1
|
Best LG, Erdei E, Haack K, Kent JW, Malloy KM, Newman DE, O’Leary M, O’Leary RA, Sun Q, Navas-Acien A, Franceschini N, Cole SA. Genetic variant rs1205 is associated with COVID-19 outcomes: The Strong Heart Study and Strong Heart Family Study. PLoS One 2024; 19:e0302464. [PMID: 38662664 PMCID: PMC11045144 DOI: 10.1371/journal.pone.0302464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Although COVID-19 infection has been associated with a number of clinical and environmental risk factors, host genetic variation has also been associated with the incidence and morbidity of infection. The CRP gene codes for a critical component of the innate immune system and CRP variants have been reported associated with infectious disease and vaccination outcomes. We investigated possible associations between COVID-19 outcome and a limited number of candidate gene variants including rs1205. METHODOLOGY/PRINCIPAL FINDINGS The Strong Heart and Strong Heart Family studies have accumulated detailed genetic, cardiovascular risk and event data in geographically dispersed American Indian communities since 1988. Genotypic data and 91 COVID-19 adjudicated deaths or hospitalizations from 2/1/20 through 3/1/23 were identified among 3,780 participants in two subsets. Among 21 candidate variants including genes in the interferon response pathway, APOE, TMPRSS2, TLR3, the HLA complex and the ABO blood group, only rs1205, a 3' untranslated region variant in the CRP gene, showed nominally significant association in T-dominant model analyses (odds ratio 1.859, 95%CI 1.001-3.453, p = 0.049) after adjustment for age, sex, center, body mass index, and a history of cardiovascular disease. Within the younger subset, association with the rs1205 T-Dom genotype was stronger, both in the same adjusted logistic model and in the SOLAR analysis also adjusting for other genetic relatedness. CONCLUSION A T-dominant genotype of rs1205 in the CRP gene is associated with COVID-19 death or hospitalization, even after adjustment for relevant clinical factors and potential participant relatedness. Additional study of other populations and genetic variants of this gene are warranted.
Collapse
Affiliation(s)
- Lyle G. Best
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
- Pathology Department, University of North Dakota, Grand Forks, ND, United States of America
| | - Esther Erdei
- Pharmaceutical Sciences, University of New Mexico—Albuquerque, Albuquerque, New Mexico, United States of America
| | - Karin Haack
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Jack W. Kent
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Kimberly M. Malloy
- Department of Biostatistics and Epidemiology, Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Deborah E. Newman
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Marcia O’Leary
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
| | - Rae A. O’Leary
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shelley A. Cole
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| |
Collapse
|
2
|
Ghag R, Kaushal M, Nwanne G, Knoten A, Kiryluk K, Rosenberg A, Menez S, Bagnasco SM, Sperati CJ, Atta MG, Gaut JP, Williams JC, El-Achkar TM, Arend LJ, Parikh CR, Jain S. Single Nucleus RNA Sequencing of Remnant Kidney Biopsies and Urine Cell RNA Sequencing Reveal Cell Specific Markers of Covid-19 Acute Kidney Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566497. [PMID: 37986991 PMCID: PMC10659401 DOI: 10.1101/2023.11.10.566497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Acute kidney injury (AKI) in COVID-19 patients is associated with high mortality and morbidity. Critically ill COVID-19 patients are at twice the risk of in-hospital mortality compared to non-COVID AKI patients. We know little about the cell-specific mechanism in the kidney that contributes to worse clinical outcomes in these patients. New generation single cell technologies have the potential to provide insights into physiological states and molecular mechanisms in COVID-AKI. One of the key limitations is that these patients are severely ill posing significant risks in procuring additional biopsy tissue. We recently generated single nucleus RNA-sequencing data using COVID-AKI patient biopsy tissue as part of the human kidney atlas. Here we describe this approach in detail and report deeper comparative analysis of snRNAseq of 4 COVID-AKI, 4 reference, and 6 non-COVID-AKI biopsies. We also generated and analyzed urine transcriptomics data to find overlapping COVID-AKI-enriched genes and their corresponding cell types in the kidney from snRNA-seq data. We identified all major and minor cell types and states by using by using less than a few cubic millimeters of leftover tissue after pathological workup in our approach. Differential expression analysis of COVID-AKI biopsies showed pathways enriched in viral response, WNT signaling, kidney development, and cytokines in several nephron epithelial cells. COVID-AKI profiles showed a much higher proportion of altered TAL cells than non-COVID AKI and the reference samples. In addition to kidney injury and fibrosis markers indicating robust remodeling we found that, 17 genes overlap between urine cell COVID-AKI transcriptome and the snRNA-seq data from COVID-AKI biopsies. A key feature was that several of the distal nephron and collecting system cell types express these markers. Some of these markers have been previously observed in COVID-19 studies suggesting a common mechanism of injury and potentially the kidney as one of the sources of soluble factors with a potential role in disease progression. Translational Statement The manuscript describes innovation, application and discovery that impact clinical care in kidney disease. First, the approach to maximize use of remnant frozen clinical biopsies to inform on clinically relevant molecular features can augment existing pathological workflow for any frozen tissue without much change in the protocol. Second, this approach is transformational in medical crises such as pandemics where mechanistic insights are needed to evaluate organ injury, targets for drug therapy and diagnostic and prognostic markers. Third, the cell type specific and soluble markers identified and validated can be used for diagnoses or prognoses in AKI due to different etiologies and in multiorgan injury.
Collapse
|
3
|
Sugiyama M. Tools and factors predictive of the severity of COVID-19. Glob Health Med 2023; 5:78-84. [PMID: 37128224 PMCID: PMC10130545 DOI: 10.35772/ghm.2022.01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/10/2023] [Accepted: 02/28/2023] [Indexed: 05/03/2023]
Abstract
The outbreak of the novel coronavirus infection caused worldwide confusion. The problem with this infection is that it causes severe illness in some patients, resulting in a high rate of death if appropriate treatment is not given. If patients with severe illness that requires treatment are appropriately identified, treatment can be focused on these patients. However, in the early days of the COVID-19 outbreak, the inability to predict and diagnose the disease led to hospitals being overwhelmed. Therefore, various methods for the diagnosis of severe disease were developed early on, and various methods are still being investigated to predict high-risk patients. The currently available prediction methods are divided into those that predict the onset of severe disease and those used to determine the severity of the disease. Specifically, the main methods include genetic factors, serum humoral factors, laboratory tests, and diagnostic imaging. Since each of these factors has different features, using them in combination is likely to be advantageous.
Collapse
Affiliation(s)
- Masaya Sugiyama
- Address correspondence to:Masaya Sugiyama, Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine, 1-7- 1 Kohnodai, Ichikawa 272-0817, Japan. E-mail:
| |
Collapse
|
4
|
Yu K, Wang J, Li H, Wang W. IFITM3 rs12252 polymorphism and coronavirus disease 2019 severity: A meta‑analysis. Exp Ther Med 2023; 25:158. [PMID: 36911378 PMCID: PMC9996185 DOI: 10.3892/etm.2023.11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) serves a critical role in the immune defense against viral infection, including that of severe acute respiratory syndrome coronavirus 2. To the best of our knowledge, the association between IFITM3 rs12252 polymorphism and coronavirus disease 2019 (COVID-19) severity has not been determined. In the present study, a meta-analysis of published case-control studies assessing the association between the IFITM3 rs12252 polymorphism and COVID-19 severity was performed. PubMed, EMBASE, China National Knowledge Infrastructure, Wanfang and preprint servers were searched up to March 30, 2022. A fixed-effect model was used to calculate odds ratio (OR) and 95% confidence interval (95% CI). Analyses were conducted for additive, dominant and recessive genetic models. A total of five studies were identified, with 1,443 mild-to-moderate cases and 667 severe cases, including 121 deaths. Overall, the CC genotype of IFITM3 rs12252 was associated with increased risk of severe COVID-19 (OR=1.97, 95% CI, 1.06-3.69) and mortality (OR=4.61, 95% CI, 1.44-14.75) compared with the CT/TT genotypes. Stratified analysis by ethnicity revealed that this association was strong in Chinese individuals (severity, OR=2.84, 95% CI, 1.34-6.04; mortality, OR=7.91, 95% CI, 1.29-48.44), but not notable in Caucasians (severity, OR=0.79, 95% CI, 0.23-2.80; mortality, OR=2.16, 95% CI, 0.37-12.55). A significant association with mortality was observed in Caucasians when comparing patients with the C allele of IFITM3 rs12252 and those without (CC/CT vs. TT: OR=1.73, 95% CI, 1.09-2.75). The results suggested that the IFTM3-rs12252 CC genotype is associated with severe COVID-19 and mortality in Chinese individuals and the IFTM3-rs12252 C allele may be associated with COVID-19 mortality in Caucasians. Large-scale studies are needed to confirm the association in different global populations.
Collapse
Affiliation(s)
- Kai Yu
- Department of Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Jingjing Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Haibin Li
- Department of Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Wenjun Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
5
|
Grujičić D, Mirkov L, Banković D, Virijević K, Marinković D, Milošević-Djordjević O. Homozygous-Recessive Characteristics as a Biomarker of Predisposition for COVID-19. Clin Nurs Res 2023; 32:589-600. [PMID: 36695163 PMCID: PMC9902784 DOI: 10.1177/10547738221147754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Coronavirus disease (COVID-19), a new form of severe acute respiratory syndrome, has caused a global pandemic. The aim of this study was to analyze homozygous-recessive characteristics (HRC) in the group of COVID-19 patients, considering their gender, forms of the disease (mild and severe symptoms), risk factors: hypertension, diabetes mellitus type 2, hyperlipidemia, smoking habits, and the distribution of ABO blood group. Using the HRC test, we analyzed 20 HRCs in a sample of 321 individuals: 205 patients and 116 controls. The average HRC in patients was significantly higher than controls, as well as in patients with severe symptoms compared to patients with mild symptoms. The patients with higher HRC (cut-off ≤5.5) experienced a significantly increased risk of disease of 2.3 times (OR = 2.315, p < .0005). Our results indicate that the HRC test could be used as a screening in recognizing predisposition for COVID-19.
Collapse
|
6
|
Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022; 55:749-780. [PMID: 35545027 PMCID: PMC9087965 DOI: 10.1016/j.immuni.2022.04.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
7
|
Ali HN, Niranji SS, Al‐Jaf SMA. Association of tumor necrosis factor alpha ‐308 single nucleotide polymorphism with SARS CoV‐2 infection in an Iraqi Kurdish population. J Clin Lab Anal 2022; 36:e24400. [PMID: 35373411 PMCID: PMC9102518 DOI: 10.1002/jcla.24400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/26/2022] Open
Abstract
Uncovering risk factors playing roles in the severity of Coronavirus disease 2019 (Covid‐19) are important for understanding pathoimmunology of the disease caused by severe acute respiratory syndrome Coronavirus 2 (SARS CoV‐2). Genetic variations in innate immune genes have been found to be associated with Covid‐19 infections. A single‐nucleotide polymorphism (SNP) in a promoter region of tumor necrosis factor alpha (TNF‐α) gene, TNF‐α −308G>A, increases expression of TNF‐α protein against infectious diseases leading to immune dysregulations and organ damage. This study aims to discover associations between TNF‐α −308G>A SNP and Covid‐19 infection. Polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) was used for genotyping a general Kurdish population and Covid‐19 patients. The homozygous mutant (AA) genotype was found to be rare in the current studied population. Interestingly, the heterozygous (GA) genotype was significantly (p value = 0.0342) higher in the Covid‐19 patients than the general population. This suggests that TNF‐α −308G>A SNP might be associated with Covid‐19 infections. Further studies with larger sample sizes focusing on different ethnic populations are recommended.
Collapse
Affiliation(s)
| | - Sherko S. Niranji
- College of Medicine University of Garmian Kalar Iraq
- Coronavirus Research and Identification Laboratory University of Garmian Kalar Iraq
- Department of Biology College of Education University of Garmian Kalar Iraq
| | - Sirwan M. A. Al‐Jaf
- College of Medicine University of Garmian Kalar Iraq
- Coronavirus Research and Identification Laboratory University of Garmian Kalar Iraq
- Department of Biology College of Education University of Garmian Kalar Iraq
| |
Collapse
|
8
|
de Araújo JLF, Menezes D, de Aguiar RS, de Souza RP. IFITM3, FURIN, ACE1, and TNF-α Genetic Association With COVID-19 Outcomes: Systematic Review and Meta-Analysis. Front Genet 2022; 13:775246. [PMID: 35432458 PMCID: PMC9010674 DOI: 10.3389/fgene.2022.775246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/11/2022] [Indexed: 12/18/2022] Open
Abstract
Human polymorphisms may contribute to SARS-CoV-2 infection susceptibility and COVID-19 outcomes (asymptomatic presentation, severe COVID-19, death). We aimed to evaluate the association of IFITM3, FURIN, ACE1, and TNF-α genetic variants with both phenotypes using meta-analysis. The bibliographic search was conducted on the PubMed and Scielo databases covering reports published until February 8, 2022. Two independent researchers examined the study quality using the Q-Genie tool. Using the Mantel–Haenszel weighted means method, odds ratios were combined under both fixed- and random-effect models. Twenty-seven studies were included in the systematic review (five with IFITM3, two with Furin, three with TNF-α, and 17 with ACE1) and 22 in the meta-analysis (IFITM3 n = 3, TNF-α, and ACE1 n = 16). Meta-analysis indicated no association of 1) ACE1 rs4646994 and susceptibility, 2) ACE1 rs4646994 and asymptomatic COVID-19, 3) IFITM3 rs12252 and ICU hospitalization, and 4) TNF-α rs1800629 and death. On the other hand, significant results were found for ACE1 rs4646994 association with COVID-19 severity (11 studies, 692 severe cases, and 1,433 nonsevere controls). The ACE1 rs4646994 deletion allele showed increased odds for severe manifestation (OR: 1.45; 95% CI: 1.26–1.66). The homozygous deletion was a risk factor (OR: 1.49, 95% CI: 1.22–1.83), while homozygous insertion presented a protective effect (OR: 0.57, 95% CI: 0.45–0.74). Further reports are needed to verify this effect on populations with different ethnic backgrounds.Systematic Review Registration: https://www.crd.york.ac.uk/prosperodisplay_record.php?ID=CRD42021268578, identifier CRD42021268578
Collapse
|
9
|
Ferreira de Araújo JL, Menezes D, Saraiva‐Duarte JM, de Lima Ferreira L, Santana de Aguiar R, Pedra de Souza R. Systematic review of host genetic association with Covid-19 prognosis and susceptibility: What have we learned in 2020? Rev Med Virol 2022; 32:e2283. [PMID: 34338380 PMCID: PMC8420453 DOI: 10.1002/rmv.2283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Biomarker identification may provide strategic opportunities to understand disease pathophysiology, predict outcomes, improve human health, and reduce healthcare costs. The highly heterogeneous Covid-19 clinical manifestation suggests a complex interaction of several different human, viral and environmental factors. Here, we systematically reviewed genetic association studies evaluating Covid-19 severity or susceptibility to SARS-CoV-2 infection following PRISMA recommendations. Our research comprised papers published until December 31st , 2020, in PubMed and BioRXiv databases focusing on genetic association studies with Covid-19 prognosis or susceptibility. We found 20 eligible genetic association studies, of which 11 assessed Covid-19 outcome and 14 evaluated infection susceptibility (five analyzed both effects). Q-genie assessment indicated moderate quality. Five large-scale association studies (GWAS, whole-genome, or exome sequencing) were reported with no consistent replication to date. Promising hits were found on the 3p21.31 region and ABO locus. Candidate gene studies examined ACE1, ACE2, TMPRSS2, IFITM3, APOE, Furin, IFNL3, IFNL4, HLA, TNF-ɑ genes, and ABO system. The most evaluated single locus was the ABO, and the most sampled region was the HLA with three and five candidate gene studies, respectively. Meta-analysis could not be performed. Available data showed the need for further reports to replicate claimed associations.
Collapse
Affiliation(s)
- João Locke Ferreira de Araújo
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Grupo de Pesquisa em Bioestatística e Epidemiologia molecular, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Programa de Pós‐graduação em Genética, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Diego Menezes
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Grupo de Pesquisa em Bioestatística e Epidemiologia molecular, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Programa de Pós‐graduação em Genética, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Julia Maria Saraiva‐Duarte
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Programa de Pós‐graduação em Genética, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Luciana de Lima Ferreira
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Grupo de Pesquisa em Bioestatística e Epidemiologia molecular, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Programa de Pós‐graduação em Genética, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Renato Santana de Aguiar
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Grupo de Pesquisa em Bioestatística e Epidemiologia molecular, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Programa de Pós‐graduação em Genética, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Renan Pedra de Souza
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Grupo de Pesquisa em Bioestatística e Epidemiologia molecular, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
- Programa de Pós‐graduação em Genética, Departamento de Genética, Ecologia e EvoluçãoInstituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
10
|
Silva AVFG, Menezes D, Moreira FRR, Torres OA, Fonseca PLC, Moreira RG, Alves HJ, Alves VR, Amaral TMDR, Coelho AN, Saraiva Duarte JM, da Rocha AV, de Almeida LGP, de Araújo JLF, de Oliveira HS, de Oliveira NJC, Zolini C, de Sousa JH, de Souza EG, de Souza RM, Ferreira LDL, Lehmkuhl Gerber A, Guimarães APDC, Maia PHS, Marim FM, Miguita L, Monteiro CC, Neto TS, Pugêdo FSF, Queiroz DC, Queiroz DNAC, Resende-Moreira LC, Santos FM, Souza EFC, Voloch CM, Vasconcelos AT, de Aguiar RS, de Souza RP. Seroprevalence, Prevalence, and Genomic Surveillance: Monitoring the Initial Phases of the SARS-CoV-2 Pandemic in Betim, Brazil. Front Microbiol 2022; 13:799713. [PMID: 35197952 PMCID: PMC8859412 DOI: 10.3389/fmicb.2022.799713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022] Open
Abstract
The COVID-19 pandemic has created an unprecedented need for epidemiological monitoring using diverse strategies. We conducted a project combining prevalence, seroprevalence, and genomic surveillance approaches to describe the initial pandemic stages in Betim City, Brazil. We collected 3239 subjects in a population-based age-, sex- and neighborhood-stratified, household, prospective; cross-sectional study divided into three surveys 21 days apart sampling the same geographical area. In the first survey, overall prevalence (participants positive in serological or molecular tests) reached 0.46% (90% CI 0.12–0.80%), followed by 2.69% (90% CI 1.88–3.49%) in the second survey and 6.67% (90% CI 5.42–7.92%) in the third. The underreporting reached 11, 19.6, and 20.4 times in each survey. We observed increased odds to test positive in females compared to males (OR 1.88 95% CI 1.25–2.82), while the single best predictor for positivity was ageusia/anosmia (OR 8.12, 95% CI 4.72–13.98). Thirty-five SARS-CoV-2 genomes were sequenced, of which 18 were classified as lineage B.1.1.28, while 17 were B.1.1.33. Multiple independent viral introductions were observed. Integration of multiple epidemiological strategies was able to adequately describe COVID-19 dispersion in the city. Presented results have helped local government authorities to guide pandemic management.
Collapse
Affiliation(s)
| | - Diego Menezes
- Programa de Pós Graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Paula Luize Camargos Fonseca
- Programa de Pós Graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rennan Garcias Moreira
- Centro de Laboratórios Multiusuários, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hugo José Alves
- Programa de Pós Graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Júlia Maria Saraiva Duarte
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - João Locke Ferreira de Araújo
- Programa de Pós Graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Camila Zolini
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jôsy Hubner de Sousa
- Programa de Pós-graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Rafael Marques de Souza
- Programa de Pós Graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana de Lima Ferreira
- Programa de Pós Graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Fernanda Martins Marim
- Programa de Pós Graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucyene Miguita
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Daniel Costa Queiroz
- Programa de Pós Graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Luciana Cunha Resende-Moreira
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Franciele Martins Santos
- Programa de Pós-graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Carolina Moreira Voloch
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Renato Santana de Aguiar
- Programa de Pós Graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil
| | - Renan Pedra de Souza
- Programa de Pós Graduação em Genética, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Deb P, Zannat K, Talukder S, Bhuiyan AH, Jilani MSA, Saif‐Ur‐Rahman KM. Association of
HLA
gene polymorphism with susceptibility, severity, and mortality of
COVID
‐19: A systematic review. HLA 2022; 99:281-312. [DOI: 10.1111/tan.14560] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Paroma Deb
- Department of Virology Dhaka Medical College Dhaka Bangladesh
| | | | - Shiny Talukder
- Rangamati General Hospital PCR Laboratory Rangamati Bangladesh
| | | | - Md. Shariful Alam Jilani
- Department of Microbiology Ibrahim Medical College Dhaka Bangladesh
- Department of Microbiology BIRDEM General Hospital Dhaka Bangladesh
| | - K. M. Saif‐Ur‐Rahman
- Health Systems and Population Studies Division, icddr,b Dhaka Bangladesh
- Department of Public Health and Health Systems Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
12
|
Viral and Host Genetic and Epigenetic Biomarkers Related to SARS-CoV-2 Cell Entry, Infection Rate, and Disease Severity. BIOLOGY 2022; 11:biology11020178. [PMID: 35205046 PMCID: PMC8869311 DOI: 10.3390/biology11020178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/23/2022]
Abstract
The rapid spread of COVID-19 outbreak lead to a global pandemic declared in March 2020. The common features of corona virus family helped to resolve structural characteristics and entry mechanism of SARS-CoV-2. However, rapid mutagenesis leads to the emergence of new strains that may have different reproduction rates or infectivity and may impact the course and severity of the disease. Host related factors may also play a role in the susceptibility for infection as well as the severity and outcomes of the COVID-19. We have performed a literature and database search to summarize potential viral and host-related genomic and epigenomic biomarkers, such as genetic variability, miRNA, and DNA methylation in the molecular pathway of SARS-CoV-2 entry into the host cell, that may be related to COVID-19 susceptibility and severity. Bioinformatics tools may help to predict the effect of mutations in the spike protein on the binding to the ACE2 receptor and the infectivity of the strain. SARS-CoV-2 may also target several transcription factors and tumour suppressor genes, thus influencing the expression of different host genes and affecting cell signalling. In addition, the virus may interfere with RNA expression in host cells by exploiting endogenous miRNA and its viral RNA. Our analysis showed that numerous human miRNA may form duplexes with different coding and non-coding regions of viral RNA. Polymorphisms in human genes responsible for viral entry and replication, as well as in molecular damage response and inflammatory pathways may also contribute to disease prognosis and outcome. Gene ontology analysis shows that proteins encoded by such polymorphic genes are highly interconnected in regulation of defense response. Thus, virus and host related genetic and epigenetic biomarkers may help to predict the course of the disease and the response to treatment.
Collapse
|