1
|
Makan-Murphy N, Madhi SA, Dangor Z. Safety, Efficacy, and Effectiveness of Maternal Vaccination against Respiratory Infections in Young Infants. Semin Respir Crit Care Med 2024. [PMID: 39708836 DOI: 10.1055/a-2471-6906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Lower respiratory tract infection (LRTI) is a major cause of neonatal morbidity and mortality worldwide. Maternal vaccination is an effective strategy in protecting young infants from LRTI, particularly in the first few months after birth when infant is most vulnerable, and most primary childhood vaccinations have not been administered. Additionally, maternal vaccination protects the mother from illness during pregnancy and the postnatal period, and the developing fetus from adverse outcomes such as stillbirth and prematurity. In this paper, we review the safety, efficacy, and effectiveness of maternal vaccines against LRTIs, such as pertussis, influenza, coronavirus disease 2019, and respiratory syncytial virus.
Collapse
Affiliation(s)
- Nisha Makan-Murphy
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Dangor
- South Africa Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Tang YD, Li Y, Cai XH, Yin X. Viral Live-Attenuated Vaccines (LAVs): Past and Future Directions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407241. [PMID: 39639853 DOI: 10.1002/advs.202407241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Viral infections continue to pose a significant threat to the health of both humans and animals. Currently, live attenuated vaccines (LAVs) remain the most efficacious and widely utilized tool for combating viral infections. Conventional LAVs involve the adaptation of virulent viruses to novel hosts, cell cultures, or suboptimal environments, resulting in a reduction in pathogenicity while retaining immunogenicity. This process entails directed evolution of the virus to enhance its replication efficiency under these modified conditions. In this review, the development of traditional animal-adapted and cold-adapted LAVs is specially discussed. Additionally, the factors that contribute to virus attenuation from a viral lifecycle perspective are summarized. Finally, we propose future directions for next-generation LAVs.
Collapse
Affiliation(s)
- Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yuming Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271000, China
| | - Xue-Hui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| |
Collapse
|
3
|
Rioseras B, Bueno-García E, García-Torre A, López-Martínez R, Moro-García MA, Alonso-Álvarez S, Menéndez-García V, Lluna-González A, Sousa-Fernández A, Fernández-Gudin M, Campos-Riopedre L, Castro-Del Cueto C, Pérez-Fernández AB, Alonso-Rodríguez A, Menéndez-Peña C, Menéndez-Peña L, García-Arnaldo N, Feito-Díaz E, Fernández-Lorences A, Fraile-Manzano A, Fernández-Iglesias C, Rivera JA, Pérez-Fonseca C, Urdiales-Ruano E, Debán-Fernández M, Mendes-Moreira H, Herrero-Puente P, Alonso-Arias R. Characterisation of specific responses to three models of viral antigens in immunocompetent older adults. Immun Ageing 2024; 21:86. [PMID: 39639316 PMCID: PMC11619616 DOI: 10.1186/s12979-024-00488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Memory responses to the antigens that an individual encounters throughout life may vary with the intensity and duration of antigen contacts or even with changes in immune status over time. This work aims to characterise specific responses to latent CMV, seasonal influenza and novel SARS-CoV-2 infections in immunocompetent individuals over 60 years of age. Specific cellular and humoral responses were identified by IFN-γ and granzyme B release by ELISpot and antibody level measurement. T lymphocyte subpopulation phenotypes were characterised by flow cytometry. RESULTS Cellular and humoral responses to these viruses were detected in almost all patients. Influenza and SARS-CoV-2 cellular responses were positively correlated. There was no significant correlation between CMV and influenza or SARS-CoV-2 responses although both were consistently lower in CMV-seropositive patients. CMV responses were negatively correlated with the levels of the least differentiated subsets of T lymphocytes, and positively correlated with the most differentiated ones, contrary to what happened with the influenza responses. Nevertheless, SARS-CoV-2 cellular responses were negatively correlated with the most differentiated CD8+ T lymphocytes, while humoral responses were negatively correlated with the least differentiated T lymphocytes. Responses to the three viruses were correlated with a Th1/Th2/Th17 balance in favour of Th1. CONCLUSIONS The results indicate that memory responses differ depending on the durability of the antigen stimulus. Cellular responses to novel pathogens resemble those generated by seasonal but not CMV infection. Subpopulation distribution and the level of specific T lymphocytes against previous pathogens could be used as immunocompetent status biomarkers in older adults reflecting their ability to generate memory responses to new pathogens.
Collapse
Affiliation(s)
- Beatriz Rioseras
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- University Institute of Oncology of the Principality of Asturias (IUOPA), Oviedo, 33011, Spain
| | - Eva Bueno-García
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- University Institute of Oncology of the Principality of Asturias (IUOPA), Oviedo, 33011, Spain
| | - Alejandra García-Torre
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- University Institute of Oncology of the Principality of Asturias (IUOPA), Oviedo, 33011, Spain
| | - Rocío López-Martínez
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Marco Antonio Moro-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- University Institute of Oncology of the Principality of Asturias (IUOPA), Oviedo, 33011, Spain
- Medicine Laboratory Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Sara Alonso-Álvarez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- University Institute of Oncology of the Principality of Asturias (IUOPA), Oviedo, 33011, Spain
- Haematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Victoria Menéndez-García
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Alba Lluna-González
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Alejandra Sousa-Fernández
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Marta Fernández-Gudin
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Laura Campos-Riopedre
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Corina Castro-Del Cueto
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Ana Belén Pérez-Fernández
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Ana Alonso-Rodríguez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Carla Menéndez-Peña
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Lara Menéndez-Peña
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Noelia García-Arnaldo
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Estefanía Feito-Díaz
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Adriana Fernández-Lorences
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Agustín Fraile-Manzano
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Carolina Fernández-Iglesias
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Jose Arturo Rivera
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Carmen Pérez-Fonseca
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Estíbaliz Urdiales-Ruano
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - María Debán-Fernández
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Hugo Mendes-Moreira
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Pablo Herrero-Puente
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
- Emergency Department, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain
| | - Rebeca Alonso-Arias
- Immunology Department, Medicine Laboratory, Hospital Universitario Central de Asturias, Oviedo, 33011, Spain.
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, 33011, Spain.
- University Institute of Oncology of the Principality of Asturias (IUOPA), Oviedo, 33011, Spain.
| |
Collapse
|
4
|
Ameni G, Zewude A, Tulu B, Derara M, Bayissa B, Mohammed T, Degefa BA, Hamad ME, Tibbo M, Barigye R. A Narrative Review on the Pandemic Zoonotic RNA Virus Infections Occurred During the Last 25 Years. J Epidemiol Glob Health 2024; 14:1397-1412. [PMID: 39378018 DOI: 10.1007/s44197-024-00304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Pandemic zoonotic RNA virus infections have continued to threaten humans and animals worldwide. The objective of this review was to highlight the epidemiology and socioeconomic impacts of pandemic zoonotic RNA virus infections that occurred between 1997 and 2021. METHODS Literature search was done from Web of Science, PubMed, Google Scholar and Scopus databases, cumulative case fatalities of individual viral infection calculated, and geographic coverage of the pandemics were shown by maps. RESULTS Seven major pandemic zoonotic RNA virus infections occurred from 1997 to 2021 and were presented in three groups: The first group consists of highly pathogenic avian influenza (HPAI-H5N1) and swine-origin influenza (H1N1) viruses with cumulative fatality rates of 53.5% and 0.5% in humans, respectively. Moreover, HPAI-H5N1 infection caused 90-100% death in poultry and economic losses of >$10 billion worldwide. Similarly, H1N1 caused a serious infection in swine and economic losses of 0.5-1.5% of the Gross Domestic Product (GDP) of the affected countries. The second group consists of severe acute respiratory syndrome-associated coronavirus infection (SARS-CoV), Middle East Respiratory Syndrome (MERS-CoV) and Coronavirus disease 2019 (COVID-19) with case fatalities of 9.6%, 34.3% and 2.0%, respectively in humans; but this group only caused mild infections in animals. The third group consists of Ebola and Zika virus infections with case fatalities of 39.5% and 0.02%, respectively in humans but causing only mild infections in animals. CONCLUSION Similar infections are expected in the near future, and hence strict implementation of conventional biosecurity-based measures and development of efficacious vaccines would help minimize the impacts of the next pandemic infection.
Collapse
Affiliation(s)
- Gobena Ameni
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia.
| | - Aboma Zewude
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Begna Tulu
- College of Medicine and Health Sciences, Bahir Dar University, P.O. Box 79, Bahir City, Ethiopia
| | - Milky Derara
- Department of Dentistry, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| | - Berecha Bayissa
- Vaccine Production and Drug Formulation Directorate, National Veterinary Institute, PO Box 35, Debre Zeit, Ethiopia
| | - Temesgen Mohammed
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Berhanu Adenew Degefa
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Mohamed Elfatih Hamad
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Markos Tibbo
- Sub Regional Office for the Gulf-cooperation Council States and Yemen-SNG, Food and Agricultural Organization of the United Nations, Al Qala-id Street, PO Box 62027, Abu Dhabi, United Arab Emirates
| | - Robert Barigye
- College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Anurogo D, Chen CY, Lin CC, Pawitan JA, Qiu DW, Qiu JT. Codon optimized influenza H1 HA sequence but not CTLA-4 targeting of HA antigen to enhance the efficacy of DNA vaccines in an animal model. J Immunotoxicol 2024; 21:2400624. [PMID: 39319829 DOI: 10.1080/1547691x.2024.2400624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 06/05/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Infections caused by the influenza virus lead to both epidemic and pandemic outbreaks in humans and animals. Owing to their rapid production, safety, and stability, DNA vaccines represent a promising avenue for eliciting immunity and thwarting viral infections. While DNA vaccines have demonstrated substantial efficacy in murine models, their effectiveness in larger animals remains subdued. This limitation may be addressed by augmenting the immunogenicity of DNA-based vaccines. In the investigation here, protein expression was enhanced via codon optimization and then mouse cytotoxic T-lymphocyte antigen 4 (CTLA-4) was harnessed as a modulatory adjunct to bind directly to antigen-presenting cells. Further, the study evaluated the immunogenicity of two variants of the hemagglutinin (HA) antigen, i.e. the full-length and the C-terminal deletion versions. The study findings revealed that the codon-optimized HA gene (pcHA) led to increased protein synthesis, as evidenced by elevated mRNA levels. Codon optimization also significantly bolstered both cellular and humoral immune responses. In cytokine assays, all plasmid constructs, particularly pCTLA4-cHA, induced robust interferon (IFN)-γ production, while interleukin (IL)-4 levels remained uniformly non-significant. Mice immunized with pcHA displayed an augmented presence of IFNγ+ T-cells, underscoring the enhanced potency of the codon-optimized HA vaccine. Contrarily, CTLA-4-fused DNA vaccines did not significantly amplify the immune response.
Collapse
MESH Headings
- Animals
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Mice
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Codon/genetics
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Humans
- Female
- Mice, Inbred BALB C
- Disease Models, Animal
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza A Virus, H1N1 Subtype/immunology
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar City, Indonesia
| | - Chia-Yuan Chen
- Department of Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Chu-Chi Lin
- Department of Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Jeanne Adiwinata Pawitan
- Department of Histology, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Daniel W Qiu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - J Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Zhou P, Qiu T, Wang X, Yang X, Shi H, Zhu C, Dai W, Xing M, Zhang X, Xu J, Zhou D. One HA stalk topping multiple heads as a novel influenza vaccine. Emerg Microbes Infect 2024; 13:2290838. [PMID: 38044872 PMCID: PMC10810646 DOI: 10.1080/22221751.2023.2290838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Classic chimeric hemagglutinin (cHA) was designed to induce immune responses against the conserved stalk domain of HA. However, it is unclear whether combining more than one HA head domain onto one stalk domain is immunogenic and further induce immune responses against influenza viruses. Here, we constructed numerous novel cHAs comprising two or three fuzed head domains from different subtypes grafted onto one stalk domain, designated as cH1-H3, cH1-H7, cH1-H3-H7, and cH1-H7-H3. The three-dimensional structures of these novel cHAs were modelled using bioinformatics simulations. Structural analysis showed that the intact neutralizing epitopes were exposed in cH1-H7 and were predicted to be immunogenic. The immunogenicity of the cHAs constructs was evaluated in mice using a chimpanzee adenoviral vector (AdC68) vaccine platform. The results demonstrated that cH1-H7 expressed by AdC68 (AdC68-cH1-H7) induced the production of high levels of binding antibodies, neutralizing antibodies, and hemagglutinin inhibition antibodies against homologous pandemic H1N1, drifted seasonal H1N1, and H7N9 virus. Moreover, vaccinated mice were fully protected from a lethal challenge with the aforementioned influenza viruses. Hence, cH1-H7 cHAs with potent immunogenicity might be a potential novel vaccine to provide protection against different subtypes of influenza virus.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People’s Republic of China
- Chinese Academy of Sciences, Institut Pasteur of Shanghai, Shanghai, People’s Republic of China
| | - Tianyi Qiu
- Institute of Clinical Science, ZhongShan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Xiang Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Xi Yang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Hongyang Shi
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Caihong Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Weiqian Dai
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Weerarathna IN, Doelakeh ES, Kiwanuka L, Kumar P, Arora S. Prophylactic and therapeutic vaccine development: advancements and challenges. MOLECULAR BIOMEDICINE 2024; 5:57. [PMID: 39527305 PMCID: PMC11554974 DOI: 10.1186/s43556-024-00222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Biomedical research is fundamental in developing preventive and therapeutic vaccines, serving as a cornerstone of global public health. This review explores the key concepts, methodologies, tools, and challenges in the vaccine development landscape, focusing on transitioning from basic biomedical sciences to clinical applications. Foundational disciplines such as virology, immunology, and molecular biology lay the groundwork for vaccine creation, while recent innovations like messenger RNA (mRNA) technology and reverse vaccinology have transformed the field. Additionally, it highlights the role of pharmaceutical advancements in translating lab discoveries into clinical solutions. Techniques like CRISPR-Cas9, genome sequencing, monoclonal antibodies, and computational modeling have significantly enhanced vaccine precision and efficacy, expediting the development of vaccines against infectious diseases. The review also discusses challenges that continue to hinder progress, including stringent regulatory pathways, vaccine hesitancy, and the rapid emergence of new pathogens. These obstacles underscore the need for interdisciplinary collaboration and the adoption of innovative strategies. Integrating personalized medicine, nanotechnology, and artificial intelligence is expected to revolutionize vaccine science further. By embracing these advancements, biomedical research has the potential to overcome existing challenges and usher in a new era of therapeutic and prophylactic vaccines, ultimately improving global health outcomes. This review emphasizes the critical role of vaccines in combating current and future health threats, advocating for continued investment in biomedical science and technology.
Collapse
Affiliation(s)
- Induni Nayodhara Weerarathna
- Department of Biomedical Sciences, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India.
| | - Elijah Skarlus Doelakeh
- Department of Anesthesia, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Lydia Kiwanuka
- Department of Medical Radiology and Imaging Technology, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Praveen Kumar
- Department of Computer Science and Medical Engineering, FEAT, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Sanvi Arora
- Faculty of Medicine, Jawaharlal Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| |
Collapse
|
8
|
Septer KM, Heinly TA, Sim DG, Patel DR, Roder AE, Wang W, Chung M, Johnson KEE, Ghedin E, Sutton TC. Vaccine-induced NA immunity decreases viral shedding, but does not disrupt chains of airborne transmission for the 2009 pandemic H1N1 virus in ferrets. mBio 2024; 15:e0216124. [PMID: 39248566 PMCID: PMC11481891 DOI: 10.1128/mbio.02161-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Split-virion-inactivated influenza vaccines are formulated based on viral hemagglutinin content. These vaccines also contain the viral neuraminidase (NA) protein, but NA content is not standardized and varies between manufacturers. In clinical studies and animal models, antibodies directed toward NA reduced disease severity and viral load; however, the impact of vaccine-induced NA immunity on airborne transmission of influenza A viruses is not well characterized. Therefore, we evaluated if vaccination against NA could disrupt chains of airborne transmission for the 2009 pandemic H1N1 virus in ferrets. Immunologically naïve donor ferrets were infected with the 2009 pandemic H1N1 virus and then paired in transmission cages with mock- or NA-vaccinated respiratory contacts. The mock- and NA-vaccinated animals were then monitored daily for infection, and once infected, these animals were paired with a naive secondary respiratory contact. In these studies, all mock- and NA-vaccinated animals became infected; however, NA-vaccinated animals shed significantly less virus for fewer days relative to mock-vaccinated animals. For the secondary contacts, 6/6 and 5/6 animals became infected after exposure to mock- and NA-vaccinated animals, respectively. To determine if vaccine-induced immune pressure selected for escape variants, we sequenced viruses recovered from ferrets. No mutations in NA became enriched during transmission. These findings indicate that despite reducing viral load, vaccine-induced NA immunity does not prevent infection during continuous airborne exposure and subsequent onward airborne transmission of the 2009 pandemic H1N1 virus. IMPORTANCE In humans and animal models, immunity against neuraminidase (NA) reduces disease severity and viral replication during influenza infection. However, we have a limited understanding of the impact of NA immunity on viral transmission. Using chains of airborne transmission in ferrets as a strategy to simulate a more natural route of infection, we assessed if vaccine-induced NA immunity could disrupt transmission of the 2009 pandemic H1N1 virus. The 2009 pandemic H1N1 virus transmitted efficiently through chains of transmission in the presence of NA immunity, but NA-vaccinated animals shed significantly less virus and had accelerated viral clearance. To determine if immune pressure led to the generation of escape variants, viruses in ferret nasal wash samples were sequenced, and no mutations in NA were identified. These findings demonstrate that vaccine-induced NA immunity is not sufficient to prevent infection via airborne exposure and onward airborne transmission of the 2009 pandemic H1N1 virus.
Collapse
Affiliation(s)
- K. M. Septer
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| | - T. A. Heinly
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| | - D. G. Sim
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - D. R. Patel
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| | - A. E. Roder
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - W. Wang
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - M. Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - K. E. E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - E. Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - T. C. Sutton
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Emory-UGA Center of Excellence of Influenza Research and Response (CEIRR), University Park, Pennsylvania, USA
| |
Collapse
|
9
|
Wang L, Zhou B, Du Y, Bai M, Xu X, Guan Y, Liu X. Guanidine Derivatives Leverage the Antibacterial Performance of Bio-Based Polyamide PA56 Fibres. Polymers (Basel) 2024; 16:2707. [PMID: 39408418 PMCID: PMC11478546 DOI: 10.3390/polym16192707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Bacterial damage has significantly impacted humanity, prompting the control of harmful microorganisms and infectious diseases. In this study, antibacterial bio-based PA56 fibres were prepared with high-speed spinning using ethylene-methyl acrylate-glycidyl methacrylate terpolymer (EMA) as the compatibiliser and polypentamethylene guanidine sulphate (PPGS) as the antibacterial agent. The effects of PPGS content on the properties of PA56 draw-textured yarns (DTYs) were investigated. The compatibility between PPGS and PA greatly improved with EMA incorporation. Compared with PA56 fibres, the elongation at break of the sample containing 2.0 wt% EMA and PPGS increased by 25.93%. The inhibition rates of the fibres with 1.0 wt% PPGS against Escherichia coli and Staphylococcus aureus reached over 99.99%. Samples were easily coloured with dyes, exhibiting good colour fastness, regardless of the EMA content. However, the antibacterial performances of dyed DTYs decreased to varying degrees. the inhibition rates of samples of 0.5wt% addition of PPGS against E. coli were reduced from 99.99% to 28.50% and 25.36% after dyeing with Acid Blue 80 and Dispersible Blue 2BLN, respectively. The EMA-modified fibres exhibited the best antibacterial activity after dyeing with neutral gray 2BL. These findings are expected to promote the wider use of biobased PA56 in practical applications that require antibacterial performance and to guide the dyeing process of antimicrobial fibres.
Collapse
Affiliation(s)
- Lili Wang
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237, China; (L.W.); (B.Z.); (X.X.)
| | - Bobo Zhou
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237, China; (L.W.); (B.Z.); (X.X.)
| | - Yuliu Du
- Shanghai Cathay Biotech Inc., Ltd., Shanghai 201144, China; (Y.D.); (M.B.)
| | - Miao Bai
- Shanghai Cathay Biotech Inc., Ltd., Shanghai 201144, China; (Y.D.); (M.B.)
| | - Xiang Xu
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237, China; (L.W.); (B.Z.); (X.X.)
| | - Yong Guan
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237, China; (L.W.); (B.Z.); (X.X.)
| | - Xiucai Liu
- School of Materials Science and Engineering, Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, Shanghai 200237, China; (L.W.); (B.Z.); (X.X.)
- Shanghai Cathay Biotech Inc., Ltd., Shanghai 201144, China; (Y.D.); (M.B.)
| |
Collapse
|
10
|
Kou Z, Li X, Liu T, Fan B, An W, An W, Dang M, Zhang K, Tang J, Zhu N, Pan R. A post-marketing study to evaluate the safety and immunogenicity of a quadrivalent influenza split-virion vaccine in elderly people aged 60 years and older. Trop Dis Travel Med Vaccines 2024; 10:18. [PMID: 39277739 PMCID: PMC11402193 DOI: 10.1186/s40794-024-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/20/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Influenza remains a global public health concern. Understanding the vaccination-induced response in an aging population, which is susceptible and at high risk, is essential for disease prevention and control. Here, we report findings on the safety and immunogenicity of a quadrivalent influenza split-virion vaccine (15 µg/subtype/0.5 ml/dose) (hereinafter referred to as the "quadrivalent influenza vaccine") in a population aged ≥ 60 years. METHODS This open-label, pragmatic post-marketing trial enrolled 1399 older adults to receive one dose of an approved commercially available quadrivalent influenza vaccine manufactured by Hualan Biological Bacterin Inc. (hereinafter referred to as "Hualan Bio"). Participants with contraindications for the vaccine were excluded, while poor health condition was acceptable. All vaccinated subjects experienced adverse events collection within 30 days and serious adverse events within 180 days post-vaccination. 25% subjects, selected randomly, underwent venous blood sampling pre-vaccination and 30 days after post-vaccination, for detecting antibody titers against each subtype of influenza virus by hemagglutination inhibition assay. The incidences of adverse events and antibody titers against each subtype of influenza virus were statistically analyzed using SAS 9.4. RESULTS No grade 3 adverse reactions occurred within 30 days post-vaccination. The incidences of overall adverse reactions, local adverse reactions and systemic adverse reactions were 3.79%, 2.86% and 1.00%, respectively. No serious adverse reactions occurred within 180 days post-vaccination. There were 350 subjects who completed venous blood sampling pre-vaccination, among whom 348 subjects completed venous blood sampling at 30 days post-vaccination for immunogenicity assessment. With respect to hemagglutination inhibition antibodies against influenza viruses H1N1, H3N2, BV and BY subtypes, at 30 days post-vaccination, the seroconversion rates were 87.64%, 75.57%, 73.28% and 78.74%, respectively; the seropositive rates were 93.97%, 98.56%, 79.31% and 95.40%, respectively; and the geometric mean increase (GMI) in post-immunization/pre-immunization antibodies was 24.80, 7.26, 10.39 and 7.39, respectively. CONCLUSION One 15 µg/subtype dose of the vaccine had a good safety profile and elicited favorable immunogenicity among subjects aged ≥ 60 years. The results of this study indicate that Hualan Bio quadrivalent influenza vaccine strike balance between safety and immunogenicity, supporting unnecessity to increase dosage or inoculation frequency for further enhancing immunogenicity. TRIAL REGISTRATION Registered on ClinicalTrials.gov. REGISTRATION NUMBER NCT06334510. Registered on 28/03/2024 (retrospectively registered).
Collapse
Affiliation(s)
- Zengqiang Kou
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Xiaoyu Li
- National Institutes for Food and Drug Control, Beijing, 102600, China
| | - Ti Liu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Bei Fan
- Hualan Biological Engineering Inc, Xinxiang, 453003, China
| | - Wenqi An
- Hualan Biological Engineering Inc, Xinxiang, 453003, China
| | - Wenjue An
- Hualan Biological Bacterin Inc, No. 1-1, Hualan Avenue, Xinxiang City, Henan Province, 453003, China
| | - Mingan Dang
- Henan Center for Drug Evaluation and Inspection, Zhengzhou, 450008, China
| | - Ke Zhang
- Hualan Biological Bacterin Inc, No. 1-1, Hualan Avenue, Xinxiang City, Henan Province, 453003, China
| | - Jingning Tang
- Hualan Biological Bacterin Inc, No. 1-1, Hualan Avenue, Xinxiang City, Henan Province, 453003, China
| | - Nan Zhu
- Hualan Biological Bacterin Inc, No. 1-1, Hualan Avenue, Xinxiang City, Henan Province, 453003, China
| | - Ruowen Pan
- Hualan Biological Bacterin Inc, No. 1-1, Hualan Avenue, Xinxiang City, Henan Province, 453003, China.
| |
Collapse
|
11
|
Yin Z, Dong Y, Wang Q, Ma Y, Gao Z, Ling Z, Aihaiti X, Abudusaimaiti X, Qiu R, Chen Z, Wushouer F. Spatial-temporal evolution patterns of influenza incidence in Xinjiang Prefecture from 2014 to 2023 based on GIS. Sci Rep 2024; 14:21496. [PMID: 39277661 PMCID: PMC11401927 DOI: 10.1038/s41598-024-72618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Using GIS technology, this study investigated the spatiotemporal distribution pattern of influenza incidence in Xinjiang from 2014 to 2023 based on influenza surveillance data. The study revealed a noticeable fluctuation trend in influenza incidence rates in Xinjiang, particularly notable spikes observed in 2019 and 2023. The results of the 3-year moving average showed a significant long-term upward trend in influenza incidence rates, confirmed by Theil-Sen method (MAD = 2.202, p < 0.01). Global spatial autocorrelation analysis indicated significant positive spatial autocorrelation in influenza incidence rates from 2016 and from 2018 to 2023 (Moran's I > 0, P < 0.05). Local spatial autocorrelation analysis further revealed clustering patterns in different regions, with high-high clustering and low-high clustering predominating in northern Xinjiang, and low-low clustering predominating in southern Xinjiang. Hotspot analysis indicated a progressive rise in the number of influenza incidence hotspots, primarily concentrated in northern Xinjiang, particularly in Urumqi, Ili Kazakh Autonomous Prefecture, and Hotan Prefecture. Standard deviation ellipse analysis and the trajectory of influenza incidence gravity center migration showed that the transmission range of influenza in Xinjiang has been expanding, with the epidemic center gradually moving northward. The spatiotemporal heterogeneity of influenza incidence in Xinjiang highlights the need for differentiated and precise influenza prevention and control strategies in different regions to address the changing trends in influenza prevalence.
Collapse
Affiliation(s)
- Zhe Yin
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan First Street, Tianshan District, Ürümqi, 830002, Xinjiang Uygur Autonomous Region, China
| | - Yan Dong
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan First Street, Tianshan District, Ürümqi, 830002, Xinjiang Uygur Autonomous Region, China
| | - Qi Wang
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan First Street, Tianshan District, Ürümqi, 830002, Xinjiang Uygur Autonomous Region, China
| | - Yuanyuan Ma
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan First Street, Tianshan District, Ürümqi, 830002, Xinjiang Uygur Autonomous Region, China
| | - Zhenguo Gao
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan First Street, Tianshan District, Ürümqi, 830002, Xinjiang Uygur Autonomous Region, China
| | - Zhang Ling
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan First Street, Tianshan District, Ürümqi, 830002, Xinjiang Uygur Autonomous Region, China
| | - Xiapikatijiang Aihaiti
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan First Street, Tianshan District, Ürümqi, 830002, Xinjiang Uygur Autonomous Region, China
| | - Xiayidanmu Abudusaimaiti
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan First Street, Tianshan District, Ürümqi, 830002, Xinjiang Uygur Autonomous Region, China
| | - Ruiying Qiu
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan First Street, Tianshan District, Ürümqi, 830002, Xinjiang Uygur Autonomous Region, China
| | - Zihan Chen
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan First Street, Tianshan District, Ürümqi, 830002, Xinjiang Uygur Autonomous Region, China
| | - Fuerhati Wushouer
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, No. 380, Jianquan First Street, Tianshan District, Ürümqi, 830002, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
12
|
Park WJ, Bae GS, Han YH. Antiviral Activity of Angelica Tenuissima Nakai against Influenza A Virus. Pathogens 2024; 13:761. [PMID: 39338952 PMCID: PMC11435179 DOI: 10.3390/pathogens13090761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The influenza A virus poses a serious threat to human health and is an important global public health issue. The drugs currently used for treatment are becoming increasingly ineffective against influenza A viruses and require the development of new antiviral drugs. Angelica tenuissima Nakai (ATN), a traditional herbal medicine belonging to the Umbelliferae family, exhibits a broad range of pharmacological activities, including inflammation, headache, and cold symptoms. In the present study, based on target protein identification, functional enrichment analysis, and gene set comparisons, we first suggested that ATN has potential therapeutic effects against influenza A virus infection. Next, methylthiazol tetrazolium (MTT) and sulforhodamine B colorimetric (SRB) assay results revealed that ATN exhibited low cytotoxicity in Madin-Darby canine kidney (MDCK) cells. The antiviral properties of ATN were observed against H1N1 and H3N2 virus strains. Microscopy confirmed the increased survival rate of the host cells. Further time-of-addition experiments revealed that the addition of ATN before virus adsorption showed similar results to the whole period of treatment. The pre- and co-treated groups showed lower levels of viral RNA (M1 protein). The results of this study suggest that ATN exhibits antiviral properties against the influenza A virus. These therapeutic properties of ATN can serve as a theoretical basis for further research on the applicability of ATN in the development of antiviral agents.
Collapse
Affiliation(s)
- Won-Jong Park
- Department of Oral and Maxillofacial Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Gi-Sang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Youn-Ho Han
- Department of Oral Pharmacology, College of Dentistry, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
13
|
Liu X, Luo C, Yang Z, Zhao T, Yuan L, Xie Q, Liao Q, Liao X, Wang L, Yuan J, Wu N, Sun C, Yan H, Luo H, Shu Y. A Recombinant Mosaic HAs Influenza Vaccine Elicits Broad-Spectrum Immune Response and Protection of Influenza a Viruses. Vaccines (Basel) 2024; 12:1008. [PMID: 39340038 PMCID: PMC11435869 DOI: 10.3390/vaccines12091008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The annual co-circulation of two influenza A subtypes, H1N1 and H3N2, viruses in humans poses significant public health threats worldwide. However, the continuous antigenic drift and shift of influenza viruses limited the effectiveness of current seasonal influenza vaccines, necessitating the development of new vaccines against both seasonal and pandemic viruses. One potential solution to this challenge is to improve inactivated vaccines by including multiple T-cell epitopes. In this study, we designed stabilized trimeric recombinant mosaic HA proteins named HAm, which contain the most potential HA T-cell epitopes of seasonal influenza A virus. We further evaluated the antigenicity, hemagglutinin activity, and structural integrity of HAm and compared its immunogenicity and efficacy to a commercial quadrivalent inactivated influenza vaccine (QIV) in mice. Our results demonstrated that the HAm vaccine was able to induce broadly cross-reactive antibodies and T-cell responses against homologous, heterologous, and heterosubtypic influenza-naive mice. Additionally, the HAm antigens outperformed QIV vaccine antigens by eliciting protective antibodies against panels of antigenically drifted influenza vaccine strains from 2009 to 2024 and protecting against ancestral viruses' lethal challenge. These results suggest that the HAm vaccine is a promising potential candidate for future universal seasonal and pandemic influenza vaccine development.
Collapse
Affiliation(s)
- Xuejie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhuolin Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tianyi Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qijun Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Liangliang Wang
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jianhui Yuan
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, China
| | - Nan Wu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Huacheng Yan
- Center for Disease Control and Prevention of Southern Military Theatre, Guangzhou 510610, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College, Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology of Chinese Academy of Medical Science (CAMS)/Peking Union Medical College (PUMC), Beijing 100730, China
| |
Collapse
|
14
|
Sparks Z, Wen Y, Hawkins I, Lednicky J, Abboud G, Nelson C, Driver JP, Chauhan A. Sustained release of inactivated H1N1 virus from degradable microparticles for extended vaccination. Eur J Pharm Biopharm 2024; 202:114388. [PMID: 38945409 DOI: 10.1016/j.ejpb.2024.114388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/14/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Influenza vaccines administered as intramuscularly injected inactivated viruses or intranasally administered live-attenuated viruses usually provide short-term protection against influenza infections. Biodegradable particles that provide sustained release of the antigen has been studied as an approach to extend vaccine protection. Here, we investigate sustained release of ultraviolet killed influenza A virus (A/PR/8/34(H1N1)) (kPR8) loaded into poly(D,L-lactic-co-glycolic acid) (PLGA) microparticles. Particles were prepared using the double emulsion method, and polymer molecular weight (MW), polymer hydrophobicity, polymer concentration in the organic phase, and the amount of killed virus were varied to obtain a range of particles. Formulations included PLGA 50:50 (2-6, 7-17 kDa), PLGA 75:25 (4-15 kDa), and 50/50 PLGA 75:25 (4-15 kDa)/PCL (14 kDa). Additionally, NaOH was co-encapsulated in some cases to enhance particle degradation. The structure of the particles was explored by size measurements and electron microscopy. The kPR8 release profiles were measured using hemagglutinin ELISA. The concentration of the polymer (PLGA) in the organic phase and polymer MW significantly influenced virus loading, while polymer MW and co-encapsulation of NaOH modulated the release profiles. Mice receiving a single intramuscular injection of NaOH microparticle-encapsulated kPR8 were partially protected against a lethal influenza challenge 32 weeks post immunization. Microparticle (MP) vaccination induced a gradual increase in PR8-specific IgGs dominated by IgG1 in contrast to the rapid IgG2a-biased response elicited by soluble kPR8 immunization. Our results indicate that vaccine-NaOH co-loaded PLGA particles show potential as a single dose vaccination strategy for extended protection against influenza virus infection.
Collapse
Affiliation(s)
- Zachary Sparks
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States
| | - Yuhan Wen
- Department of Animal Sciences, University of Florida, Gainesville, FL 32612, United States
| | - Ian Hawkins
- Department of Comparative, Diagnostic & Population Medicine, University of Florida, Gainesville, FL 32612, United States
| | - John Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32612, United States
| | - Georges Abboud
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32612, United States
| | - Corwin Nelson
- Department of Animal Sciences, University of Florida, Gainesville, FL 32612, United States
| | - John P Driver
- Department of Animal Sciences, University of Missouri, Columbia, MO 65201, United States; Bond Life Sciences Center, University of Missouri, Columbia, MO, 65201, United States.
| | - Anuj Chauhan
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
15
|
Lamprinos D, Vroulou M, Chatzopoulos M, Georgakopoulos P, Deligiorgi P, Oikonomou E, Siasos G, Botonis PG, Papavassiliou KA, Papagiannis D, Pouletidis T, Damaskos C, Rachiotis G, Marinos G. Influenza Vaccination Practices and Perceptions Among Young Athletes: A Cross-Sectional Study in Greece. Vaccines (Basel) 2024; 12:904. [PMID: 39204030 PMCID: PMC11360351 DOI: 10.3390/vaccines12080904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Influenza vaccination among athletes is a crucial area in sports medicine. This descriptive, cross-sectional study aims to explore the vaccination practices and intentions regarding influenza vaccines among young athletes. METHODS A structured, questionnaire-based study was conducted among students from the National School of Sports in Greece. The survey was conducted over the period of April to May 2023. Overall, 138 participants participated in the study. RESULTS More than half of the participants had received a flu vaccine in the past, but only 12.3% were vaccinated against influenza for 2022-2023. The main reasons seemed to be the lack of time (40.6%) and the idea that influenza does not lead to any serious health threats for the participants (36.2%). The main factor that affected their decision to get the flu vaccine or not was the need for more information regarding influenza vaccination (79%). CONCLUSIONS The recent study showed low vaccination coverage among people of young age participating in sports activities. The qualitative views of the participants highlighted the significance of the lackof a well-organized information program provided by health professionals and coaches.
Collapse
Affiliation(s)
- Dimitrios Lamprinos
- Emergency Care Department, Laiko General Hospital, 11527 Athens, Greece; (D.L.); (M.V.); (M.C.); (P.G.)
| | - Maria Vroulou
- Emergency Care Department, Laiko General Hospital, 11527 Athens, Greece; (D.L.); (M.V.); (M.C.); (P.G.)
| | - Michail Chatzopoulos
- Emergency Care Department, Laiko General Hospital, 11527 Athens, Greece; (D.L.); (M.V.); (M.C.); (P.G.)
| | - Panagiotis Georgakopoulos
- Emergency Care Department, Laiko General Hospital, 11527 Athens, Greece; (D.L.); (M.V.); (M.C.); (P.G.)
| | - Paraskevi Deligiorgi
- First Department of Cardiology, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.D.); (E.O.); (G.S.); (T.P.)
| | - Evangelos Oikonomou
- First Department of Cardiology, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.D.); (E.O.); (G.S.); (T.P.)
- Third Department of Cardiology, Thoracic Diseases General Hospital Sotiria, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gerasimos Siasos
- First Department of Cardiology, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.D.); (E.O.); (G.S.); (T.P.)
- Third Department of Cardiology, Thoracic Diseases General Hospital Sotiria, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros G. Botonis
- Department of Sports Medicine and Biology of Exercise, Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece;
| | - Kostas A. Papavassiliou
- First Department of Respiratory Medicine, “Sotiria” Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Papagiannis
- Public Health & Vaccines Laboratory, Department of Nursing, School of Health Science, University of Thessaly, 41500 Volos, Greece;
| | - Theodoros Pouletidis
- First Department of Cardiology, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.D.); (E.O.); (G.S.); (T.P.)
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - George Rachiotis
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
| | - Georgios Marinos
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
16
|
Silveira F, García F, García G, Chabalgoity JA, Rossi S, Baz M. Intranasal Delivery of Quillaja brasiliensis Saponin-Based Nanoadjuvants Improve Humoral Immune Response of Influenza Vaccine in Aged Mice. Vaccines (Basel) 2024; 12:902. [PMID: 39204028 PMCID: PMC11360193 DOI: 10.3390/vaccines12080902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Increasing the effectiveness of vaccines against respiratory viruses is particularly relevant for the elderly, since they are prone to develop serious infections due to comorbidities and the senescence of the immune system. The addition of saponin-based adjuvants is an interesting strategy to increase the effectiveness of vaccines. We have previously shown that ISCOM matrices from Q. brasiliensis (IMXQB) are a safe and potent adjuvant. In this study, we evaluated the use of IMXQB as an adjuvant for the seasonal trivalent influenza vaccine (TIV) in an aged mice model. Herein, we show that subcutaneous injection of the adjuvanted vaccine promoted higher titers of IgM, IgG (and isotypes), and serum hemagglutination inhibition titers (HAI). Notably, aged mice immunized by intranasal route also produced higher IgG (and isotypes) and IgA titers up to 120 days after priming, as well as demonstrating an improvement in the HAI antibodies against the TIV. Further, experimental infected aged mice treated once with sera from adult naïve mice previously immunized with TIV-IMXQB subcutaneously successfully controlled the infection. Overall, TIV-IMXQB improved the immunogenicity compared to TIV by enhancing systemic and mucosal immunity in old mice conferring a faster recovery after the H1N1pdm09-like virus challenge. Thus, IMXQB nanoparticles may be a promising platform for next-generation viral vaccines.
Collapse
Affiliation(s)
- Fernando Silveira
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, Montevideo 16100, Uruguay; (F.G.); (G.G.)
| | - Florencia García
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, Montevideo 16100, Uruguay; (F.G.); (G.G.)
| | - Gabriel García
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, Montevideo 16100, Uruguay; (F.G.); (G.G.)
| | - José A. Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, Montevideo 16100, Uruguay; (F.G.); (G.G.)
| | - Silvina Rossi
- Departamento de Bioquímica Clínica, Instituto Polo Tecnológico, Facultad de Química, UdelaR, Ramal ‘‘José D’Elía” Ruta 101 y 8, Canelones 91000, Uruguay;
| | - Mariana Baz
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada;
| |
Collapse
|
17
|
Wu Q, Wang W, Zhang X, Li D, Mei M. Effectively Evaluating a Novel Consensus Subunit Vaccine Candidate to Prevent the H9N2 Avian Influenza Virus. Vaccines (Basel) 2024; 12:849. [PMID: 39203975 PMCID: PMC11359011 DOI: 10.3390/vaccines12080849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
The enormous effects of avian influenza on poultry production and the possible health risks to humans have drawn much attention to this disease. The H9N2 subtype of avian influenza virus is widely prevalent among poultry, posing a direct threat to humans through infection or by contributing internal genes to various zoonotic strains of avian influenza. Despite the widespread use of H9N2 subtype vaccines, outbreaks of the virus persist due to the rapid antigenic drift and shifts in the influenza virus. As a result, it is critical to develop a broader spectrum of H9N2 subtype avian influenza vaccines and evaluate their effectiveness. In this study, a recombinant baculovirus expressing the broad-spectrum HA protein was obtained via bioinformatics analysis and a baculovirus expression system (BES). This recombinant hemagglutinin (HA) protein displayed cross-reactivity to positive sera against several subbranch H9 subtype AIVs. An adjuvant and purified HA protein were then used to create an rHA vaccine candidate. Evaluation of the vaccine demonstrated that subcutaneous immunization of the neck with the rHA vaccine candidate stimulated a robust immune response, providing complete clinical protection against various H9N2 virus challenges. Additionally, virus shedding was more effectively inhibited by rHA than by the commercial vaccine. Thus, our findings illustrate the efficacy of the rHA vaccine candidate in shielding chickens against the H9N2 virus challenge, underscoring its potential as an alternative to conventional vaccines.
Collapse
Affiliation(s)
- Qi Wu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Weihua Wang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Ding Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Mei Mei
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Q.W.); (W.W.); (X.Z.); (D.L.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| |
Collapse
|
18
|
Chang LA, Schotsaert M. Ally, adversary, or arbitrator? The context-dependent role of eosinophils in vaccination for respiratory viruses and subsequent breakthrough infections. J Leukoc Biol 2024; 116:224-243. [PMID: 38289826 PMCID: PMC11288382 DOI: 10.1093/jleuko/qiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Eosinophils are a critical type of immune cell and central players in type 2 immunity. Existing literature suggests that eosinophils also can play a role in host antiviral responses, typically type 1 immune events, against multiple respiratory viruses, both directly through release of antiviral mediators and indirectly through activation of other effector cell types. One way to prime host immune responses toward effective antiviral responses is through vaccination, where typically a type 1-skewed immunity is desirable in the context of intracellular pathogens like respiratory viruses. In the realm of breakthrough respiratory viral infection in vaccinated hosts, an event in which virus can still establish productive infection despite preexisting immunity, eosinophils are most prominently known for their link to vaccine-associated enhanced respiratory disease upon natural respiratory syncytial virus infection. This was observed in a pediatric cohort during the 1960s following vaccination with formalin-inactivated respiratory syncytial virus. More recent research has unveiled additional roles of the eosinophil in respiratory viral infection and breakthrough infection. The specific contribution of eosinophils to the quality of vaccine responses, vaccine efficacy, and antiviral responses to infection in vaccinated hosts remains largely unexplored, especially regarding their potential roles in protection. On the basis of current findings, we will speculate upon the suggested function of eosinophils and consider the many potential ways by which eosinophils may exert protective and pathological effects in breakthrough infections. We will also discuss how to balance vaccine efficacy with eosinophil-related risks, as well as the use of eosinophils and their products as potential biomarkers of vaccine efficacy or adverse events.
Collapse
Affiliation(s)
- Lauren A Chang
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, United States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1630, New York, NY 10029, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| |
Collapse
|
19
|
León AN, Rodriguez AJ, Richey ST, de la Peña AT, Wolters RM, Jackson AM, Webb K, Creech CB, Yoder S, Mudd PA, Crowe JE, Han J, Ward AB. Structural Mapping of Polyclonal IgG Responses to HA After Influenza Virus Vaccination or Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.601940. [PMID: 39026813 PMCID: PMC11257458 DOI: 10.1101/2024.07.08.601940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cellular and molecular characterization of immune responses elicited by influenza virus infection and seasonal vaccination have informed efforts to improve vaccine efficacy, breadth, and longevity. Here, we use negative stain electron microscopy polyclonal epitope mapping (nsEMPEM) to structurally characterize the humoral IgG antibody responses to hemagglutinin (HA) from human patients vaccinated with a seasonal quadrivalent flu vaccine or infected with influenza A viruses. Our data show that both vaccinated and infected patients had humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs, including the stem and anchor, which are targets for universal influenza vaccine design. Responses against H1 predominantly targeted the central stem epitope in infected patients and vaccinated donors, whereas head epitopes were more prominently targeted on H3. Responses against H3 were less abundant, but a greater diversity of H3 epitopes were targeted relative to H1. While our analysis is limited by sample size, on average, vaccinated donors responded to a greater diversity of epitopes on both H1 and H3 than infected patients. These data establish a baseline for assessing polyclonal antibody responses in vaccination and infection, providing context for future vaccine trials and emphasizing the importance of carefully designing vaccines to boost protective responses towards conserved epitopes.
Collapse
Affiliation(s)
- André Nicolás León
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Alesandra J. Rodriguez
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Sara T. Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Rachael M. Wolters
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN
- Oregon Health & Science University, Portland, OR
| | - Abigail M. Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Katherine Webb
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN
| | - C. Buddy Creech
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - Sandra Yoder
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - Philip A. Mudd
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine in St. Louis, St. Louis, MO
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine in St. Louis, St. Louis, MO
- Department of Emergency Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - James E. Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, San Diego, CA
| |
Collapse
|
20
|
Kondratiuk K, Poznańska A, Szymański K, Czajkowska E, Mańkowski B, Brydak LB. Occurrence of Circulating Antibodies against the Hemagglutinins of Influenza Viruses in the 2022/2023 Epidemic Season in Poland. Viruses 2024; 16:1105. [PMID: 39066267 PMCID: PMC11281470 DOI: 10.3390/v16071105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this study was to determine the level of anti-hemagglutinin antibodies in blood sera collected from patients during the 2022/2023 epidemic season in Poland. A total of 700 sera samples from patients across the country were tested. The samples were divided into seven groups according to the age of the patients, with 100 samples from each age group. The hemagglutination inhibition test (OZHA) was used to determine the level of anti-hemagglutinin antibodies. The test results have confirmed the presence of anti-hemagglutinin antibodies for antigens A/Victoria/2570/2019 (H1N1)pdm09, A/Darwin/9/2021 (H3N2), B/Austria/1359417/2021 (B/Yamagata lineage) and B/ Phuket/3073/2013 (B/Victoria lineage) present in the influenza vaccine recommended by the World Health Organization (WHO) for the 2022/2023 epidemic season. The highest geometric mean antibody titres (GMT) and protection rate values (%) were recorded for hemagglutinin A/H3N2. In Poland, in the 2022/2023 epidemic season, the percentage of the population vaccinated against influenza was 5.7%. Therefore, the test results can be interpreted as the response of the immune system in patients who have been previously infected with an influenza virus.
Collapse
Affiliation(s)
- Katarzyna Kondratiuk
- Laboratory of Influenza Viruses and Respiratory Viruses, Department of Virology, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (K.S.); (E.C.); (B.M.); (L.B.B.)
| | - Anna Poznańska
- Department of Population Health Monitoring and Analysis, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland;
| | - Karol Szymański
- Laboratory of Influenza Viruses and Respiratory Viruses, Department of Virology, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (K.S.); (E.C.); (B.M.); (L.B.B.)
| | - Emilia Czajkowska
- Laboratory of Influenza Viruses and Respiratory Viruses, Department of Virology, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (K.S.); (E.C.); (B.M.); (L.B.B.)
| | - Bartosz Mańkowski
- Laboratory of Influenza Viruses and Respiratory Viruses, Department of Virology, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (K.S.); (E.C.); (B.M.); (L.B.B.)
| | - Lidia B. Brydak
- Laboratory of Influenza Viruses and Respiratory Viruses, Department of Virology, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (K.S.); (E.C.); (B.M.); (L.B.B.)
| |
Collapse
|
21
|
Zhang Y, Zhuang X, Hu Y, Chen J, Hao K, Tang Z, Tian M, Tian H, Jin N, Chen X. Constructing a Ready-to-Use mRNA Vaccine Delivery System for the Prevention of Influenza A virus, Utilizing FDA-Approved Raw Materials. Biomacromolecules 2024; 25:4281-4291. [PMID: 38843459 DOI: 10.1021/acs.biomac.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Messenger ribonucleic acid (mRNA) vaccines, serving as a rapid and easily scalable emergency preventive measure, have played a pivotal role in preventing infectious diseases. The effectiveness of mRNA vaccines heavily relies on the delivery carrier, but the current market options are predominantly lipid nanoparticles. Their intricate preparation process and high transportation costs pose challenges for widespread use in remote areas. In this study, we harnessed FDA-approved polymer PLGA and lipid components widely employed in clinical experiments to craft a ready-to-use mRNA vaccine delivery system known as lipid-polymer hybrid nanoparticles (LPP). Following formulation optimization, the PDCD nanoparticles emerged as the most effective, showcasing exceptional mRNA delivery capabilities both in vitro and in vivo. Loading PDCD nanoparticles with mRNA encoding the H1N1 influenza virus HA antigen-fused M2e peptide enabled the successful induction of M2e-specific antibodies and T cell immune responses in immunized mice. After three rounds of vaccine immunization, the mice demonstrated weight recovery to normal levels and maintained a survival rate exceeding 80% following an encounter with the H1N1 influenza virus. The innovative mRNA delivery system that we designed demonstrates outstanding effectiveness in preventing infectious diseases, with the potential to play an even more significant role in future clinical applications.
Collapse
Affiliation(s)
- Yuyan Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Yingying Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kai Hao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Zhu F, Zheng W, Gong Y, Zhang J, Yu Y, Zhang J, Liu M, Guan F, Lei J. Trichinella spiralis Infection Inhibits the Efficacy of RBD Protein of SARS-CoV-2 Vaccination via Regulating Humoral and Cellular Immunity. Vaccines (Basel) 2024; 12:729. [PMID: 39066367 PMCID: PMC11281533 DOI: 10.3390/vaccines12070729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Vaccines are the most effective and feasible way to control pathogen infection. Helminths have been reported to jeopardize the protective immunity mounted by several vaccines. However, there are no experimental data about the effect of helminth infection on the effectiveness of COVID-19 vaccines. Here, a mouse model of trichinosis, a common zoonotic disease worldwide, was used to investigate effects of Trichinella spiralis infection on the RBD protein vaccine of SARS-CoV-2 and the related immunological mechanism, as well as the impact of albendazole (ALB) deworming on the inhibitory effect of the parasite on the vaccination. The results indicated that both the enteric and muscular stages of T. spiralis infection inhibited the vaccine efficacy, evidenced by decreased levels of IgG, IgM, sIgA, and reduced serum neutralizing antibodies, along with suppressed splenic germinal center (GC) B cells in the vaccinated mice. Pre-exposure to trichinosis promoted Th2 and/or Treg immune responses in the immunized mice. Furthermore, ALB treatment could partially reverse the inhibitory effect of T. spiralis infection on the efficiency of the vaccination, accompanied by a restored proportion of splenic GC B cells. Therefore, given the widespread prevalence of helminth infections worldwide, deworming therapy needs to be considered when implementing COVID-19 vaccination strategies.
Collapse
Affiliation(s)
- Feifan Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Wenwen Zheng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Yiyan Gong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Jinyuan Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Yihan Yu
- Department of Pulmonary Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan 430015, China; (Y.Y.); (J.Z.); (M.L.)
| | - Jixian Zhang
- Department of Pulmonary Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan 430015, China; (Y.Y.); (J.Z.); (M.L.)
| | - Mengjun Liu
- Department of Pulmonary Medicine, Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan 430015, China; (Y.Y.); (J.Z.); (M.L.)
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; (F.Z.); (W.Z.); (Y.G.); (J.Z.)
| |
Collapse
|
23
|
Tang P, Cui E, Cheng J, Li B, Tao J, Shi Y, Jiao J, Du E, Wang J, Liu H. A ferritin nanoparticle vaccine based on the hemagglutinin extracellular domain of swine influenza A (H1N1) virus elicits protective immune responses in mice and pigs. Front Immunol 2024; 15:1361323. [PMID: 38835763 PMCID: PMC11148206 DOI: 10.3389/fimmu.2024.1361323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Swine influenza viruses (SIVs) pose significant economic losses to the pig industry and are a burden on global public health systems. The increasing complexity of the distribution and evolution of different serotypes of influenza strains in swine herds escalates the potential for the emergence of novel pandemic viruses, so it is essential to develop new vaccines based on swine influenza. Methods Here, we constructed a self-assembling ferritin nanoparticle vaccine based on the hemagglutinin (HA) extracellular domain of swine influenza A (H1N1) virus using insect baculovirus expression vector system (IBEVS), and after two immunizations, the immunogenicities and protective efficacies of the HA-Ferritin nanoparticle vaccine against the swine influenza virus H1N1 strain in mice and piglets were evaluated. Results Our results demonstrated that HA-Ferritin nanoparticle vaccine induced more efficient immunity than traditional swine influenza vaccines. Vaccination with the HA-Ferritin nanoparticle vaccine elicited robust hemagglutinin inhibition titers and antigen-specific IgG antibodies and increased cytokine levels in serum. MF59 adjuvant can significantly promote the humoral immunity of HA-Ferritin nanoparticle vaccine. Furthermore, challenge tests showed that HA-Ferritin nanoparticle vaccine conferred full protection against lethal challenge with H1N1 virus and significantly decreased the severity of virus-associated lung lesions after challenge in both BALB/c mice and piglets. Conclusion Taken together, these results indicate that the hemagglutinin extracellular-based ferritin nanoparticle vaccine may be a promising vaccine candidate against SIVs infection.
Collapse
Affiliation(s)
- Pan Tang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Enhui Cui
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jie Tao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jiajie Jiao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
24
|
Principi N, Esposito S. Specific and Nonspecific Effects of Influenza Vaccines. Vaccines (Basel) 2024; 12:384. [PMID: 38675766 PMCID: PMC11054884 DOI: 10.3390/vaccines12040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
With the introduction of the influenza vaccine in the official immunization schedule of most countries, several data regarding the efficacy, tolerability, and safety of influenza immunization were collected worldwide. Interestingly, together with the confirmation that influenza vaccines are effective in reducing the incidence of influenza virus infection and the incidence and severity of influenza disease, epidemiological data have indicated that influenza immunization could be useful for controlling antimicrobial resistance (AMR) development. Knowledge of the reliability of these findings seems essential for precise quantification of the clinical relevance of influenza immunization. If definitively confirmed, these findings can have a relevant impact on influenza vaccine development and use. Moreover, they can be used to convince even the most recalcitrant health authorities of the need to extend influenza immunization to the entire population. In this narrative review, present knowledge regarding these particular aspects of influenza immunization is discussed. Literature analysis showed that the specific effects of influenza immunization are great enough per se to recommend systematic annual immunization of younger children, old people, and all individuals with severe chronic underlying diseases. Moreover, influenza immunization can significantly contribute to limiting the emergence of antimicrobial resistance. The problem of the possible nonspecific effects of influenza vaccines remains unsolved. The definition of their role as inducers of trained immunity seems essential not only to evaluate how much they play a role in the prevention of infectious diseases but also to evaluate whether they can be used to prevent and treat clinical conditions in which chronic inflammation and autoimmunity play a fundamental pathogenetic role.
Collapse
Affiliation(s)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
25
|
Palmu AA, Pepin S, Syrjänen RK, Mari K, Mallett Moore T, Jokinen J, Nieminen H, Kilpi T, Samson SI, De Bruijn I. High-Dose Quadrivalent Influenza Vaccine for Prevention of Cardiovascular and Respiratory Hospitalizations in Older Adults. Influenza Other Respir Viruses 2024; 18:e13270. [PMID: 38569647 PMCID: PMC10990679 DOI: 10.1111/irv.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND We assessed the relative vaccine effectiveness (rVE) of high-dose quadrivalent influenza vaccine (QIV-HD) versus standard-dose quadrivalent influenza vaccine (QIV-SD) in preventing respiratory or cardiovascular hospitalizations in older adults. METHODS FinFluHD was a phase 3b/4 modified double-blind, randomized pragmatic trial. Enrolment of 121,000 adults ≥65 years was planned over three influenza seasons (October to December 2019-2021). Participants received a single injection of QIV-HD or QIV-SD. The primary endpoint was first occurrence of an unscheduled acute respiratory or cardiovascular hospitalization (ICD-10 primary discharge J/I codes), from ≥14 days post-vaccination until May 31. The study was terminated after one season due to COVID-19; follow-up data for 2019-2020 are presented. RESULTS 33,093 participants were vaccinated (QIV-HD, n = 16,549; QIV-SD, n = 16,544); 529 respiratory or cardiovascular hospitalizations (QIV-HD, n = 257; QIV-SD, n = 272) were recorded. The rVE of QIV-HD versus QIV-SD to prevent respiratory/cardiovascular hospitalizations was 5.5% (95% CI, -12.4 to 20.7). When prevention of respiratory and cardiovascular hospitalizations were considered separately, rVE estimates of QIV-HD versus QIV-SD were 5.4% (95% CI, -28.0 to 30.1) and 7.1% (95% CI, -15.0 to 25.0), respectively. Serious adverse reactions were <0.01% in both groups. CONCLUSIONS Despite insufficient statistical power due to the impact of COVID-19, rVE point estimates demonstrated a trend toward a benefit of QIV-HD over QIV-SD. QIV-HD was associated with lower respiratory or cardiovascular hospitalization rates than QIV-SD, with a comparable safety profile. Adequately powered studies conducted over multiple influenza seasons are needed to determine statistical significance of QIV-HD compared with QIV-SD against preventing respiratory and cardiovascular hospitalizations. TRIAL REGISTRATION ClinicalTrials.gov number: NCT04137887.
Collapse
Affiliation(s)
- Arto A. Palmu
- Finnish Institute for Health and Welfare (THL)TampereFinland
| | | | | | - Karine Mari
- Biostatistics Global Clinical DevelopmentSanofiMarcy L'EtoileFrance
| | | | - Jukka Jokinen
- Finnish Institute for Health and Welfare (THL)HelsinkiFinland
| | - Heta Nieminen
- Finnish Institute for Health and Welfare (THL)TampereFinland
| | - Terhi Kilpi
- Finnish Institute for Health and Welfare (THL)HelsinkiFinland
| | | | | |
Collapse
|
26
|
Irfan B, Yasin I, Yaqoob A. The Birth of the Contextual Health Education Readability Score in an Examination of Online Influenza Patient Education Materials. Cureus 2024; 16:e56715. [PMID: 38650807 PMCID: PMC11033604 DOI: 10.7759/cureus.56715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Influenza is a major global health concern, with its rapid spread and mutation rate posing significant challenges in public health education and communication. Effective patient education materials (PEMs) are crucial for informed decision-making and improved health outcomes. This study evaluates the efficacy of online influenza PEMs using traditional readability tools and introduces the Contextual Health Education Readability Score (CHERS) to address the limitations of existing methods that do not capture the diverse array of visual and thematic means displayed. Materials and methods A comprehensive search was conducted to select relevant online influenza PEMs. This involved looking through Google's first two pages of results sorted by relevance, for a total of 20 results. These materials were evaluated using established readability tools (e.g., Flesch Reading Ease, Flesch-Kincaid Grade Level) and the Patient Education Materials Assessment Tool (PEMAT) for understandability and actionability. The study also involved the creation of CHERS, integrating factors such as semantic complexity, cultural relevance, and visual aid effectiveness. The development of CHERS included weighting each component based on its impact on readability and comprehension. Results The traditional readability tools demonstrated significant variability in the readability of the selected materials. The PEMAT analysis revealed general trends toward clarity in purpose and use of everyday language but indicated a need for improvement in summaries and visual aids. The CHERS formula was calculated as follows: CHERS = (0.4 × Average Sentence Length) + (0.3 × Average Syllables per Word) + (0.15 × Semantic Complexity Score) + (0.1 × Cultural Relevance Score) + (0.05 × Visual Aid Effectiveness Score), integrating multiple dimensions beyond traditional readability metrics. Discussion The study highlighted the limitations of traditional readability tools in assessing the complexity and cultural relevance of health information. The introduction of CHERS addressed these gaps by incorporating additional dimensions crucial for understanding in a healthcare context. The recommendations provided for creating effective influenza PEMs focused on language simplicity, cultural sensitivity, and actionability. This may enable further research into evaluating current PEMs and clarifying means of creating more effective content in the future. Conclusions The study underscores the need for comprehensive readability assessments in PEMs. The creation of CHERS marks a significant advancement in this field, providing a more holistic approach to evaluating health literacy materials. Its application could lead to the development of more inclusive and effective educational content, thereby improving public health outcomes and reducing the global burden of influenza. Future research should focus on further validating CHERS and exploring its applicability to other health conditions.
Collapse
Affiliation(s)
- Bilal Irfan
- Microbiology and Immunology, University of Michigan, Ann Arbor, USA
| | - Ihsaan Yasin
- Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
27
|
Jiang W, Lu C, Yan X, Tucker JD, Lin L, Li J, Larson HJ, Gong W, Wu D. Vaccine confidence mediates the association between a pro-social pay-it-forward intervention and improved influenza vaccine uptake in China: A mediation analysis. Vaccine 2024; 42:362-368. [PMID: 38103961 PMCID: PMC10789265 DOI: 10.1016/j.vaccine.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION A Chinese clinical trial has demonstrated that a prosocial pay-it-forward intervention that offered subsidized vaccination and postcard messages effectively increased influenza vaccine uptake and vaccine confidence. This secondary analysis explored the potential mediating role of vaccine confidence on the association between a pay-it-forward intervention and influenza vaccine uptake, and how this might vary by individual annual income levels. METHODS Data from 300 participants (150 standard-of-care and 150 pay-it-forward participants) were included in the analysis. We conducted descriptive analysis of demographic and vaccine confidence variables. Multivariable regression and mediation analysis on interventions, vaccine confidence and vaccine uptake were conducted. A sub-group analysis was conducted to further understand whether associations between these variables vary by income levels (<=$1860 or >$1860). RESULTS The pay-it-forward intervention was significantly associated with greater levels of perceived influenza vaccine importance (adjusted odds ratio (aOR) = 3.60, 95 %CI: 1.77-7.32), effectiveness (aOR = 3.37, 95 %CI: 1.75-6.52) and safety (aOR = 2.20, 95 %CI: 1.17-4.15). Greater perceived influenza vaccine importance was associated with increased vaccine uptake (aOR = 8.51, 95 %CI: 3.04-23.86). The indirect effect of the pay-it-forward intervention on vaccination was significant through improved perceived influenza vaccine importance (indirect effect1 = 0.07, 95 %CI: 0.02-0.11). This study further revealed that, irrespective of the individual income level, the pay-it-forward intervention was associated with increased vaccine uptake when compared to the standard-of-care approach. CONCLUSIONS Pay-it-forward intervention may be a promising strategy to improve influenza vaccine uptake. Perceived confidence in vaccine importance appears to be a potential mediator of the association between pay-it-forward and vaccine uptake.
Collapse
Affiliation(s)
- Wenwen Jiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; School of Public Health of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunlei Lu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; School of Public Health of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xumeng Yan
- University of North Carolina Project-China, Guangzhou, China; SESH (Social Entrepreneurship to Spur Health) Team, Guangzhou, China
| | - Joseph D Tucker
- SESH (Social Entrepreneurship to Spur Health) Team, Guangzhou, China; School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Room 360, Keppel St, London WC1E 7HT, UK
| | - Leesa Lin
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong Special Administrative Region; WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jing Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Heidi J Larson
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
| | - Wenfeng Gong
- China Country Office of the Bill and Melinda Gates Foundation, China
| | - Dan Wu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Room 360, Keppel St, London WC1E 7HT, UK; Department of Social Medicine and Health Education, School of Public Health of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
28
|
Yang Z, Yu S, Xu Y, Zhao Y, Li L, Sun J, Wang X, Guo Y, Zhang Y. The Screening and Mechanism of Influenza-Virus Sensitive MDCK Cell Lines for Influenza Vaccine Production. Diseases 2024; 12:20. [PMID: 38248371 PMCID: PMC10814076 DOI: 10.3390/diseases12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Influenza is a potentially fatal acute respiratory viral disease caused by the influenza virus. Influenza viruses vary in antigenicity and spread rapidly, resulting in seasonal epidemics. Vaccination is the most effective strategy for lowering the incidence and fatality rates of influenza-related disorders, and it is also an important method for reducing seasonal influenza infections. Mammalian Madin-Darby canine kidney (MDCK) cell lines are recommended for influenza virus growth, and such cell lines have been utilized in several commercial influenza vaccine productions. The limit dilution approach was used to screen ATCC-MDCK cell line subcellular strains that are especially sensitive to H1N1, H3N2, BV, and BY influenza viruses to increase virus production, and research on influenza virus culture media was performed to support influenza virus vaccine development. We also used RNA sequencing to identify differentially expressed genes and a GSEA analysis to determine the biological mechanisms underlying the various levels of susceptibility of cells to influenza viruses. MDCK cell subline 2B6 can be cultured to increase titer and the production of the H1N1, H3N2, BV, and BY influenza viruses. MDCK-2B6 has a significantly enriched and activated in ECM receptor interaction, JAK-STAT signaling, and cytokine receptor interaction signaling pathways, which may result in increased cellular susceptibility and cell proliferation activity to influenza viruses, promote viral adsorption and replication, and elevate viral production, ultimately. The study revealed that MDCK-2B6 can increase the influenza virus titer and yield in vaccine production by increasing cell sensitivity and enhancing proliferative activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China; (Z.Y.); (Y.X.); (Y.Z.); (L.L.); (J.S.); (X.W.); (Y.G.)
| |
Collapse
|
29
|
Gu J, Xu Z, Liu Q, Tang S, Zhang W, Xie S, Chen X, Chen J, Yong KT, Yang C, Xu G. Building a Better Silver Bullet: Current Status and Perspectives of Non-Viral Vectors for mRNA Vaccines. Adv Healthc Mater 2024; 13:e2302409. [PMID: 37964681 DOI: 10.1002/adhm.202302409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Indexed: 11/16/2023]
Abstract
In recent years, messenger RNA (mRNA) vaccines have exhibited great potential to replace conventional vaccines owing to their low risk of insertional mutagenesis, safety and efficacy, rapid and scalable production, and low-cost manufacturing. With the great achievements of chemical modification and sequence optimization methods of mRNA, the key to the success of mRNA vaccines is strictly dependent on safe and efficient gene vectors. Among various delivery platforms, non-viral mRNA vectors could represent perfect choices for future clinical translation regarding their safety, sufficient packaging capability, low immunogenicity, and versatility. In this review, the recent progress in the development of non-viral mRNA vectors is focused on. Various organic vectors including lipid nanoparticles (LNPs), polymers, peptides, and exosomes for efficient mRNA delivery are presented and summarized. Furthermore, the latest advances in clinical trials of mRNA vaccines are described. Finally, the current challenges and future possibilities for the clinical translation of these promising mRNA vectors are also discussed.
Collapse
Affiliation(s)
- Jiayu Gu
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan, University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518102, China
| | - Shiqi Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Wenguang Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Shouxia Xie
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan, University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518102, China
| | - Jiajie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| |
Collapse
|
30
|
Shi H, Ross TM. Inactivated recombinant influenza vaccine: the promising direction for the next generation of influenza vaccine. Expert Rev Vaccines 2024; 23:409-418. [PMID: 38509022 PMCID: PMC11056089 DOI: 10.1080/14760584.2024.2333338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Vaccination is the most effective method to control the prevalence of seasonal influenza and the most widely used influenza vaccine is the inactivated influenza vaccine (IIV). Each season, the influenza vaccine must be updated to be most effective against current circulating variants. Therefore, developing a universal influenza vaccine (UIV) that can elicit both broad and durable protection is of the utmost importance. AREA COVERED This review summarizes and compares the available influenza vaccines in the market and inactivation methods used for manufacturing IIVs. Then, we discuss the latest progress of the UIV development in the IIV format and the challenges to address for moving these vaccine candidates to clinical trials and commercialization. The literature search was based on the Centers for Disease Control and Prevention (CDC) and the PubMed databases. EXPERT OPINION The unmet need for UIV is the primary aim of developing the next generation of influenza vaccines. The IIV has high antigenicity and a refined manufacturing process compared to most other formats. Developing the UIV in IIV format is a promising direction with advanced biomolecular technologies and next-generation adjuvant. It also inspires the development of universal vaccines for other infectious diseases.
Collapse
Affiliation(s)
- Hua Shi
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
31
|
Lee SY, Lee J, Park HL, Park YW, Kim H, Nam JH. The Adenylyl Cyclase Activator Forskolin Increases Influenza Virus Propagation in MDCK Cells by Regulating ERK1/2 Activity. J Microbiol Biotechnol 2023; 33:1576-1586. [PMID: 37644733 PMCID: PMC10772552 DOI: 10.4014/jmb.2306.06027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Vaccination is the most effective method for preventing the spread of the influenza virus. Cell-based influenza vaccines have been developed to overcome the disadvantages of egg-based vaccines and their production efficiency has been previously discussed. In this study, we investigated whether treatment with forskolin (FSK), an adenylyl cyclase activator, affected the output of a cell-based influenza vaccine. We found that FSK increased the propagation of three influenza virus subtypes (A/H1N1/California/4/09, A/H3N2/Mississippi/1/85, and B/Shandong/7/97) in Madin-Darby canine kidney (MDCK) cells. Interestingly, FSK suppressed the growth of MDCK cells. This effect could be a result of protein kinase A (PKA)-Src axis activation, which downregulates extracellular signal-regulated kinase (ERK)1/2 activity and delays cell cycle progression from G1 to S. This delay in cell growth might benefit the binding and entry of the influenza virus in the early stages of viral replication. In contrast, FSK dramatically upregulated ERK1/2 activity via the cAMP-PKA-Raf-1 axis at a late stage of viral replication. Thus, increased ERK1/2 activity might contribute to increased viral ribonucleoprotein export and influenza virus propagation. The increase in viral titer induced by FSK could be explained by the action of cAMP in assisting the entry and binding of the influenza virus. Therefore, FSK addition to cell culture systems could help increase the production efficiency of cell-based vaccines against the influenza virus.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hye-Lim Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yong-Wook Park
- Department of R&D, SK Bioscience, Seongnam 13493, Republic of Korea
| | - Hun Kim
- Department of R&D, SK Bioscience, Seongnam 13493, Republic of Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- BK21 FOUR Department of Biotechnology, The Catholic University of Korea
| |
Collapse
|
32
|
Dopelt K, Yukther S, Shmukler T, Abudin A. Vaccine Hesitancy in Israel: Exploring the Relationships with Vaccination History, Knowledge, and Attitudes towards Influenza Vaccines. Eur J Investig Health Psychol Educ 2023; 14:37-48. [PMID: 38248123 PMCID: PMC10814916 DOI: 10.3390/ejihpe14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Influenza vaccination is a highly effective strategy for mitigating all the repercussions of influenza infections. Despite the potential severity of influenza and the accessibility of secure vaccinations, worldwide rates of influenza vaccination continue to be low, particularly among students. This study examines the correlative relationships between influenza vaccine history, knowledge, attitudes toward influenza vaccines, and vaccine hesitancy among college students. To that end, we used an online questionnaire to conduct a cross-sectional study encompassing 610 students. A significant majority of participants reported having experienced influenza (82%), with slightly more than half having received influenza vaccinations in the past (57%). With respect to the current research year, health sciences students exhibited a higher likelihood of either having been vaccinated or intending to receive the vaccine than did their counterparts. Among students who had been vaccinated previously, approximately one-fifth opted for vaccination in the present year (21%). Similarly, 22% of the students whose parents were vaccinated chose to get vaccinated this year. Notable disparities in knowledge about influenza vaccines were observed across various departments, with health sciences students demonstrating the highest levels of awareness. Moreover, a negative relationship was found between knowledge, attitudes, and vaccine hesitancy. These results suggest that targeted lectures by professionals emphasizing vaccine safety and university-hosted events addressing this subject in collaboration with the Ministry of Health, incorporating influenza vaccination stations, could be instrumental in bolstering the vaccination rate.
Collapse
Affiliation(s)
- Keren Dopelt
- Department of Public Health, Ashkelon Academic College, Ashkelon 78211, Israel
- School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Sophie Yukther
- Department of Public Health, Ashkelon Academic College, Ashkelon 78211, Israel
| | - Tatyana Shmukler
- Department of Public Health, Ashkelon Academic College, Ashkelon 78211, Israel
| | - Anuar Abudin
- Department of Public Health, Ashkelon Academic College, Ashkelon 78211, Israel
| |
Collapse
|
33
|
Moa A, Kunasekaran M, Akhtar Z, Costantino V, MacIntyre CR. Systematic review of influenza vaccine effectiveness against laboratory-confirmed influenza among older adults living in aged care facilities. Hum Vaccin Immunother 2023; 19:2271304. [PMID: 37929779 PMCID: PMC10629430 DOI: 10.1080/21645515.2023.2271304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
We estimated the effectiveness of influenza vaccines in preventing laboratory-confirmed influenza among older adults in aged care. Electronic database searches were conducted using search terms, and studies were selected as per the selection criteria. Fourteen studies were included for final review. The studies exhibited considerable variation in reported vaccine effectiveness (VE) across different seasons. Among the observational studies, VE ranged from 7.2% to 89.8% against laboratory-confirmed influenza across different vaccines. Randomized clinical trials demonstrated a 17% reduction in infection rates with the adjuvanted trivalent vaccine. The limitations include the small number of included studies conducted in different countries or regions, varied seasons, variations in diagnostic testing methods, a focus on the A/H3N2 strain, and few studies available on the effectiveness of enhanced influenza vaccines in aged care settings. Despite challenges associated with achieving optimal protection, the studies showed the benefits of influenza vaccination in the elderly residents.
Collapse
Affiliation(s)
- Aye Moa
- Biosecurity Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Mohana Kunasekaran
- Biosecurity Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Zubair Akhtar
- Biosecurity Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Valentina Costantino
- Biosecurity Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - C. Raina MacIntyre
- Biosecurity Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
- College of Public Service and Community Solutions, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
34
|
Zafarani A, Razizadeh MH, Haghi A. Neutrophil extracellular traps in influenza infection. Heliyon 2023; 9:e23306. [PMID: 38144312 PMCID: PMC10746519 DOI: 10.1016/j.heliyon.2023.e23306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Despite recent progress in developing novel therapeutic approaches and vaccines, influenza is still considered a global health threat, with about half a million mortality worldwide. This disease is caused by Influenza viruses, which are known for their rapid evolution due to different genetical mechanisms that help them develop new strains with the ability to evade therapies and immunization. Neutrophils are one of the first immune effectors that act against pathogens. They use multiple mechanisms, including phagocytosis, releasing the reactive oxygen species, degranulation, and the production of neutrophil extracellular traps. Neutrophil extracellular traps are used to ensnare pathogens; however, their dysregulation is attributed to inflammatory and infectious diseases. Here, we discuss the effects of these extracellular traps in the clinical course of influenza infection and their ability to be a potential target in treating influenza infection.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Haghi
- Young Researchers & Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
35
|
Dopelt K, Abudin A, Yukther S, Shmukler T, Davidovitch N. The Association between Levels of Trust in the Healthcare System and Influenza Vaccine Hesitancy among College Students in Israel. Vaccines (Basel) 2023; 11:1728. [PMID: 38006060 PMCID: PMC10674655 DOI: 10.3390/vaccines11111728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Influenza is a contagious respiratory disease caused by the influenza virus. Vaccination proves an effective approach to preventing influenza and minimizing the risk of experiencing associated complications. However, the influenza vaccine coverage rate among Israeli college students is low due to a sense of complacency, lack of knowledge, and vaccine hesitancy. The current study examined the relationship between the level of trust in the healthcare system and influenza vaccine hesitancy among college students in Israel. This cross-sectional study was conducted via an online questionnaire in April-May 2023. In total, 610 students were surveyed, of whom 57% had been vaccinated against influenza in the past; however, only 12% were vaccinated this year. Negative, significant, and moderate relationships were found between the level of trust in the healthcare system and influenza vaccine hesitancy. Students who had been vaccinated in the past had a higher level of trust in the healthcare system and a lower level of vaccination hesitancy. The linear regression model revealed that the variables of being a woman, not Jewish, vaccinated, and trusting the Ministry of Health, family doctor, and health professionals were associated with a decrease in vaccine hesitancy. These findings are in line with previous research in the field. Based on the present results, it may be advisable to develop intervention programs aimed at increasing confidence in the healthcare system and vaccinations by providing knowledge and addressing students' concerns regarding vaccination.
Collapse
Affiliation(s)
- Keren Dopelt
- Department of Public Health, Ashkelon Academic College, Ashkelon 78211, Israel, (S.Y.)
- School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Anuar Abudin
- Department of Public Health, Ashkelon Academic College, Ashkelon 78211, Israel, (S.Y.)
| | - Sophie Yukther
- Department of Public Health, Ashkelon Academic College, Ashkelon 78211, Israel, (S.Y.)
| | - Tatyana Shmukler
- Department of Public Health, Ashkelon Academic College, Ashkelon 78211, Israel, (S.Y.)
| | - Nadav Davidovitch
- School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel;
| |
Collapse
|
36
|
He X, Zhang T, Huan S, Yang Y. Novel Influenza Vaccines: From Research and Development (R&D) Challenges to Regulatory Responses. Vaccines (Basel) 2023; 11:1573. [PMID: 37896976 PMCID: PMC10610648 DOI: 10.3390/vaccines11101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza vaccines faced significant challenges in achieving sufficient protective efficacy and production efficiency in the past. In recent decades, novel influenza vaccines, characterized by efficient and scalable production, advanced platforms, and new adjuvant technologies, have overcome some of these weaknesses and have been widely licensed. Furthermore, researchers are actively pursuing the development of next-generation and universal influenza vaccines to provide comprehensive protection against potential pandemic subtypes or strains. However, new challenges have emerged as these novel vaccines undergo evaluation and authorization. In this review, we primarily outline the critical challenges and advancements in research and development (R&D) and highlight the improvements in regulatory responses for influenza vaccines.
Collapse
Affiliation(s)
- Xiangchuan He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; (X.H.); (T.Z.)
- Key Laboratory of Innovative Drug Research and Evaluation, National Medical Products Administration, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Tianxiang Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; (X.H.); (T.Z.)
- Key Laboratory of Innovative Drug Research and Evaluation, National Medical Products Administration, Beijing 100084, China
| | - Shitong Huan
- China Office, The Bill & Melinda Gates Foundation, Beijing 100084, China
| | - Yue Yang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; (X.H.); (T.Z.)
- Key Laboratory of Innovative Drug Research and Evaluation, National Medical Products Administration, Beijing 100084, China
| |
Collapse
|
37
|
Onkhonova G, Gudymo A, Kosenko M, Marchenko V, Ryzhikov A. Quantitative measurement of influenza virus transmission in animal model: an overview of current state. Biophys Rev 2023; 15:1359-1366. [PMID: 37975001 PMCID: PMC10643727 DOI: 10.1007/s12551-023-01113-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Influenza virus transmission is a crucial factor in understanding the spread of the virus within populations and developing effective control strategies. Studying the transmission patterns of influenza virus allows for better risk assessment and prediction of disease outbreaks. By monitoring the spread of the virus and identifying high-risk populations and geographic areas, it is possible to allocate resources more effectively, implement timely interventions, and provide targeted healthcare interventions to diminish the burden of influenza virus on vulnerable populations. Theoretical models of virus transmission are used to study and simulate of influenza virus spread within populations. These models aim to capture the complex dynamics of transmission, including factors such as population size, contact patterns, infectiousness, and susceptibility. Animal models serve as valuable tools for studying the dynamics of influenza virus transmission. This article presents a brief overview of existing research on the qualitative and quantitative study of influenza virus transmission in animal models. We discuss the methodologies employed, key insights gained from these studies, and their relevance.
Collapse
Affiliation(s)
- Galina Onkhonova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Andrei Gudymo
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Maksim Kosenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Vasiliy Marchenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Alexander Ryzhikov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| |
Collapse
|
38
|
Martins JSCDC, Sousa TDC, Oliveira MDLDA, Gimba ERP, Siqueira MM, Matos ADR. Total Osteopontin and Its Isoform OPN4 Are Differently Expressed in Respiratory Samples during Influenza A(H1N1)pdm09 Infection and Progression. Microorganisms 2023; 11:1349. [PMID: 37317323 DOI: 10.3390/microorganisms11051349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/16/2023] Open
Abstract
Influenza A virus (IAV) infection affects the human respiratory tract, causing an acute and highly contagious disease. Individuals with comorbidities and in the extremes of age are classified as risk groups for serious clinical outcomes. However, part of the severe infections and fatalities are observed among young healthy individuals. Noteworthy, influenza infections lack specific prognostic biomarkers that would predict the disease severity. Osteopontin (OPN) has been proposed as a biomarker in a few human malignancies and its differential modulation has been observed during viral infections. However, OPN expression levels in the primary site of IAV infection have not been previously investigated. Therefore, we evaluated the transcriptional expression patterns of total OPN (tOPN) and its splicing isoforms (OPNa, OPNb, OPNc, OPN4, and OPN5) in 176 respiratory secretion samples collected from human influenza A(H1N1)pdm09 cases and a group of 65 IAV-negative controls. IAV samples were differentially classified according to their disease severity. tOPN was more frequently detected in IAV samples (34.1%) when compared with the negative controls (18.5%) (p < 0.05), as well as in fatal (59.1%) versus non-fatal IAV samples (30.5%) (p < 0.01). OPN4 splice variant transcript was more prevalent in IAV cases (78.4%) than in the negative controls (66.1%) (p = 0.05) and in severe cases (85.7%) in relation to the non-severe ones (69.2%) (p < 0.01). OPN4 detection was also associated with severity symptoms such as dyspnea (p < 0.05), respiratory failure (p < 0.05), and oxygen saturation < 95% (p < 0.05). In addition, the OPN4 expression level was increased in the fatal cases of respiratory samples. Our data indicated that tOPN and OPN4 had a more pronounced expression pattern in IAV respiratory samples, pointing to the potential use of these molecules as biomarkers to evaluate disease outcomes.
Collapse
Affiliation(s)
- Jéssica Santa Cruz de Carvalho Martins
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| | - Thiago das Chagas Sousa
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| | - Maria de Lourdes de Aguiar Oliveira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| | - Etel Rodrigues Pereira Gimba
- Grupo de Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Praça da Cruz Vermelha, 23, andar 6, Rio de Janeiro 20230-130, Brazil
- Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, andar 3, Rio de Janeiro 20231-050, Brazil
- Programa de Pós-Graduação em Ciências Biomédicas, Fisiologia e Farmacologia, Instituto Biomédico, Av. Prof. Hernani Melo, 101, Niterói 24210-130, Brazil
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Rua Recife 1-7, Bela Vista, Rio das Ostras 28880-000, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| | - Aline da Rocha Matos
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz. Av. Leopoldo Bulhões, Manguinhos, 1480, Rio de Janeiro 20230-130, Brazil
| |
Collapse
|
39
|
Luo J, Zhang Z, Zhao S, Gao R. A Comparison of Etiology, Pathogenesis, Vaccinal and Antiviral Drug Development between Influenza and COVID-19. Int J Mol Sci 2023; 24:ijms24076369. [PMID: 37047339 PMCID: PMC10094131 DOI: 10.3390/ijms24076369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Influenza virus and coronavirus, two kinds of pathogens that exist widely in nature, are common emerging pathogens that cause respiratory tract infections in humans. In December 2019, a novel coronavirus SARS-CoV-2 emerged, causing a severe respiratory infection named COVID-19 in humans, and raising a global pandemic which has persisted in the world for almost three years. Influenza virus, a seasonally circulating respiratory pathogen, has caused four global pandemics in humans since 1918 by the emergence of novel variants. Studies have shown that there are certain similarities in transmission mode and pathogenesis between influenza and COVID-19, and vaccination and antiviral drugs are considered to have positive roles as well as several limitations in the prevention and control of both diseases. Comparative understandings would be helpful to the prevention and control of these diseases. Here, we review the study progress in the etiology, pathogenesis, vaccine and antiviral drug development for the two diseases.
Collapse
|
40
|
SARS-CoV-2 Vaccines, Vaccine Development Technologies, and Significant Efforts in Vaccine Development during the Pandemic: The Lessons Learned Might Help to Fight against the Next Pandemic. Vaccines (Basel) 2023; 11:vaccines11030682. [PMID: 36992266 DOI: 10.3390/vaccines11030682] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
We are currently approaching three years since the beginning of the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 has caused extensive disruptions in everyday life, public health, and the global economy. Thus far, the vaccine has worked better than expected against the virus. During the pandemic, we experienced several things, such as the virus and its pathogenesis, clinical manifestations, and treatments; emerging variants; different vaccines; and the vaccine development processes. This review describes how each vaccine has been developed and approved with the help of modern technology. We also discuss critical milestones during the vaccine development process. Several lessons were learned from different countries during the two years of vaccine research, development, clinical trials, and vaccination. The lessons learned during the vaccine development process will help to fight the next pandemic.
Collapse
|
41
|
Silveira F, Rivera-Patron M, Deshpande N, Sienra S, Checa J, Moreno M, Chabalgoity JA, Cibulski SP, Baz M. Quillaja brasiliensis nanoparticle adjuvant formulation improves the efficacy of an inactivated trivalent influenza vaccine in mice. Front Immunol 2023; 14:1163858. [PMID: 37197659 PMCID: PMC10183569 DOI: 10.3389/fimmu.2023.1163858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023] Open
Abstract
The threat of viral influenza infections has sparked research efforts to develop vaccines that can induce broadly protective immunity with safe adjuvants that trigger robust immune responses. Here, we demonstrate that subcutaneous or intranasal delivery of a seasonal trivalent influenza vaccine (TIV) adjuvanted with the Quillaja brasiliensis saponin-based nanoparticle (IMXQB) increases the potency of TIV. The adjuvanted vaccine (TIV-IMXQB) elicited high levels of IgG2a and IgG1 antibodies with virus-neutralizing capacity and improved serum hemagglutination inhibition titers. The cellular immune response induced by TIV-IMXQB suggests the presence of a mixed Th1/Th2 cytokine profile, antibody-secreting cells (ASCs) skewed toward an IgG2a phenotype, a positive delayed-type hypersensitivity (DTH) response, and effector CD4+ and CD8+ T cells. After challenge, viral titers in the lungs were significantly lower in animals receiving TIV-IMXQB than in those inoculated with TIV alone. Most notably, mice vaccinated intranasally with TIV-IMXQB and challenged with a lethal dose of influenza virus were fully protected against weight loss and lung virus replication, with no mortality, whereas, among animals vaccinated with TIV alone, the mortality rate was 75%. These findings demonstrate that TIV-IMXQB improved the immune responses to TIV, and, unlike the commercial vaccine, conferred full protection against influenza challenge.
Collapse
Affiliation(s)
- Fernando Silveira
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Fernando Silveira, ; Mariana Baz,
| | - Mariana Rivera-Patron
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Nikita Deshpande
- World Health Organization Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Soledad Sienra
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jackeline Checa
- Unidad de Biología Parasitaria, Facultad de Ciencias, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jose A. Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Samuel P. Cibulski
- Centro de Biotecnologia – CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Mariana Baz
- World Health Organization Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Fernando Silveira, ; Mariana Baz,
| |
Collapse
|
42
|
Qiao Z, Liao Y, Pei M, Qiu Z, Liu Z, Jin D, Zhang J, Ma Z, Yang X. RSAD2 Is an Effective Target for High-Yield Vaccine Production in MDCK Cells. Viruses 2022; 14:v14112587. [PMID: 36423196 PMCID: PMC9695692 DOI: 10.3390/v14112587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Increasingly, attention has focused on improving vaccine production in cells using gene editing technology to specifically modify key virus regulation-related genes to promote virus replication. In this study, we used DIA proteomics analysis technology to compare protein expression differences between two groups of MDCK cells: uninfected and influenza A virus (IAV) H1N1-infected cells 16 h post infection (MOI = 0.01). Initially, 266 differentially expressed proteins were detected after infection, 157 of which were upregulated and 109 were downregulated. We screened these proteins to 23 genes related to antiviral innate immunity regulation based on functional annotation database analysis and verified the mRNA expression of these genes using qPCR. Combining our results with published literature, we focused on the proteins RSAD2, KCNN4, IDO1, and ISG20; we verified their expression using western blot, which was consistent with our proteomics results. Finally, we knocked down RSAD2 using lentiviral shRNA expression vectors and found that RSAD2 inhibition significantly increased IAV NP gene expression, effectively promoting influenza virus replication with no significant effect on cell proliferation. These results indicate that RSAD2 is potentially an effective target for establishing high-yield vaccine MDCK cell lines and will help to fully understand the interaction mechanism between host cells and influenza viruses.
Collapse
Affiliation(s)
- Zilin Qiao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou Minhai Bio-Engineering Co., Ltd., Lanzhou 730030, China
| | - Yuejiao Liao
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Mengyuan Pei
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenyu Qiu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China
| | - Dongwu Jin
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou Minhai Bio-Engineering Co., Ltd., Lanzhou 730030, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Zhongren Ma
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou Minhai Bio-Engineering Co., Ltd., Lanzhou 730030, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
- Correspondence:
| |
Collapse
|
43
|
Zhang J, Nian X, Li X, Huang S, Duan K, Li X, Yang X. The Epidemiology of Influenza and the Associated Vaccines Development in China: A Review. Vaccines (Basel) 2022; 10:1873. [PMID: 36366381 PMCID: PMC9692979 DOI: 10.3390/vaccines10111873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/28/2023] Open
Abstract
Influenza prevention and control has been one of the biggest challenges encountered in the public health domain. The vaccination against influenza plays a pivotal role in the prevention of influenza, particularly for the elderly and small children. According to the epidemiology of influenza in China, the nation is under a heavy burden of this disease. Therefore, as a contribution to the prevention and control of influenza in China through the provision of relevant information, the present report discusses the production and batch issuance of the influenza vaccine, analysis of the vaccination status and vaccination rate of the influenza vaccine, and the development trend of the influenza vaccine in China.
Collapse
Affiliation(s)
- Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xuedan Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Ltd., Beijing 100029, China
| |
Collapse
|
44
|
Jia R, Zhang J, Zhang J, Bertagnin C, Bonomini A, Guizzo L, Gao Z, Ji X, Li Z, Liu C, Ju H, Ma X, Loregian A, Huang B, Zhan P, Liu X. Discovery of Novel Boron-Containing N-Substituted Oseltamivir Derivatives as Anti-Influenza A Virus Agents for Overcoming N1-H274Y Oseltamivir-Resistant. Molecules 2022; 27:molecules27196426. [PMID: 36234966 PMCID: PMC9571049 DOI: 10.3390/molecules27196426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
To address drug resistance to influenza virus neuraminidase inhibitors (NAIs), a series of novel boron-containing N-substituted oseltamivir derivatives were designed and synthesized to target the 150-cavity of neuraminidase (NA). In NA inhibitory assays, it was found that most of the new compounds exhibited moderate inhibitory potency against the wild-type NAs. Among them, compound 2c bearing 4-(3-boronic acid benzyloxy)benzyl group displayed weaker or slightly improved activities against group-1 NAs (H1N1, H5N1, H5N8 and H5N1-H274Y) compared to that of oseltamivir carboxylate (OSC). Encouragingly, 2c showed 4.6 times greater activity than OSC toward H5N1-H274Y NA. Moreover, 2c exerted equivalent or more potent antiviral activities than OSC against H1N1, H5N1 and H5N8. Additionally, 2c demonstrated low cytotoxicity in vitro and no acute toxicity at the dose of 1000 mg/kg in mice. Molecular docking of 2c was employed to provide a possible explanation for the improved anti-H274Y NA activity, which may be due to the formation of key additional hydrogen bonds with surrounding amino acid residues, such as Arg152, Gln136 and Val149. Taken together, 2c appeared to be a promising lead compound for further optimization.
Collapse
Affiliation(s)
- Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Jian Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Chiara Bertagnin
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Anna Bonomini
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Laura Guizzo
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiangkai Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Zhuo Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiuli Ma
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1 Jiaoxiao Road, Jinan 250023, China
| | - Arianna Loregian
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Bing Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Sciences, 1 Jiaoxiao Road, Jinan 250023, China
- Correspondence: (B.H.); (P.Z.); (X.L.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan 250012, China
- Correspondence: (B.H.); (P.Z.); (X.L.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, Jinan 250012, China
- Correspondence: (B.H.); (P.Z.); (X.L.)
| |
Collapse
|
45
|
Janssens Y, Joye J, Waerlop G, Clement F, Leroux-Roels G, Leroux-Roels I. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol 2022; 13:959379. [PMID: 36052083 PMCID: PMC9424642 DOI: 10.3389/fimmu.2022.959379] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Influenza vaccines remain the most effective tools to prevent flu and its complications. Trivalent or quadrivalent inactivated influenza vaccines primarily elicit antibodies towards haemagglutinin and neuraminidase. These vaccines fail to induce high protective efficacy, in particular in older adults and immunocompromised individuals and require annual updates to keep up with evolving influenza strains (antigenic drift). Vaccine efficacy declines when there is a mismatch between its content and circulating strains. Current correlates of protection are merely based on serological parameters determined by haemagglutination inhibition or single radial haemolysis assays. However, there is ample evidence showing that these serological correlates of protection can both over- or underestimate the protective efficacy of influenza vaccines. Next-generation universal influenza vaccines that induce cross-reactive cellular immune responses (CD4+ and/or CD8+ T-cell responses) against conserved epitopes may overcome some of the shortcomings of the current inactivated vaccines by eliciting broader protection that lasts for several influenza seasons and potentially enhances pandemic preparedness. Assessment of cellular immune responses in clinical trials that evaluate the immunogenicity of these new generation vaccines is thus of utmost importance. Moreover, studies are needed to examine whether these cross-reactive cellular immune responses can be considered as new or complementary correlates of protection in the evaluation of traditional and next-generation influenza vaccines. An overview of the assays that can be applied to measure cell-mediated immune responses to influenza with their strengths and weaknesses is provided here.
Collapse
Affiliation(s)
- Yorick Janssens
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
- *Correspondence: Isabel Leroux-Roels,
| |
Collapse
|
46
|
Yang Z, Xu X, Silva CAT, Farnos O, Venereo-Sanchez A, Toussaint C, Dash S, González-Domínguez I, Bernier A, Henry O, Kamen A. Membrane Chromatography-Based Downstream Processing for Cell-Culture Produced Influenza Vaccines. Vaccines (Basel) 2022; 10:vaccines10081310. [PMID: 36016198 PMCID: PMC9414887 DOI: 10.3390/vaccines10081310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
New influenza strains are constantly emerging, causing seasonal epidemics and raising concerns to the risk of a new global pandemic. Since vaccination is an effective method to prevent the spread of the disease and reduce its severity, the development of robust bioprocesses for producing pandemic influenza vaccines is exceptionally important. Herein, a membrane chromatography-based downstream processing platform with a demonstrated industrial application potential was established. Cell culture-derived influenza virus H1N1/A/PR/8/34 was harvested from benchtop bioreactor cultures. For the clarification of the cell culture broth, a depth filtration was selected as an alternative to centrifugation. After inactivation, an anion exchange chromatography membrane was used for viral capture and further processing. Additionally, two pandemic influenza virus strains, the H7N9 subtype of the A/Anhui/1/2013 and H3N2/A/Hong Kong/8/64, were successfully processed through similar downstream process steps establishing optimized process parameters. Overall, 41.3–62.5% viral recovery was achieved, with the removal of 86.3–96.5% host cell DNA and 95.5–99.7% of proteins. The proposed membrane chromatography purification is a scalable and generic method for the processing of different influenza strains and is a promising alternative to the current industrial purification of influenza vaccines based on ultracentrifugation methodologies.
Collapse
Affiliation(s)
- Zeyu Yang
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Xingge Xu
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cristina A. T. Silva
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Omar Farnos
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Alina Venereo-Sanchez
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cécile Toussaint
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Shantoshini Dash
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Irene González-Domínguez
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Alice Bernier
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Amine Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence:
| |
Collapse
|
47
|
Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2022; 12:662218. [PMID: 35222350 PMCID: PMC8866702 DOI: 10.3389/fimmu.2021.662218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional vaccine development against infectious diseases has been guided by the overarching aim to generate efficacious vaccines normally indicated by an antibody and/or cellular response that correlates with protection. However, this approach has been shown to be only a partially effective measure, since vaccine- and pathogen-specific immunity may not perfectly overlap. Thus, some vaccine development strategies, normally focused on targeted generation of both antigen specific antibody and T cell responses, resulting in a long-lived heterogenous and stable pool of memory lymphocytes, may benefit from better mimicking the immune response of a natural infection. However, challenges to achieving this goal remain unattended, due to gaps in our understanding of human immunity and full elucidation of infectious pathogenesis. In this review, we describe recent advances in the development of effective vaccines, focusing on how understanding the differences in the immunizing and non-immunizing immune responses to natural infections and corresponding shifts in immune ontogeny are crucial to inform the next generation of infectious disease vaccines.
Collapse
Affiliation(s)
- Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
48
|
Kennedy RB, Ovsyannikova IG, Poland GA. Update on Influenza Vaccines: Needs and Progress. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3599-3603. [PMID: 34416408 DOI: 10.1016/j.jaip.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022]
Abstract
Influenza is an annual seasonal epidemic, and occasionally pandemic, respiratory disease that causes considerable morbidity and mortality worldwide. Despite the widespread availability of safe and effective vaccines since the 1950s, this virus continues to pose a significant public health threat. Variable and often weak vaccine effectiveness, antigenic drift and shift, and vaccine hesitancy are some of the obstacles that must be overcome to control this disease. In this article, we briefly review current influenza vaccines, address safety concerns and the need for newer influenza vaccines of higher efficacy, and discuss efforts to create broadly protective, universal influenza vaccines.
Collapse
Affiliation(s)
| | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minn
| |
Collapse
|