan Xu
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of General Practice, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzong Clinical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Peng Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shihan Guo
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaokai Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Lu
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Lim SYM, Al Bishtawi B, Lim W. Role of Cytochrome P450 2C9 in COVID-19 Treatment: Current Status and Future Directions. Eur J Drug Metab Pharmacokinet 2023; 48:221-240. [PMID: 37093458 PMCID: PMC10123480 DOI: 10.1007/s13318-023-00826-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
The major human liver drug metabolising cytochrome P450 (CYP) enzymes are downregulated during inflammation and infectious disease state, especially during coronavirus disease 2019 (COVID-19) infection. The influx of proinflammatory cytokines, known as a 'cytokine storm', during severe COVID-19 leads to the downregulation of CYPs and triggers new cytokine release, which further dampens CYP expression. Impaired drug metabolism, along with the inevitable co-administration of drugs or 'combination therapy' in patients with COVID-19 with various comorbidities, could cause drug-drug interactions, thus worsening the disease condition. Genetic variability or polymorphism in CYP2C9 across different ethnicities could contribute to COVID-19 susceptibility. A number of drugs used in patients with COVID-19 are inducers or inhibitors of, or are metabolised by, CYP2C9, and co-administration might cause pharmacokinetic and pharmacodynamic interactions. It is also worth mentioning that some of the COVID-19 drug interactions are due to altered activity of other CYPs including CYP3A4. Isoniazid/rifampin for COVID-19 and tuberculosis co-infection; lopinavir/ritonavir and cobicistat/remdesivir combination therapy; or multi-drug therapy including ivermectin, azithromycin, montelukast and acetylsalicylic acid, known as TNR4 therapy, all improved recovery in patients with COVID-19. However, a combination of CYP2C9 inducers, inhibitors or both, and plausibly different CYP isoforms could lead to treatment failure, hepatotoxicity or serious side effects including thromboembolism or bleeding, as observed in the combined use of azithromycin/warfarin. Further, herbs that are CYP2C9 inducers and inhibitors, showed anti-COVID-19 properties, and in silico predictions postulated that phytochemical compounds could inhibit SARS-CoV-2 virus particles. COVID-19 vaccines elicit immune responses that activate cytokine release, which in turn suppresses CYP expression that could be the source of compromised CYP2C9 drug metabolism and the subsequent drug-drug interaction. Future studies are recommended to determine CYP regulation in COVID-19, while recognising the involvement of CYP2C9 and possibly utilising CYP2C9 as a target gene to tackle the ever-mutating SARS-CoV-2.
Collapse
Affiliation(s)
- Sharoen Yu Ming Lim
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia.
| | - Basel Al Bishtawi
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Willone Lim
- Faculty of Engineering, Computing and Science, Swinburne University of Technology, 93350, Kuching, Malaysia
| |
Collapse
|
5
|
Saab YB, Nakad ZS, Mehanna SJ. Association of the ACE and AGT gene polymorphisms with global disparities in COVID-19-related deaths. Pharmacogenet Genomics 2023; 33:41-50. [PMID: 36853865 DOI: 10.1097/fpc.0000000000000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
OBJECTIVE The aim of the study was to investigate the gene polymorphisms of angiotensin-converting enzyme (ACE), angiotensinogen (AGT), and angiotensin type 1 receptor (AT1R) in association with coronavirus disease 2019 (COVID-19) mortality rates worldwide. METHODS The prevalence of ACE I/D, AGT M235T, and AT1R A1166C alleles' frequencies in different populations was assessed. Data on COVID-19-related cases and deaths were acquired from the European Center for Disease Prevention and Control, which included weekly reports by country and continent. An Excel tool was developed to visualize the acquired data of mortality and incidence by classifying them by continent/country across specific periods of time. Spearman's nonparametric correlation was used to evaluate the association between country-based frequencies in RAS gene polymorphisms and COVID-19-related deaths. RESULTS While China constituted the initial reservoir of COVID-19, incidence/mortality rates in Europe and America outnumbered the figures in the former. A clear association was identified between death rates and ACE D/I ( r = 0.3659; P = 0.033), as well as AGT A/G variants ( r = 0.7576; P = 0.015). Data on AT1R polymorphisms suggested no correlation with mortality rates. CONCLUSION Our results demonstrated a significant disparity in COVID-19-related susceptibility and mortality among different populations and corroborate the importance of gene polymorphisms in predicting and consequently improving patients' outcomes.
Collapse
Affiliation(s)
| | - Zahi S Nakad
- Electrical and Computer Engineering Department, School of Engineering
| | - Stephanie J Mehanna
- Natural Sciences Department, School of Arts and Sciences, Lebanese American University, Lebanon
| |
Collapse
|
6
|
Grujičić D, Mirkov L, Banković D, Virijević K, Marinković D, Milošević-Djordjević O. Homozygous-Recessive Characteristics as a Biomarker of Predisposition for COVID-19. Clin Nurs Res 2023; 32:589-600. [PMID: 36695163 PMCID: PMC9902784 DOI: 10.1177/10547738221147754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Coronavirus disease (COVID-19), a new form of severe acute respiratory syndrome, has caused a global pandemic. The aim of this study was to analyze homozygous-recessive characteristics (HRC) in the group of COVID-19 patients, considering their gender, forms of the disease (mild and severe symptoms), risk factors: hypertension, diabetes mellitus type 2, hyperlipidemia, smoking habits, and the distribution of ABO blood group. Using the HRC test, we analyzed 20 HRCs in a sample of 321 individuals: 205 patients and 116 controls. The average HRC in patients was significantly higher than controls, as well as in patients with severe symptoms compared to patients with mild symptoms. The patients with higher HRC (cut-off ≤5.5) experienced a significantly increased risk of disease of 2.3 times (OR = 2.315, p < .0005). Our results indicate that the HRC test could be used as a screening in recognizing predisposition for COVID-19.
Collapse
|
7
|
Guo L, Zhang W, Meng W, Zhao W, Hao J, Hu X, Jin T. Very important pharmacogenes polymorphism landscape and potential clinical relevance in the Chinese Mongolian. Gene 2023; 850:146960. [DOI: 10.1016/j.gene.2022.146960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
8
|
Vakil MK, Mansoori Y, Al‐Awsi GRL, Hosseinipour A, Ahsant S, Ahmadi S, Ekrahi M, Montaseri Z, Pezeshki B, Mohaghegh P, Sohrabpour M, Bahmanyar M, Daraei A, Dadkhah Jouybari T, Tavassoli A, Ghasemian A. Individual genetic variability mainly of Proinflammatory cytokines, cytokine receptors, and toll-like receptors dictates pathophysiology of COVID-19 disease. J Med Virol 2022; 94:4088-4096. [PMID: 35538614 PMCID: PMC9348290 DOI: 10.1002/jmv.27849] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022]
Abstract
Innate and acquired immunity responses are crucial for viral infection elimination. However, genetic variations in coding genes may exacerbate the inflammation or initiate devastating cytokine storms which poses severe respiratory conditions in coronavirus disease-19 (COVID-19). Host genetic variations in particular those related to the immune responses determine the patients' susceptibility and COVID-19 severity and pathophysiology. Gene polymorphisms such as single nucleotide polymorphisms (SNPs) of interferons, TNF, IL1, IL4, IL6, IL7, IL10, and IL17 predispose patients to the severe form of COVID-19 or severe acute respiratory syndrome coronavirus-2 (SARS-COV-2). These variations mainly alter the gene expression and cause a severe response by B cells, T cells, monocytes, neutrophils, and natural killer cells participating in a cytokine storm. Moreover, cytokines and chemokines SNPs are associated with the severity of COVID-19 and clinical outcomes depending on the corresponding effect. Additionally, genetic variations in genes encoding toll-like receptors (TLRs) mainly TLR3, TLR7, and TLR9 have been related to the COVID-19 severe respiratory symptoms. The specific relation of these mutations with the novel variants of concern (VOCs) infection remains to be elucidated. Genetic variations mainly within genes encoding proinflammatory cytokines, cytokine receptors, and TLRs predispose patients to COVID-19 disease severity. Understanding host immune gene variations associated with the SARS-COV-2 infection opens insights to control the pathophysiology of emerging viral infections.
Collapse
Affiliation(s)
- Mohammad Kazem Vakil
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Yaser Mansoori
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Ghaidaa Raheem Lateef Al‐Awsi
- University of Al‐QadisiyahCollege of ScienceAl DiwaniyahIraq
- Department of Radiological TechniquesAl‐Mustaqbal University CollegeBabylonIraq
| | - Ali Hosseinipour
- Department of Internal MedicineFasa University of Medical SciencesFasaIran
| | - Samaneh Ahsant
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Sedigheh Ahmadi
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Mohammad Ekrahi
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Zahra Montaseri
- Department of Infectious DiseasesFasa University of Medical SciencesFasaIran
| | - Babak Pezeshki
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Poopak Mohaghegh
- Pediatrics Department, School of MedicineFasa University of Medical SciencesFasaIran
| | - Mojtaba Sohrabpour
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Maryam Bahmanyar
- Pediatrics Department, School of MedicineFasa University of Medical SciencesFasaIran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of MedicineBabol University of Medical SciencesBabolIran
| | | | | | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| |
Collapse
|
9
|
Fawzy MS, Ashour H, Shafie AAA, Dahman NBH, Fares AM, Antar S, Elnoby AS, Fouad FM. The role of angiotensin-converting enzyme 2 ( ACE2) genetic variations in COVID-19 infection: a literature review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022; 23:97. [PMID: 37521836 PMCID: PMC9142348 DOI: 10.1186/s43042-022-00309-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background The angiotensin-converting enzyme-2 (ACE2) is recognized to be the fundamental receptor of severe acute respiratory syndrome coronavirus-2 (SARS-CoV2), responsible for the worldwide Coronavirus Disease-2019 (COVID-19) epidemic. However, genetic differences between people besides racial considerations and their relation to disease susceptibility are still not fully elucidated. Main body To uncover the role of ACE2 in COVID-19 infection, we reviewed the published studies that explore the association of COVID-19 with the functional characteristics of ACE2 and its genetic variations. Notably, emerging studies tried to determine whether the ACE2 variants and/or expression could be associated with SARS-CoV/SARS-CoV2 have conflicting results. Some researchers investigated the potential of "population-specific" ACE2 genetic variations to impact the SARS-CoV2 vulnerability and suggested no ethnicity enrichment for ACE2 polymorphisms that could influence SARS-CoV2 S-protein binding. At the same time, some studies use data mining to predict several ACE2 variants that could enhance or decline susceptibility to SARS-CoV. On the other hand, fewer studies revealed an association of ACE2 expression with COVID-19 outcome reporting higher expression levels of ACE2 in East Asians. Conclusions ACE2 gene variants and expression may modify the deleterious consequences of SARS-CoV2 to the host cells. It is worth noting that apart from the differences in gene expression and the genetic variations of ACE2, many other environmental and/or genetic factors could modify the disease outcome, including the genes for the innate and the adaptive immune response.
Collapse
Affiliation(s)
- Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hend Ashour
- Department of Medical Physiology, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | | | | - Abdelhamid M. Fares
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Fifth Zone, Ministries Complex, Sadat City, 32511 Menoufia Egypt
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 China
| | - Sarah Antar
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed S. Elnoby
- Clinical Pharmacy Department, Children’s Cancer Hospital Egypt, Cairo, 57357 Egypt
| | - Fatma Mohamed Fouad
- Biotechnology/BioMolecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Safaga, Red Sea, Egypt
| |
Collapse
|
10
|
Tu H, Bao J. IFNL4, ACE1, PKR, IFNG, MBL2 genetic polymorphisms and severe COVID-19: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29405. [PMID: 35623072 PMCID: PMC9276237 DOI: 10.1097/md.0000000000029405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Corona virus disease 2019 (COVID-19) is caused by SARS-CoV-2, the pathogenic process of SARS-Cov-2 is related to the angiotensin-2 converting enzyme (ACE-2) on host cells. The genetic polymorphisms among different populations may influence the progression of COVID-19. However, the effects of IFNL4, ACE1, PKR, IFNG, and MBL2 in severe COVID-19 have not been systematically assessed. METHODS We will include all relevant English and Chinese studies by searching the following electronic databases: PubMed, MEDLINE, Embase, Web of Science, Scopus, the Cochrane Library, and Google Scholar before March 31, 2022. Two researchers will independently screen and extract the literature. The methodological quality of the included studies will be evaluated by the Cochrane Handbook for Systematic Reviews of Interventions. RESULT This systematic review and meta-analysis will summarize the association of IFNL4, ACE1, PKR, IFNG, MBL2 genetic polymorphisms, and severe COVID-19. The results will be submitted to a peer-reviewed journal once completed. CONCLUSION The conclusion of our study will provide evidence for the early prevention of severe COVID-19. PROSPERO REGISTRATION NUMBER CRD42022301735.
Collapse
Affiliation(s)
- Hengjia Tu
- Guangzhou Medical University, Xinzao, Panyu District, Guangzhou City, Guangdong Province, People's Republic of China
| | - Junrong Bao
- Faculty of Big Data and Computing, Guangdong Baiyun University, No.1 Xueyuan Road Jianggao Town, Baiyun District, Guangzhou City, Guangdong Province, People's Republic of China
| |
Collapse
|
11
|
Bock R, Babayeva M, Loewy ZG. COVID-19 Pharmacotherapy: Drug Development, Repurposing of Drugs, and the Role of Pharmacogenomics. Methods Mol Biol 2022; 2547:187-199. [PMID: 36068465 DOI: 10.1007/978-1-0716-2573-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The SARS-CoV-2 virus has been the subject of intense pharmacological research. Various pharmacotherapeutic approaches including antiviral and immunotherapy are being explored. A pandemic, however, cannot depend on the development of new drugs; the time required for conventional drug discovery and development is far too lengthy. As such, repurposing drugs is being used as a viable approach for identifying pharmacological agents for COVID-19 infections. Evaluation of repurposed drug candidates with pharmacogenomic analysis is being used to identify near-term pharmacological remedies for COVID-19.
Collapse
Affiliation(s)
- Rebecca Bock
- Stern College for Women, Yeshiva University, New York, NY, USA
| | | | - Zvi G Loewy
- Touro College of Pharmacy, New York, NY, USA.
- School of Medicine, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
12
|
Sahu S, Patil CR, Kumar S, Apparsundaram S, Goyal RK. Role of ACE2-Ang (1-7)-Mas axis in post-COVID-19 complications and its dietary modulation. Mol Cell Biochem 2021; 477:225-240. [PMID: 34655418 PMCID: PMC8520076 DOI: 10.1007/s11010-021-04275-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome-coronavirus-2 (COVID-19) virus uses Angiotensin-Converting Enzyme 2 (ACE2) as a gateway for their entry into the human body. The ACE2 with cleaved products have emerged as major contributing factors to multiple physiological functions and pathogenic complications leading to the clinical consequences of the COVID-19 infection Decreased ACE2 expression restricts the viral entry into the human cells and reduces the viral load. COVID-19 infection reduces the ACE2 expression and induces post-COVID-19 complications like pneumonia and lung injury. The modulation of the ACE2-Ang (1–7)-Mas (AAM) axis is also being explored as a modality to treat post-COVID-19 complications. Evidence indicates that specific food components may modulate the AAM axis. The variations in the susceptibility to COVID-19 infection and the post-COVID its complications are being correlated with varied dietary habits. Some of the food substances have emerged to have supportive roles in treating post-COVID-19 complications and are being considered as adjuvants to the COVID-19 therapy. It is possible that some of their active ingredients may emerge as the direct treatment for the COVID-19.
Collapse
Affiliation(s)
- Santoshi Sahu
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPDRU), PushpVihar Sector-3, New Delhi, 110017, India
| | - C R Patil
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPDRU), PushpVihar Sector-3, New Delhi, 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPDRU), PushpVihar Sector-3, New Delhi, 110017, India
| | - Subbu Apparsundaram
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPDRU), PushpVihar Sector-3, New Delhi, 110017, India
| | - Ramesh K Goyal
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPDRU), PushpVihar Sector-3, New Delhi, 110017, India.
| |
Collapse
|
13
|
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Rodriguez-Morales AJ, Cardona-Ospina JA, Collins MH. Editorial: Emerging and Re-emerging Vector-borne and Zoonotic Diseases. Front Med (Lausanne) 2021; 8:714630. [PMID: 34422869 PMCID: PMC8374163 DOI: 10.3389/fmed.2021.714630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Alfonso J Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia.,Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia.,School of Medicine, Universidad Privada Franz Tamayo (UNIFRANZ), Cochabamba, Bolivia.,Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
| | - Jaime A Cardona-Ospina
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia.,Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas - Sci-Help, Pereira, Colombia
| | - Matthew H Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
15
|
Kaidashev I, Shlykova O, Izmailova O, Torubara O, Yushchenko Y, Tyshkovska T, Kyslyi V, Belyaeva A, Maryniak D. Host gene variability and SARS-CoV-2 infection: A review article. Heliyon 2021; 7:e07863. [PMID: 34458641 PMCID: PMC8382593 DOI: 10.1016/j.heliyon.2021.e07863] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 is a global threat that influenced healthcare systems around the world. This virus caused an infection in humans with different clinical signs and syndromes, severity, and mortality. The key components of the COVID-19 molecular pathogenesis are coronavirus entry and replication, antigen presentation, humoral and cellular immunity, cytokine storm, coronavirus immune evasion. The analysis of recent literature displayed possible molecular targets in the key components of the COVID-19 pathogenesis. Some of these targets might have gene polymorphisms that influenced the COVID-19 course. Unfortunately, several findings are still putative or extrapolated from SARS and MERS experimental investigations or clinical trials. We systematised original data about gene polymorphisms of possible molecular targets and associations with the COVID-19 course. Most data were obtained for angiotensin-converting enzymes 1 and 2, TMPRSS2 gene polymorphisms. Only a few results were found for gene polymorphisms of adhesion molecules, interferon system components, cytokines, and transcriptional factors, oxidative stress and metabolic molecules, as well as haemocoagulation. Understanding the host gene variability and its associations with COVID-19 can provide insights into the disease pathogenesis, individual susceptibility to SARS-CoV-2 infection, severity, complications, and mortality prognosis for the disease. Besides, these data might help in the identification of appropriate targets for intervention.
Collapse
Affiliation(s)
- I. Kaidashev
- Poltava State Medical University, Poltava, Ukraine
| | - O. Shlykova
- Poltava State Medical University, Poltava, Ukraine
| | - O. Izmailova
- Poltava State Medical University, Poltava, Ukraine
| | - O. Torubara
- Poltava State Medical University, Poltava, Ukraine
| | | | | | - V. Kyslyi
- Poltava State Medical University, Poltava, Ukraine
| | - A. Belyaeva
- Poltava State Medical University, Poltava, Ukraine
| | - D. Maryniak
- Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
16
|
AL-Eitan LN, Tarkhan AH, Alghamdi MA, Marston DA, Wu G, McElhinney LM, Brown IH, Fooks AR. Bat-Borne Coronaviruses in Jordan and Saudi Arabia: A Threat to Public Health? Viruses 2020; 12:E1413. [PMID: 33316899 PMCID: PMC7764733 DOI: 10.3390/v12121413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022] Open
Abstract
Emerging infectious diseases are of great concern to public health, as highlighted by the ongoing coronavirus disease 2019 (COVID-19) pandemic. Such diseases are of particular danger during mass gathering and mass influx events, as large crowds of people in close proximity to each other creates optimal opportunities for disease transmission. The Hashemite Kingdom of Jordan and the Kingdom of Saudi Arabia are two countries that have witnessed mass gatherings due to the arrival of Syrian refugees and the annual Hajj season. The mass migration of people not only brings exotic diseases to these regions but also brings new diseases back to their own countries, e.g., the outbreak of MERS in South Korea. Many emerging pathogens originate in bats, and more than 30 bat species have been identified in these two countries. Some of those bat species are known to carry viruses that cause deadly diseases in other parts of the world, such as the rabies virus and coronaviruses. However, little is known about bats and the pathogens they carry in Jordan and Saudi Arabia. Here, the importance of enhanced surveillance of bat-borne infections in Jordan and Saudi Arabia is emphasized, promoting the awareness of bat-borne diseases among the general public and building up infrastructure and capability to fill the gaps in public health preparedness to prevent future pandemics.
Collapse
Affiliation(s)
- Laith N. AL-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Amneh H. Tarkhan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Denise A. Marston
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| | - Guanghui Wu
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| | - Lorraine M. McElhinney
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| | - Ian H. Brown
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| | - Anthony R. Fooks
- Department of Virology, Animal and Plant Health Agency (APHA, Weybridge), Surrey KT15 3NB, UK; (D.A.M.); (G.W.); (L.M.M.); (I.H.B.); (A.R.F.)
| |
Collapse
|