1
|
Ma L, Fink J, Yao K, McDonald-Hyman C, Dougherty P, Koehn B, Blazar BR. Immunoregulatory iPSC-derived non-lymphoid progeny in autoimmunity and GVHD alloimmunity. Stem Cells 2025; 43:sxaf011. [PMID: 40103180 DOI: 10.1093/stmcls/sxaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Non-lymphoid immunoregulatory cells, including mesenchymal stem cells (MSCs), myeloid-derived suppressor cells (MDSCs), regulatory macrophages (Mregs), and tolerogenic dendritic cells (Tol-DCs), play critical roles in maintaining immune homeostasis. However, their therapeutic application in autoimmune diseases and graft-versus-host disease (GVHD) has received comparatively less attention. Induced pluripotent stem cells (iPSCs) offer a promising platform for cell engineering, enabling superior quality control, scalable production, and large-scale in vitro expansion of iPSC-derived non-lymphoid immunoregulatory cells. These advances pave the way for their broader application in autoimmune disease and GVHD therapy. Recent innovations in iPSC differentiation protocols have facilitated the generation of these cell types with functional characteristics akin to their primary counterparts. This review explores the unique features and generation processes of iPSC-derived non-lymphoid immunoregulatory cells, their therapeutic potential in GVHD and autoimmune disease, and their progress toward clinical translation. It emphasizes the phenotypic and functional diversity within each cell type and their distinct effects on disease modulation. Despite these advancements, challenges persist in optimizing differentiation efficiency, ensuring functional stability, and bridging the gap to clinical application. By synthesizing current methodologies, preclinical findings, and translational efforts, this review underscores the transformative potential of iPSC-derived non-lymphoid immunoregulatory cells in advancing cell-based therapies for alloimmune and autoimmune diseases.
Collapse
Affiliation(s)
- Lie Ma
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Jordan Fink
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Ke Yao
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Cameron McDonald-Hyman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Phillip Dougherty
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Brent Koehn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, MN, United States
| |
Collapse
|
2
|
Radicetti-Silva J, Oliveira M, Baldavira CM, Braga CL, Santos RT, Felix NS, Silva AL, Capelozzi VL, Cruz FF, Rocco PRM, Silva PL. Distinct effects of intravenous bone marrow-derived mesenchymal stem cell therapy on ischemic and non-ischemic lungs after ischemia-reperfusion injury. Cytotherapy 2024; 26:1505-1513. [PMID: 39115513 DOI: 10.1016/j.jcyt.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The preclinical efficacy of mesenchymal stem cell (MSC) therapy after intravenous infusion has been promising, but clinical studies have yielded only modest results. Although most preclinical studies have focused solely on the ischemic lung, it is crucial to evaluate both lungs after ischemia-reperfusion injury, considering the various mechanisms involved. This study aimed to bridge this gap by assessing the acute effects of bone marrow MSC(BM) infusion before ischemic insult and evaluating both ischemic and non-ischemic lungs after reperfusion. METHODS Eighteen male Wistar rats (403 ± 23 g) were anesthetized and mechanically ventilated using a protective strategy. After baseline data collection, the animals were randomized to 3 groups (n = 6/group): (1) SHAM; (2) ischemia-reperfusion (IR), and (3) intravenous MSC(BM) infusion followed by IR. Ischemia was induced by complete clamping of the left hilum, followed by 1 h of reperfusion after clamp removal. At the end of the experiment, the right and left lungs (non-ischemic and ischemic, respectively) were collected for immunohistochemistry and molecular biology analysis. RESULTS MSC(BM)s reduced endothelial cell damage and apoptosis markers and improved markers associated with endothelial cell integrity in both lungs. In addition, gene expression of catalase and nuclear factor erythroid 2-related factor 2 increased after MSC(BM) therapy. In the ischemic lung, MSC(BM) therapy mitigated endothelial cell damage and apoptosis and increased gene expression associated with endothelial cell integrity. Conversely, in the non-ischemic lung, apoptosis gene expression increased in the IR group but not after MSC(BM) therapy. CONCLUSION This study demonstrates distinct effects of MSC(BM) therapy on ischemic and non-ischemic lungs after ischemia-reperfusion injury. The findings underscore the importance of evaluating both lung types in ischemia-reperfusion studies, offering insights into the therapeutic potential of MSC(BM) therapy in the context of lung injury.
Collapse
Affiliation(s)
- Julia Radicetti-Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milena Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Cassia Lisboa Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Trabach Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathane Santanna Felix
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Lopes Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Mohseni R, Mahdavi Sharif P, Behfar M, Modaresi MR, Shirzadi R, Mardani M, Jafari L, Jafari F, Nikfetrat Z, Hamidieh AA. Evaluation of safety and efficacy of allogeneic adipose tissue-derived mesenchymal stem cells in pediatric bronchiolitis obliterans syndrome (BoS) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Stem Cell Res Ther 2023; 14:256. [PMID: 37726865 PMCID: PMC10510238 DOI: 10.1186/s13287-023-03498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Allo-HSCT is a definite approach for the management of a wide variety of lethal and debilitating malignant and non-malignant disorders. However, its two main complications, acute and chronic graft-versus-host disease (GVHD), exert significant morbidities and mortalities. BoS, as a manifestation of chronic lung GVHD, is a gruesome complication of allo-HSCT, and for those with steroid-refractory disease, no approved second-line therapies exist. Mesenchymal stem cells (MSCs) exert anti-inflammatory and growth-promoting effects, and their administration against a wide range of inflammatory and neurologic disorders, as well as GVHD, has been associated with promising outcomes. However, literature on the safety and effectiveness of MSC therapy for BoS and pediatric cGVHD is scarce. METHODS We designed a single-arm trial to administer adipose tissue (AT)-derived MSCs to pediatric patients with refractory BoS after allo-HSCT. AT-MSCs from obese, otherwise healthy donors were cultured in an ISO class 1 clean room and injected into the antecubital vein of eligible patients with a dose of 1 × 106/kg. The primary endpoints included a complete or partial response to therapy [in terms of increased forced expiratory volume in one second (FEV1) values and steroid dose reduction] and its safety profile. RESULTS Four eligible patients with a median age of 6.5 years were enrolled in the study. Steroid-induced osteoporosis and myopathy were present in three cases. A partial response was evident in three cases after a single injection of AT-MSCs. The treatment was safe and tolerable, and no treatment-related adverse events were noted. Two patients developed manageable COVID-19 infections one and 4 months after AT-MSC injection. After a median follow-up duration of 19 months, all cases are still alive and have had no indications for lung transplantation. CONCLUSIONS AT-MSCs could be safely administered to our pediatric cases with BoS post-allo-HSCT. Considering their advanced stage of disease, their sub-optimal functional capacity due to steroid-induced complications, and COVID-19 infection post-treatment, we believe that AT-MSC therapy can have possible efficacy in the management of pediatric BoS. The conduction of further studies with larger sample sizes and more frequent injections is prudent for further optimization of AT-MSC therapy against BoS. Trial registration Iranian Registry of Clinical Trials (IRCT), IRCT20201202049568N2. Registered 22 February 2021, https://en.irct.ir/trial/53143 .
Collapse
Affiliation(s)
- Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center Hospital, Tehran University of Medical Sciences, 63 Qarib St., Keshavarz Blvd., Tehran, 14155-6559, 1419733161, Iran
| | - Pouya Mahdavi Sharif
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center Hospital, Tehran University of Medical Sciences, 63 Qarib St., Keshavarz Blvd., Tehran, 14155-6559, 1419733161, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center Hospital, Tehran University of Medical Sciences, 63 Qarib St., Keshavarz Blvd., Tehran, 14155-6559, 1419733161, Iran
| | - Mohammad Reza Modaresi
- Pediatric Respiratory and Sleep Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rohola Shirzadi
- Pediatric Pulmonary Disease and Sleep Medicine Research Center, Pediatric Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahta Mardani
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center Hospital, Tehran University of Medical Sciences, 63 Qarib St., Keshavarz Blvd., Tehran, 14155-6559, 1419733161, Iran
| | - Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center Hospital, Tehran University of Medical Sciences, 63 Qarib St., Keshavarz Blvd., Tehran, 14155-6559, 1419733161, Iran
| | - Fahimeh Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center Hospital, Tehran University of Medical Sciences, 63 Qarib St., Keshavarz Blvd., Tehran, 14155-6559, 1419733161, Iran
| | - Zeynab Nikfetrat
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center Hospital, Tehran University of Medical Sciences, 63 Qarib St., Keshavarz Blvd., Tehran, 14155-6559, 1419733161, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center Hospital, Tehran University of Medical Sciences, 63 Qarib St., Keshavarz Blvd., Tehran, 14155-6559, 1419733161, Iran.
| |
Collapse
|
4
|
Nykänen AI, Liu M, Keshavjee S. Mesenchymal Stromal Cell Therapy in Lung Transplantation. Bioengineering (Basel) 2023; 10:728. [PMID: 37370659 DOI: 10.3390/bioengineering10060728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lung transplantation is often the only viable treatment option for a patient with end-stage lung disease. Lung transplant results have improved substantially over time, but ischemia-reperfusion injury, primary graft dysfunction, acute rejection, and chronic lung allograft dysfunction (CLAD) continue to be significant problems. Mesenchymal stromal cells (MSC) are pluripotent cells that have anti-inflammatory and protective paracrine effects and may be beneficial in solid organ transplantation. Here, we review the experimental studies where MSCs have been used to protect the donor lung against ischemia-reperfusion injury and alloimmune responses, as well as the experimental and clinical studies using MSCs to prevent or treat CLAD. In addition, we outline ex vivo lung perfusion (EVLP) as an optimal platform for donor lung MSC delivery, as well as how the therapeutic potential of MSCs could be further leveraged with genetic engineering.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, FI-00029 Helsinki, Finland
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
5
|
Shimoyama K, Tsuchiya T, Watanabe H, Ergalad A, Iwatake M, Miyazaki T, Hashimoto Y, Hsu YI, Hatachi G, Matsumoto K, Ishii M, Mizoguchi S, Doi R, Tomoshige K, Yamaoka T, Nagayasu T. Donor and Recipient Adipose-Derived Mesenchymal Stem Cell Therapy for Rat Lung Transplantation. Transplant Proc 2022; 54:1998-2007. [PMID: 36041932 DOI: 10.1016/j.transproceed.2022.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/03/2022] [Accepted: 05/22/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are beginning to be proven as immunosuppressant in the field of organ transplantation. However, the effects of MSC origin (donor or recipient) on immunosuppression are not clear. Hence, we investigated the effects of recipient and donor adipose-derived MSCs (ADMSCs) on immunosuppression in a rat lung transplantation model. METHODS Subjects were divided into no treatment, tacrolimus administration, recipient ADMSC administration, donor ADMSC administration, and mixed donor and recipient ADMSC administration groups. ADMSC-administered groups were also treated with tacrolimus. Histologic study, immunofluorescence, immunohistochemistry, enzyme-linked immunosorbent assay, and polymerase chain reaction were used for various analyses. RESULTS Fluorescently labeled ADMSCs were predominant in the grafted donor lung, but not in the recipient lung, on day 5. On day 7, the pathologic rejection grades of the grafted donor lung were significantly lower in the ADMSC-administered groups (P < .05) and did not differ among these groups. Although serum hepatocyte growth factor and vascular endothelial growth factor levels did not differ among the groups, interleukin 10 level was slightly higher in the ADMSC-administered groups. The numbers of infiltrating regulatory T cells in the grafted lung were significantly higher in the ADMSC-administered groups (P < .05) but did not differ with cell origin. Transcriptional analysis suggested interleukin 6 suppression to be the main overlapping immunosuppressive mechanism, regardless of origin. Therefore, a donor or recipient origin may not influence the immunosuppressive efficacy of ADMSCs in our rat lung transplantation model. CONCLUSIONS Collectively, the results indicate that allogenic ADMSCs, regardless of their origin, may exert similar immunosuppressive effects in clinical organ transplantation.
Collapse
Affiliation(s)
- Koichiro Shimoyama
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoshi Tsuchiya
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Division of Nucleic Acid Drug Development, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan.
| | - Hironosuke Watanabe
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Abdelmotagaly Ergalad
- Center for Preclinical Surgical and Interventional Research, Texas Heart Institute, Houston, Texas
| | - Mayumi Iwatake
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takuro Miyazaki
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasumasa Hashimoto
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yu-I Hsu
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Go Hatachi
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Keitaro Matsumoto
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mitsutoshi Ishii
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Mizoguchi
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryoichiro Doi
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Tomoshige
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takeshi Nagayasu
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
6
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
7
|
Erasmus DB, Durand N, Alvarez FA, Narula T, Hodge DO, Zubair AC. Feasibility and Safety of Low-Dose Mesenchymal Stem Cell Infusion in Lung Transplant Recipients. Stem Cells Transl Med 2022; 11:891-899. [PMID: 35881142 PMCID: PMC9492292 DOI: 10.1093/stcltm/szac051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background We have previously shown bone marrow-derived mesenchymal stem cells (MSCs) may shift immune responses toward anti-inflammatory pathways and stabilize the course of obstructive chronic lung allograft syndrome (o-CLAD) after lung transplantation. In this study, we measured the response of lower dose infusions. Methods We infused low-dose MSCs intravenously in 13 patients who had developed moderate-to-severe o-CLAD. Three had previously received an infusion of MSCs from a different donor and were re-dosed at 1 × 106 MSC/kg, while 5 received a first dose at 1 × 106 MSC/kg and five received an even lower dose at 0.5 × 106 MSC/kg. We recorded pulmonary function tests before and after infusion, and patients were followed clinically for 12 months. Results Infusions were well tolerated, and no significant adverse events were recorded in the first 30 days. There was significant decline (mean ± SD) in forced vital capacity (FVC) (3.49 ± 1.03 vs 3.18 ± 0.94 L, P = .03) and forced expiratory volume in 1 second (FEV1) (2.28 ± 0.86 vs 1.77 ± 0.49 L, P = .04) over the year preceding infusion. FVC (3.18 ± 0.94 vs 3.46 ± 0.99 L, P = .53) and FEV1 was not significantly changed (1.77 ± 0.49 vs 1.88 ± 0.75, P = .72) when comparing values immediately prior to infusion to those obtained 1 year after infusion, indicating a possible stabilizing effect on lung function decline due to o-CLAD. Conclusion Intravenous infusions of bone marrow-derived MSCs are well tolerated in lung transplant recipients with moderate-to-severe CLAD. Low-dose MSCs appear to slow progression of CLAD in some patients.
Collapse
|
8
|
Wiese DM, Wood CA, Braid LR. From Vial to Vein: Crucial Gaps in Mesenchymal Stromal Cell Clinical Trial Reporting. Front Cell Dev Biol 2022; 10:867426. [PMID: 35493074 PMCID: PMC9043315 DOI: 10.3389/fcell.2022.867426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Retrospective analysis of clinical trial outcomes is a vital exercise to facilitate efficient translation of cellular therapies. These analyses are particularly important for mesenchymal stem/stromal cell (MSC) products. The exquisite responsiveness of MSCs, which makes them attractive candidates for immunotherapies, is a double-edged sword; MSC clinical trials result in inconsistent outcomes that may correlate with underlying patient biology or procedural differences at trial sites. Here we review 45 North American MSC clinical trial results published between 2015 and 2021 to assess whether these reports provide sufficient information for retrospective analysis. Trial reports routinely specify the MSC tissue source, autologous or allogeneic origin and administration route. However, most methodological aspects related to cell preparation and handling immediately prior to administration are under-reported. Clinical trial reports inconsistently provide information about cryopreservation media composition, delivery vehicle, post-thaw time and storage until administration, duration of infusion, and pre-administration viability or potency assessments. In addition, there appears to be significant variability in how cell products are formulated, handled or assessed between trials. The apparent gaps in reporting, combined with high process variability, are not sufficient for retrospective analyses that could potentially identify optimal cell preparation and handling protocols that correlate with successful intra- and inter-trial outcomes. The substantial preclinical data demonstrating that cell handling affects MSC potency highlights the need for more comprehensive clinical trial reporting of MSC conditions from expansion through delivery to support development of globally standardized protocols to efficiently advance MSCs as commercial products.
Collapse
Affiliation(s)
| | | | - Lorena R. Braid
- Aurora BioSolutions Inc., Medicine Hat, AB, Canada
- Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Lorena R. Braid, ,
| |
Collapse
|
9
|
Gan X, Gu J, Ju Z, Lu L. Diverse Roles of Immune Cells in Transplant Rejection and Immune Tolerance. ENGINEERING 2022; 10:44-56. [DOI: 10.1016/j.eng.2021.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
10
|
Karakaş N, Üçüncüoğlu S, Uludağ D, Karaoğlan BS, Shah K, Öztürk G. Mesenchymal Stem Cell-Based COVID-19 Therapy: Bioengineering Perspectives. Cells 2022; 11:465. [PMID: 35159275 PMCID: PMC8834073 DOI: 10.3390/cells11030465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
The novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Mesenchymal stem cells (MSCs) are currently utilized in clinics for pulmonary inflammatory diseases, including acute respiratory distress syndrome and acute lung injury. Given that MSCs offer a promising treatment against COVID-19, they are being used against COVID-19 in more than 70 clinical trials with promising findings. Genetically engineered MSCs offer promising therapeutic options in pulmonary diseases. However, their potential has not been explored yet. In this review, we provide perspectives on the functionally modified MSCs that can be developed and harnessed for COVID-19 therapy. Options to manage the SARS-CoV-2 infection and its variants using various bioengineering tools to increase the therapeutic efficacy of MSCs are highlighted.
Collapse
Affiliation(s)
- Nihal Karakaş
- Department of Medical Biology, School of Medicine, İstanbul Medipol University, İstanbul 34810, Turkey
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul 34810, Turkey; (S.Ü.); (D.U.); (B.S.K.); (G.Ö.)
| | - Süleyman Üçüncüoğlu
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul 34810, Turkey; (S.Ü.); (D.U.); (B.S.K.); (G.Ö.)
- Department of Biophysics, International School of Medicine, İstanbul Medipol University, İstanbul 34810, Turkey
| | - Damla Uludağ
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul 34810, Turkey; (S.Ü.); (D.U.); (B.S.K.); (G.Ö.)
- Graduate School for Health Sciences, Medical Biology and Genetics Program, İstanbul Medipol University, İstanbul 34810, Turkey
| | - Birnur Sinem Karaoğlan
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul 34810, Turkey; (S.Ü.); (D.U.); (B.S.K.); (G.Ö.)
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapies, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul 34810, Turkey; (S.Ü.); (D.U.); (B.S.K.); (G.Ö.)
- Department of Physiology, International School of Medicine, İstanbul Medipol University, İstanbul 34810, Turkey
| |
Collapse
|
11
|
Nykänen AI, Mariscal A, Duong A, Estrada C, Ali A, Hough O, Sage A, Chao BT, Chen M, Gokhale H, Shan H, Bai X, Zehong G, Yeung J, Waddell T, Martinu T, Juvet S, Cypel M, Liu M, Davies JE, Keshavjee S. Engineered mesenchymal stromal cell therapy during human lung ex vivo lung perfusion is compromised by acidic lung microenvironment. Mol Ther Methods Clin Dev 2021; 23:184-197. [PMID: 34703841 PMCID: PMC8516994 DOI: 10.1016/j.omtm.2021.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Abstract
Ex vivo lung perfusion (EVLP) is an excellent platform to apply novel therapeutics, such as gene and cell therapies, before lung transplantation. We investigated the concept of human donor lung engineering during EVLP by combining gene and cell therapies. Premodified cryopreserved mesenchymal stromal cells with augmented anti-inflammatory interleukin-10 production (MSCIL-10) were administered during EVLP to human lungs that had various degrees of underlying lung injury. Cryopreserved MSCIL-10 had excellent viability, and they immediately and efficiently elevated perfusate and lung tissue IL-10 levels during EVLP. However, MSCIL-10 function was compromised by the poor metabolic conditions present in the most damaged lungs. Similarly, exposing cultured MSCIL-10 to poor metabolic, and especially acidic, conditions decreased their IL-10 production. In conclusion, we found that "off-the-shelf" MSCIL-10 therapy of human lungs during EVLP is safe and feasible, and results in rapid IL-10 elevation, and that the acidic target-tissue microenvironment may compromise the efficacy of cell-based therapies.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Andrea Mariscal
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Allen Duong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Catalina Estrada
- Tissue Regeneration Therapeutics, 790 Bay Street, Toronto, ON M5G 1N8, Canada
| | - Aadil Ali
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Olivia Hough
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Andrew Sage
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Bonnie T Chao
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Manyin Chen
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Hemant Gokhale
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Hongchao Shan
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Xiaohui Bai
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Guan Zehong
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Jonathan Yeung
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Tom Waddell
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Tereza Martinu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Stephen Juvet
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - John E Davies
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON M5S 3G9, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network and University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
12
|
Li J, Thomson AW, Rogers NM. Myeloid and Mesenchymal Stem Cell Therapies for Solid Organ Transplant Tolerance. Transplantation 2021; 105:e303-e321. [PMID: 33756544 PMCID: PMC8455706 DOI: 10.1097/tp.0000000000003765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transplantation is now performed globally as a routine procedure. However, the increased demand for donor organs and consequent expansion of donor criteria has created an imperative to maximize the quality of these gains. The goal is to balance preservation of allograft function against patient quality-of-life, despite exposure to long-term immunosuppression. Elimination of immunosuppressive therapy to avoid drug toxicity, with concurrent acceptance of the allograft-so-called operational tolerance-has proven elusive. The lack of recent advances in immunomodulatory drug development, together with advances in immunotherapy in oncology, has prompted interest in cell-based therapies to control the alloimmune response. Extensive experimental work in animals has characterized regulatory immune cell populations that can induce and maintain tolerance, demonstrating that their adoptive transfer can promote donor-specific tolerance. An extension of this large body of work has resulted in protocols for manufacture, as well as early-phase safety and feasibility trials for many regulatory cell types. Despite the excitement generated by early clinical trials in autoimmune diseases and organ transplantation, there is as yet no clinically validated, approved regulatory cell therapy for transplantation. In this review, we summarize recent advances in this field, with a focus on myeloid and mesenchymal cell therapies, including current understanding of the mechanisms of action of regulatory immune cells, and clinical trials in organ transplantation using these cells as therapeutics.
Collapse
Affiliation(s)
- Jennifer Li
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Natasha M Rogers
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Stem cell-based therapy for COVID-19 and ARDS: a systematic review. NPJ Regen Med 2021; 6:73. [PMID: 34750382 PMCID: PMC8575895 DOI: 10.1038/s41536-021-00181-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022] Open
Abstract
Despite global efforts to establish effective interventions for coronavirus disease 2019 (COVID-19) and its major complications, such as acute respiratory distress syndrome (ARDS), the treatment remains mainly supportive. Hence, identifying an effective and safe therapy for severe COVID-19 is critical for saving lives. A significant number of cell-based therapies have been through clinical investigation. In this study, we performed a systematic review of clinical studies investigating different types of stem cells as treatments for COVID-19 and ARDS to evaluate the safety and potential efficacy of cell therapy. The literature search was performed using PubMed, Embase, and Scopus. Among the 29 studies, there were eight case reports, five Phase I clinical trials, four pilot studies, two Phase II clinical trials, one cohort, and one case series. Among the clinical studies, 21 studies used cell therapy to treat COVID-19, while eight studies investigated cell therapy as a treatment for ARDS. Most of these (75%) used mesenchymal stem cells (MSCs) to treat COVID-19 and ARDS. Findings from the analyzed articles indicate a positive impact of stem cell therapy on crucial immunological and inflammatory processes that lead to lung injury in COVID-19 and ARDS patients. Additionally, among the studies, there were no reported deaths causally linked to cell therapy. In addition to standard care treatments concerning COVID-19 management, there has been supportive evidence towards adjuvant therapies to reduce mortality rates and improve recovery of care treatment. Therefore, MSCs treatment could be considered a potential candidate for adjuvant therapy in moderate-to-severe COVID-19 cases and compassionate use.
Collapse
|
14
|
Cheng L, Li Y, Xia Q, Meng M, Ye Z, Tang Z, Feng H, Chen X, Chen H, Zeng X, Luo Y, Dong Q. Enamel matrix derivative (EMD) enhances the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Bioengineered 2021; 12:7033-7045. [PMID: 34587869 PMCID: PMC8806549 DOI: 10.1080/21655979.2021.1971504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To investigate the EMD's capacity in BMSCs osteogenic differentiation. In vivo and in vitro, BMSCs were treated with EMD, scanning electron microscopy, and Alizarin Red staining were used to detect the changes in the osteogenic ability of BMSCs, and the proliferation ability of BMSCs was evaluated by CCK8. In addition, by adding xav939, a typical inhibitor of Wnt/β-catenin signaling pathway, the regulatory function of Wnt/β-catenin signaling was clarified. The results showed that EMD promote cell proliferation and 25 μg/ml EMD had the most significant effect. Cells inducing osteogenesis for 2 and 3 even 4 weeks, the cell staining is deeper in EMD treated group than that of the control (P < 0.05) by alizarin Red staining, suggesting more mineralization of BMSCs. In vivo implanting the titanium plate wrapped with 25 μg/ml EMD treated-BMSC film into nude mice for 8 weeks, more nodules were formed on the surface of the titanium plate than that the control (P < 0.05). HE showed that there is a little blue-violet immature bone-like tissue block. Besides, the expression of RUNX Family Transcription Factor 2 (Runx2), Osterix, Osteocalcin (OCN), collagen I (COLI), alkaline phosphatase (ALP) and β-catenin were inhibited in xav939 group (P < 0.05); Inversely, all were activated in EMD group (P < 0.05). In conclusion, EMD promoted the proliferation and osteogenic differentiation of BMSCs. EMD's function on BMSCs might be associated with the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Lu Cheng
- Department of Prosthodontics, Guiyang Hospital of Stomatology, Guiyang, Gsuizhou Province, 550002, People's Republic of China
| | - Ying Li
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Qian Xia
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - MaoHua Meng
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - ZhaoYang Ye
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - ZhengLong Tang
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China.,Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - HongChao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, Guizhou Province, 550002, People's Republic of China
| | - Xin Chen
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - HeLin Chen
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Xiao Zeng
- Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| | - Yi Luo
- Department of Prosthodontics, Guiyang Hospital of Stomatology, Guiyang, Gsuizhou Province, 550002, People's Republic of China
| | - Qiang Dong
- Department of Prosthodontics, School of Stomatology, Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China.,Department of Prosthodonticsand Oral Implantology, Stomatological hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, People's Republic of China
| |
Collapse
|
15
|
Maanaoui M, Kerr-Conte J. Pushing the boundaries of organs before it's too late: pre-emptive regeneration. Transpl Int 2021; 34:1761-1769. [PMID: 34532871 DOI: 10.1111/tri.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
Solid organ transplantation is marked by accelerated aging and inexorable fibrosis. It is crucial to promote strategies to attenuate, or to reverse, damage before organ failure. Hence, the objective of this article is to provide insight into strategies, which aim to regenerate or rejuvenate the transplanted organs. Cell therapy with mesenchymal stromal cells is currently under investigation because of their antifibrotic properties. Their ability to promote mitochondrial biogenesis, and to transfer mitochondria to wounded cells, is another approach to boost the organ regeneration. Other teams have investigated bioengineered organs, which consists of decellularization of the damaged organ followed by recellularization. Lastly, the development of CAR-T cell-based technologies may revolutionize the field of transplantation, as recent preclinical studies showed that CAR-T cells could efficiently clear senescent cells from an organ and reverse fibrosis. Ultimately, these cutting-edge strategies may bring the holy grail of a pre-emptive regenerated organ closer to reality.
Collapse
Affiliation(s)
- Mehdi Maanaoui
- Department of Nephrology, CHU Lille, Lille, France.,Inserm, CHU Lille, Institut Pasteur Lille, U1190 - EGID, Univ. Lille, Lille, France
| | - Julie Kerr-Conte
- Inserm, CHU Lille, Institut Pasteur Lille, U1190 - EGID, Univ. Lille, Lille, France
| |
Collapse
|
16
|
Preconditioned Mesenchymal Stromal Cells to Improve Allotransplantation Outcome. Cells 2021; 10:cells10092325. [PMID: 34571974 PMCID: PMC8469056 DOI: 10.3390/cells10092325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are tissue-derived progenitor cells with immunomodulatory as well as multilineage differentiation capacities, and have been widely applied as cellular therapeutics in different disease systems in both preclinical models and clinical studies. Although many studies have applied MSCs in different types of allotransplantation, the efficacy varies. It has been demonstrated that preconditioning MSCs prior to in vivo administration may enhance their efficacy. In the field of organ/tissue allotransplantation, many recent studies have shown that preconditioning of MSCs with (1) pretreatment with bioactive factors or reagents such as cytokines, or (2) specific gene transfection, could prolong allotransplant survival and improve allotransplant function. Herein, we review these preconditioning strategies and discuss potential directions for further improvement.
Collapse
|
17
|
Shaw BI, Ord JR, Nobuhara C, Luo X. Cellular Therapies in Solid Organ Allotransplantation: Promise and Pitfalls. Front Immunol 2021; 12:714723. [PMID: 34526991 PMCID: PMC8435835 DOI: 10.3389/fimmu.2021.714723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Donor specific transfusions have been the basis of tolerance inducing protocols since Peter Medawar showed that it was experimentally feasible in the 1950s. Though trials of cellular therapies have become increasingly common in solid organ transplantation, they have not become standard practice. Additionally, whereas some protocols have focused on cellular therapies as a method for donor antigen delivery-thought to promote tolerance in and of itself in the correct immunologic context-other approaches have alternatively focused on the intrinsic immunosuppressive properties of the certain cell types with less emphasis on their origin, including mesenchymal stem cells, regulatory T cells, and regulatory dendritic cells. Regardless of intent, all cellular therapies must contend with the potential that introducing donor antigen in a new context will lead to sensitization. In this review, we focus on the variety of cellular therapies that have been applied in human trials and non-human primate models, describe their efficacy, highlight data regarding their potential for sensitization, and discuss opportunities for cellular therapies within our current understanding of the immune landscape.
Collapse
Affiliation(s)
- Brian I. Shaw
- Department of Surgery, Duke University, Durham, NC, United States
| | - Jeffrey R. Ord
- School of Medicine, Duke University, Durham, NC, United States
| | - Chloe Nobuhara
- School of Medicine, Duke University, Durham, NC, United States
| | - Xunrong Luo
- Department of Medicine, Division of Nephrology, Duke University, Durham, NC, United States
| |
Collapse
|
18
|
Dias VL, Braga KADO, Nepomuceno NA, Ruiz LM, Perez JDR, Correia AT, Caires Junior LCD, Goulart E, Zatz M, Pêgo-Fernandes PM. Soluble factors of mesenchimal stem cells (FS-MSC) as a potential tool to reduce inflammation in donor's lungs after hypovolemic shock. JORNAL BRASILEIRO DE PNEUMOLOGIA : PUBLICACAO OFICIAL DA SOCIEDADE BRASILEIRA DE PNEUMOLOGIA E TISILOGIA 2021; 47:e20200452. [PMID: 34378644 PMCID: PMC8647155 DOI: 10.36416/1806-3756/e20200452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/10/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The shortage of viable lungs is still a major obstacle for transplantation. Trauma victims who represent potential lung donors commonly present hypovolemic shock leading to pulmonary inflammation and deterioration and rejection after transplantation. Seeking to improve lung graft, new approaches to donor treatment have been tested. This study focuses on treatment with mesenchymal stem cells (MSCs) or soluble factors produced by MSCs (FS-MSC) using a rat model for lung donors after hemorrhagic shock. METHODS Forty-eight rats were divided into four groups: Sham (n=12), animals without induction of hypovolemic shock; Shock (n=12), animals submitted to hypovolemic shock (mean arterial pressure 40 mmHg); MSC (n=12), animals submitted to hypovolemic shock and treated with MSCs, and FS (n=12), animals submitted to hypovolemic shock and treated with FS-MSC. The animals were subjected to a 50-minute hypovolemic shock (40 mmHg) procedure. The treated animals were monitored for 115 minutes. We performed histopathology of lung tissue and quantification of inflammatory markers (TNF-α, IL-1β, IL-6, IL-10, iCAM and vCAM) in lung tissue and peripheral blood leukocytes (PBLs). RESULTS Hemorrhagic shock resulted in higher PBLs and neutrophil infiltrate in the lungs. FS animals had lower neutrophil density comparing with Shock and MSC animals (p<0.001). No differences in the cytokine levels in lung tissue were observed between the groups. CONCLUSIONS The lungs of rats submitted to hemorrhagic shock and treated with FS-MSC showed reduced inflammation indicated in a decrease in lung neutrophil infiltrate.
Collapse
Affiliation(s)
- Vinicius Luderer Dias
- Laboratório de Pesquisa em Cirurgia Torácica, Instituto do Coracão, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Karina Andrighetti de Oliveira Braga
- Laboratório de Pesquisa em Cirurgia Torácica, Instituto do Coracão, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Natalia Aparecida Nepomuceno
- Laboratório de Pesquisa em Cirurgia Torácica, Instituto do Coracão, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Liliane Moreira Ruiz
- Laboratório de Pesquisa em Cirurgia Torácica, Instituto do Coracão, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP), Brasil
| | | | - Aristides Tadeu Correia
- Laboratório de Pesquisa em Cirurgia Torácica, Instituto do Coracão, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Luiz Carlos de Caires Junior
- Centro de Pesquisa do Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Ernesto Goulart
- Centro de Pesquisa do Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Mayana Zatz
- Centro de Pesquisa do Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo (SP), Brasil
| | - Paulo Manuel Pêgo-Fernandes
- Laboratório de Pesquisa em Cirurgia Torácica, Instituto do Coracão, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP), Brasil
| |
Collapse
|
19
|
Chen L, Qu J, Mei Q, Chen X, Fang Y, Chen L, Li Y, Xiang C. Small extracellular vesicles from menstrual blood-derived mesenchymal stem cells (MenSCs) as a novel therapeutic impetus in regenerative medicine. Stem Cell Res Ther 2021; 12:433. [PMID: 34344458 PMCID: PMC8330084 DOI: 10.1186/s13287-021-02511-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
Menstrual blood-derived mesenchymal stem cells (MenSCs) have great potential in regenerative medicine. MenSC has received increasing attention owing to its impressive therapeutic effects in both preclinical and clinical trials. However, the study of MenSC-derived small extracellular vesicles (EVs) is still in its initial stages, in contrast to some common MSC sources (e.g., bone marrow, umbilical cord, and adipose tissue). We describe the basic characteristics and biological functions of MenSC-derived small EVs. We also demonstrate the therapeutic potential of small EVs in fulminant hepatic failure, myocardial infarction, pulmonary fibrosis, prostate cancer, cutaneous wound, type-1 diabetes mellitus, aged fertility, and potential diseases. Subsequently, novel hotspots with respect to MenSC EV-based therapy are proposed to overcome current challenges. While complexities regarding the therapeutic potential of MenSC EVs continue to be unraveled, advances are rapidly emerging in both basic science and clinical medicine. MenSC EV-based treatment has great potential for treating a series of diseases as a novel therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jingjing Qu
- Department of Respiratory Disease, Thoracic Disease Centre, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Quanhui Mei
- Department of Intensive Care Unit, The First People's Hospital of Changde City, Changde, Hunan, 415000, People's Republic of China
| | - Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
20
|
Casiraghi F, Perico N, Podestà MA, Todeschini M, Zambelli M, Colledan M, Camagni S, Fagiuoli S, Pinna AD, Cescon M, Bertuzzo V, Maroni L, Introna M, Capelli C, Golay JT, Buzzi M, Mister M, Ordonez PYR, Breno M, Mele C, Villa A, Remuzzi G. Third-party bone marrow-derived mesenchymal stromal cell infusion before liver transplantation: A randomized controlled trial. Am J Transplant 2021; 21:2795-2809. [PMID: 33370477 DOI: 10.1111/ajt.16468] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023]
Abstract
Mesenchymal stromal cells (MSC) have emerged as a promising therapy to minimize the immunosuppressive regimen or induce tolerance in solid organ transplantation. In this randomized open-label phase Ib/IIa clinical trial, 20 liver transplant patients were randomly allocated (1:1) to receive a single pretransplant intravenous infusion of third-party bone marrow-derived MSC or standard of care alone. The primary endpoint was the safety profile of MSC administration during the 1-year follow-up. In all, 19 patients completed the study, and none of those who received MSC experienced infusion-related complications. The incidence of serious and non-serious adverse events was similar in the two groups. Circulating Treg/memory Treg and tolerant NK subset of CD56bright NK cells increased slightly over baseline, albeit not to a statistically significant extent, in MSC-treated patients but not in the control group. Graft function and survival, as well as histologic parameters and intragraft expression of tolerance-associated transcripts in 1-year protocol biopsies were similar in the two groups. In conclusion, pretransplant MSC infusion in liver transplant recipients was safe and induced mild positive changes in immunoregulatory T and NK cells in the peripheral blood. This study opens the way for a trial on possible tolerogenic efficacy of MSC in liver transplantation. ClinicalTrials.gov identifier: NCT02260375.
Collapse
Affiliation(s)
- Federica Casiraghi
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Norberto Perico
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Manuel A Podestà
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Todeschini
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marco Zambelli
- Department of Organ Failure and Transplantation, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Michele Colledan
- Department of Organ Failure and Transplantation, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Stefania Camagni
- Department of Organ Failure and Transplantation, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Stefano Fagiuoli
- Gastroenterology, Hepatology and Transplantation, Department of Medicine, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Antonio D Pinna
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Valentina Bertuzzo
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Lorenzo Maroni
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Martino Introna
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Capelli
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Josee T Golay
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Buzzi
- Emilia Romagna Cord Blood Bank, Immunohematology and Transfusion Medicine, Azienda Ospedaliero-Universitaria-Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Marilena Mister
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Pamela Y R Ordonez
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Matteo Breno
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Caterina Mele
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Alessandro Villa
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | |
Collapse
|
21
|
El Fiky A, Ibenana L, Anderson R, Hare JM, Khan A, Gee AP, Rooney C, McKenna DH, Gold J, Kelley L, Lundberg MS, Welniak LA, Lindblad R. The National Heart, Lung, and Blood Institute-funded Production Assistance for Cellular Therapies (PACT) program: Eighteen years of cell therapy. Clin Transl Sci 2021; 14:2099-2110. [PMID: 34286927 PMCID: PMC8604220 DOI: 10.1111/cts.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
The Production Assistance for Cellular Therapies (PACT) Program, is funded and supported by the US Department of Health and Human Services’ National Institutes of Health (NIH) National Heart Lung and Blood Institute (NHLBI) to advance development of somatic cell and genetically modified cell therapeutics in the areas of heart, lung, and blood diseases. The program began in 2003, continued under two competitive renewals, and ended June 2021. PACT has supported cell therapy product manufacturing, investigational new drug enabling preclinical studies, and translational services, and has provided regulatory assistance for candidate cell therapy products that may aid in the repair and regeneration of damaged/diseased cells, tissues, and organs. PACT currently supports the development of novel cell therapies through five cell processing facilities. These facilities offer manufacturing processes, analytical development, technology transfer, process scale‐up, and preclinical development expertise necessary to produce cell therapy products that are compliant with Good Laboratory Practices, current Good Manufacturing Practices, and current Good Tissue Practices regulations. The Emmes Company, LLC, serves as the Coordinating Center and assists with the management and coordination of PACT and its application submission and review process. This paper discusses the impact and accomplishments of the PACT program on the cell therapy field and its evolution over the duration of the program. It highlights the work that has been accomplished and provides a foundation to build future programs with similar goals to advance cellular therapeutics in a coordinated and centralized programmatic manner to support unmet medical needs within NHLBI purview.
Collapse
Affiliation(s)
| | | | | | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Adrian P Gee
- Center For Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Cliona Rooney
- Center For Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - David H McKenna
- Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, Minnesota, USA
| | - Joseph Gold
- Center for Biomedicine and Genetics, City of Hope, Duarte, California, USA
| | | | | | | | | |
Collapse
|
22
|
Willekens B, Wens I, Wouters K, Cras P, Cools N. Safety and immunological proof-of-concept following treatment with tolerance-inducing cell products in patients with autoimmune diseases or receiving organ transplantation: A systematic review and meta-analysis of clinical trials. Autoimmun Rev 2021; 20:102873. [PMID: 34119672 DOI: 10.1016/j.autrev.2021.102873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
In the past years, translational approaches have led to early-stage clinical trials assessing safety and efficacy of tolerance-inducing cell-based treatments in patients. This review aims to determine if tolerance-inducing cell-based therapies, including dendritic cells, regulatory T cells and mesenchymal stem cells, are safe in adult patients who underwent organ transplantation or in those with autoimmune diseases, including multiple sclerosis, diabetes mellitus type 1, Crohn's disease and rheumatoid arthritis. Immunological and clinical outcomes were reviewed, to provide evidence for proof-of-concept and efficacy. To summarize the current knowledge, a systematic review and meta-analysis were conducted. A total of 8906 records were reviewed by 2 independent assessors and 48 records were included in the final quantitative analysis. The overall frequency of serious adverse events was low: 0.018 (95% CI: 0.006-0.051). Immunological outcomes could not be assessed quantitatively because of heterogeneity in outcome assessments and description as well as lack of individual data. Most randomized controlled studies were at a medium risk of bias due to open-label treatment without masking of assessors and/or patients to the intervention. In conclusion, tolerance-inducing cell-based therapies are safe. We advocate for harmonization of study protocols of trials investigating cell-based therapies, adverse event reporting and systematic inclusion of immunological outcome measures in clinical trials evaluating tolerance-inducingcell-basedtreatment. Registration: PROSPERO, registration number CRD42020170557.
Collapse
Affiliation(s)
- Barbara Willekens
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium; Neurology, Translational Neurosciences, Born Bunge Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| | - Inez Wens
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Kristien Wouters
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, University of Antwerp, Belgium
| | - Patrick Cras
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium; Neurology, Translational Neurosciences, Born Bunge Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
23
|
Ischemia-Reperfusion Injury in Lung Transplantation. Cells 2021; 10:cells10061333. [PMID: 34071255 PMCID: PMC8228304 DOI: 10.3390/cells10061333] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023] Open
Abstract
Lung transplantation has been established worldwide as the last treatment for end-stage respiratory failure. However, ischemia–reperfusion injury (IRI) inevitably occurs after lung transplantation. The most severe form of IRI leads to primary graft failure, which is an important cause of morbidity and mortality after lung transplantation. IRI may also induce rejection, which is the main cause of mortality in recipients. Despite advances in donor management and graft preservation, most donor grafts are still unsuitable for transplantation. Although the pulmonary endothelium is the primary target site of IRI, the pathophysiology of lung IRI remains incompletely understood. It is essential to understand the mechanism of pulmonary IRI to improve the outcomes of lung transplantation. Therefore, we reviewed the state-of-the-art in the management of pulmonary IRI after lung transplantation. Recently, the ex vivo lung perfusion (EVLP) system has been clinically introduced worldwide. Various promising therapeutic strategies for the protection of the endothelium against IRI, including EVLP, inhalation therapy with therapeutic gases and substances, fibrinolytic treatment, and mesenchymal stromal cell therapy, are awaiting clinical application. We herein review the latest advances in the field of pulmonary IRI in lung transplantation.
Collapse
|
24
|
Amubieya O, Ramsey A, DerHovanessian A, Fishbein GA, Lynch JP, Belperio JA, Weigt SS. Chronic Lung Allograft Dysfunction: Evolving Concepts and Therapies. Semin Respir Crit Care Med 2021; 42:392-410. [PMID: 34030202 DOI: 10.1055/s-0041-1729175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary factor that limits long-term survival after lung transplantation is chronic lung allograft dysfunction (CLAD). CLAD also impairs quality of life and increases the costs of medical care. Our understanding of CLAD continues to evolve. Consensus definitions of CLAD and the major CLAD phenotypes were recently updated and clarified, but it remains to be seen whether the current definitions will lead to advances in management or impact care. Understanding the potential differences in pathogenesis for each CLAD phenotype may lead to novel therapeutic strategies, including precision medicine. Recognition of CLAD risk factors may lead to earlier interventions to mitigate risk, or to avoid risk factors all together, to prevent the development of CLAD. Unfortunately, currently available therapies for CLAD are usually not effective. However, novel therapeutics aimed at both prevention and treatment are currently under investigation. We provide an overview of the updates to CLAD-related terminology, clinical phenotypes and their diagnosis, natural history, pathogenesis, and potential strategies to treat and prevent CLAD.
Collapse
Affiliation(s)
- Olawale Amubieya
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Allison Ramsey
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ariss DerHovanessian
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gregory A Fishbein
- Department of Pathology, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John A Belperio
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - S Samuel Weigt
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
25
|
Ex Vivo Mesenchymal Stem Cell Therapy to Regenerate Machine Perfused Organs. Int J Mol Sci 2021; 22:ijms22105233. [PMID: 34063399 PMCID: PMC8156338 DOI: 10.3390/ijms22105233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023] Open
Abstract
Transplantation represents the treatment of choice for many end-stage diseases but is limited by the shortage of healthy donor organs. Ex situ normothermic machine perfusion (NMP) has the potential to extend the donor pool by facilitating the use of marginal quality organs such as those from donors after cardiac death (DCD) and extended criteria donors (ECD). NMP provides a platform for organ quality assessment but also offers the opportunity to treat and eventually regenerate organs during the perfusion process prior to transplantation. Due to their anti-inflammatory, immunomodulatory and regenerative capacity, mesenchymal stem cells (MSCs) are considered as an interesting tool in this model system. Only a limited number of studies have reported on the use of MSCs during ex situ machine perfusion so far with a focus on feasibility and safety aspects. At this point, no clinical benefits have been conclusively demonstrated, and studies with controlled transplantation set-ups are urgently warranted to elucidate favorable effects of MSCs in order to improve organs during ex situ machine perfusion.
Collapse
|
26
|
Mansourabadi AH, Mohamed Khosroshahi L, Noorbakhsh F, Amirzargar A. Cell therapy in transplantation: A comprehensive review of the current applications of cell therapy in transplant patients with the focus on Tregs, CAR Tregs, and Mesenchymal stem cells. Int Immunopharmacol 2021; 97:107669. [PMID: 33965760 DOI: 10.1016/j.intimp.2021.107669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Organ transplantation is a practical treatment for patients with end-stage organ failure. Despite the advances in short-term graft survival, long-term graft survival remains the main challenge considering the increased mortality and morbidity associated with chronic rejection and the toxicity of immunosuppressive drugs. Since a novel therapeutic strategy to induce allograft tolerance seems urgent, focusing on developing novel and safe approaches to prolong graft survival is one of the main goals of transplant investigators. Researchers in the field of organ transplantation are interested in suppressing or optimizing the immune responses by focusing on immune cells including mesenchymal stem cells (MSCs), polyclonal regulatory Tcells (Tregs), and antigen-specific Tregs engineered with chimeric antigen receptors (CAR Tregs). We review the mechanistic pathways, phenotypic and functional characteristics of these cells, and their promising application in organ transplantation.
Collapse
Affiliation(s)
- Amir Hossein Mansourabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 009821 Tehran, Iran
| | - Leila Mohamed Khosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 009821 Tehran, Iran.
| |
Collapse
|
27
|
Mesenchymal stromal cells for corneal transplantation: Literature review and suggestions for successful clinical trials. Ocul Surf 2021; 20:185-194. [PMID: 33607323 PMCID: PMC9878990 DOI: 10.1016/j.jtos.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/28/2023]
Abstract
Corneal transplantation is a routine procedure for patients with corneal blindness. Despite the streamlining of surgical techniques and deeper understanding of the cellular and molecular pathways mediating rejection, corticosteroids are still the main immunosuppressive regimen in corneal transplantation, and the 15-year survival of corneal transplants remains as low as 50%, which is poorer than that for most solid organ transplants. Recently, mesenchymal stromal cells (MSCs) with unique regenerative and immune-modulating properties have emerged as a promising cell therapy to promote transplant tolerance, minimize the use of immunosuppressants, and prevent chronic rejection. Here, we review the literature on preclinical studies of MSCs for corneal transplantation and summarize the key findings from clinical trials with MSCs in solid organ transplantation. Finally, we highlight current issues and challenges regarding MSC therapies and suggest strategies for safe and effective MSC-based therapies in clinical transplantation.
Collapse
|
28
|
Mesenchymal stromal cells for the treatment of ocular autoimmune diseases. Prog Retin Eye Res 2021; 85:100967. [PMID: 33775824 DOI: 10.1016/j.preteyeres.2021.100967] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells, commonly referred to as MSCs, have emerged as a promising cell-based therapy for a range of autoimmune diseases thanks to several therapeutic advantages. Key among these are: 1) the ability to modulate innate and adaptive immune responses and to promote tissue regeneration, 2) the ease of their isolation from readily accessible tissues and expansion at scale in culture, 3) their low immunogenicity enabling use as an allogeneic "off-the-shelf" product, and 4) MSC therapy's safety and feasibility in humans, as demonstrated in more than one thousand clinical trials. Evidence from preclinical studies and early clinical trials indicate the therapeutic potential of MSCs and their derivatives for efficacy in ocular autoimmune diseases such as autoimmune uveoretinitis and Sjögren's syndrome-related dry eye disease. In this review, we provide an overview of the current understanding of the therapeutic mechanisms of MSCs, and summarize the results from preclinical and clinical studies that have used MSCs or their derivatives for the treatment of ocular autoimmune diseases. We also discuss the challenges to the successful clinical application of MSC therapy, and suggest strategies for overcoming them.
Collapse
|
29
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cell Therapy in Solid Organ Transplantation. Front Immunol 2021; 11:618243. [PMID: 33643298 PMCID: PMC7902912 DOI: 10.3389/fimmu.2020.618243] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/29/2022] Open
Abstract
Transplantation is the gold-standard treatment for the failure of several solid organs, including the kidneys, liver, heart, lung and small bowel. The use of tailored immunosuppressive agents has improved graft and patient survival remarkably in early post-transplant stages, but long-term outcomes are frequently unsatisfactory due to the development of chronic graft rejection, which ultimately leads to transplant failure. Moreover, prolonged immunosuppression entails severe side effects that severely impact patient survival and quality of life. The achievement of tolerance, i.e., stable graft function without the need for immunosuppression, is considered the Holy Grail of the field of solid organ transplantation. However, spontaneous tolerance in solid allograft recipients is a rare and unpredictable event. Several strategies that include peri-transplant administration of non-hematopoietic immunomodulatory cells can safely and effectively induce tolerance in pre-clinical models of solid organ transplantation. Mesenchymal stromal cells (MSC), non-hematopoietic cells that can be obtained from several adult and fetal tissues, are among the most promising candidates. In this review, we will focus on current pre-clinical evidence of the immunomodulatory effect of MSC in solid organ transplantation, and discuss the available evidence of their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| |
Collapse
|
30
|
Hoogduijn MJ, Issa F, Casiraghi F, Reinders MEJ. Cellular therapies in organ transplantation. Transpl Int 2021; 34:233-244. [PMID: 33207013 PMCID: PMC7898347 DOI: 10.1111/tri.13789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Cellular therapy is a promising tool for improving the outcome of organ transplantation. Various cell types with different immunoregulatory and regenerative properties may find application for specific transplant rejection or injury-related indications. The current era is crucial for the development of cellular therapies. Preclinical models have demonstrated the feasibility of efficacious cell therapy in transplantation, early clinical trials have shown safety of several of these therapies, and the first steps towards efficacy studies in humans have been made. In this review, we address the current state of the art of cellular therapies in clinical transplantation and discuss monitoring tools and endpoints for these studies.
Collapse
Affiliation(s)
- Martin J. Hoogduijn
- Nephrology and TransplantationDepartment of Internal MedicineErasmus University Medical CenterErasmus Medical CenterRotterdamThe Netherlands
| | - Fadi Issa
- Transplantation Research and Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | | | - Marlies E. J. Reinders
- Nephrology and TransplantationDepartment of Internal MedicineErasmus University Medical CenterErasmus Medical CenterRotterdamThe Netherlands
| |
Collapse
|
31
|
Ischemia-reperfusion Injury in the Transplanted Lung: A Literature Review. Transplant Direct 2021; 7:e652. [PMID: 33437867 PMCID: PMC7793349 DOI: 10.1097/txd.0000000000001104] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) and primary graft dysfunction are leading causes of morbidity and mortality among lung transplant recipients. Although extensive research endeavors have been undertaken, few preventative and therapeutic treatments have emerged for clinical use. Novel strategies are still needed to improve outcomes after lung transplantation. In this review, we discuss the underlying mechanisms of transplanted LIRI, potential modifiable targets, current practices, and areas of ongoing investigation to reduce LIRI and primary graft dysfunction in lung transplant recipients.
Collapse
|
32
|
Durand N, Mallea J, Zubair AC. Insights into the use of mesenchymal stem cells in COVID-19 mediated acute respiratory failure. NPJ Regen Med 2020; 5:17. [PMID: 33580031 PMCID: PMC7589470 DOI: 10.1038/s41536-020-00105-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
The emergence of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) at the end of 2019 in Hubei province China, is now the cause of a global pandemic present in over 150 countries. COVID-19 is a respiratory illness with most subjects presenting with fever, cough and shortness of breath. In a subset of patients, COVID-19 progresses to hypoxic respiratory failure and acute respiratory distress syndrome (ARDS), both of which are mediated by widespread inflammation and a dysregulated immune response. Mesenchymal stem cells (MSCs), multipotent stromal cells that mediate immunomodulation and regeneration, could be of potential benefit to a subset of COVID-19 subjects with acute respiratory failure. In this review, we discuss key features of the current COVID-19 outbreak, and the rationale for MSC-based therapy in this setting, as well as the limitations associated with this therapeutic approach.
Collapse
Affiliation(s)
- Nisha Durand
- Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jorge Mallea
- Department of Medicine, Division of Allergy, Pulmonary and Sleep Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Abba C Zubair
- Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
33
|
Abstract
Over the past decade, the clinical application of mesenchymal stromal cells (MSCs) has generated growing enthusiasm as an innovative cell-based approach in solid organ transplantation (SOT). These expectations arise from a significant number of both transplant- and non-transplant-related experimental studies investigating the complex anti-inflammatory, immunomodulatory, and tissue-repair properties of MSCs. Promising preclinical results have prompted clinical trials using MSC-based therapy in SOT. In the present review, the general properties of MSCs are summarized, with a particular emphasis on MSC-mediated impact on the immune system and in the ischemic conditioning strategy. Next, we chronologically detail all clinical trials using MSCs in the field of SOT. Finally, we envision the challenges and perspectives of MSC-based cell therapy in SOT.
Collapse
|
34
|
High Dose of Intravenous Allogeneic Umbilical Cord-Derived Mesenchymal Stem Cells (CLV-100) Infusion Displays Better Immunomodulatory Effect among Healthy Volunteers: A Phase 1 Clinical Study. Stem Cells Int 2020; 2020:8877003. [PMID: 33061992 PMCID: PMC7539086 DOI: 10.1155/2020/8877003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/18/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) express growth factors and other cytokines that stimulate repair and control the immune response. MSCs are also immunoprivileged with low risk of rejection. Umbilical cord-derived MSCs (UCMSCs) are particularly attractive as an off-the-shelf allogeneic treatment in emergency medical conditions. We aim to determine the safety and efficacy of intravenous allogeneic infusion of UCMSCs (CLV-100) by Cytopeutics® (Selangor, Malaysia) in healthy volunteers, and to determine the effective dose at which an immunomodulatory effect is observed. Methodology. Umbilical cord samples were collected after delivery of full-term, healthy babies with written consent from both parents. All 3 generations (newborn, parents, and grandparents) were screened for genetic mutations, infections, cancers, and other inherited diseases. Samples were transferred to a certified Good Manufacturing Practice laboratory for processing. Subjects were infused with either low dose (LD, 65 million cells) or high dose (HD, 130 million cells) of CLV-100 and followed up for 6 months. We measured cytokines using ELISA including anti-inflammatory cytokines interleukin 1 receptor antagonist (IL-1RA), interleukin 10 (IL-10), pro-/anti-inflammatory cytokine interleukin 6 (IL-6), and the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α). Results 11 healthy subjects (LD, n = 5; HD, n = 6; mean age of 55 ± 13 years) were recruited. All subjects tolerated the CLV-100 infusion well with no adverse reaction throughout the study especially in vital parameters and routine blood tests. At 6 months, the HD group had significantly higher levels of anti-inflammatory markers IL1-RA (705 ± 160 vs. 306 ± 36 pg/mL; p = 0.02) and IL-10 (321 ± 27 vs. 251 ± 28 pg/mL; p = 0.02); and lower levels of proinflammatory marker TNF-α (74 ± 23 vs. 115 ± 15 pg/mL; p = 0.04) compared to LD group. Conclusion Allogeneic UCMSCs CLV-100 infusion is safe and well-tolerated in low and high doses. Anti-inflammatory effect is observed with a high-dose infusion.
Collapse
|
35
|
Qu W, Wang Z, Hare JM, Bu G, Mallea JM, Pascual JM, Caplan AI, Kurtzberg J, Zubair AC, Kubrova E, Engelberg‐Cook E, Nayfeh T, Shah VP, Hill JC, Wolf ME, Prokop LJ, Murad MH, Sanfilippo FP. Cell-based therapy to reduce mortality from COVID-19: Systematic review and meta-analysis of human studies on acute respiratory distress syndrome. Stem Cells Transl Med 2020; 9:1007-1022. [PMID: 32472653 PMCID: PMC7300743 DOI: 10.1002/sctm.20-0146] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 12/17/2022] Open
Abstract
Severe cases of COVID-19 infection, often leading to death, have been associated with variants of acute respiratory distress syndrome (ARDS). Cell therapy with mesenchymal stromal cells (MSCs) is a potential treatment for COVID-19 ARDS based on preclinical and clinical studies supporting the concept that MSCs modulate the inflammatory and remodeling processes and restore alveolo-capillary barriers. The authors performed a systematic literature review and random-effects meta-analysis to determine the potential value of MSC therapy for treating COVID-19-infected patients with ARDS. Publications in all languages from 1990 to March 31, 2020 were reviewed, yielding 2691 studies, of which nine were included. MSCs were intravenously or intratracheally administered in 117 participants, who were followed for 14 days to 5 years. All MSCs were allogeneic from bone marrow, umbilical cord, menstrual blood, adipose tissue, or unreported sources. Combined mortality showed a favorable trend but did not reach statistical significance. No related serious adverse events were reported and mild adverse events resolved spontaneously. A trend was found of improved radiographic findings, pulmonary function (lung compliance, tidal volumes, PaO2 /FiO2 ratio, alveolo-capillary injury), and inflammatory biomarker levels. No comparisons were made between MSCs of different sources.
Collapse
Affiliation(s)
- Wenchun Qu
- Department of Pain MedicineMayo ClinicJacksonvilleFloridaUSA
- Center for Regenerative MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Zhen Wang
- Evidence‐Based Practice CenterMayo ClinicRochesterMinnesotaUSA
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery Mayo ClinicRochesterMinnesotaUSA
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute and Cardiology Division, Department of MedicineUniversity of Miami, Miller School of MedicineMiamiFloridaUSA
| | - Guojun Bu
- Center for Regenerative MedicineMayo ClinicJacksonvilleFloridaUSA
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Jorge M. Mallea
- Division of Pulmonary, Allergy and Sleep Medicine, Department of MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Jorge M. Pascual
- Division of Pulmonary, Allergy and Sleep Medicine, Department of MedicineMayo ClinicJacksonvilleFloridaUSA
| | - Arnold I. Caplan
- Skeletal Research Center, Biology DepartmentCase Western Reserve UniversityClevelandOhioUSA
| | - Joanne Kurtzberg
- Marcus Center for Cellular CuresDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Abba C. Zubair
- Center for Regenerative MedicineMayo ClinicJacksonvilleFloridaUSA
- Transfusion Medicine and Stem Cell Therapy, Department of Laboratory Medicine and PathologyMayo ClinicJacksonvilleFloridaUSA
| | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Department of Orthopedic SurgeryMayo ClinicRochesterMinnesotaUSA
| | | | - Tarek Nayfeh
- Evidence‐Based Practice CenterMayo ClinicRochesterMinnesotaUSA
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery Mayo ClinicRochesterMinnesotaUSA
| | - Vishal P. Shah
- Department of Preventative, Occupational, and Aerospace MedicineMayo ClinicRochesterMinnesotaUSA
| | - James C. Hill
- Department of Preventative, Occupational, and Aerospace MedicineMayo ClinicRochesterMinnesotaUSA
| | - Michael E. Wolf
- Department of Preventative, Occupational, and Aerospace MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - M. Hassan Murad
- Evidence‐Based Practice CenterMayo ClinicRochesterMinnesotaUSA
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery Mayo ClinicRochesterMinnesotaUSA
- Department of Preventative, Occupational, and Aerospace MedicineMayo ClinicRochesterMinnesotaUSA
| | - Fred P. Sanfilippo
- Department of Pathology and Laboratory Medicine, Department of Health Policy and ManagementRollins School of Public Health, Emory University, The Marcus FoundationAtlantaGeorgiaUSA
| |
Collapse
|
36
|
Liu J, Liu Q, Chen X. The Immunomodulatory Effects of Mesenchymal Stem Cells on Regulatory B Cells. Front Immunol 2020; 11:1843. [PMID: 32922398 PMCID: PMC7456948 DOI: 10.3389/fimmu.2020.01843] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The therapeutic potential of mesenchymal stem cells (MSCs) has been investigated in many preclinical and clinical studies. This potential is dominantly based on the immunosuppressive properties of MSCs. Although the therapeutic profiles of MSC transplantation are still not fully characterized, accumulating evidence has revealed that B cells change after MSC infusion, in particular inducing regulatory B cells (Bregs). The immunosuppressive effects of Bregs have been demonstrated, and these cells are being evaluated as new targets for the treatment of inflammatory diseases. MSCs are capable of educating B cells and inducing regulatory B cell production via cell-to-cell contact, soluble factors, and extracellular vesicles (EVs). These cells thus have the potential to complement each other's immunomodulatory functions, and a combined approach may enable synergistic effects for the treatment of immunological diseases. However, compared with investigations regarding other immune cells, investigations into how MSCs specifically regulate Bregs have been superficial and insufficient. In this review, we discuss the current findings related to the immunomodulatory effects of MSCs on regulatory B cells and provide optimal strategies for applications in immune-related disease treatments.
Collapse
Affiliation(s)
- Jialing Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyong Chen
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
37
|
Multipotent Mesenchymal Stromal Cells and Lung Disease: Not Ready for Prime Time. Ann Am Thorac Soc 2020; 16:669-671. [PMID: 30786224 DOI: 10.1513/annalsats.201811-843ps] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Huang P, Russell AL, Lefavor R, Durand NC, James E, Harvey L, Zhang C, Countryman S, Stodieck L, Zubair AC. Feasibility, potency, and safety of growing human mesenchymal stem cells in space for clinical application. NPJ Microgravity 2020; 6:16. [PMID: 32529028 PMCID: PMC7264338 DOI: 10.1038/s41526-020-0106-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Growing stem cells on Earth is very challenging and limited to a few population doublings. The standard two-dimensional (2D) culture environment is an unnatural condition for cell growth. Therefore, culturing stem cells aboard the International Space Station (ISS) under a microgravity environment may provide a more natural three-dimensional environment for stem cell expansion and organ development. In this study, human-derived mesenchymal stem cells (MSCs) grown in space were evaluated to determine their potential use for future clinical applications on Earth and during long-term spaceflight. MSCs were flown in Plate Habitats for transportation to the ISS. The MSCs were imaged every 24-48 h and harvested at 7 and 14 days. Conditioned media samples were frozen at -80 °C and cells were either cryopreserved in 5% dimethyl sulfoxide, RNAprotect, or paraformaldehyde. After return to Earth, MSCs were characterized to establish their identity and cell cycle status. In addition, cell proliferation, differentiation, cytokines, and growth factors' secretion were assessed. To evaluate the risk of malignant transformation, the space-grown MSCs were subjected to chromosomal, DNA damage, and tumorigenicity assays. We found that microgravity had significant impact on the MSC capacity to secrete cytokines and growth factors. They appeared to be more potent in terms of immunosuppressive capacity compared to their identical ground control. Chromosomal, DNA damage, and tumorigenicity assays showed no evidence of malignant transformation. Therefore, it is feasible and potentially safe to grow MSCs aboard the ISS for potential future clinical applications.
Collapse
Affiliation(s)
- Peng Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Athena L Russell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Rebecca Lefavor
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Nisha C Durand
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Elle James
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Larry Harvey
- Center for Applied Space Technologies, Merritt Island, FL USA
| | - Cuiping Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| | - Stefanie Countryman
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO USA
| | - Louis Stodieck
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL USA.,Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL USA
| |
Collapse
|
39
|
Ibrahim AAS, Morsy MM, Abouhashem SE, Aly O, Sabbah NA, Raafat N. Role of mesenchymal stem cells and their culture medium in alleviating kidney injury in rats diabetic nephropathy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00064-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
Diabetic nephropathy (DN) is considered as one of the most serious complications resulting from diabetes mellitus and end-stage of renal failure globally. Up to 40% of diabetic patients will develop DN. The involvement of mesenchymal stem cells (MSCs) in diabetic renal lesions management has been established in many animal models of DN. The aim is to evaluate the capability of MSCs and their culture medium (CM) to alleviate DN in streptozotocin (STZ)-induced diabetic rat model. Female albino rats were made diabetic and were further categorized into 4 subgroups of 15 each: DN group, DN group received fibroblasts, MSCs group received one dose of 1 × 106 cells of MSCs, and CM group received one dose of 500 μl of CM. In all groups, the treatment was delivered by intravenous injection (IV) into the tail vein.
Results
MSCs insinuated themselves into the injured kidney as detected by CD44 expression. Biochemical and histological results showed that MSCs and/or CM effectively attenuated DN manifestations in rat model through their possible anti-inflammatory (tumor necrosis factor-α and transforming growth factor-β1 were decreased), anti-apoptotic (Bcl2 was increased while Bax and caspases were decreased), and anti-oxidant role (malondialdehyde was decreased while glutathione and catalase were increased).
Conclusion
These results provide a potential therapeutic tool for DN management through the administration of the CM from MSCs that ameliorates the effects of diabetes. It is also possible to treat DN using CM alone thus avoiding cell transplantation.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Chronic lung allograft dysfunction (CLAD) has been recently introduced as an umbrella-term encompassing all forms of chronic pulmonary function decline posttransplant with bronchiolitis obliterans syndrome and restrictive allograft syndrome as the most important subtypes. Differential diagnosis and management, however, remains complicated. RECENT FINDINGS Herein, we provide an overview of the different diagnostic criteria (pulmonary function, body plethysmography and radiology) used to differentiate bronchiolitis obliterans syndrome and restrictive allograft syndrome, their advantages and disadvantages as well as potential problems in making an accurate differential diagnosis. Furthermore, we discuss recent insights in CLAD management and treatment and advances in the search for accurate biomarkers of CLAD. SUMMARY Careful dissection of CLAD phenotypes is of utmost importance to assess patient prognosis, but uniform diagnostic criteria are desperately needed. There is a long way ahead, but the first steps towards this goal are now taken; tailored individualized therapy will be the golden standard to treat CLAD in the future, but randomized placebo-controlled and multicentre trials are needed to identify new and powerful therapeutic agents.
Collapse
|
41
|
Gómez de Antonio D, Campo-Cañaveral de la Cruz JL, Zurita M, Santos M, González Lois C, Varela de Ugarte A, Vaquero J. Bone Marrow-derived Mesenchymal Stem Cells and Chronic Allograft Disease in a Bronchiolitis Obliterans Animal Model. Arch Bronconeumol 2020; 56:149-156. [PMID: 31296434 DOI: 10.1016/j.arbres.2019.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Bronchiolitis obliterans (BO) is the most common expression of chronic allograft dysfunction in lung transplantation. Moreover, BO represents the major cause of death in the long-term after this procedure. On the other hand, mesenchymal stem cells have been tested in animal models of BO aiming to interfere in its development. The aim of this experimental study is to explore the role of bone-marrow derived stem cells (BMSCs) as a preventive intervention of BO occurrence. MATERIALS AND METHODS This an experimental randomized study. A bronchiolitis obliterans animal model in rats was reproduced: heterotopical tracheal transplant model in lung parenchyma. Five of these animals were used as control group. After setting up the model, individuals were divided in 3 groups of treatment (n=15), in which BMSCs were administered in 3 different time points after the tracheal transplant (tracheal transplantation and BMSCs administration occurred the same day, group G0; after 7 days, group G7; after 14 days, group G14. In addition, within each group, BMSCs were administered through 3 different routes: endotracheally, endovascular and topically in the lung parenchyma). Animals were sacrificed at 21 days. Histology, fluorescence in situ hybridization and immunohistochemistry techniques were performed for identifying stem cells. RESULTS Compared to control group, animals receiving BMSCs showed large neovessels in a loose fibrous matrix. Group G7 showed less fibrosis (p<0.033) and edema (p<0.028). Moreover, G7 animals receiving stem cells endotracheally showed no fibrosis (p<0.008). Alveolar-like patches of tissue were observed among all groups (53.4%, 46.7% and 40% in G0, G7 and G14 respectively), consisting of cells expressing both stem and alveolar cells biomarkers. CONCLUSION BMSCs modify the course of bronchiolitis obliterans and differentiate into alveolar cells. Endotracheal administration of BMSCs 7 days after the heterotopical tracheal transplant might be considered an effective way to prevent BO in this animal model.
Collapse
Affiliation(s)
- David Gómez de Antonio
- Thoracic Surgery Department, Hospital Universitario Puerta de Hierro, Majadahonda, Spain.
| | | | - Mercedes Zurita
- Neuroscience Laboratory, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Martin Santos
- Veterinary Department, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | - Carmen González Lois
- Pathology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | | | - Jesús Vaquero
- Neuroscience Laboratory, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| |
Collapse
|
42
|
Update on mesenchymal stromal cell studies in organ transplant recipients. Curr Opin Organ Transplant 2020; 25:27-34. [DOI: 10.1097/mot.0000000000000716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Yang H, Cheam NMJ, Cao H, Lee MKH, Sze SK, Tan NS, Tay CY. Materials Stiffness-Dependent Redox Metabolic Reprogramming of Mesenchymal Stem Cells for Secretome-Based Therapeutic Angiogenesis. Adv Healthc Mater 2019; 8:e1900929. [PMID: 31532923 DOI: 10.1002/adhm.201900929] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/23/2019] [Indexed: 11/08/2022]
Abstract
Cellular redox metabolism has emerged as a key tenet in stem cell biology that can profoundly influence the paracrine activity and therapeutic efficacy of mesenchymal stem cells (MSCs). Although the use of materials cues to direct the differentiation of MSCs has been widely investigated, little is known regarding the role of materials in the control of redox paracrine signaling in MSCs. Herein, using a series of mechanically tunable fibronectin-conjugated polyacrylamide (FN-PAAm) hydrogel substrates, it is shown that a mechanically compliant microenvironment with native-tissue mimicking stiffness (E = 0.15 kPa) can mechano-regulate the intracellular reactive oxygen species (ROS) level in human adipose-derived MSCs (ADMSCs). The cells reciprocate to the ROS imbalance by co-activating the nuclear factor erythroid 2-related factor 2 and hypoxia-inducible factor 1 alpha stress response signaling pathways to increase the production of vascular endothelial growth factor and basic fibroblast growth factor. Conditioned medium collected from ADMSCs grown on the 0.15 kPa FN-PAAm is found to significantly promote in vitro and ex ovo vascularization events. Collectively, these findings highlight the importance of delineating critical materials properties that can enable the reprogramming of cellular redox signaling for advanced MSCs-based secretome regenerative medicine.
Collapse
Affiliation(s)
- Haibo Yang
- School of Materials Science and EngineeringNanyang Technological University N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Nicole Mein Ji Cheam
- School of Materials Science and EngineeringNanyang Technological University N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Huan Cao
- School of Materials Science and EngineeringNanyang Technological University N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
| | - Melissa Kao Hui Lee
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Siu Kwan Sze
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| | - Nguan Soon Tan
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
- Lee Kong Chian School of MedicineNanyang Technological University Singapore 11 Mandalay Road Singapore 308232 Singapore
| | - Chor Yong Tay
- School of Materials Science and EngineeringNanyang Technological University N4.1, 50 Nanyang Avenue Singapore 639798 Singapore
- School of Biological SciencesNanyang Technological University 60 Nanyang Drive Singapore 637551 Singapore
| |
Collapse
|
44
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cells for Transplant Tolerance. Front Immunol 2019; 10:1287. [PMID: 31231393 PMCID: PMC6559333 DOI: 10.3389/fimmu.2019.01287] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
In solid organ transplantation lifelong immunosuppression exposes transplant recipients to life-threatening complications, such as infections and malignancies, and to severe side effects. Cellular therapy with mesenchymal stromal cells (MSC) has recently emerged as a promising strategy to regulate anti-donor immune responses, allowing immunosuppressive drug minimization and tolerance induction. In this review we summarize preclinical data on MSC in solid organ transplant models, focusing on potential mechanisms of action of MSC, including down-regulation of effector T-cell response and activation of regulatory pathways. We will also provide an overview of available data on safety and feasibility of MSC therapy in solid organ transplant patients, highlighting the issues that still need to be addressed before establishing MSC as a safe and effective tolerogenic cell therapy in transplantation.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
45
|
Wyles SP, Hayden RE, Meyer FB, Terzic A. Regenerative medicine curriculum for next-generation physicians. NPJ Regen Med 2019; 4:3. [PMID: 30774984 PMCID: PMC6367326 DOI: 10.1038/s41536-019-0065-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022] Open
Abstract
Regenerative sciences are poised to transform clinical practice. The quest for regenerative solutions has, however, exposed a major gap in current healthcare education. A call for evidence-based adoption has underscored the necessity to establish rigorous regenerative medicine educational programs early in training. Here, we present a patient-centric regenerative medicine curriculum embedded into medical school core learning. Launched as a dedicated portal of new knowledge, learner proficiency was instilled by means of a discovery–translation–application blueprint. Using the “from the patient to the patient” paradigm, student experience recognized unmet patient needs, evolving regenerative technologies, and ensuing patient management solutions. Targeted on the deployment of a regenerative model of care, complementary subject matter included ethics, regulatory affairs, quality control, supply chain, and biobusiness. Completion of learning objectives was monitored by online tests, group teaching, simulated clinical examinations along with longitudinal continuity across medical school training and residency. Success was documented by increased awareness and proficiency in domain-relevant content, as well as specialty identification through practice exposure, research engagement, clinical acumen, and education-driven practice advancement. Early incorporation into mainstream medical education offers a tool to train next-generation healthcare providers equipped to adopt and deliver validated regenerative medicine solutions.
Collapse
Affiliation(s)
- Saranya P Wyles
- Department of Dermatology, Rochester, MN USA.,2Mayo Clinic Center for Regenerative Medicine, Rochester, MN USA
| | - Richard E Hayden
- 2Mayo Clinic Center for Regenerative Medicine, Rochester, MN USA.,Department of Otolaryngology, Phoenix, AZ USA
| | - Fredric B Meyer
- 4Mayo Clinic Alix School of Medicine, Rochester, MN USA.,Department of Neurologic Surgery, Rochester, MN USA
| | - Andre Terzic
- 2Mayo Clinic Center for Regenerative Medicine, Rochester, MN USA.,Department of Cardiovascular Medicine, Rochester, MN USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN USA.,8Department of Clinical Genomics, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
46
|
Kawai N, Ouji Y, Sakagami M, Tojo T, Sawabata N, Yoshikawa M, Taniguchi S. Induction of lung-like cells from mouse embryonic stem cells by decellularized lung matrix. Biochem Biophys Rep 2018; 15:33-38. [PMID: 29942870 PMCID: PMC6010970 DOI: 10.1016/j.bbrep.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023] Open
Abstract
Decellularization of tissues is a recently developed technique mostly used to provide a 3-dimensional matrix structure of the original organ, including decellularized lung tissues for lung transplantation. Based on the results of the present study, we propose new utilization of decellularized tissues as inducers of stem cell differentiation. Decellularized lung matrix (L-Mat) samples were prepared from mouse lungs by SDS treatment, then the effects of L-Mat on differentiation of ES cells into lung cells were investigated. ES cell derived-embryoid bodies (EBs) were transplanted into L-Mat samples and cultured for 2 weeks. At the end of the culture, expressions of lung cell-related markers, such as TTF-1 and SP-C (alveolar type II cells), AQP5 (alveolar type I cells), and CC10 (club cells), were detected in EB outgrowths in L-Mat, while those were not found in EB outgrowths attached to the dish. Our results demonstrated that L-Mat has an ability to induce differentiation of ES cells into lung-like cells. Differentiation of ES cells by decellularized lung matrix (L-Mat) was investigated. L-Mat induced differentiation of various lung cell-like cells from ES cells. L-Mat plays an important role for inducing differentiation of lung cells.
Collapse
Affiliation(s)
- Norikazu Kawai
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
- Correspondence to: Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Masaharu Sakagami
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Takashi Tojo
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Noriyoshi Sawabata
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Shigeki Taniguchi
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|