1
|
Damian D. Navigating the Landscape of Tick Diversity: Integrating Molecular Approaches for Enhanced Control Measures. Vector Borne Zoonotic Dis 2025; 25:1-13. [PMID: 39140860 DOI: 10.1089/vbz.2024.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
The emergence and spread of infectious diseases, particularly zoonotic diseases originating from wildlife, pose significant threats to global health and economy. This review examines the pivotal role of ticks as vectors in transmitting pathogens to humans, livestock, and wildlife and the use of molecular techniques in their identification. Tick infestations result in economic losses through reduced animal productivity, anemia, and quality deterioration of hides. Furthermore, ticks serve as reservoirs for a wide range of pathogens including viruses, bacteria, fungi, protozoa, and nematodes, contributing to the transmission of diseases such as Crimean-Congo hemorrhagic fever, tick-borne encephalitis, and African swine fever among others. The interface between wildlife, livestock, and humans facilitates the transmission of zoonotic pathogens, exacerbated by nomadic and pastoralist lifestyles that promote interactions between wildlife and domestic animals. This movement of animals across landscapes enhances the dispersion of tick vectors, increasing the risk of pathogen exposure for diverse populations. Historically, tick identification in sub-Saharan Africa has relied on morphological characteristics despite limitations such as species overlap and variability. Molecular techniques offer a more precise means of species identification, providing critical data for effective tick and pathogen management strategies. Integrating molecular approaches into tick research enhances our understanding of tick diversity, distribution patterns, and pathogen dynamics. This knowledge is essential for developing targeted interventions to mitigate the impact of tick-borne diseases on public and veterinary health worldwide.
Collapse
Affiliation(s)
- Donath Damian
- Department of Biochemistry, University of Dar es Salaam-Mbeya College of Health and Allied Sciences, Tanzania, Mbeya, Tanzania
| |
Collapse
|
2
|
Bosilj M, Suljič A, Zakotnik S, Slunečko J, Kogoj R, Korva M. MetaAll: integrative bioinformatics workflow for analysing clinical metagenomic data. Brief Bioinform 2024; 25:bbae597. [PMID: 39550223 PMCID: PMC11568877 DOI: 10.1093/bib/bbae597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Over the past decade, there have been many improvements in the field of metagenomics, including sequencing technologies, advances in bioinformatics and the development of reference databases, but a one-size-fits-all sequencing and bioinformatics pipeline does not yet seem achievable. In this study, we address the bioinformatics part of the analysis by combining three methods into a three-step workflow that increases the sensitivity and specificity of clinical metagenomics and improves pathogen detection. The individual tools are combined into a user-friendly workflow suitable for analysing short paired-end (PE) and long reads from metagenomics datasets-MetaAll. To demonstrate the applicability of the developed workflow, four complicated clinical cases with different disease presentations and multiple samples collected from different biological sites as well as the CAMI Clinical pathogen detection challenge dataset were used. MetaAll was able to identify putative pathogens in all but one case. In this case, however, traditional microbiological diagnostics were also unsuccessful. In addition, co-infection with Haemophilus influenzae and Human rhinovirus C54 was detected in case 1 and co-infection with SARS-Cov-2 and Influenza A virus (FluA) subtype H3N2 was detected in case 3. In case 2, in which conventional diagnostics could not find a pathogen, mNGS pointed to Klebsiella pneumoniae as the suspected pathogen. Finally, this study demonstrated the importance of combining read classification, contig validation and targeted reference mapping for more reliable detection of infectious agents in clinical metagenome samples.
Collapse
Affiliation(s)
- Martin Bosilj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Alen Suljič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Samo Zakotnik
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Jan Slunečko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Rok Kogoj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Misa Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Timm FCB, Campos FS, Janssen L, Dos Santos RN, Paredes-Galarza B, Stone NV, Oliveira MT, Gasparetto R, Müller NFD, Melgarejo ADS, Corrêa ML, Lozano LMV, Salvato RS, Godinho FMDS, Barcellos RB, Teixeira MADS, Riet-Correa G, Cerqueira VD, Bezerra Júnior PS, Franco AC, Roehe PM. The virome of bubaline (Bubalus bubalis) tonsils reveals an unreported bubaline polyomavirus. Braz J Microbiol 2024; 55:2893-2900. [PMID: 39014291 PMCID: PMC11405355 DOI: 10.1007/s42770-024-01449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Water buffalo (Bubalus bubalis) farming is increasing in many regions of the world due to the species' ability to thrive in environments where bovine cattle would struggle. Despite water buffaloes being known for their resistance to diseases, there is a lack of data about the diversity of the microbiome of the species. In this study, we examined the virome diversity in palatine tonsils collected from animals from the island of Marajó, northern Pará state, Brazil, which harbors the largest bubaline flock in the country. Tonsil fragments from 60 clinically healthy bubalines were randomly selected from a sample of 293 animals. The samples were purified, extracted, and randomly amplified with phi29 DNA polymerase. After amplification, the products were purified and sequenced. Circular DNA viruses were predominant in the tonsils' virome. Sequences of genome segments representative of members of the genera Alphapolyomavirus (including a previously unreported bubaline polyomavirus genome) and Gemycircularvirus were identified, along with other not yet classified circular virus genomes. As the animals were clinically healthy at the time of sampling, such viruses likely constitute part of the normal tonsillar virome of water buffaloes inhabiting the Ilha do Marajó biome.
Collapse
Affiliation(s)
- Francine C B Timm
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Fabrício Souza Campos
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil.
| | - Luis Janssen
- Laboratório de Baculovírus, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), Brasília, Brasil
| | - Raíssa Nunes Dos Santos
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Bruna Paredes-Galarza
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Nicole Vieira Stone
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Martha Trindade Oliveira
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Raíssa Gasparetto
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Nicolas Felipe Drum Müller
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Alanis da Silva Melgarejo
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Miguel Leonetti Corrêa
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Lina Marcela Violet Lozano
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Richard Steiner Salvato
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Centro Estadual de Vigilância em Saúde (CEVS) da Secretaria Estadual da Saúde do Rio Grande do Sul (SESRS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Fernanda Marques de Souza Godinho
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Centro Estadual de Vigilância em Saúde (CEVS) da Secretaria Estadual da Saúde do Rio Grande do Sul (SESRS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Regina Bones Barcellos
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Centro Estadual de Vigilância em Saúde (CEVS) da Secretaria Estadual da Saúde do Rio Grande do Sul (SESRS), Porto Alegre, Rio Grande do Sul, Brasil
| | | | - Gabriela Riet-Correa
- Laboratório de Patologia Animal, Instituto de Medicina Veterinária, Universidade Federal do Pará (UFPA), Castanhal, Pará, Brasil
| | - Valíria Duarte Cerqueira
- Laboratório de Patologia Animal, Instituto de Medicina Veterinária, Universidade Federal do Pará (UFPA), Castanhal, Pará, Brasil
| | - Pedro Soares Bezerra Júnior
- Laboratório de Patologia Animal, Instituto de Medicina Veterinária, Universidade Federal do Pará (UFPA), Castanhal, Pará, Brasil
| | - Ana Cláudia Franco
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brasil.
| |
Collapse
|
4
|
da Silva ÉBR, da Silva JAR, da Silva WC, Belo TS, Sousa CEL, dos Santos MRP, Neves KAL, Rodrigues TCGDC, Camargo-Júnior RNC, Lourenço-Júnior JDB. A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants. Animals (Basel) 2024; 14:1448. [PMID: 38791665 PMCID: PMC11117383 DOI: 10.3390/ani14101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 05/26/2024] Open
Abstract
Variations in environments, including climate, diet, and agricultural practices, significantly impact the composition and microbial activity. A profound understanding of these adaptations allows for the improvement of nutrition and ruminant production. Therefore, this review aims to compile data from the literature on the rumen microbiota and molecular techniques for identifying the different types of microorganisms from the rumen fluid of ruminants. Analyzing the literature on rumen microbiology in different ruminants is complex due to microbial interactions, influenced by the environment and nutrition of these animals. In addition, it is worth noting that the genera of protozoa and fungi most evident in the studies used in this review on the microbiology of rumen fluid were Entodinium spp. and Aspergillus spp., respectively, and Fibrobacter spp. for bacteria. About the techniques used, it can be seen that DNA extraction, amplification, and sequencing were the most cited in the studies evaluated. Therefore, this review describes what is present in the literature and provides an overview of the main microbial agents in the rumen and the molecular techniques used.
Collapse
Affiliation(s)
- Éder Bruno Rebelo da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| | | | - Welligton Conceição da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| | - Tatiane Silva Belo
- Department of Veterinary Medicine, University Center of the Amazon (UNAMA), Santarém 68010-200, Brazil; (T.S.B.); (C.E.L.S.)
| | - Carlos Eduardo Lima Sousa
- Department of Veterinary Medicine, University Center of the Amazon (UNAMA), Santarém 68010-200, Brazil; (T.S.B.); (C.E.L.S.)
| | | | | | - Thomaz Cyro Guimarães de Carvalho Rodrigues
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| | - Raimundo Nonato Colares Camargo-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| | - José de Brito Lourenço-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Para (UFPA), Castanhal 68746-360, Brazil; (W.C.d.S.); (T.C.G.d.C.R.); (R.N.C.C.-J.); (J.d.B.L.-J.)
| |
Collapse
|
5
|
Pichler I, Schmutz S, Ziltener G, Zaheri M, Kufner V, Trkola A, Huber M. Rapid and sensitive single-sample viral metagenomics using Nanopore Flongle sequencing. J Virol Methods 2023; 320:114784. [PMID: 37516367 DOI: 10.1016/j.jviromet.2023.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
The ability of viral metagenomic Next-Generation Sequencing (mNGS) to unbiasedly detect nucleic acids in a clinical sample is a powerful tool for advanced diagnosis of viral infections. When clinical symptoms do not provide a clear differential diagnosis, extensive laboratory testing with virus-specific PCR and serology can be replaced by a single viral mNGS analysis. However, widespread diagnostic use of viral mNGS is thus far limited by long sample-to-result times, as most protocols rely on Illumina sequencing, which provides high and accurate sequencing output but is time-consuming and expensive. Here, we describe the development of an mNGS protocol based on the more cost-effective Nanopore Flongle sequencing with decreased turnaround time and lower, yet sufficient sequencing output to provide sensitive virus detection. Sample preparation (6 h) and sequencing (2 h) times are substantially reduced compared to Illumina mNGS and allow detection of DNA/RNA viruses at low input (up to 33-38 cycle threshold of specific qPCR). Although Flongles yield lower sequencing output, direct comparison with Illumina mNGS on diverse clinical samples showed similar results. Collectively, the novel Nanopore mNGS approach is specifically tailored for use in clinical diagnostics and provides a rapid and cost-effective mNGS strategy for individual testing of severe cases.
Collapse
Affiliation(s)
- Ian Pichler
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stefan Schmutz
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gabriela Ziltener
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Maryam Zaheri
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Verena Kufner
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
6
|
Han MH, Khan SA, Moon GS. Cutibacterium acnes KCTC 3314 Growth Reduction with the Combined Use of Bacteriophage PAP 1-1 and Nisin. Antibiotics (Basel) 2023; 12:1035. [PMID: 37370354 DOI: 10.3390/antibiotics12061035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Severe acne has high psychological impacts recorded worldwide, from depression to suicide. To control acne infection, bacteriophage could be used in synergy or combination with antibiotics/antimicrobials. Bacteriophages are specific to their hosts without interfering with the normal skin microbes and have the ability to lyse bacterial cells. In this current study, the bacteriophage PAP 1-1 was isolated, characterized, and tested against the pathogenic acne-causing bacterium Cutibacterium acnes. Examination under transmission electron microscopy (TEM) revealed that the newly isolated phage has a morphology typical of siphoviruses. Phylogenetic analysis, utilizing the maximum likelihood (ML) algorithm based on complete genome sequences, revealed that PAP 1-1 clustered together with bacteriophages active to Propionibacterium acnes (now known as C. acnes), forming a distinct evolutionary lineage. The genomic analysis further identified the presence of an endolysin gene in PAP 1-1, suggesting its potential to regulate the growth of C. acnes. Subsequent experiments conducted in RCM broth confirmed the ability of PAP 1-1 to effectively control the proliferation of C. acnes. In combination with bacteriocin from Lactococcus lactis CJNU 3001 and nisin, PAP 1-1 greatly decreased the viable cell counts of C. acnes in the broth.
Collapse
Affiliation(s)
- Min-Hui Han
- Major of Biotechnology, Korea National University of Transportation, Chungju 27909, Republic of Korea
| | - Shehzad Abid Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Gi-Seong Moon
- Major of Biotechnology, Korea National University of Transportation, Chungju 27909, Republic of Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Chungju 27909, Republic of Korea
| |
Collapse
|
7
|
Knox MA, Wierenga J, Biggs PJ, Gedye K, Almeida V, Hall R, Zikusoka GK, Rubanga S, Ngabirano A, Valdivia-Granda W, Hayman DTS. Abundant dsRNA picobirnaviruses show little geographic or host association in terrestrial systems. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105456. [PMID: 37257800 DOI: 10.1016/j.meegid.2023.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Picobirnaviruses are double-stranded RNA viruses known from a wide range of host species and locations but with unknown pathogenicity and host relationships. Here, we examined the diversity of picobirnaviruses from cattle and gorillas within and around Bwindi Impenetrable Forest National Park (BIFNP), Uganda, where wild and domesticated animals and humans live in relatively close contact. We use metagenomic sequencing with bioinformatic analyses to examine genetic diversity. We compared our findings to global Picobirnavirus diversity using clustering-based analyses. Picobirnavirus diversity at Bwindi was high, with 14 near-complete RdRp and 15 capsid protein sequences, and 497 new partial viral sequences recovered from 44 gorilla samples and 664 from 16 cattle samples. Sequences were distributed throughout a phylogenetic tree of globally derived picobirnaviruses. The relationship with Picobirnavirus diversity and host taxonomy follows a similar pattern to the global dataset, generally lacking pattern with either host or geography.
Collapse
Affiliation(s)
- Matthew A Knox
- School of Veterinary Science, Massey University, New Zealand.
| | | | - Patrick J Biggs
- School of Veterinary Science, Massey University, New Zealand; School of Natural Sciences, Massey University, New Zealand
| | - Kristene Gedye
- School of Veterinary Science, Massey University, New Zealand
| | - Valter Almeida
- School of Veterinary Science, Massey University, New Zealand
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Zoonoses are diseases and infections naturally transmitted between humans and vertebrate animals. Over the years, zoonoses have become increasingly significant threats to global health. They form the dominant group of diseases among the emerging infectious diseases (EID) and currently account for 73% of EID. Approximately 25% of zoonoses originate in domestic animals. The etiological agents of zoonoses include different pathogens, with viruses accounting for approximately 30% of all zoonotic infections. Zoonotic diseases can be transmitted directly or indirectly, by contact, via aerosols, through a vector, or vertically in utero. Zoonotic diseases are found in every continent except Antarctica. Numerous factors associated with the pathogen, human activities, and the environment play significant roles in the transmission and emergence of zoonotic diseases. Effective response and control of zoonotic diseases call for multiple-sector involvement and collaboration according to the One Health concept.
Collapse
Affiliation(s)
- Oyewale Tomori
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Nigeria; ,
| | - Daniel O Oluwayelu
- Department of Veterinary Microbiology and Centre for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Oyo State, Nigeria; ,
| |
Collapse
|
9
|
Novel Divergent Members of the Kitrinoviricota Discovered through Metagenomics in the Intestinal Contents of Red-Backed Voles ( Clethrionomys gapperi). Int J Mol Sci 2022; 24:ijms24010131. [PMID: 36613573 PMCID: PMC9820622 DOI: 10.3390/ijms24010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Metagenomic methods are powerful tools to investigate viral diversity in biological or environmental samples and to identify previously unknown viruses. We used RNA metagenomics to identify, in the gut of red-backed voles, the nearly complete genomes of two novel members of the Kitrinoviricota, a phylum including viruses with positive-sense ssRNA genomes encoding an RNA-directed RNA polymerase. The genome of a novel member of the Tombusviridae presented four open reading frames (ORFs); a -1 frameshift is potentially involved in generating the viral replicase. This sequence was part of a phylogenetic clade that did not include any officially classified species. The second genome presented a large ORF coding for a viral polyprotein containing the typical protein domains common to flexiviruses. The sequence clustered with currently known members of the Deltaflexiviridae. Both viruses appear to represent the first members of novel species in yet undefined genera. The identified viruses likely originated from the vole diet as members of the two viral families are known to infect plants and fungi, respectively. Investigating public databases demonstrated that a much higher richness than currently recognized exists for these two viral families, highlighting the need to update taxonomy systems and possibly also include genomes identified through metagenomics.
Collapse
|
10
|
Kuno G. Contrasting the Practices of Virus Isolation and Characterization between the Early Period in History and Modern Times: The Case of Japanese Encephalitis Virus. Viruses 2022; 14:2640. [PMID: 36560644 PMCID: PMC9781737 DOI: 10.3390/v14122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Japanese encephalitis is a serious disease transmitted by mosquitoes. With its recent spread beyond the traditional territory of endemicity in Asia, the magnitude of global threat has increased sharply. While much of the current research are largely focused on changing epidemiology, molecular genetics of virus, and vaccination, little attention has been paid to the early history of virus isolation and phenotypic characterization of this virus. In this review, using this piece of history as an example, I review the transition of the concept and practice of virus isolation and characterization from the early period of history to modern times. The spectacular development of molecular techniques in modern times has brought many changes in practices as well as enormous amount of new knowledge. However, many aspects of virus characterization, in particular, transmission mechanism and host relationship, remain unsolved. As molecular techniques are not perfect in all respects, beneficial accommodation of molecular and biologic data is critically important in many branches of research. Accordingly, I emphasize exercising caution in applying only these modern techniques, point out unrecognized communication problems, and stress that JE research history is a rich source of interesting works still valuable even today and waiting to be discovered.
Collapse
Affiliation(s)
- Goro Kuno
- Centers for Disease Control and Prevention, Formerly Division of Vector-Borne Infectious Diseases, Fort Collins, CO 80521, USA
| |
Collapse
|
11
|
Comprehensive Evaluation of RNA and DNA Viromic Methods Based on Species Richness and Abundance Analyses Using Marmot Rectal Samples. mSystems 2022; 7:e0043022. [PMID: 35862817 PMCID: PMC9426427 DOI: 10.1128/msystems.00430-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viral metagenomics is the most powerful tool to profile viromic composition for a given sample. Different viromic methods, including amplification-free ones, have been developed, but choosing them for different purposes requires comprehensive benchmarks. Here, we assessed the performance of four routinely used methods, i.e., multiple displacement amplification (MDA), direct metagenomic sequencing (MTG), sequence-independent single-primer amplification (SIA), and metatranscriptomic sequencing (MTT), using marmot rectal samples as the templates spiked with five known viruses of different genome types. The obtained clean data were differently contaminated by host and bacterial genomes, resulting in MDA having the most, with ~72.1%, but MTT had only ~7.5% data, useful for follow-up viromic analysis. MDA showed a broader spectrum with higher efficiency to profile the DNA virome, and MTT captured almost all RNA viruses with extraordinary sensitivity; hence, they are advisable in richness-based viromic studies. MTG was weak in capturing single-stranded DNA viruses, and SIA could detect both RNA and DNA viruses but with high randomness. Due to biases to certain types of viruses, the four methods caused different alterations to species abundance compared to the initial virus composition. SIA and MDA introduced greater stochastic errors to relative abundances of species, genus, and family taxa, whereas the two amplification-free methods were more tolerant toward such errors and thus are recommendable in abundance-based analyses. In addition, genus taxon is a compromising analytic level that ensures technically supported and biologically and/or ecologically meaningful viromic conclusions. IMPORTANCE Viral metagenomics can be roughly divided into species richness-based studies and species abundance-based analyses. Viromic methods with different principles have been developed, but rational selection of these techniques according to different purposes requires comprehensive understanding of their properties. By assessing the four most widely used methods using template samples, we found that multiple displacement amplification (MDA) and metatranscriptomic sequencing (MTT) are advisable for species richness-based viromic studies, as they show excellent efficiency to detect DNA and RNA viruses. Meanwhile, metagenomic sequencing (MTG) and MTT are more compatible with stochastic errors of methods introduced into relative abundance of viromic taxa and hence are rational choices in species abundance-based analyses. This study also highlights that MTG needs to tackle host genome contamination and ameliorate the capacity to detect single-stranded DNA viruses in the future, and the MTT method requires an improvement in bacterial rRNA depletion prior to library preparation.
Collapse
|
12
|
Cholleti H, de Jong J, Blomström AL, Berg M. Characterization of Pipistrellus pygmaeus Bat Virome from Sweden. Viruses 2022; 14:v14081654. [PMID: 36016275 PMCID: PMC9415950 DOI: 10.3390/v14081654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 11/25/2022] Open
Abstract
Increasing amounts of data indicate that bats harbor a higher viral diversity relative to other mammalian orders, and they have been recognized as potential reservoirs for pathogenic viruses, such as the Hendra, Nipah, Marburg, and SARS-CoV viruses. Here, we present the first viral metagenomic analysis of Pipistrellus pygmaeus from Uppsala, Sweden. Total RNA was extracted from the saliva and feces of individual bats and analyzed using Illumina sequencing. The results identified sequences related to 51 different viral families, including vertebrate, invertebrate, and plant viruses. These viral families include Coronaviridae, Picornaviridae, Dicistroviridae, Astroviridae, Hepeviridae, Reoviridae, Botourmiaviridae, Lispviridae, Totiviridae, Botoumiaviridae, Parvoviridae, Retroviridae, Adenoviridae, and Partitiviridae, as well as different unclassified viruses. We further characterized three near full-length genome sequences of bat coronaviruses. A phylogenetic analysis showed that these belonged to alphacoronaviruses with the closest similarity (78–99% at the protein level) to Danish and Finnish bat coronaviruses detected in Pipistrellus and Myotis bats. In addition, the full-length and the near full-length genomes of picornavirus were characterized. These showed the closest similarity (88–94% at the protein level) to bat picornaviruses identified in Chinese bats. Altogether, the results of this study show that Swedish Pipistrellus bats harbor a great diversity of viruses, some of which are closely related to mammalian viruses. This study expands our knowledge on the bat population virome and improves our understanding of the evolution and transmission of viruses among bats and to other species.
Collapse
Affiliation(s)
- Harindranath Cholleti
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, 750 07 Uppsala, Sweden; (A.-L.B.); (M.B.)
- Correspondence:
| | - Johnny de Jong
- Swedish Biodiversity Centre (CBM), Department of Urban and Rural Development, Swedish University of Agricultural Sciences (SLU), P.O. Box 7016, 750 07 Uppsala, Sweden;
| | - Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, 750 07 Uppsala, Sweden; (A.-L.B.); (M.B.)
| | - Mikael Berg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, 750 07 Uppsala, Sweden; (A.-L.B.); (M.B.)
| |
Collapse
|
13
|
Fu X, Luo M, Zheng G, Liang H, Liu L, Lin Q, Niu Y, Luo X, Li N. Determination and Characterization of a Novel Birnavirus Associated with Massive Mortality in Largemouth Bass. Microbiol Spectr 2022; 10:e0171621. [PMID: 35319246 PMCID: PMC9045220 DOI: 10.1128/spectrum.01716-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/06/2022] [Indexed: 11/20/2022] Open
Abstract
Largemouth bass (Micropterus salmoides) is an important and fast-growing aquaculture species in China. In 2017, an epidemic associated with severe mortality occurred in fingerlings of largemouth bass in Guangdong, China. The causative pathogen was identified and named as largemouth bass Birnavirus (LBBV) by virome analysis, viral isolation, electron microscopy, genome sequencing, Western blot, indirect immunofluorescence, experimental challenge, and so on. Virome sequencing results showed that the relative abundance reads related to the family Birnaviridae were the highest, occupied ∼25% of the total viral reads. Electron microscopy revealed large numbers of nonenveloped virus particles in the spleen of diseased fish with a diameter of about 53 nm. LBBV was isolated and propagated in Chinese perch brain cells and induced a typical cytopathic effect. LBBV was stable to chloroform, heat, and 5-bromo-2'-deoxyuridine, but sensitive to acid (pH 3.0). The complete genome of LBBV was comprised of segment A with a size 3525 bp and segment B with a size 2737 bp. Phylogenetic analysis basing on RdRp and VP2 protein sequences revealed that LBBV were clustered into one clade with Lates calcarifer Birnavirus (LCBV), sharing 98.7% or 91.9% sequence identity with LCBV, respectively, but only sharing 59.7% and 52.7% sequence identity with Blosnavirus, suggesting that LBBV and LCBV probably belonged to a new genus. Challenge experiments results indicated that clinical disease symptoms similar to those observed naturally were replicated and the cumulative mortality reached 100% at 3 dpi by i.p. injection. The investigation of prevalence of LBBV infection showed that 41.5% (17/41) sample pools collected from diseased ponds was positive during 2017-2020, indicating that an emerging outbreak of this disease may be spreading within the largemouth bass in China. Above results confirmed that LBBV is a novel Birnavirus associated with massive mortality for fingerlings of largemouth bass. This provides a basis for prevention and control of this emerging viral disease. IMPORTANCE Pathogen isolation and identification are vital for emerging infectious outbreaks. Here we report the isolation, determination and characterization of a novel largemouth bass Birnavirus (LBBV) associated with massive mortality in largemouth bass. And genome of LBBV is determined and analyzed. Based on phylogenetic and alignment analysis of genome, we suggest LBBV belongs to a new genus (designated as Perbirnavirus genus) in Birnaviridae family. Our findings will provide a basis for the further study on prevention and control of this emerging viral disease.
Collapse
Affiliation(s)
- Xiaozhe Fu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, China
| | - Mingju Luo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, China
| | - Guo Zheng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, China
| | - Hongru Liang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, China
| | - Lihui Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, China
| | - Qiang Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, China
| | - Yinjie Niu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, China
| | - Xia Luo
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, China
| | - Ningqiu Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, China
| |
Collapse
|
14
|
Mota DS, Guimarães JM, Gandarilla AMD, Filho JCBS, Brito WR, Mariúba LAM. Recombinase polymerase amplification in the molecular diagnosis of microbiological targets and its applications. Can J Microbiol 2022; 68:383-402. [PMID: 35394399 DOI: 10.1139/cjm-2021-0329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the introduction of the polymerase chain reaction (PCR) technique in 1983, nucleic acid amplification has permeated all fields of biological science, particularly clinical research. Despite its importance, PCR has been restricted to specialized centers and its use in laboratories with few resources is limited. In recent decades, there has been a notable increase in the development of new isothermal technologies for molecular diagnosis with the hope of overcoming the traditional limitations of the laboratory. Among these technologies, recombinase polymerase amplification (RPA) has a wide application potential because it does not require thermocyclers and has high sensitivity, specificity, simplicity, and detection speed. This technique has been used for DNA and RNA amplification in various pathogenic organisms such as viruses, bacteria, and parasites. In addition, RPA has been successfully implemented in different detection strategies, making it a promising alternative for performing diagnoses in environments with scarce resources and a high burden of infectious diseases. In this study, we present a review of the use of RPA in clinical settings and its implementation in various research areas.
Collapse
Affiliation(s)
- D S Mota
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil
| | - J M Guimarães
- Centro Multiusuário para Análises de Fenômenos Biomédicos, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69065-00, Brazil
| | - A M D Gandarilla
- Departamento de Química, ICE, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil.,Laboratório de Bioeletrônica e Eletroquímica, LABEL, Central Analítica, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil
| | - J C B S Filho
- Departamento de Química, ICE, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil.,Laboratório de Bioeletrônica e Eletroquímica, LABEL, Central Analítica, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil
| | - W R Brito
- Departamento de Química, ICE, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil.,Laboratório de Bioeletrônica e Eletroquímica, LABEL, Central Analítica, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil
| | - L A M Mariúba
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM, 69057-070, Brazil.,Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69057-070, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Fundação Oswaldo Cruz, Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
15
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
David EDS, Fonseca EDC, de Carvalho JFN, Marinho RDSS, Duro RLS, Komninakis SV, Souto RNP. Metagenomics applied to the detection of diarrhea viruses in humans: Systematic Review. Acta Trop 2022; 227:106287. [PMID: 34929178 DOI: 10.1016/j.actatropica.2021.106287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
Abstract
To analyze the application of the metagenomics method in the identification of viral infectious agents that lead to diarrhea outbreaks. This study is a systematic review, which looked for publications on the following platforms: PubMed, Scientific Electronic Library Online (SciELO), LILACS and CAPES periodicals, conducted according to the PRISMA methodology, investigating in the literary composition studies related to metagenomics applied in the identification of viral infectious agents, which lead to diarrhea in humans. 1198 publications were identified. Of these, after analyzes and exclusions at different stages, 18 studies remained, which directly corresponded to the theme. Diarrhea was presented as a universal health concern. Despite the emergence of vaccines, cases of diarrhea remain persistent in poor populations. In this context, metagenomics emerges as a primary tool in detecting enteric viruses and identifying new viruses, revolutionizing health diagnoses, knowledge of viral diversity, and health surveillance, contributing to the correct etiology of infectious agents that would never be identified by conventional methods. The 18 articles studied point to advances in research in viral metagenomics of diarrheal samples, contributing to the discernment of diarrhea outbreaks, and properly associating with their etiological agents, they are presented in an innovative way for studies on the understanding of viral diversity.
Collapse
|
17
|
Pavletić B, Runzheimer K, Siems K, Koch S, Cortesão M, Ramos-Nascimento A, Moeller R. Spaceflight Virology: What Do We Know about Viral Threats in the Spaceflight Environment? ASTROBIOLOGY 2022; 22:210-224. [PMID: 34981957 PMCID: PMC8861927 DOI: 10.1089/ast.2021.0009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Viruses constitute a significant part of the human microbiome, so wherever humans go, viruses are brought with them, even on space missions. In this mini review, we focus on the International Space Station (ISS) as the only current human habitat in space that has a diverse range of viral genera that infect microorganisms from bacteria to eukaryotes. Thus, we have reviewed the literature on the physical conditions of space habitats that have an impact on both virus transmissibility and interaction with their host, which include UV radiation, ionizing radiation, humidity, and microgravity. Also, we briefly comment on the practices used on space missions that reduce virus spread, that is, use of antimicrobial surfaces, spacecraft sterilization practices, and air filtration. Finally, we turn our attention to the health threats that viruses pose to space travel. Overall, even though efforts are taken to ensure safe conditions during human space travel, for example, preflight quarantines of astronauts, we reflect on the potential risks humans might be exposed to and how those risks might be aggravated in extraterrestrial habitats.
Collapse
Affiliation(s)
- Bruno Pavletić
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Runzheimer
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Siems
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Stella Koch
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Marta Cortesão
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ana Ramos-Nascimento
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
- Address correspondence to: Ralf Moeller, German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology, Linder Hoehe, Building 24, Room 104, D-51147 Köln, Germany
| |
Collapse
|
18
|
Altinli M, Schnettler E, Sicard M. Symbiotic Interactions Between Mosquitoes and Mosquito Viruses. Front Cell Infect Microbiol 2021; 11:694020. [PMID: 34527601 PMCID: PMC8435781 DOI: 10.3389/fcimb.2021.694020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
Mosquitoes not only transmit human and veterinary pathogens called arboviruses (arthropod-borne viruses) but also harbor mosquito-associated insect-specific viruses (mosquito viruses) that cannot infect vertebrates. In the past, studies investigating mosquito viruses mainly focused on highly pathogenic interactions that were easier to detect than those without visible symptoms. However, the recent advances in viral metagenomics have highlighted the abundance and diversity of viruses which do not generate mass mortality in host populations. Over the last decade, this has facilitated the rapid growth of virus discovery in mosquitoes. The circumstances around the discovery of mosquito viruses greatly affected how they have been studied so far. While earlier research mainly focused on the pathogenesis caused by DNA and some double-stranded RNA viruses during larval stages, more recently discovered single-stranded RNA mosquito viruses were heavily studied for their putative interference with arboviruses in female adults. Thus, many aspects of mosquito virus interactions with their hosts and host-microbiota are still unknown. In this context, considering mosquito viruses as endosymbionts can help to identify novel research areas, in particular in relation to their long-term interactions with their hosts (e.g. relationships during all life stages, the stability of the associations at evolutionary scales, transmission routes and virulence evolution) and the possible context-dependent range of interactions (i.e. beneficial to antagonistic). Here, we review the symbiotic interactions of mosquito viruses considering different aspects of their ecology, such as transmission, host specificity, host immune system and interactions with other symbionts within the host cellular arena. Finally, we highlight related research gaps in mosquito virus research.
Collapse
Affiliation(s)
- Mine Altinli
- Molecular Entomology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Esther Schnettler
- Molecular Entomology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University Hamburg, Hamburg, Germany
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
19
|
Ali R, Jayaraj J, Mohammed A, Chinnaraja C, Carrington CVF, Severson DW, Ramsubhag A. Characterization of the virome associated with Haemagogus mosquitoes in Trinidad, West Indies. Sci Rep 2021; 11:16584. [PMID: 34400676 PMCID: PMC8368243 DOI: 10.1038/s41598-021-95842-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, there are increasing concerns about the possibility of a new epidemic due to emerging reports of Mayaro virus (MAYV) fever outbreaks in areas of South and Central America. Haemagogus mosquitoes, the primary sylvan vectors of MAYV are poorly characterized and a better understanding of the mosquito's viral transmission dynamics and interactions with MAYV and other microorganisms would be important in devising effective control strategies. In this study, a metatranscriptomic based approach was utilized to determine the prevalence of RNA viruses in field-caught mosquitoes morphologically identified as Haemagogus janthinomys from twelve (12) forest locations in Trinidad, West Indies. Known insect specific viruses including the Phasi Charoen-like and Humaiata-Tubiacanga virus dominated the virome of the mosquitoes throughout sampling locations while other viruses such as the avian leukosis virus, MAYV and several unclassified viruses had a narrower distribution. Additionally, assembled contigs from the Ecclesville location suggests the presence of a unique uncharacterized picorna-like virus. Mapping of RNA sequencing reads to reference mitochondrial sequences of potential feeding host animals showed hits against avian and rodent sequences, which putatively adds to the growing body of evidence of a potentially wide feeding host-range for the Haemagogus mosquito vector.
Collapse
Affiliation(s)
- Renee Ali
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Jayaraman Jayaraj
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Azad Mohammed
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Chinnadurai Chinnaraja
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Christine V. F. Carrington
- grid.430529.9Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - David W. Severson
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago ,grid.131063.60000 0001 2168 0066Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN USA ,grid.257425.30000 0000 8679 3494Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN USA
| | - Adesh Ramsubhag
- grid.430529.9Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| |
Collapse
|
20
|
Happi AN, Ogunsanya OA, Oguzie JU, Oluniyi PE, Olono AS, Heeney JL, Happi CT. Microbial metagenomic approach uncovers the first rabbit haemorrhagic disease virus genome in Sub-Saharan Africa. Sci Rep 2021; 11:13689. [PMID: 34210997 PMCID: PMC8249450 DOI: 10.1038/s41598-021-91961-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/07/2021] [Indexed: 01/22/2023] Open
Abstract
Rabbit Haemorrhagic Disease (RHD) causes high morbidity and mortality in rabbits and hares. Here, we report the first genomic characterization of lagovirus GI.2 virus in domestic rabbits from sub-Saharan Africa. We used an unbiased microbial metagenomic Next Generation Sequencing (mNGS) approach to diagnose the pathogen causing the suspected outbreak of RHD in Ibadan, Nigeria. The liver, spleen, and lung samples of five rabbits from an outbreak in 2 farms were analyzed. The mNGS revealed one full and two partial RHDV2 genomes on both farms. Phylogenetic analysis showed close clustering with RHDV2 lineages from Europe (98.6% similarity with RHDV2 in the Netherlands, and 99.1 to 100% identity with RHDV2 in Germany), suggesting potential importation. Subsequently, all the samples were confirmed by RHDV virus-specific RT-PCR targeting the VP60 gene with the expected band size of 398 bp for the five rabbits sampled. Our findings highlight the need for increased genomic surveillance of RHDV2 to track its origin, understand its diversity and to inform public health policy in Nigeria, and Sub-Saharan Africa.
Collapse
Affiliation(s)
- Anise N Happi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria. .,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria.
| | - Olusola A Ogunsanya
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Judith U Oguzie
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Paul E Oluniyi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Alhaji S Olono
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Jonathan L Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Christian T Happi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria. .,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria.
| |
Collapse
|
21
|
Kyrychenko AN, Shcherbatenko IS, Kovalenko AG. Viruses of Wild Plants and Current Metagenomic Methods for Their Investigation. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Mechanisms Underlying Host Range Variation in Flavivirus: From Empirical Knowledge to Predictive Models. J Mol Evol 2021; 89:329-340. [PMID: 34059925 DOI: 10.1007/s00239-021-10013-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022]
Abstract
Preventing and controlling epidemics caused by vector-borne viruses are particularly challenging due to their diverse pool of hosts and highly adaptive nature. Many vector-borne viruses belong to the Flavivirus genus, whose members vary greatly in host range and specificity. Members of the Flavivirus genus can be categorized to four main groups: insect-specific viruses that are maintained solely in arthropod populations, mosquito-borne viruses and tick-borne viruses that are transmitted to vertebrate hosts by mosquitoes or ticks via blood feeding, and those with no-known vector. The mosquito-borne group encompasses the yellow fever, dengue, and West Nile viruses, all of which are globally spread and cause severe morbidity in humans. The Flavivirus genus is genetically diverse, and its members are subject to different host-specific and vector-specific selective constraints, which do not always align. Thus, understanding the underlying genetic differences that led to the diversity in host range within this genus is an important aspect in deciphering the mechanisms that drive host compatibility and can aid in the constant arms-race against viral threats. Here, we review the phylogenetic relationships between members of the genus, their infection bottlenecks, and phenotypic and genomic differences. We further discuss methods that utilize these differences for prediction of host shifts in flaviviruses and can contribute to viral surveillance efforts.
Collapse
|
23
|
Folgueiras-González A, van den Braak R, Deijs M, van der Hoek L, de Groof A. A Versatile Processing Workflow to Enable Pathogen Detection in Clinical Samples from Organs Using VIDISCA. Diagnostics (Basel) 2021; 11:diagnostics11050791. [PMID: 33925752 PMCID: PMC8145099 DOI: 10.3390/diagnostics11050791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, refined molecular methods coupled with powerful high throughput sequencing technologies have increased the potential of virus discovery in clinical samples. However, host genetic material remains a complicating factor that interferes with discovery of novel viruses in solid tissue samples as the relative abundance of the virus material is low. Physical enrichment processing methods, although usually complicated, labor-intensive, and costly, have proven to be successful for improving sensitivity of virus detection in complex samples. In order to further increase detectability, we studied the application of fast and simple high-throughput virus enrichment methods on tissue homogenates. Probe sonication in high EDTA concentrations, organic extraction with Vertrel™ XF, or a combination of both, were applied prior to chromatography-like enrichment using Capto™ Core 700 resin, after which effects on virus detection sensitivity by the VIDISCA method were determined. Sonication in the presence of high concentrations of EDTA showed the best performance with an increased proportion of viral reads, up to 9.4 times, yet minimal effect on the host background signal. When this sonication procedure in high EDTA concentrations was followed by organic extraction with Vertrel™ XF and two rounds of core bead chromatography enrichment, an increase up to 10.5 times in the proportion of viral reads in the processed samples was achieved, with reduction of host background sequencing. We present a simple and semi-high-throughput method that can be used to enrich homogenized tissue samples for viral reads.
Collapse
Affiliation(s)
- Alba Folgueiras-González
- Department Discovery & Technology, MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, The Netherlands; (A.F.-G.); (R.v.d.B.)
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.D.); (L.v.d.H.)
| | - Robin van den Braak
- Department Discovery & Technology, MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, The Netherlands; (A.F.-G.); (R.v.d.B.)
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.D.); (L.v.d.H.)
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.D.); (L.v.d.H.)
| | - Ad de Groof
- Department Discovery & Technology, MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, The Netherlands; (A.F.-G.); (R.v.d.B.)
- Correspondence:
| |
Collapse
|
24
|
Gil P, Dupuy V, Koual R, Exbrayat A, Loire E, Fall AG, Gimonneau G, Biteye B, Talla Seck M, Rakotoarivony I, Marie A, Frances B, Lambert G, Reveillaud J, Balenghien T, Garros C, Albina E, Eloit M, Gutierrez S. A library preparation optimized for metagenomics of RNA viruses. Mol Ecol Resour 2021; 21:1788-1807. [PMID: 33713395 DOI: 10.1111/1755-0998.13378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/28/2022]
Abstract
Our understanding of the viral communities associated to animals has not yet reached the level attained on the bacteriome. This situation is due to, among others, technical challenges in adapting metagenomics using high-throughput sequencing to the study of RNA viromes in animals. Although important developments have been achieved in most steps of viral metagenomics, there is yet a key step that has received little attention: the library preparation. This situation differs from bacteriome studies in which developments in library preparation have largely contributed to the democratisation of metagenomics. Here, we present a library preparation optimized for metagenomics of RNA viruses from insect vectors of viral diseases. The library design allows a simple PCR-based preparation, such as those routinely used in bacterial metabarcoding, that is adapted to shotgun sequencing as required in viral metagenomics. We first optimized our library preparation using mock viral communities and then validated a full metagenomic approach incorporating our preparation in two pilot studies with field-caught insect vectors; one including a comparison with a published metagenomic protocol. Our approach provided a fold increase in virus-like sequences compared to other studies, and nearly-full genomes from new virus species. Moreover, our results suggested conserved trends in virome composition within a population of a mosquito species. Finally, the sensitivity of our approach was compared to a commercial diagnostic PCR for the detection of an arbovirus in field-caught insect vectors. Our approach could facilitate studies on viral communities from animals and the democratization of metagenomics in community ecology of viruses.
Collapse
Affiliation(s)
- Patricia Gil
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Virginie Dupuy
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Rachid Koual
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Antoni Exbrayat
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Etienne Loire
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Assane G Fall
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Geoffrey Gimonneau
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France.,Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Biram Biteye
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Momar Talla Seck
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Ignace Rakotoarivony
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | | | | | | | - Julie Reveillaud
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France
| | - Thomas Balenghien
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Claire Garros
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Emmanuel Albina
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France.,École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Serafin Gutierrez
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| |
Collapse
|
25
|
Sadeghi M, Tomaru Y, Ahola T. RNA Viruses in Aquatic Unicellular Eukaryotes. Viruses 2021; 13:v13030362. [PMID: 33668994 PMCID: PMC7996518 DOI: 10.3390/v13030362] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Increasing sequence information indicates that RNA viruses constitute a major fraction of marine virus assemblages. However, only 12 RNA virus species have been described, infecting known host species of marine single-celled eukaryotes. Eight of these use diatoms as hosts, while four are resident in dinoflagellate, raphidophyte, thraustochytrid, or prasinophyte species. Most of these belong to the order Picornavirales, while two are divergent and fall into the families Alvernaviridae and Reoviridae. However, a very recent study has suggested that there is extraordinary diversity in aquatic RNA viromes, describing thousands of viruses, many of which likely use protist hosts. Thus, RNA viruses are expected to play a major ecological role for marine unicellular eukaryotic hosts. In this review, we describe in detail what has to date been discovered concerning viruses with RNA genomes that infect aquatic unicellular eukaryotes.
Collapse
Affiliation(s)
- Mohammadreza Sadeghi
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (M.S.); (T.A.)
| | - Yuji Tomaru
- Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Fisheries Research and Education Agency, Hatsukaichi, Hiroshima 739-0452, Japan;
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (M.S.); (T.A.)
| |
Collapse
|
26
|
Jin T, Yin J. Patterns of virus growth across the diversity of life. Integr Biol (Camb) 2021; 13:44-59. [PMID: 33616184 DOI: 10.1093/intbio/zyab001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
Although viruses in their natural habitats add up to less than 10% of the biomass, they contribute more than 90% of the genome sequences [1]. These viral sequences or 'viromes' encode viruses that populate the Earth's oceans [2, 3] and terrestrial environments [4, 5], where their infections impact life across diverse ecological niches and scales [6, 7], including humans [8-10]. Most viruses have yet to be isolated and cultured [11-13], and surprisingly few efforts have explored what analysis of available data might reveal about their nature. Here, we compiled and analyzed seven decades of one-step growth and other data for viruses from six major families, including their infections of archaeal, bacterial and eukaryotic hosts [14-191]. We found that the use of host cell biomass for virus production was highest for archaea at 10%, followed by bacteria at 1% and eukarya at 0.01%, highlighting the degree to which viruses of archaea and bacteria exploit their host cells. For individual host cells, the yield of virus progeny spanned a relatively narrow range (10-1000 infectious particles per cell) compared with the million-fold difference in size between the smallest and largest cells. Furthermore, healthy and infected host cells were remarkably similar in the time they needed to multiply themselves or their virus progeny. Specifically, the doubling time of healthy cells and the delay time for virus release from infected cells were not only correlated (r = 0.71, p < 10-10, n = 101); they also spanned the same range from tens of minutes to about a week. These results have implications for better understanding the growth, spread and persistence of viruses in complex natural habitats that abound with diverse hosts, including humans and their associated microbes.
Collapse
Affiliation(s)
- Tianyi Jin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - John Yin
- Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
27
|
Biodiversity loss and COVID-19 pandemic: The role of bats in the origin and the spreading of the disease. Biochem Biophys Res Commun 2021; 538:2-13. [PMID: 33092787 PMCID: PMC7566801 DOI: 10.1016/j.bbrc.2020.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
The loss of biodiversity in the ecosystems has created the general conditions that have favored and, in fact, made possible, the insurgence of the COVID-19 pandemic. A lot of factors have contributed to it: deforestation, changes in forest habitats, poorly regulated agricultural surfaces, mismanaged urban growth. They have altered the composition of wildlife communities, greatly increased the contacts of humans with wildlife, and altered niches that harbor pathogens, increasing their chances to come in contact with humans. Among the wildlife, bats have adapted easily to anthropized environments such as houses, barns, cultivated fields, orchards, where they found the suitable ecosystem to prosper. Bats are major hosts for αCoV and βCoV: evolution has shaped their peculiar physiology and their immune system in a way that makes them resistant to viral pathogens that would instead successfully attack other species, including humans. In time, the coronaviruses that bats host as reservoirs have undergone recombination and other modifications that have increased their ability for inter-species transmission: one modification of particular importance has been the development of the ability to use ACE2 as a receptor in host cells. This particular development in CoVs has been responsible for the serious outbreaks in the last two decades, and for the present COVID-19 pandemic.
Collapse
|
28
|
Zhou L, Hu C, Zhou Q, Yang D, Wang L, Zhang B. Viral communities associated with porcine diarrhoeal disease and genetic characterization of a bufavirus in Tibetan pigs in China. Arch Virol 2021; 166:613-617. [PMID: 33389103 PMCID: PMC7778721 DOI: 10.1007/s00705-020-04932-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/08/2020] [Indexed: 02/03/2023]
Abstract
To investigate the viral communities in diarrhoeal faeces of Tibetan pigs, 146 diarrhoeic samples were collected from 16 pigs farms on the Tibetan plateau. Nineteen viruses belonging to eleven viral taxonomic families were identified in a pooled library. Metagenomics analysis revealed that the viruses were mainly small linear and circular DNA viruses. Furthermore, sequences of 10 NS1 genes and two complete genomes of PBuVs were obtained by PCR amplification. Sequence comparisons and phylogenetic analysis showed that the PBuVs from Tibetan pigs displayed more abundant genetic diversity than those from domestic pigs. This is the first description of the faecal viral community in Tibetan pigs associated with diarrhoea.
Collapse
Affiliation(s)
- Long Zhou
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, P.R. China
| | - Chengzhe Hu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, P.R. China
| | - Qun Zhou
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, P.R. China
| | - Danjiao Yang
- Institute of Animal Science of Ganzi Tibetan Autonomous Prefecture of Sichuan Province, Kangding, 626000, P.R. China
| | - Lixuan Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, P.R. China
| | - Bin Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, P.R. China.
| |
Collapse
|
29
|
Fahmi M, Kharisma VD, Ansori ANM, Ito M. Retrieval and Investigation of Data on SARS-CoV-2 and COVID-19 Using Bioinformatics Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:839-857. [PMID: 33973215 DOI: 10.1007/978-3-030-63761-3_47] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sudden emergence and a rapid outbreak of SARS-CoV-2 accompanied by a devastating impact on the economy and public health has driven extensive scientific mobilization to study and elucidate the various associated concerns about SARS-CoV-2. Bioinformatics plays a crucial role in addressing and providing solutions to questions about SARS-CoV-2. It helps shorten the duration for the vaccine development process and the discovery of potential clinical interventions through the simulation and information retrieval, and the development of well-ordered information hubs and resources, which are essential to derive data and meaningful findings from the current massive information about SARS-CoV-2. Advanced algorithms in this field also provide approaches that are essential to elucidate the relationship, origin, and evolutionary process of SARS-CoV-2. Here, we report essential bioinformatics entities, such as database and platform development, molecular evolution and phylogenetic analyses, and vaccine designs, that are useful to solve the SARS-CoV-2 conundrum.
Collapse
Affiliation(s)
- Muhamad Fahmi
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Kusatsu, Japan
| | - Viol Dhea Kharisma
- Master Program in Biology, Department of Biology, Faculty of Mathematic and Natural Sciences, Universitas Brawijaya, Malang, Indonesia.,Computational Virology and Complexity Science Research Unit, Division of Molecular Biology and Genetics, Generasi Biologi Indonesia (GENBINESIA) Foundation, Gresik, Indonesia.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Malang, Indonesia
| | - Arif Nur Muhammad Ansori
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Universitas Airlangga, Surabaya, Indonesia.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Surabaya, Indonesia
| | - Masahiro Ito
- Advanced Life Sciences Program, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan. .,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Kusatsu, Japan.
| |
Collapse
|
30
|
Auslander N, Gussow AB, Benler S, Wolf YI, Koonin EV. Seeker: alignment-free identification of bacteriophage genomes by deep learning. Nucleic Acids Res 2020; 48:e121. [PMID: 33045744 PMCID: PMC7708075 DOI: 10.1093/nar/gkaa856] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Recent advances in metagenomic sequencing have enabled discovery of diverse, distinct microbes and viruses. Bacteriophages, the most abundant biological entity on Earth, evolve rapidly, and therefore, detection of unknown bacteriophages in sequence datasets is a challenge. Most of the existing detection methods rely on sequence similarity to known bacteriophage sequences, impeding the identification and characterization of distinct, highly divergent bacteriophage families. Here we present Seeker, a deep-learning tool for alignment-free identification of phage sequences. Seeker allows rapid detection of phages in sequence datasets and differentiation of phage sequences from bacterial ones, even when those phages exhibit little sequence similarity to established phage families. We comprehensively validate Seeker's ability to identify previously unidentified phages, and employ this method to detect unknown phages, some of which are highly divergent from the known phage families. We provide a web portal (seeker.pythonanywhere.com) and a user-friendly Python package (github.com/gussow/seeker) allowing researchers to easily apply Seeker in metagenomic studies, for the detection of diverse unknown bacteriophages.
Collapse
Affiliation(s)
- Noam Auslander
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Ayal B Gussow
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Sean Benler
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
31
|
Johansson Ö, Ullman K, Lkhagvajav P, Wiseman M, Malmsten J, Leijon M. Detection and Genetic Characterization of Viruses Present in Free-Ranging Snow Leopards Using Next-Generation Sequencing. Front Vet Sci 2020; 7:645. [PMID: 33195503 PMCID: PMC7536260 DOI: 10.3389/fvets.2020.00645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Snow leopards inhabit the cold, arid environments of the high mountains of South and Central Asia. These living conditions likely affect the abundance and composition of microbes with the capacity to infect these animals. It is important to investigate the microbes that snow leopards are exposed to detect infectious disease threats and define a baseline for future changes that may impact the health of this endangered felid. In this work, next-generation sequencing is used to investigate the fecal (and in a few cases serum) virome of seven snow leopards from the Tost Mountains of Mongolia. The viral species to which the greatest number of sequences reads showed high similarity was rotavirus. Excluding one animal with overall very few sequence reads, four of six animals (67%) displayed evidence of rotavirus infection. A serum sample of a male and a rectal swab of a female snow leopard produced sequence reads identical or closely similar to felid herpesvirus 1, providing the first evidence that this virus infects snow leopards. In addition, the rectal swab from the same female also displayed sequence reads most similar to feline papillomavirus 2, which is the first evidence for this virus infecting snow leopards. The rectal swabs from all animals also showed evidence for the presence of small circular DNA viruses, predominantly Circular Rep-Encoding Single-Stranded (CRESS) DNA viruses and in one case feline anellovirus. Several of the viruses implicated in the present study could affect the health of snow leopards. In animals which are under environmental stress, for example, young dispersing individuals and lactating females, health issues may be exacerbated by latent virus infections.
Collapse
Affiliation(s)
- Örjan Johansson
- Department of Ecology, Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, Riddarhyttan, Sweden.,Snow Leopard Trust, Seattle, WA, United States
| | - Karin Ullman
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | | | - Marc Wiseman
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, United States
| | - Jonas Malmsten
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mikael Leijon
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
32
|
Alam MNU, Chowdhury UF. Short k-mer abundance profiles yield robust machine learning features and accurate classifiers for RNA viruses. PLoS One 2020; 15:e0239381. [PMID: 32946529 PMCID: PMC7500682 DOI: 10.1371/journal.pone.0239381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/06/2020] [Indexed: 01/20/2023] Open
Abstract
High-throughput sequencing technologies have greatly enabled the study of genomics, transcriptomics and metagenomics. Automated annotation and classification of the vast amounts of generated sequence data has become paramount for facilitating biological sciences. Genomes of viruses can be radically different from all life, both in terms of molecular structure and primary sequence. Alignment-based and profile-based searches are commonly employed for characterization of assembled viral contigs from high-throughput sequencing data. Recent attempts have highlighted the use of machine learning models for the task, but these models rely entirely on DNA genomes and owing to the intrinsic genomic complexity of viruses, RNA viruses have gone completely overlooked. Here, we present a novel short k-mer based sequence scoring method that generates robust sequence information for training machine learning classifiers. We trained 18 classifiers for the task of distinguishing viral RNA from human transcripts. We challenged our models with very stringent testing protocols across different species and evaluated performance against BLASTn, BLASTx and HMMER3 searches. For clean sequence data retrieved from curated databases, our models display near perfect accuracy, outperforming all similar attempts previously reported. On de novo assemblies of raw RNA-Seq data from cells subjected to Ebola virus, the area under the ROC curve varied from 0.6 to 0.86 depending on the software used for assembly. Our classifier was able to properly classify the majority of the false hits generated by BLAST and HMMER3 searches on the same data. The outstanding performance metrics of our model lays the groundwork for robust machine learning methods for the automated annotation of sequence data.
Collapse
Affiliation(s)
- Md. Nafis Ul Alam
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Umar Faruq Chowdhury
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
33
|
Di Paola N, Sanchez-Lockhart M, Zeng X, Kuhn JH, Palacios G. Viral genomics in Ebola virus research. Nat Rev Microbiol 2020; 18:365-378. [PMID: 32367066 PMCID: PMC7223634 DOI: 10.1038/s41579-020-0354-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
Filoviruses such as Ebola virus continue to pose a substantial health risk to humans. Advances in the sequencing and functional characterization of both pathogen and host genomes have provided a wealth of knowledge to clinicians, epidemiologists and public health responders during outbreaks of high-consequence viral disease. Here, we describe how genomics has been historically used to investigate Ebola virus disease outbreaks and how new technologies allow for rapid, large-scale data generation at the point of care. We highlight how genomics extends beyond consensus-level sequencing of the virus to include intra-host viral transcriptomics and the characterization of host responses in acute and persistently infected patients. Similar genomics techniques can also be applied to the characterization of non-human primate animal models and to known natural reservoirs of filoviruses, and metagenomic sequencing can be the key to the discovery of novel filoviruses. Finally, we outline the importance of reverse genetics systems that can swiftly characterize filoviruses as soon as their genome sequences are available.
Collapse
Affiliation(s)
- Nicholas Di Paola
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Mariano Sanchez-Lockhart
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.
| |
Collapse
|
34
|
Cibulski S, Weber MN, de Sales Lima FE, Lima DAD, Fernandes Dos Santos H, Teixeira TF, Varela APM, Tochetto C, Mayer FQ, Roehe PM. Viral metagenomics in Brazilian Pekin ducks identifies two gyrovirus, including a new species, and the potentially pathogenic duck circovirus. Virology 2020; 548:101-108. [PMID: 32838930 DOI: 10.1016/j.virol.2020.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 01/01/2023]
Abstract
Viral metagenomics coupled to high-throughput sequencing has provided a powerful tool for large-scale detection of known and unknown viruses associated to distinct hosts and environments. Using this approach, known and novel viruses have been characterized from sylvatic and commercial avian hosts, increasing our understanding of the viral diversity in these species. In the present work we applied an exploratory viral metagenomics on organs (spleen, liver and bursa of Fabricious) of Pekin ducks from Southern Brazil. The virome contained sequences related to a known duck pathogen (duck circovirus) and a number of other circular ssDNA viruses. Additionally, we detected avian gyrovirus 9 (to date detected only in human feces) and one new avian gyrovirus species, to which is proposed the name avian gyrovirus 13 (GyV13). This study is expected to contribute to the knowledge of the viral diversity in Pekin ducks.
Collapse
Affiliation(s)
- Samuel Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil.
| | - Matheus Nunes Weber
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Francisco Esmaile de Sales Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diane Alves de Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Helton Fernandes Dos Santos
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Muterle Varela
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Tochetto
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
35
|
Damian D, Maghembe R, Damas M, Wensman JJ, Berg M. Application of Viral Metagenomics for Study of Emerging and Reemerging Tick-Borne Viruses. Vector Borne Zoonotic Dis 2020; 20:557-565. [PMID: 32267808 DOI: 10.1089/vbz.2019.2579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ticks are important vectors for different tick-borne viruses, some of which cause diseases and death in humans, livestock, and wild animals. Tick-borne encephalitis virus, Crimean-Congo hemorrhagic fever virus, Kyasanur forest disease virus, severe fever with thrombocytopenia syndrome virus, Heartland virus, African swine fever virus, Nairobi sheep disease virus, and Louping ill virus are just a few examples of important tick-borne viruses. The majority of tick-borne viruses have RNA genomes that routinely undergo rapid genetic modifications such as point mutations during their replication. These genomic changes can influence the spread of viruses to new habitats and hosts and lead to the emergence of novel viruses that can pose a threat to public health. Therefore, investigation of the viruses circulating in ticks is important to understand their diversity, host and vector range, and evolutionary history, as well as to predict new emerging pathogens. The choice of detection method is important, as most methods detect only those viruses that have been previously well described. On the other hand, viral metagenomics is a useful tool to simultaneously identify all the viruses present in a sample, including novel variants of already known viruses or completely new viruses. This review describes tick-borne viruses, their historical background of emergence, and their reemergence in nature, and the use of viral metagenomics for viral discovery and studies of viral evolution.
Collapse
Affiliation(s)
- Donath Damian
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Reuben Maghembe
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Modester Damas
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Jonas Johansson Wensman
- Section of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikael Berg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
36
|
Bustamante M, Oomah BD, Oliveira WP, Burgos-Díaz C, Rubilar M, Shene C. Probiotics and prebiotics potential for the care of skin, female urogenital tract, and respiratory tract. Folia Microbiol (Praha) 2020; 65:245-264. [PMID: 31773556 PMCID: PMC7090755 DOI: 10.1007/s12223-019-00759-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022]
Abstract
The prebiotics and probiotics market is constantly growing due to the positive effects of its consumption on human health, which extends beyond the digestive system. In addition, the synbiotic products market is also expanding due to the synergistic effects between pre- and probiotics that provide additional benefits to consumers. Pre- and probiotics are being evaluated for their effectiveness to treat and prevent infectious diseases in other parts of the human body where microbial communities exist. This review examines the scientific data related to the effects of pre- and probiotics on the treatment of diseases occurring in the skin, female urogenital tract, and respiratory tract. The evidence suggests that probiotics consumption can decrease the presence of eczema in children when their mothers have consumed probiotics during pregnancy and lactation. In women, probiotics consumption can effectively prevent recurrent urinary tract infections. The consumption of synbiotic products can reduce respiratory tract infections and their duration and severity. However, the outcomes of the meta-analyses are still limited and not sufficiently conclusive to support the use of probiotics to treat infectious diseases. This is largely a result of the limited number of studies, lack of standardization of the studies, and inconsistencies between the reported results. Therefore, it is advisable that future studies consider these shortcomings and include the evaluation of the combined use of pre- and probiotics.
Collapse
Affiliation(s)
- Mariela Bustamante
- Center of Food Biotechnology and Bioseparations, Scientific and Technological Bioresource Nucleus, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Ave. Francisco Salazar 01145, Box 54-D,, Temuco, Chile.
| | - B Dave Oomah
- (Retired) Formerly with the National Bioproducts and Bioprocesses Program, Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| | - Wanderley P Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto/FCFRP, Universidade de São Paulo, Ave. do Café, s/n-Bloco Q, Bairro Monte Alegre, Ribeirão Preto-SP, 14040-903,, Brazil
| | - César Burgos-Díaz
- Agriaquaculture Nutritional Genomic Center, CGNA, Las Heras 350, Temuco, Chile
| | - Mónica Rubilar
- Center of Food Biotechnology and Bioseparations, Scientific and Technological Bioresource Nucleus, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Ave. Francisco Salazar 01145, Box 54-D,, Temuco, Chile
| | - Carolina Shene
- Center of Food Biotechnology and Bioseparations, Scientific and Technological Bioresource Nucleus, BIOREN and Department of Chemical Engineering, Universidad de La Frontera, Ave. Francisco Salazar 01145, Box 54-D,, Temuco, Chile
- Centre for Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
37
|
Birnberg L, Temmam S, Aranda C, Correa-Fiz F, Talavera S, Bigot T, Eloit M, Busquets N. Viromics on Honey-Baited FTA Cards as a New Tool for the Detection of Circulating Viruses in Mosquitoes. Viruses 2020; 12:E274. [PMID: 32121402 PMCID: PMC7150749 DOI: 10.3390/v12030274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
Worldwide, emerging and re-emerging infectious diseases (EIDs) are a major burden on public and animal health. Arthropod vectors, with mosquitoes being the main contributors of global disease, transmit more than 70% of the recognized EIDs. To assess new alternatives for arthropod-borne viral diseases surveillance, and for the detection of new viruses, honey-baited Flinders Technology Associates (FTA) cards were used as sugar bait in mosquito traps during entomological surveys at the Llobregat River Delta (Catalonia, Spain). Next generation sequencing (NGS) metagenomics analysis was applied on honey-baited FTA cards, which had been exposed to field-captured mosquitoes to characterize their associated virome. Arthropod- and plant-infecting viruses governed the virome profile on FTA cards. Twelve near-complete viral genomes were successfully obtained, suggesting good quality preservation of viral RNAs. Mosquito pools linked to the FTA cards were screened for the detection of mosquito-associated viruses by specific RT-PCRs to confirm the presence of these viruses. The circulation of viruses related to Alphamesonivirus, Quaranjavirus and unclassified Bunyavirales was detected in mosquitoes, and phylogenetic analyses revealed their similarities to viruses previously reported in other continents. To the best our knowledge, our findings constitute the first distribution record of these viruses in European mosquitoes and the first hint of insect-specific viruses in mosquitoes' saliva in field conditions, demonstrating the feasibility of this approach to monitor the transmissible fraction of the mosquitoes' virome. In conclusion, this pilot viromics study on honey-baited FTA cards was shown to be a valid approach for the detection of viruses circulating in mosquitoes, thereby setting up an alternative tool for arbovirus surveillance and control programs.
Collapse
Affiliation(s)
- Lotty Birnberg
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
| | - Sarah Temmam
- Institut Pasteur, Pathogen Discovery Laboratory, 75015 Paris, France; (S.T.); (T.B.); (M.E.)
| | - Carles Aranda
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
- Servei de Control de Mosquits del Consell Comarcal del Baix Llobregat, 08820 Barcelona, Spain
| | - Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
| | - Sandra Talavera
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
| | - Thomas Bigot
- Institut Pasteur, Pathogen Discovery Laboratory, 75015 Paris, France; (S.T.); (T.B.); (M.E.)
- Institut Pasteur – Bioinformatics and Biostatistics Hub—Computational Biology department, Institut Pasteur, USR 3756 CNRS—75015 Paris, France
| | - Marc Eloit
- Institut Pasteur, Pathogen Discovery Laboratory, 75015 Paris, France; (S.T.); (T.B.); (M.E.)
- National Veterinary School of Alfort, Paris-Est University, 94704 CEDEX, Maisons-Alfort, France
| | - Núria Busquets
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
| |
Collapse
|
38
|
Da Silva MS, Budaszewski RF, Weber MN, Cibulski SP, Paim WP, Mósena ACS, Canova R, Varela APM, Mayer FQ, Pereira CW, Canal CW. Liver virome of healthy pigs reveals diverse small ssDNA viral genomes. INFECTION GENETICS AND EVOLUTION 2020; 81:104203. [PMID: 32035977 DOI: 10.1016/j.meegid.2020.104203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Brazil is a major exporter of pork meat worldwide. Swine liver is a common ingredient in food consumed by humans, thus emphasizing the importance of evaluating the presence of associated pathogens in swine liver. To obtain knowledge, this study aimed to provide insights into the viral communities of livers collected from slaughtered pigs from southern Brazil. The 46 livers were processed and submitted for high-throughput sequencing (HTS). The sequences were most closely related to Anelloviridae, Circoviridae and Parvoviridae families. The present work also describes the first Brazilian PCV1 and the first PPV6 and PPV7 from South America. Virus frequencies revelead 63% of samples positive for TTSuV1, 71% for TTSuVk2, 10.8% for PCV, 13% for PPV and 6% for PBov. This report addresses the diversity of the liver virome of healthy pigs and expands the number of viruses detected, further characterizing their genomes to assist future studies.
Collapse
Affiliation(s)
- M S Da Silva
- Laboratório de Virologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Brazil
| | - R F Budaszewski
- Laboratório de Virologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Brazil
| | - M N Weber
- Laboratório de Virologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Brazil
| | - S P Cibulski
- Departamento de Biotecnologia, Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - W P Paim
- Laboratório de Virologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Brazil
| | - A C S Mósena
- Laboratório de Virologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Brazil
| | - R Canova
- Laboratório de Virologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Brazil
| | - A P M Varela
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - F Q Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - C W Pereira
- Secretaria de Agricultura, Pecuária e Desenvolvimento Rural do Estado do Rio Grande do Sul, Brazil
| | - C W Canal
- Laboratório de Virologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Brazil.
| |
Collapse
|
39
|
Pérez-Losada M, Arenas M, Galán JC, Bracho MA, Hillung J, García-González N, González-Candelas F. High-throughput sequencing (HTS) for the analysis of viral populations. INFECTION GENETICS AND EVOLUTION 2020; 80:104208. [PMID: 32001386 DOI: 10.1016/j.meegid.2020.104208] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
The development of High-Throughput Sequencing (HTS) technologies is having a major impact on the genomic analysis of viral populations. Current HTS platforms can capture nucleic acid variation across millions of genes for both selected amplicons and full viral genomes. HTS has already facilitated the discovery of new viruses, hinted new taxonomic classifications and provided a deeper and broader understanding of their diversity, population and genetic structure. Hence, HTS has already replaced standard Sanger sequencing in basic and applied research fields, but the next step is its implementation as a routine technology for the analysis of viruses in clinical settings. The most likely application of this implementation will be the analysis of viral genomics, because the huge population sizes, high mutation rates and very fast replacement of viral populations have demonstrated the limited information obtained with Sanger technology. In this review, we describe new technologies and provide guidelines for the high-throughput sequencing and genetic and evolutionary analyses of viral populations and metaviromes, including software applications. With the development of new HTS technologies, new and refurbished molecular and bioinformatic tools are also constantly being developed to process and integrate HTS data. These allow assembling viral genomes and inferring viral population diversity and dynamics. Finally, we also present several applications of these approaches to the analysis of viral clinical samples including transmission clusters and outbreak characterization.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Washington, DC, USA; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain; Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain.
| | - Juan Carlos Galán
- Microbiology Service, Hospital Ramón y Cajal, Madrid, Spain; CIBER in Epidemiology and Public Health, Spain.
| | - Mª Alma Bracho
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain.
| | - Julia Hillung
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Neris García-González
- Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| | - Fernando González-Candelas
- CIBER in Epidemiology and Public Health, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), CSIC-University of Valencia, Valencia, Spain.
| |
Collapse
|
40
|
Kaszab E, Doszpoly A, Lanave G, Verma A, Bányai K, Malik YS, Marton S. Metagenomics revealing new virus species in farm and pet animals and aquaculture. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149329 DOI: 10.1016/b978-0-12-816352-8.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Viral metagenomics is slowly taking over the traditional and widely used molecular techniques for the investigation of pathogenic viruses responsible for illness and inflicting great economic burden on the farm animal industry. Owing to the continued improvements in sequencing technologies and the dramatic reduction of per base costs of sequencing the use of next generation sequencing have been key factors in this progress. Discoveries linked to viral metagenomics are expected to be beneficial to the field of veterinary medicine starting from the development of better diagnostic assays to the design of new subunit vaccines with minimal investments. With these achievements the research has taken a giant leap even toward the better healthcare of animals and, as a result, the animal sector could be growing at an unprecedented pace.
Collapse
|
41
|
Liu D, Ma Y, Jiang X, He T. Predicting virus-host association by Kernelized logistic matrix factorization and similarity network fusion. BMC Bioinformatics 2019; 20:594. [PMID: 31787095 PMCID: PMC6886165 DOI: 10.1186/s12859-019-3082-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Viruses are closely related to bacteria and human diseases. It is of great significance to predict associations between viruses and hosts for understanding the dynamics and complex functional networks in microbial community. With the rapid development of the metagenomics sequencing, some methods based on sequence similarity and genomic homology have been used to predict associations between viruses and hosts. However, the known virus-host association network was ignored in these methods. Results We proposed a kernelized logistic matrix factorization with integrating different information to predict potential virus-host associations on the heterogeneous network (ILMF-VH) which is constructed by connecting a virus network with a host network based on known virus-host associations. The virus network is constructed based on oligonucleotide frequency measurement, and the host network is constructed by integrating oligonucleotide frequency similarity and Gaussian interaction profile kernel similarity through similarity network fusion. The host prediction accuracy of our method is better than other methods. In addition, case studies show that the host of crAssphage predicted by ILMF-VH is consistent with presumed host in previous studies, and another potential host Escherichia coli is also predicted. Conclusions The proposed model is an effective computational tool for predicting interactions between viruses and hosts effectively, and it has great potential for discovering novel hosts of viruses.
Collapse
Affiliation(s)
- Dan Liu
- School of Computer, Central China Normal University, Wuhan, Hubei, China.,Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei, China
| | - Yingjun Ma
- School of Computer, Central China Normal University, Wuhan, Hubei, China.,Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei, China
| | - Xingpeng Jiang
- School of Computer, Central China Normal University, Wuhan, Hubei, China. .,Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei, China.
| | - Tingting He
- School of Computer, Central China Normal University, Wuhan, Hubei, China. .,Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei, China.
| |
Collapse
|
42
|
Detecting viral sequences in NGS data. Curr Opin Virol 2019; 39:41-48. [DOI: 10.1016/j.coviro.2019.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023]
|
43
|
Modha S, Hughes J, Bianco G, Ferguson HM, Helm B, Tong L, Wilkie GS, Kohl A, Schnettler E. Metaviromics Reveals Unknown Viral Diversity in the Biting Midge Culicoides impunctatus. Viruses 2019; 11:v11090865. [PMID: 31533247 PMCID: PMC6784199 DOI: 10.3390/v11090865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022] Open
Abstract
Biting midges (Culicoides species) are vectors of arboviruses and were responsible for the emergence and spread of Schmallenberg virus (SBV) in Europe in 2011 and are likely to be involved in the emergence of other arboviruses in Europe. Improved surveillance and better understanding of risks require a better understanding of the circulating viral diversity in these biting insects. In this study, we expand the sequence space of RNA viruses by identifying a number of novel RNA viruses from Culicoides impunctatus (biting midge) using a meta-transcriptomic approach. A novel metaviromic pipeline called MetaViC was developed specifically to identify novel virus sequence signatures from high throughput sequencing (HTS) datasets in the absence of a known host genome. MetaViC is a protein centric pipeline that looks for specific protein signatures in the reads and contigs generated as part of the pipeline. Several novel viruses, including an alphanodavirus with both segments, a novel relative of the Hubei sobemo-like virus 49, two rhabdo-like viruses and a chuvirus, were identified in the Scottish midge samples. The newly identified viruses were found to be phylogenetically distinct to those previous known. These findings expand our current knowledge of viral diversity in arthropods and especially in these understudied disease vectors.
Collapse
Affiliation(s)
- Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Giovanni Bianco
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Gavin S Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| |
Collapse
|
44
|
Kufner V, Plate A, Schmutz S, Braun DL, Günthard HF, Capaul R, Zbinden A, Mueller NJ, Trkola A, Huber M. Two Years of Viral Metagenomics in a Tertiary Diagnostics Unit: Evaluation of the First 105 Cases. Genes (Basel) 2019; 10:genes10090661. [PMID: 31470675 PMCID: PMC6770117 DOI: 10.3390/genes10090661] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/28/2023] Open
Abstract
Metagenomic next-generation sequencing (mNGS) can capture the full spectrum of viral pathogens in a specimen and has the potential to become an all-in-one solution for virus diagnostics. To date, clinical application is still in an early phase and limitations remain. Here, we evaluated the impact of viral mNGS for cases analyzed over two years in a tertiary diagnostics unit. High throughput mNGS was performed upon request by the treating clinician in cases where the etiology of infection remained unknown or the initial differential diagnosis was very broad. The results were compared to conventional routine testing regarding outcome and workload. In total, 163 specimens from 105 patients were sequenced. The main sample types were cerebrospinal fluid (34%), blood (33%) and throat swabs (10%). In the majority of the cases, viral encephalitis/meningitis or respiratory infection was suspected. In parallel, conventional virus diagnostic tests were performed (mean 18.5 individually probed targets/patients). mNGS detected viruses in 34 cases (32%). While often confirmatory, in multiple cases, the identified viruses were not included in the selected routine diagnostic tests. Two years of mNGS in a tertiary diagnostics unit demonstrated the advantages of a single, untargeted approach for comprehensive, rapid and efficient virus diagnostics, confirming the utility of mNGS in complementing current routine tests.
Collapse
Affiliation(s)
- Verena Kufner
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Andreas Plate
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Stefan Schmutz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Dominique L Braun
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Riccarda Capaul
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Andrea Zbinden
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland.
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland.
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
45
|
Bonetti G, Trevathan-Tackett SM, Carnell PE, Macreadie PI. Implication of Viral Infections for Greenhouse Gas Dynamics in Freshwater Wetlands: Challenges and Perspectives. Front Microbiol 2019; 10:1962. [PMID: 31507569 PMCID: PMC6718870 DOI: 10.3389/fmicb.2019.01962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/09/2019] [Indexed: 01/07/2023] Open
Abstract
Viruses are non-living, acellular entities, and the most abundant biological agents on earth. They are widely acknowledged as having the capacity to influence global biogeochemical cycles by infecting the bacterial and archaeal populations that regulate carbon and nutrient turnover. Evidence suggests that the majority of viruses in wetlands are bacteriophages, but despite their importance, studies on how viruses control the prokaryotic community and the concomitant impacts on ecosystem function (such as carbon cycling and greenhouse gas flux) in wetlands are rare. Here we investigate virus-prokaryote interactions in freshwater wetland ecosystems in the context of their potential influence on biogeochemical cycling. Specifically, we (1) synthesize existing literature to establish current understanding of virus-prokaryote interactions, focusing on the implications for wetland greenhouse gas dynamics and (2) identify future research priorities. Viral dynamics in freshwater wetlands have received much less attention compared to those in marine ecosystems. However, based on our literature review, within the last 10 years, viral ecology studies on freshwater wetlands have increased twofold. Despite this increase in literature, the potential implication of viral infections on greenhouse gas emission dynamics is still a knowledge gap. We hypothesize that the rate of greenhouse gas emissions and the pool of sequestered carbon could be strongly linked to the type and rate of viral infection. Viral replication mechanism choice will consequently influence the microbial efficiency of organic matter assimilation and thus the ultimate fate of carbon as a greenhouse gas or stored in soils.
Collapse
Affiliation(s)
- Giuditta Bonetti
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, VIC, Australia
| | - Stacey M Trevathan-Tackett
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, VIC, Australia
| | - Paul E Carnell
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, VIC, Australia
| | - Peter I Macreadie
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, VIC, Australia
| |
Collapse
|
46
|
Abstract
Although viruses comprise the most abundant genetic material in the biosphere, to date only several thousand virus species have been formally defined. Such a limited perspective on virus diversity has in part arisen because viruses were traditionally considered only as etiologic agents of overt disease in humans or economically important species and were often difficult to identify using cell culture. This view has dramatically changed with the rise of metagenomics, which is transforming virus discovery and revealing a remarkable diversity of viruses sampled from diverse cellular organisms. These newly discovered viruses help fill major gaps in the evolutionary history of viruses, revealing a near continuum of diversity among genera, families, and even orders of RNA viruses. Herein, we review some of the recent advances in our understanding of the RNA virosphere that have stemmed from metagenomics, note future directions, and highlight some of the remaining challenges to this rapidly developing field.
Collapse
Affiliation(s)
- Yong-Zhen Zhang
- Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 200433, China; .,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Yan-Mei Chen
- Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 200433, China; .,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Wen Wang
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Xin-Chen Qin
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Edward C Holmes
- Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 200433, China; .,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
47
|
Ecological Factors of Transmission, Persistence and Circulation of Pathogens In Bat Populations. FOLIA VETERINARIA 2019. [DOI: 10.2478/fv-2019-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
The existence of bats is crucial for all ecosystem units as they fulfil numerous ecological roles. However, they are also considered to be natural reservoirs of a wide range of zoonotic microorganisms, especially viruses. In this review article we briefly summarize current knowledge about various ecological factors that facilitate bat pathogen dispersal and about the current approaches to monitoring viral communities present within bat populations. On the basis of the cited papers, we suggest that the increased focus on complex viral populations in bats and their interactions with other populations and the environment is necessary to fully comprehend the relationship between emerging infectious diseases, the environment and their toll on human health.
Collapse
|
48
|
Molecular characterisation of a novel gemycircularvirus associated with olive trees in Italy. Virus Res 2019; 263:169-172. [DOI: 10.1016/j.virusres.2019.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 12/18/2022]
|
49
|
Chen L, Gu W, Liu C, Wang W, Li N, Chen Y, Lu C, Sun X, Han Y, Kuang D, Tong P, Dai J. Characteristics of the tree shrew gut virome. PLoS One 2019; 14:e0212774. [PMID: 30807598 PMCID: PMC6391014 DOI: 10.1371/journal.pone.0212774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022] Open
Abstract
The tree shrew (Tupaia belangeri) has been proposed as an alternative laboratory animal to primates in biomedical research in recent years. However, characteristics of the tree shrew gut virome remain unclear. In this study, the metagenomic analysis method was used to identify the features of gut virome from fecal samples of this animal. Results showed that 5.80% of sequence reads in the libraries exhibited significant similarity to sequences deposited in the viral reference database (NCBI non-redundant nucleotide databases, viral protein databases and ACLAME database), and these reads were further classified into three major orders: Caudovirales (58.0%), Picornavirales (16.0%), and Herpesvirales (6.0%). Siphoviridae (46.0%), Myoviridae (45.0%), and Podoviridae (8.0%) comprised most Caudovirales. Picornaviridae (99.9%) and Herpesviridae (99.0%) were the primary families of Picornavirales and Herpesvirales, respectively. According to the host types and nucleic acid classifications, all of the related viruses in this study were divided into bacterial phage (61.83%), animal-specific virus (34.50%), plant-specific virus (0.09%), insect-specific virus (0.08%) and other viruses (3.50%). The dsDNA virus accounted for 51.13% of the total, followed by ssRNA (33.51%) and ssDNA virus (15.36%). This study provides an initial understanding of the community structure of the gut virome of tree shrew and a baseline for future tree shrew virus investigation.
Collapse
Affiliation(s)
- Linxia Chen
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- Department of Pathogenic Biology, School of Basic Medical Science, Gannan Medical University, Ganzhou, China
| | - Wenpeng Gu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Chenxiu Liu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Dexuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Kunming, China
- * E-mail:
| |
Collapse
|
50
|
Detection of RNA-Dependent RNA Polymerase of Hubei Reo-Like Virus 7 by Next-Generation Sequencing in Aedes aegypti and Culex quinquefasciatus Mosquitoes from Brazil. Viruses 2019; 11:v11020147. [PMID: 30744159 PMCID: PMC6410231 DOI: 10.3390/v11020147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 01/24/2023] Open
Abstract
Advancements in next-generation sequencing and bioinformatics have expanded our knowledge of the diversity of viruses (pathogens and non-pathogens) harbored by mosquitoes. Hubei reo-like virus 7 (HRLV 7) was recently detected by the virome analysis of fecal samples from migratory birds in Australia. We now report the detection of RNA-dependent RNA polymerase sequences of HRLV 7 in pools of Aedes aegypti and Culex quinquefasciatus mosquitoes species from the Brazilian Amazon forest. Phylogenetic inferences indicated that all HRLV 7 strains fall within the same independent clade. In addition, HRLV 7 shared a close ancestral lineage with the Dinovernavirus genus of the Reoviridae family. Our findings indicate that HRLV 7 is present in two species of mosquitoes.
Collapse
|